1
|
Vaiasicca S, Balietti M, Bevilacqua L, Giorgetti B, Casoli T. Convergence between brain aging and Alzheimer's disease: focus on mitochondria. Mech Ageing Dev 2024:112001. [PMID: 39490933 DOI: 10.1016/j.mad.2024.112001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) accounts for the majority of dementia cases, with aging being the primary risk factor for developing this neurodegenerative condition. Aging and AD share several characteristics, including the formation of amyloid plaques and neurofibrillary tangles, synaptic loss, and neuroinflammation. This overlap suggests that mechanisms driving the aging process might also promote AD; however, the underlying processes are not yet fully understood. In this narrative review, we will focus on the role of mitochondria, not only as the "powerhouse of the cell", but also in programmed cell death, immune response, macromolecular synthesis, and calcium regulation. We will explore both the common changes between aging and AD and the differences between them. Additionally, we will provide an overview of interventions aimed at maintaining mitochondrial function in an attempt to slow the progression of AD. This will include a discussion of antioxidant molecules, factors that trigger mitochondrial biogenesis, compounds capable of restoring the fission/fusion balance, and a particular focus on recent techniques for mitochondrial DNA gene therapy.
Collapse
Affiliation(s)
| | - Marta Balietti
- Center for Neurobiology of Aging, IRCCS INRCA, 60121 Ancona, Italy.
| | - Lisa Bevilacqua
- Center for Neurobiology of Aging, IRCCS INRCA, 60121 Ancona, Italy
| | | | - Tiziana Casoli
- Center for Neurobiology of Aging, IRCCS INRCA, 60121 Ancona, Italy
| |
Collapse
|
2
|
Wang C, Cui W, Yu B, Zhou H, Cui Z, Guo P, Yu T, Feng Y. Role of succinylation modification in central nervous system diseases. Ageing Res Rev 2024; 95:102242. [PMID: 38387517 DOI: 10.1016/j.arr.2024.102242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Diseases of the central nervous system (CNS), including stroke, brain tumors, and neurodegenerative diseases, have a serious impact on human health worldwide, especially in elderly patients. The brain, which is one of the body's most metabolically dynamic organs, lacks fuel stores and therefore requires a continuous supply of energy substrates. Metabolic abnormalities are closely associated with the pathogenesis of CNS disorders. Post-translational modifications (PTMs) are essential regulatory mechanisms that affect the functions of almost all proteins. Succinylation, a broad-spectrum dynamic PTM, primarily occurs in mitochondria and plays a crucial regulatory role in various diseases. In addition to directly affecting various metabolic cycle pathways, succinylation serves as an efficient and rapid biological regulatory mechanism that establishes a connection between metabolism and proteins, thereby influencing cellular functions in CNS diseases. This review offers a comprehensive analysis of succinylation and its implications in the pathological mechanisms of CNS diseases. The objective is to outline novel strategies and targets for the prevention and treatment of CNS conditions.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Weigang Cui
- Department of Cardiology, People's Hospital of Rizhao, Rizhao 276800, People's Republic of China
| | - Bing Yu
- Qingdao University, Qingdao 266000, People's Republic of China
| | - Han Zhou
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Zhenwen Cui
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Pin Guo
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China.
| | - Yugong Feng
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, People's Republic of China.
| |
Collapse
|
3
|
Scholefield M, Church SJ, Xu J, Patassini S, Cooper GJ. Localized Pantothenic Acid (Vitamin B5) Reductions Present Throughout the Dementia with Lewy Bodies Brain. JOURNAL OF PARKINSON'S DISEASE 2024; 14:965-976. [PMID: 38820022 PMCID: PMC11307062 DOI: 10.3233/jpd-240075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 06/02/2024]
Abstract
Background Localized pantothenic acid deficiencies have been observed in several neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease dementia (PDD), and Huntington's disease (HD), indicating downstream energetic pathway perturbations. However, no studies have yet been performed to see whether such deficiencies occur across the dementia with Lewy bodies (DLB) brain, or what the pattern of such dysregulation may be. Objective Firstly, this study aimed to quantify pantothenic acid levels across ten regions of the brain in order to determine the localization of any pantothenic acid dysregulation in DLB. Secondly, the localization of pantothenic acid alterations was compared to that previously in AD, PDD, and HD brains. Methods Pantothenic acid levels were determined in 20 individuals with DLB and 19 controls by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) across ten brain regions. Case-control differences were determined by nonparametric Mann-Whitney U test, with the calculation of S-values, risk ratios, E-values, and effect sizes. The results were compared with those previously obtained in DLB, AD, and HD. Results Pantothenic acid levels were significantly decreased in six of the ten investigated brain regions: the pons, substantia nigra, motor cortex, middle temporal gyrus, primary visual cortex, and hippocampus. This level of pantothenic acid dysregulation is most similar to that of the AD brain, in which pantothenic acid is also decreased in the motor cortex, middle temporal gyrus, primary visual cortex, and hippocampus. DLB appears to differ from other neurodegenerative diseases in being the only of the four to not show pantothenic acid dysregulation in the cerebellum. Conclusions Pantothenic acid deficiency appears to be a shared mechanism of several neurodegenerative diseases, although differences in the localization of this dysregulation may contribute to the differing clinical pathways observed in these conditions.
Collapse
Affiliation(s)
- Melissa Scholefield
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Stephanie J. Church
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Jingshu Xu
- School of Biological Sciences, Faculty of Science, University of Auckland, Private Bag, Auckland, New Zealand
| | - Stefano Patassini
- School of Biological Sciences, Faculty of Science, University of Auckland, Private Bag, Auckland, New Zealand
| | - Garth J.S. Cooper
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- School of Biological Sciences, Faculty of Science, University of Auckland, Private Bag, Auckland, New Zealand
| |
Collapse
|
4
|
Judd JM, Jasbi P, Winslow W, Serrano GE, Beach TG, Klein-Seetharaman J, Velazquez R. Inflammation and the pathological progression of Alzheimer's disease are associated with low circulating choline levels. Acta Neuropathol 2023; 146:565-583. [PMID: 37548694 PMCID: PMC10499952 DOI: 10.1007/s00401-023-02616-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Deficiency of dietary choline, an essential nutrient, is observed worldwide, with ~ 90% of Americans being deficient. Previous work highlights a relationship between decreased choline intake and an increased risk for cognitive decline and Alzheimer's disease (AD). The associations between blood circulating choline and the pathological progression in both mild cognitive impairment (MCI) and AD remain unknown. Here, we examined these associations in a cohort of patients with MCI with presence of either sparse or high neuritic plaque density and Braak stage and a second cohort with either moderate AD (moderate to frequent neuritic plaques, Braak stage = IV) or severe AD (frequent neuritic plaques, Braak stage = VI), compared to age-matched controls. Metabolomic analysis was performed on serum from the AD cohort. We then assessed the effects of dietary choline deficiency (Ch-) in 3xTg-AD mice and choline supplementation (Ch+) in APP/PS1 mice, two rodent models of AD. The levels of circulating choline were reduced while pro-inflammatory cytokine TNFα was elevated in serum of both MCI sparse and high pathology cases. Reduced choline and elevated TNFα correlated with higher neuritic plaque density and Braak stage. In AD patients, we found reductions in choline, its derivative acetylcholine (ACh), and elevated TNFα. Choline and ACh levels were negatively correlated with neuritic plaque load, Braak stage, and TNFα, but positively correlated with MMSE, and brain weight. Metabolites L-Valine, 4-Hydroxyphenylpyruvic, Methylmalonic, and Ferulic acids were significantly associated with circuiting choline levels. In 3xTg-AD mice, the Ch- diet increased amyloid-β levels and tau phosphorylation in cortical tissue, and TNFα in both blood and cortical tissue, paralleling the severe human-AD profile. Conversely, the Ch+ diet increased choline and ACh while reducing amyloid-β and TNFα levels in brains of APP/PS1 mice. Collectively, low circulating choline is associated with AD-neuropathological progression, illustrating the importance of adequate dietary choline intake to offset disease.
Collapse
Affiliation(s)
- Jessica M Judd
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ, 85014, USA
| | - Paniz Jasbi
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, 85287, USA
| | - Wendy Winslow
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ, 85014, USA
| | - Geidy E Serrano
- Arizona Alzheimer's Consortium, Phoenix, AZ, 85014, USA
- Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Arizona Alzheimer's Consortium, Phoenix, AZ, 85014, USA
- Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | | | - Ramon Velazquez
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Tempe, AZ, 85287, USA.
- Arizona Alzheimer's Consortium, Phoenix, AZ, 85014, USA.
- School of Life Sciences, Arizona State University, 797 E Tyler St, Tempe, AZ, 85287, USA.
| |
Collapse
|
5
|
Li B, Han L, Ma J, Zhao M, Yang B, Xu M, Gao Y, Xu Q, Du Y. Synthesis of acylated derivatives of chitosan oligosaccharide and evaluation of their potential antifungal agents on Fusarium oxysporum. Carbohydr Polym 2023; 314:120955. [PMID: 37173050 DOI: 10.1016/j.carbpol.2023.120955] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/16/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Chitosan oligosaccharide (COS) is an important carbohydrate-based biomaterial for synthesizing candidate drugs and biological agents. This study synthesized COS derivatives by grafting acyl chlorides of different alkyl chain lengths (C8, C10, and C12) onto COS molecules and further investigated their physicochemical properties and antimicrobial activity. The COS acylated derivatives were characterized using Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, X-ray diffraction, and thermogravimetric analysis. COS acylated derivatives were successfully synthesized and possessed high solubility and thermal stability. As for the evaluation of antibacterial activity, COS acylated derivatives did not significantly inhibit Escherichia coli and Staphylococcus aureus, but they significantly inhibited Fusarium oxysporum, which was superior to that of COS. Transcriptomic analysis revealed that COS acylated derivatives exerted antifungal activity mainly by downregulating the expression of efflux pumps, disrupting cell wall integrity, and impeding normal cell metabolism. Our findings provided a fundamental theory for the development of environmentally friendly antifungal agents.
Collapse
Affiliation(s)
- Bing Li
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Lingyu Han
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Jinlong Ma
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Meijuan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Binghui Yang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Mei Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Yujia Gao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China
| | - Qingsong Xu
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, China.
| | - Yuguang Du
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
6
|
Jia D, Wang F, Yu H. Systemic alterations of tricarboxylic acid cycle enzymes in Alzheimer's disease. Front Neurosci 2023; 17:1206688. [PMID: 37575300 PMCID: PMC10413568 DOI: 10.3389/fnins.2023.1206688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Mitochondrial dysfunction, especially tricarboxylic acid (TCA) cycle arrest, is strongly associated with Alzheimer's disease (AD), however, its systemic alterations in the central and peripheral of AD patients are not well defined. Here, we performed an integrated analysis of AD brain and peripheral blood cells transcriptomics to reveal the expression levels of nine TCA cycle enzymes involving 35 genes. The results showed that TCA cycle related genes were consistently down-regulated in the AD brain, whereas 11 genes were increased and 16 genes were decreased in the peripheral system. Pearson analysis of the TCA cycle genes with Aβ, Tau and mini-mental state examination (MMSE) revealed several significant correlated genes, including pyruvate dehydrogenase complex subunit (PDHB), isocitrate dehydrogenase subunits (IDH3B, IDH3G), 2-oxoglutarate dehydrogenase complex subunit (DLD), succinyl-CoA synthetase subunit (SUCLA2), malate dehydrogenase subunit (MDH1). In addition, SUCLA2, MDH1, and PDHB were also uniformly down-regulated in peripheral blood cells, suggesting that they may be candidate biomarkers for the early diagnosis of AD. Taken together, TCA cycle enzymes were systemically altered in AD progression, PDHB, SUCLA2, and MDH1 may be potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Dongdong Jia
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
| | - Fangzhou Wang
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Haitao Yu
- The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu, China
- Department of Fundamental Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
7
|
Kola A, Nencioni F, Valensin D. Bioinorganic Chemistry of Micronutrients Related to Alzheimer's and Parkinson's Diseases. Molecules 2023; 28:5467. [PMID: 37513339 PMCID: PMC10385134 DOI: 10.3390/molecules28145467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Metal ions are fundamental to guarantee the regular physiological activity of the human organism. Similarly, vitamins play a key role in many biological functions of the metabolism, among which are coenzymes, redox mediators, and antioxidants. Due to their importance in the human organism, both metals and vitamins have been extensively studied for their involvement in neurodegenerative diseases (NDs). However, the full potential of the interaction between vitamins and metal ions has not been fully explored by researchers yet, and further investigation on this topic is needed. The aim of this review is to provide an overview of the scientific literature on the implications of vitamins and selected metal ions in two of the most common neurodegenerative diseases, Alzheimer's and Parkinson's disease. Furthermore, vitamin-metal ion interactions are discussed in detail focusing on their bioinorganic chemistry, with the perspective of arousing more interest in this fascinating bioinorganic field.
Collapse
Affiliation(s)
| | | | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (A.K.); (F.N.)
| |
Collapse
|
8
|
Reveglia P, Paolillo C, Angiolillo A, Ferretti G, Angelico R, Sirabella R, Corso G, Matrone C, Di Costanzo A. A Targeted Mass Spectrometry Approach to Identify Peripheral Changes in Metabolic Pathways of Patients with Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24119736. [PMID: 37298687 DOI: 10.3390/ijms24119736] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/20/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder, is the most common cause of dementia in the elderly population. Since its original description, there has been intense debate regarding the factors that trigger its pathology. It is becoming apparent that AD is more than a brain disease and harms the whole-body metabolism. We analyzed 630 polar and apolar metabolites in the blood of 20 patients with AD and 20 healthy individuals, to determine whether the composition of plasma metabolites could offer additional indicators to evaluate any alterations in the metabolic pathways related to the illness. Multivariate statistical analysis showed that there were at least 25 significantly dysregulated metabolites in patients with AD compared with the controls. Two membrane lipid components, glycerophospholipids and ceramide, were upregulated, whereas glutamic acid, other phospholipids, and sphingolipids were downregulated. The data were analyzed using metabolite set enrichment analysis and pathway analysis using the KEGG library. The results showed that at least five pathways involved in the metabolism of polar compounds were dysregulated in patients with AD. Conversely, the lipid pathways did not show significant alterations. These results support the possibility of using metabolome analysis to understand alterations in the metabolic pathways related to AD pathophysiology.
Collapse
Affiliation(s)
- Pierluigi Reveglia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Carmela Paolillo
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Antonella Angiolillo
- Centre for Research and Training in Medicine of Aging, Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Gabriella Ferretti
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Ruggero Angelico
- Department of Agriculture, Environmental and Food Sciences, University of Molise, 86100 Campobasso, Italy
| | - Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Gaetano Corso
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Carmela Matrone
- Division of Pharmacology, Department of Neuroscience, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Alfonso Di Costanzo
- Centre for Research and Training in Medicine of Aging, Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, 86100 Campobasso, Italy
| |
Collapse
|
9
|
Moiseenok AG, Kanunnikova NP. Brain CoA and Acetyl CoA Metabolism in Mechanisms of Neurodegeneration. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:466-480. [PMID: 37080933 DOI: 10.1134/s000629792304003x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
The processes of biotransformation of pantothenic acid (Pan) in the biosynthesis and hydrolysis of CoA, key role of pantothenate kinase (PANK) and CoA synthetase (CoASY) in the formation of the priority mitochondrial pool of CoA, with a high metabolic turnover of the coenzyme and limited transport of Pan across the blood-brain barrier are considered. The system of acetyl-CoA, a secondary messenger, which is the main substrate of acetylation processes including formation of N-acetyl aspartate and acetylcholine, post-translational modification of histones, predetermines protection of the neurons against degenerative signals and cholinergic neurotransmission. Biochemical mechanisms of neurodegenerative syndromes in the cases of PANK and CoASY defects, and the possibility of correcting of CoA biosynthesis in the models with knockouts of these enzymes have been described. The data of a post-mortem study of the brains from the patients with Huntington's and Alzheimer's diseases are presented, proving Pan deficiency in the CNS, which is especially pronounced in the pathognomonic neurostructures. In the frontal cortex of the patients with Parkinson's disease, combined immunofluorescence of anti-CoA- and anti-tau protein was detected, reflecting CoAlation during dimerization of the tau protein and its redox sensitivity. Redox activity and antioxidant properties of the precursors of CoA biosynthesis were confirmed in vitro with synaptosomal membranes and mitochondria during modeling of aluminum neurotoxicity accompanied by the decrease in the level of CoA in CNS. The ability of CoA biosynthesis precursors to stabilize glutathione pool in neurostructures, in particular, in the hippocampus, is considered as a pathogenetic protection mechanism during exposure to neurotoxins, development of neuroinflammation and neurodegeneration, and justifies the combined use of Pan derivatives (for example, D-panthenol) and glutathione precursors (N-acetylcysteine). Taking into account the discovery of new functions of CoA (redox-dependent processes of CoAlation of proteins, possible association of oxidative stress and deficiency of Pan (CoA) in neurodegenerative pathology), it seems promising to study bioavailability and biotransformation of Pan derivatives, in particular of D-panthenol, 4'-phospho-pantetheine, its acylated derivatives, and compositions with redox pharmacological compounds, are promising for their potential use as etiopathogenetic agents.
Collapse
Affiliation(s)
- Andrey G Moiseenok
- Institute of Biochemistry of Biologically Active Substances, National Academy of Sciences of Belarus, Grodno, 230023, Belarus.
| | - Nina P Kanunnikova
- Institute of Biochemistry of Biologically Active Substances, National Academy of Sciences of Belarus, Grodno, 230023, Belarus
- Yanka Kupala's Grodno State University, Grodno, 230023, Belarus
| |
Collapse
|
10
|
Kodam P, Sai Swaroop R, Pradhan SS, Sivaramakrishnan V, Vadrevu R. Integrated multi-omics analysis of Alzheimer's disease shows molecular signatures associated with disease progression and potential therapeutic targets. Sci Rep 2023; 13:3695. [PMID: 36879094 PMCID: PMC9986671 DOI: 10.1038/s41598-023-30892-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the formation of amyloid plaques implicated in neuronal death. Genetics, age, and sex are the risk factors attributed to AD. Though omics studies have helped to identify pathways associated with AD, an integrated systems analysis with the available data could help to understand mechanisms, potential biomarkers, and therapeutic targets. Analysis of transcriptomic data sets from the GEO database, and proteomic and metabolomic data sets from literature was performed to identify deregulated pathways and commonality analysis identified overlapping pathways among the data sets. The deregulated pathways included those of neurotransmitter synapses, oxidative stress, inflammation, vitamins, complement, and coagulation pathways. Cell type analysis of GEO data sets showed microglia, endothelial, myeloid, and lymphoid cells are affected. Microglia are associated with inflammation and pruning of synapses with implications for memory and cognition. Analysis of the protein-cofactor network of B2, B6, and pantothenate shows metabolic pathways modulated by these vitamins which overlap with the deregulated pathways from the multi-omics analysis. Overall, the integrated analysis identified the molecular signature associated with AD. Treatment with anti-oxidants, B2, B6, and pantothenate in genetically susceptible individuals in the pre-symptomatic stage might help in better management of the disease.
Collapse
Affiliation(s)
- Pradeep Kodam
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India
| | - R Sai Swaroop
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, 515134, India
| | - Sai Sanwid Pradhan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, 515134, India
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Anantapur, Andhra Pradesh, 515134, India.
| | - Ramakrishna Vadrevu
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Telangana, 500078, India.
| |
Collapse
|
11
|
Saravanan M, Xu R, Roby O, Wang Y, Zhu S, Lu A, Du J. Tissue-Specific Sex Difference in Mouse Eye and Brain Metabolome Under Fed and Fasted States. Invest Ophthalmol Vis Sci 2023; 64:18. [PMID: 36892534 PMCID: PMC10010444 DOI: 10.1167/iovs.64.3.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/13/2023] [Indexed: 03/10/2023] Open
Abstract
Purpose Visual physiology and various ocular diseases demonstrate sexual dimorphisms; however, how sex influences metabolism in different eye tissues remains undetermined. This study aims to address common and tissue-specific sex differences in metabolism in the retina, RPE, lens, and brain under fed and fasted conditions. Methods After ad libitum fed or being deprived of food for 18 hours, mouse eye tissues (retina, RPE/choroid, and lens), brain, and plasma were harvested for targeted metabolomics. The data were analyzed with both partial least squares-discriminant analysis and volcano plot analysis. Results Among 133 metabolites that cover major metabolic pathways, we found 9 to 45 metabolites that are sex different in different tissues under the fed state and 6 to 18 metabolites under the fasted state. Among these sex-different metabolites, 33 were changed in 2 or more tissues, and 64 were tissue specific. Pantothenic acid, hypotaurine, and 4-hydroxyproline were the top commonly changed metabolites. The lens and the retina had the most tissue-specific, sex-different metabolites enriched in the metabolism of amino acid, nucleotide, lipids, and tricarboxylic acid cycle. The lens and the brain had more similar sex-different metabolites than other ocular tissues. The female RPE and female brain were more sensitive to fasting with more decreased metabolites in amino acid metabolism, tricarboxylic acid cycles, and glycolysis. The plasma had the fewest sex-different metabolites, with very few overlapping changes with tissues. Conclusions Sex has a strong influence on eye and brain metabolism in tissue-specific and metabolic state-specific manners. Our findings may implicate the sexual dimorphisms in eye physiology and susceptibility to ocular diseases.
Collapse
Affiliation(s)
- Meghashri Saravanan
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Rong Xu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Olivia Roby
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Siyan Zhu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Amy Lu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, West Virginia, United States
- Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, West Virginia, United States
| |
Collapse
|
12
|
Carneiro TJ, Vojtek M, Gonçalves-Monteiro S, Batista de Carvalho ALM, Marques MPM, Diniz C, Gil AM. Effect of Pd 2Spermine on Mice Brain-Liver Axis Metabolism Assessed by NMR Metabolomics. Int J Mol Sci 2022; 23:13773. [PMID: 36430252 PMCID: PMC9693583 DOI: 10.3390/ijms232213773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
Cisplatin (cDDP)-based chemotherapy is often limited by severe deleterious effects (nephrotoxicity, hepatotoxicity and neurotoxicity). The polynuclear palladium(II) compound Pd2Spermine (Pd2Spm) has emerged as a potential alternative drug, with favorable pharmacokinetic/pharmacodynamic properties. This paper reports on a Nuclear Magnetic Resonance metabolomics study to (i) characterize the response of mice brain and liver to Pd2Spm, compared to cDDP, and (ii) correlate brain-liver metabolic variations. Multivariate and correlation analysis of the spectra of polar and lipophilic brain and liver extracts from an MDA-MB-231 cell-derived mouse model revealed a stronger impact of Pd2Spm on brain metabolome, compared to cDDP. This was expressed by changes in amino acids, inosine, cholate, pantothenate, fatty acids, phospholipids, among other compounds. Liver was less affected than brain, with cDDP inducing more metabolite changes. Results suggest that neither drug induces neuronal damage or inflammation, and that Pd2Spm seems to lead to enhanced brain anti-inflammatory and antioxidant mechanisms, regulation of brain bioactive metabolite pools and adaptability of cell membrane characteristics. The cDDP appears to induce higher extension of liver damage and an enhanced need for liver regeneration processes. This work demonstrates the usefulness of untargeted metabolomics in evaluating drug impact on multiple organs, while confirming Pd2Spm as a promising replacement of cDDP.
Collapse
Affiliation(s)
- Tatiana J. Carneiro
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Martin Vojtek
- LAQV/REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | - Salomé Gonçalves-Monteiro
- LAQV/REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | | | - Maria Paula M. Marques
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
- Department of Life Sciences, Faculty of Science and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Carmen Diniz
- LAQV/REQUIMTE—Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4150-755 Porto, Portugal
| | - Ana M. Gil
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|