1
|
Su Y, Huang M, Thomas AG, Maragakis J, Huizar KDJ, Zheng Y, Wu Y, Farah MH, Slusher BS. GCPII Inhibition Promotes Remyelination after Peripheral Nerve Injury in Aged Mice. Int J Mol Sci 2024; 25:6893. [PMID: 39000003 PMCID: PMC11241013 DOI: 10.3390/ijms25136893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Peripheral nerve injuries (PNIs) represent a significant clinical challenge, particularly in elderly populations where axonal remyelination and regeneration are impaired. Developing therapies to enhance these processes is crucial for improving PNI repair outcomes. Glutamate carboxypeptidase II (GCPII) is a neuropeptidase that plays a pivotal role in modulating glutamate signaling through its enzymatic cleavage of the abundant neuropeptide N-acetyl aspartyl glutamate (NAAG) to liberate glutamate. Within the PNS, GCPII is expressed in Schwann cells and activated macrophages, and its expression is amplified with aging. In this study, we explored the therapeutic potential of inhibiting GCPII activity following PNI. We report significant GCPII protein and activity upregulation following PNI, which was normalized by the potent and selective GCPII inhibitor 2-(phosphonomethyl)-pentanedioic acid (2-PMPA). In vitro, 2-PMPA robustly enhanced myelination in dorsal root ganglion (DRG) explants. In vivo, using a sciatic nerve crush injury model in aged mice, 2-PMPA accelerated remyelination, as evidenced by increased myelin sheath thickness and higher numbers of remyelinated axons. These findings suggest that GCPII inhibition may be a promising therapeutic strategy to enhance remyelination and potentially improve functional recovery after PNI, which is especially relevant in elderly PNI patients where this process is compromised.
Collapse
Affiliation(s)
- Yu Su
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.S.); (M.H.); (A.G.T.); (J.M.); (K.D.J.H.); (Y.Z.); (Y.W.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Meixiang Huang
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.S.); (M.H.); (A.G.T.); (J.M.); (K.D.J.H.); (Y.Z.); (Y.W.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ajit G. Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.S.); (M.H.); (A.G.T.); (J.M.); (K.D.J.H.); (Y.Z.); (Y.W.)
| | - John Maragakis
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.S.); (M.H.); (A.G.T.); (J.M.); (K.D.J.H.); (Y.Z.); (Y.W.)
| | - Kaitlyn D. J. Huizar
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.S.); (M.H.); (A.G.T.); (J.M.); (K.D.J.H.); (Y.Z.); (Y.W.)
| | - Yuxin Zheng
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.S.); (M.H.); (A.G.T.); (J.M.); (K.D.J.H.); (Y.Z.); (Y.W.)
| | - Ying Wu
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.S.); (M.H.); (A.G.T.); (J.M.); (K.D.J.H.); (Y.Z.); (Y.W.)
| | - Mohamed H. Farah
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Barbara S. Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (Y.S.); (M.H.); (A.G.T.); (J.M.); (K.D.J.H.); (Y.Z.); (Y.W.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Wiseman RL, Bigos KL, Dastgheyb RM, Barker PB, Rubin LH, Slusher BS. Brain N -acetyl-aspartyl-glutamate is associated with cognitive function in older virally suppressed people with HIV. AIDS 2024; 38:1003-1011. [PMID: 38411600 PMCID: PMC11062820 DOI: 10.1097/qad.0000000000003871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVES Cognitive impairment persists in virally suppressed people with HIV (VS-PWH) especially in higher order domains. One cortical circuit, linked to these domains, is regulated by N -acetyl-aspartyl glutamate (NAAG), the endogenous agonist of the metabotropic glutamate receptor 3. The enzyme glutamate carboxypeptidase II (GCPII) catabolizes NAAG and is upregulated in aging and disease. Inhibition of GCPII increases brain NAAG and improves learning and memory in rodent and primate models. DESIGN As higher order cognitive impairment is present in VS-PWH, and NAAG has not been investigated in earlier magnetic resonance spectroscopy studies (MRS), we investigated if brain NAAG levels measured by MRS were associated with cognitive function. METHODS We conducted a retrospective analysis of 7-Tesla MRS data from a previously published study on cognition in older VS-PWH. The original study did not separately quantify NAAG, therefore, work for this report focused on relationships between regional NAAG levels in frontal white matter (FWM), left hippocampus, left basal ganglia and domain-specific cognitive performance in 40 VS-PWH after adjusting for confounds. Participants were older than 50 years, negative for affective and neurologic disorders, and had no prior 3-month psychoactive-substance use. RESULTS Higher NAAG levels in FWM were associated with better attention/working memory. Higher left basal ganglia NAAG related to better verbal fluency. There was a positive relationship between hippocampal NAAG and executive function which lost significance after correction for confounds. CONCLUSION These data suggest brain NAAG serves as a biomarker of cognition in VS-PWH. Pharmacological modulation of brain NAAG warrants investigation as a therapeutic approach for cognitive deficits in VS-PWH.
Collapse
Affiliation(s)
- Robyn L. Wiseman
- Department of Pharmacology and Molecular Sciences
- Johns Hopkins Drug Discovery
- Department of Medicine, Division of Clinical Pharmacology
| | - Kristin L. Bigos
- Department of Pharmacology and Molecular Sciences
- Department of Medicine, Division of Clinical Pharmacology
- Department of Psychiatry and Behavioral Sciences
| | | | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Sciences
| | - Leah H. Rubin
- Department of Psychiatry and Behavioral Sciences
- Department of Neurology
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health
| | - Barbara S. Slusher
- Department of Pharmacology and Molecular Sciences
- Johns Hopkins Drug Discovery
- Department of Medicine, Division of Clinical Pharmacology
- Department of Psychiatry and Behavioral Sciences
- Department of Neurology
- Department of Oncology
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Wang X, Zhou G, Lin J, Qin T, Du J, Guo L, Lai P, Jing Y, Zhang Z, Zhou Y, Ding G. Effects of radiofrequency field from 5G communication on fecal microbiome and metabolome profiles in mice. Sci Rep 2024; 14:3571. [PMID: 38347014 PMCID: PMC10861445 DOI: 10.1038/s41598-024-53842-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024] Open
Abstract
With the rapid development of 5G networks, the influence of the radiofrequency field (RF) generated from 5G communication equipment on human health is drawing increasing attention in public. The study aimed at assessing the effects of long-term exposure to 4.9 GHz (one of the working frequencies of 5G communication) RF field on fecal microbiome and metabolome profiles in adult male C57BL/6 mice. The animals were divided into Sham group and radiofrequency group (RF group). For RF group, the mice were whole body exposed to 4.9 GHz RF field for three weeks, 1 h/d, at average power density (PD) of 50 W/m2. After RF exposure, the mice fecal samples were collected to detect gut microorganisms and metabolites by 16S rRNA gene sequencing and LC-MS method, respectively. The results showed that intestinal microbial compositions were altered in RF group, as evidenced by reduced microbial diversity and changed microbial community distribution. Metabolomics profiling identified 258 significantly differentially abundant metabolites in RF group, 57 of which can be classified to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Besides, functional correlation analysis showed that changes in gut microbiota genera were significantly correlated with changes in fecal metabolites. In summary, the results suggested that altered gut microbiota and metabolic profile are associated with 4.9 GHz radiofrequency exposure.
Collapse
Affiliation(s)
- Xing Wang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Guiqiang Zhou
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
- School of Public Health, Shandong Second Medical University, Weifang, China
| | - Jiajin Lin
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Tongzhou Qin
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Junze Du
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Ling Guo
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Panpan Lai
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Yuntao Jing
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Zhaowen Zhang
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China
| | - Yan Zhou
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China.
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| | - Guirong Ding
- Department of Radiation Protection Medicine, School of Military Preventive Medicine, Air Force Medical University, Xi'an, China.
- Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, China.
| |
Collapse
|
4
|
Datta D, Perone I, Morozov YM, Arellano J, Duque A, Rakic P, van Dyck CH, Arnsten AFT. Localization of PDE4D, HCN1 channels, and mGluR3 in rhesus macaque entorhinal cortex may confer vulnerability in Alzheimer's disease. Cereb Cortex 2023; 33:11501-11516. [PMID: 37874022 PMCID: PMC10724870 DOI: 10.1093/cercor/bhad382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/28/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023] Open
Abstract
Alzheimer's disease cortical tau pathology initiates in the layer II cell clusters of entorhinal cortex, but it is not known why these specific neurons are so vulnerable. Aging macaques exhibit the same qualitative pattern of tau pathology as humans, including initial pathology in layer II entorhinal cortex clusters, and thus can inform etiological factors driving selective vulnerability. Macaque data have already shown that susceptible neurons in dorsolateral prefrontal cortex express a "signature of flexibility" near glutamate synapses on spines, where cAMP-PKA magnification of calcium signaling opens nearby potassium and hyperpolarization-activated cyclic nucleotide-gated channels to dynamically alter synapse strength. This process is regulated by PDE4A/D, mGluR3, and calbindin, to prevent toxic calcium actions; regulatory actions that are lost with age/inflammation, leading to tau phosphorylation. The current study examined whether a similar "signature of flexibility" expresses in layer II entorhinal cortex, investigating the localization of PDE4D, mGluR3, and HCN1 channels. Results showed a similar pattern to dorsolateral prefrontal cortex, with PDE4D and mGluR3 positioned to regulate internal calcium release near glutamate synapses, and HCN1 channels concentrated on spines. As layer II entorhinal cortex stellate cells do not express calbindin, even when young, they may be particularly vulnerable to magnified calcium actions and ensuing tau pathology.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Isabella Perone
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yury M Morozov
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jon Arellano
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alvaro Duque
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Pasko Rakic
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | - Amy F T Arnsten
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
5
|
Ji T, Pang Y, Cheng M, Wang R, Chen X, Zhang C, Liu M, Zhang J, Zhong C. Deletion of glutamate carboxypeptidase II (GCPII), but not GCPIII, provided long-term benefits in mice with traumatic brain injury. CNS Neurosci Ther 2023; 29:3786-3801. [PMID: 37349952 PMCID: PMC10651966 DOI: 10.1111/cns.14299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/19/2023] [Accepted: 05/28/2023] [Indexed: 06/24/2023] Open
Abstract
MAIN PROBLEM N-acetylaspartylglutamate (NAAG) has neuroprotective effects in traumatic brain injury (TBI) by activating metabotropic glutamate receptor 3 (mGluR3) and reducing glutamate release. Glutamate carboxypeptidase II (GCPII) is the primary enzyme responsible for the hydrolysis of NAAG. It remains unclear whether glutamate carboxypeptidase III (GCPIII), a homolog of GCPII, can partially compensate for GCPII's function. METHODS GCPII-/- , GCPIII-/- , and GCPII/III-/- mice were generated using CRISPR/Cas9 technology. Mice brain injury model was established through moderate controlled cortical impact (CCI). The relationship between GCPII and GCPIII was explored by analyzing injury response signals in the hippocampus and cortex of mice with different genotypes at the acute (1 day) and subacute (7 day) phase after TBI. RESULTS In this study, we found that deletion of GCPII reduced glutamate production, excitotoxicity, and neuronal damage and improved cognitive function, but GCPIII deletion had no significant neuroprotective effect. Additionally, there was no significant difference in the neuroprotective effect between the combination of GCPII and GCPIII deletion and GCPII deletion alone. CONCLUSION These results suggest that GCPII inhibition may be a therapeutic option for TBI, and that GCPIII may not act as a complementary enzyme to GCPII in this context.
Collapse
Affiliation(s)
- Tongjie Ji
- Department of NeurosurgeryShanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Ying Pang
- Department of NeurosurgeryShanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Meng Cheng
- Department of NeurosurgeryShanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Rui Wang
- Department of NeurosurgeryShanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Xu Chen
- Department of NeurosurgeryShanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Chunyu Zhang
- Department of NeurosurgeryShanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Min Liu
- Department of NeurosurgeryShanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
| | - Jing Zhang
- Department of NeurosurgeryShanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
- Institute for Advanced StudyTongji UniversityShanghaiChina
| | - Chunlong Zhong
- Department of NeurosurgeryShanghai East Hospital, School of Medicine, Tongji UniversityShanghaiChina
| |
Collapse
|
6
|
Datta D. Interrogating the Etiology of Sporadic Alzheimer's Disease Using Aging Rhesus Macaques: Cellular, Molecular, and Cortical Circuitry Perspectives. J Gerontol A Biol Sci Med Sci 2023; 78:1523-1534. [PMID: 37279946 PMCID: PMC10460555 DOI: 10.1093/gerona/glad134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Indexed: 06/08/2023] Open
Abstract
Aging is the most significant risk factor for neurodegenerative disorders such as Alzheimer's disease (AD) associated with profound socioeconomic and personal costs. Consequently, there is an urgent need for animal models that recapitulate the age-related spatial and temporal complexity and patterns of pathology identical to human AD. Our research in aging nonhuman primate models involving rhesus macaques has revealed naturally occurring amyloid and tau pathology, including the formation of amyloid plaques and neurofibrillary tangles comprising hyperphosphorylated tau. Moreover, rhesus macaques exhibit synaptic dysfunction in association cortices and cognitive impairments with advancing age, and thus can be used to interrogate the etiological mechanisms that generate neuropathological cascades in sporadic AD. Particularly, unique molecular mechanisms (eg, feedforward cyclic adenosine 3',5'-monophosphate [cAMP]-Protein kinase A (PKA)-calcium signaling) in the newly evolved primate dorsolateral prefrontal cortex are critical for persistent firing required for subserving higher-order cognition. For example, dendritic spines in primate dorsolateral prefrontal cortex contain a specialized repertoire of proteins to magnify feedforward cAMP-PKA-calcium signaling such as N-methyl-d-aspartic acid receptors and calcium channels on the smooth endoplasmic reticulum (eg, ryanodine receptors). This process is constrained by phosphodiesterases (eg, PDE4) that hydrolyze cAMP and calcium-buffering proteins (eg, calbindin) in the cytosol. However, genetic predispositions and age-related insults exacerbate feedforward cAMP-Protein kinase A-calcium signaling pathways that induce a myriad of downstream effects, including the opening of K+ channels to weaken network connectivity, calcium-mediated dysregulation of mitochondria, and activation of inflammatory cascades to eliminate synapses, thereby increasing susceptibility to atrophy. Therefore, aging rhesus macaques provide an invaluable model to explore novel therapeutic strategies in sporadic AD.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Fesharaki Zadeh A, Arnsten AFT, Wang M. Scientific Rationale for the Treatment of Cognitive Deficits from Long COVID. Neurol Int 2023; 15:725-742. [PMID: 37368329 PMCID: PMC10303664 DOI: 10.3390/neurolint15020045] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 05/11/2023] [Indexed: 06/28/2023] Open
Abstract
Sustained cognitive deficits are a common and debilitating feature of "long COVID", but currently there are no FDA-approved treatments. The cognitive functions of the dorsolateral prefrontal cortex (dlPFC) are the most consistently afflicted by long COVID, including deficits in working memory, motivation, and executive functioning. COVID-19 infection greatly increases kynurenic acid (KYNA) and glutamate carboxypeptidase II (GCPII) in brain, both of which can be particularly deleterious to PFC function. KYNA blocks both NMDA and nicotinic-alpha-7 receptors, the two receptors required for dlPFC neurotransmission, and GCPII reduces mGluR3 regulation of cAMP-calcium-potassium channel signaling, which weakens dlPFC network connectivity and reduces dlPFC neuronal firing. Two agents approved for other indications may be helpful in restoring dlPFC physiology: the antioxidant N-acetyl cysteine inhibits the production of KYNA, and the α2A-adrenoceptor agonist guanfacine regulates cAMP-calcium-potassium channel signaling in dlPFC and is also anti-inflammatory. Thus, these agents may be helpful in treating the cognitive symptoms of long COVID.
Collapse
Affiliation(s)
- Arman Fesharaki Zadeh
- Departments of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
- Departments of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Amy F. T. Arnsten
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA;
| | - Min Wang
- Departments of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA;
| |
Collapse
|
8
|
Arnsten AFT, Woo E, Yang S, Wang M, Datta D. Unusual Molecular Regulation of Dorsolateral Prefrontal Cortex Layer III Synapses Increases Vulnerability to Genetic and Environmental Insults in Schizophrenia. Biol Psychiatry 2022; 92:480-490. [PMID: 35305820 PMCID: PMC9372235 DOI: 10.1016/j.biopsych.2022.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 02/06/2023]
Abstract
Schizophrenia is associated with reduced numbers of spines and dendrites from layer III of the dorsolateral prefrontal cortex (dlPFC), the layer that houses the recurrent excitatory microcircuits that subserve working memory and abstract thought. Why are these synapses so vulnerable, while synapses in deeper or more superficial layers are little affected? This review describes the special molecular properties that govern layer III neurotransmission and neuromodulation in the primate dlPFC and how they may render these circuits particularly vulnerable to genetic and environmental insults. These properties include a reliance on NMDA receptor rather than AMPA receptor neurotransmission; cAMP (cyclic adenosine monophosphate) magnification of calcium signaling near the glutamatergic synapse of dendritic spines; and potassium channels opened by cAMP/PKA (protein kinase A) signaling that dynamically alter network strength, with built-in mechanisms to take dlPFC "offline" during stress. A variety of genetic and/or environmental insults can lead to the same phenotype of weakened layer III connectivity, in which mechanisms that normally strengthen connectivity are impaired and those that normally weaken connectivity are intensified. Inflammatory mechanisms, such as increased kynurenic acid and glutamate carboxypeptidase II expression, are especially detrimental to layer III dlPFC neurotransmission and modulation, mimicking genetic insults. The combination of genetic and inflammatory insults may cross the threshold into pathology.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut.
| | - Elizabeth Woo
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Shengtao Yang
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Min Wang
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| | - Dibyadeep Datta
- Department of Neuroscience, Yale Medical School, New Haven, Connecticut
| |
Collapse
|
9
|
Jeitner TM, Babich JW, Kelly JM. Advances in PSMA theranostics. Transl Oncol 2022; 22:101450. [PMID: 35597190 PMCID: PMC9123266 DOI: 10.1016/j.tranon.2022.101450] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 12/15/2022] Open
Abstract
PSMA is an appealing target for theranostic because it is a transmembrane protein with a known substrate that is overexpessed on prostate cancer cells and internalizes upon ligand binding. There are a number of PSMA theranostic ligands in clinical evaluation, clinical trial, or clinically approved. PSMA theranostic ligands increase progression-free survival, overall survival, and pain in patients with metastatic castration resistant prostate cancer. A major obstacle to PSMA-targeted radioligand therapy is off-target toxicity in salivary glands.
The validation of prostate specific membrane antigen (PSMA) as a molecular target in metastatic castration-resistant prostate cancer has stimulated the development of multiple classes of theranostic ligands that specifically target PSMA. Theranostic ligands are used to image disease or selectively deliver cytotoxic radioactivity to cells expressing PSMA according to the radioisotope conjugated to the ligand. PSMA theranostics is a rapidly advancing field that is now integrating into clinical management of prostate cancer patients. In this review we summarize published research describing the biological role(s) and activity of PSMA, highlight the most clinically advanced PSMA targeting molecules and biomacromolecules, and identify next generation PSMA ligands that aim to further improve treatment efficacy. The goal of this review is to provide a comprehensive assessment of the current state-of-play and a roadmap to achieving further advances in PSMA theranostics.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA
| | - John W Babich
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA; Weill Cornell Medicine, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA; Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY 10021, USA
| | - James M Kelly
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, Belfer Research Building, 413 East 69th Street, Room BB-1604, New York, NY 10021, USA; Weill Cornell Medicine, Citigroup Biomedical Imaging Center, New York, NY 10021, USA.
| |
Collapse
|
10
|
Woo E, Datta D, Arnsten AFT. Glutamate Metabotropic Receptor Type 3 (mGlu3) Localization in the Rat Prelimbic Medial Prefrontal Cortex. Front Neuroanat 2022; 16:849937. [PMID: 35444520 PMCID: PMC9013768 DOI: 10.3389/fnana.2022.849937] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Metabotropic glutamate receptors type 3 (mGlu3, encoded by GRM3) are increasingly related to cognitive functioning, including the working memory operations of the prefrontal cortex (PFC). In rhesus monkeys, mGlu3 are most commonly expressed on glia (36%), but are also very prominent on layer III dendritic spines (23%) in the dorsolateral PFC (dlPFC) where they enhance working memory-related neuronal firing. In contrast, mGlu2 are predominately presynaptic in layer III of macaque dlPFC, indicating a pre- vs. post-synaptic dissociation by receptor subtype. The current study examined the cellular and subcellular localizations of mGlu3 in the rat prelimbic medial PFC (PL mPFC), a region needed for spatial working memory performance in rodents. Multiple label immunofluorescence demonstrated mGlu3 expression in neurons and astrocytes, with rare labeling in microglia. Immunoelectron microscopy of layers III and V found that the predominant location for mGlu3 was on axons (layer III: 35.9%; layer V: 44.1%), with labeling especially prominent within the intervaricose segments distant from axon terminals. mGlu3 were also found on glia (likely astrocytes), throughout the glial membrane (layer III: 28.2%; layer V: 29.5%). Importantly, mGlu3 could be seen on dendritic spines, especially in layer III (layer III: 15.6%; layer V: 8.2%), with minor labeling on dendrites. These data show that there are some similarities between mGlu3 expression in rat PL mPFC and macaque dlPFC, but the spine expression enriches and differentiates in the more recently evolved primate dlPFC.
Collapse
|
11
|
Morland C, Nordengen K. N-Acetyl-Aspartyl-Glutamate in Brain Health and Disease. Int J Mol Sci 2022; 23:ijms23031268. [PMID: 35163193 PMCID: PMC8836185 DOI: 10.3390/ijms23031268] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
N-acetyl-aspartyl-glutamate (NAAG) is the most abundant dipeptide in the brain, where it acts as a neuromodulator of glutamatergic synapses by activating presynaptic metabotropic glutamate receptor 3 (mGluR3). Recent data suggest that NAAG is selectively localized to postsynaptic dendrites in glutamatergic synapses and that it works as a retrograde neurotransmitter. NAAG is released in response to glutamate and provides the postsynaptic neuron with a feedback mechanisms to inhibit excessive glutamate signaling. A key regulator of synaptically available NAAG is rapid degradation by the extracellular enzyme glutamate carboxypeptidase II (GCPII). Increasing endogenous NAAG—for instance by inhibiting GCPII—is a promising treatment option for many brain disorders where glutamatergic excitotoxicity plays a role. The main effect of NAAG occurs through increased mGluR3 activation and thereby reduced glutamate release. In the present review, we summarize the transmitter role of NAAG and discuss the involvement of NAAG in normal brain physiology. We further present the suggested roles of NAAG in various neurological and psychiatric diseases and discuss the therapeutic potential of strategies aiming to enhance NAAG levels.
Collapse
Affiliation(s)
- Cecilie Morland
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, The Faculty of Mathematics and Natural Sciences, University of Oslo, 1068 Oslo, Norway
- Correspondence: (C.M.); (K.N.); Tel.: +47-22844937; (C.M.); +47-23073580 (K.N.)
| | - Kaja Nordengen
- Department of Neurology, Oslo University Hospital, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
- Correspondence: (C.M.); (K.N.); Tel.: +47-22844937; (C.M.); +47-23073580 (K.N.)
| |
Collapse
|
12
|
Yang S, Datta D, Elizabeth Woo, Duque A, Morozov YM, Arellano J, Slusher BS, Wang M, Arnsten AFT. Inhibition of glutamate-carboxypeptidase-II in dorsolateral prefrontal cortex: potential therapeutic target for neuroinflammatory cognitive disorders. Mol Psychiatry 2022; 27:4252-4263. [PMID: 35732693 PMCID: PMC9718677 DOI: 10.1038/s41380-022-01656-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023]
Abstract
Glutamate carboxypeptidase-II (GCPII) expression in brain is increased by inflammation, e.g. by COVID19 infection, where it reduces NAAG stimulation of metabotropic glutamate receptor type 3 (mGluR3). GCPII-mGluR3 signaling is increasingly linked to higher cognition, as genetic alterations that weaken mGluR3 or increase GCPII signaling are associated with impaired cognition in humans. Recent evidence from macaque dorsolateral prefrontal cortex (dlPFC) shows that mGluR3 are expressed on dendritic spines, where they regulate cAMP-PKA opening of potassium (K+) channels to enhance neuronal firing during working memory. However, little is known about GCPII expression and function in the primate dlPFC, despite its relevance to inflammatory disorders. The present study used multiple label immunofluorescence and immunoelectron microscopy to localize GCPII in aging macaque dlPFC, and examined the effects of GCPII inhibition on dlPFC neuronal physiology and working memory function. GCPII was observed in astrocytes as expected, but also on neurons, including extensive expression in dendritic spines. Recordings in dlPFC from aged monkeys performing a working memory task found that iontophoresis of the GCPII inhibitors 2-MPPA or 2-PMPA markedly increased working memory-related neuronal firing and spatial tuning, enhancing neural representations. These beneficial effects were reversed by an mGluR2/3 antagonist, or by a cAMP-PKA activator, consistent with mGluR3 inhibition of cAMP-PKA-K+ channel signaling. Systemic administration of the brain penetrant inhibitor, 2-MPPA, significantly improved working memory performance without apparent side effects, with largest effects in the oldest monkeys. Taken together, these data endorse GCPII inhibition as a potential strategy for treating cognitive disorders associated with aging and/or neuroinflammation.
Collapse
Affiliation(s)
- Shengtao Yang
- grid.47100.320000000419368710Department Neuroscience, Yale University School of Medicine, New Haven, CT USA
| | - Dibyadeep Datta
- grid.47100.320000000419368710Department Neuroscience, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department Psychiatry, Yale University School of Medicine, New Haven, CT USA
| | - Elizabeth Woo
- grid.47100.320000000419368710Department Neuroscience, Yale University School of Medicine, New Haven, CT USA
| | - Alvaro Duque
- grid.47100.320000000419368710Department Neuroscience, Yale University School of Medicine, New Haven, CT USA
| | - Yury M. Morozov
- grid.47100.320000000419368710Department Neuroscience, Yale University School of Medicine, New Haven, CT USA
| | - Jon Arellano
- grid.47100.320000000419368710Department Neuroscience, Yale University School of Medicine, New Haven, CT USA
| | - Barbara S. Slusher
- grid.21107.350000 0001 2171 9311Department Neurology and Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Min Wang
- grid.47100.320000000419368710Department Neuroscience, Yale University School of Medicine, New Haven, CT USA
| | - Amy F. T. Arnsten
- grid.47100.320000000419368710Department Neuroscience, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|