1
|
Popescu C, Munteanu C, Anghelescu A, Ciobanu V, Spînu A, Andone I, Mandu M, Bistriceanu R, Băilă M, Postoiu RL, Vlădulescu-Trandafir AI, Giuvara S, Malaelea AD, Onose G. Novelties on Neuroinflammation in Alzheimer's Disease-Focus on Gut and Oral Microbiota Involvement. Int J Mol Sci 2024; 25:11272. [PMID: 39457054 PMCID: PMC11508522 DOI: 10.3390/ijms252011272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Recent studies underscore the role of gut and oral microbiota in influencing neuroinflammation through the microbiota-gut-brain axis, including in Alzheimer's disease (AD). This review aims to provide a comprehensive synthesis of recent findings on the involvement of gut and oral microbiota in the neuroinflammatory processes associated with AD, emphasizing novel insights and therapeutic implications. This review reveals that dysbiosis in AD patients' gut and oral microbiota is linked to heightened peripheral and central inflammatory responses. Specific bacterial taxa, such as Bacteroides and Firmicutes in the gut, as well as Porphyromonas gingivalis in the oral cavity, are notably altered in AD, leading to significant changes in microglial activation and cytokine production. Gut microbiota alterations are associated with increased intestinal permeability, facilitating the translocation of endotoxins like lipopolysaccharides (LPS) into the bloodstream and exacerbating neuroinflammation by activating the brain's toll-like receptor 4 (TLR4) pathways. Furthermore, microbiota-derived metabolites, including short-chain fatty acids (SCFAs) and amyloid peptides, can cross the blood-brain barrier and modulate neuroinflammatory responses. While microbial amyloids may contribute to amyloid-beta aggregation in the brain, certain SCFAs like butyrate exhibit anti-inflammatory properties, suggesting a potential therapeutic avenue to mitigate neuroinflammation. This review not only highlights the critical role of microbiota in AD pathology but also offers a ray of hope by suggesting that modulating gut and oral microbiota could represent a novel therapeutic strategy for reducing neuroinflammation and slowing disease progression.
Collapse
Affiliation(s)
- Cristina Popescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Constantin Munteanu
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania
| | - Aurelian Anghelescu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Vlad Ciobanu
- Department of Computer Science and Engineering, Faculty for Automatic Control and Computers, University Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Aura Spînu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Ioana Andone
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Mihaela Mandu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Roxana Bistriceanu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Mihai Băilă
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Ruxandra-Luciana Postoiu
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Andreea-Iulia Vlădulescu-Trandafir
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Sebastian Giuvara
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Alin-Daniel Malaelea
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| | - Gelu Onose
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania; (C.P.); (A.A.); (A.S.); (I.A.); (R.B.); (M.B.); (R.-L.P.); (A.-I.V.-T.); (S.G.); (A.-D.M.); (G.O.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
| |
Collapse
|
2
|
Thapa R, Moglad E, Afzal M, Gupta G, Bhat AA, Hassan Almalki W, Kazmi I, Alzarea SI, Pant K, Singh TG, Singh SK, Ali H. The role of sirtuin 1 in ageing and neurodegenerative disease: A molecular perspective. Ageing Res Rev 2024; 102:102545. [PMID: 39423873 DOI: 10.1016/j.arr.2024.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Sirtuin 1 (SIRT1), an NAD+-dependent deacetylase, has emerged as a key regulator of cellular processes linked to ageing and neurodegeneration. SIRT1 modulates various signalling pathways, including those involved in autophagy, oxidative stress, and mitochondrial function, which are critical in the pathogenesis of neurodegenerative diseases. This review explores the therapeutic potential of SIRT1 in several neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic Lateral Sclerosis (ALS). Preclinical studies have demonstrated that SIRT1 activators, such as resveratrol, SRT1720, and SRT2104, can alleviate disease symptoms by reducing oxidative stress, enhancing autophagic flux, and promoting neuronal survival. Ongoing clinical trials are evaluating the efficacy of these SIRT1 activators, providing hope for future therapeutic strategies targeting SIRT1 in neurodegenerative diseases. This review explores the role of SIRT1 in ageing and neurodegenerative diseases, with a particular focus on its molecular mechanisms, therapeutic potential, and clinical applications.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Kumud Pant
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| |
Collapse
|
3
|
Chauhan P, Wadhwa K, Singh G, Gupta S, Iqbal D, Abomughaid MM, Almutary AG, Mishra PC, Nelson VK, Jha NK. Exploring complexities of Alzheimer's disease: New insights into molecular and cellular mechanisms of neurodegeneration and targeted therapeutic interventions. Ageing Res Rev 2024:102548. [PMID: 39419399 DOI: 10.1016/j.arr.2024.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD), the common form of dementia globally, is a complex condition including neurodegeneration; shares incompletely known pathogenesis. Signal transduction and biological activities, including cell metabolism, growth, and death are regulated by different signaling pathways including AKT/MAPK, Wnt, Leptin, mTOR, ubiquitin, Sirt1, and insulin. Absolute evidence linking specific molecular pathways with the genesis and/or progression of AD is still lacking. Changes in gut microbiota and blood-brain barrier also cause amyloid β aggregation in AD. The current review reports significant characteristics of various signaling pathways, their relationship with each other, and how they interact in disease genesis and/or progression. Nevertheless, due to the enormous complexity of the brain and numerous chemical linkages between these pathways, the use of signaling pathways as possible targets for drug development against AD is minimal. Currently, there is no permanent cure for AD, and there is no way to stop brain cell loss. This review also aimed to draw attention to the role of a novel group of signaling pathways, which can be collectively dubbed "anti-AD pathways", in multi-target therapy for AD, where cellular metabolic functions are severely impaired. Thus, different hypotheses have been formulated and elaborated to explain the genesis of AD, which can be further explored for drug development too.
Collapse
Affiliation(s)
- Payal Chauhan
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Karan Wadhwa
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Saurabh Gupta
- Deparment of Biotechnology, GLA University, Mathura, India
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outreach, Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India.
| |
Collapse
|
4
|
Rouhi N, Chakeri Z, Ghorbani Nejad B, Rahimzadegan M, Rafi Khezri M, Kamali H, Nosrati R. A comprehensive review of advanced focused ultrasound (FUS) microbubbles-mediated treatment of Alzheimer's disease. Heliyon 2024; 10:e37533. [PMID: 39309880 PMCID: PMC11416559 DOI: 10.1016/j.heliyon.2024.e37533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive neurodegeneration, memory loss, and cognitive impairment leading to dementia and death. The blood-brain barrier (BBB) prevents the delivery of drugs into the brain, which can limit their therapeutic potential in the treatment of AD. Therefore, there is a need to develop new approaches to bypass the BBB for appropriate treatment of AD. Recently, focused ultrasound (FUS) has been shown to disrupt the BBB, allowing therapeutic agents to penetrate the brain. In addition, microbubbles (MBs) as lipophilic carriers can penetrate across the BBB and deliver the active drug into the brain tissue. Therefore, combined with FUS, the drug-encapsulated MBs can pass through the ultrasound-disrupted zone of the BBB and diffuse into the brain tissue. This review provides clear and concise statements on the recent advances of the various FUS-mediated MBs-based carriers developed for delivering AD-related drugs. In addition, the sonogenetics-based FUS/MBs approaches for the treatment of AD are highlighted. The future perspectives and challenges of ultrasound-based MBs drug delivery in AD are then discussed.
Collapse
Affiliation(s)
- Nadiyeh Rouhi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Zahra Chakeri
- Cardiothoracic Imaging Section, Department of Radiology, University of Washington, Seattle, WA, USA
| | - Behnam Ghorbani Nejad
- Department of Toxicology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
5
|
Soyer A, Goutal S, Leterrier S, Marie S, Larrat B, Selingue E, Winkeler A, Sarazin M, Bottlaender M, Tournier N. [ 18F]2-fluoro-2-deoxy-sorbitol ([ 18F]FDS) PET imaging repurposed for quantitative estimation of blood-brain barrier permeability in a rat model of Alzheimer's disease. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:822-829. [PMID: 38657857 DOI: 10.1016/j.pharma.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/05/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Numerous studies suggest that blood-brain barrier (BBB) dysfunction may contribute to the progression of Alzheimer's disease (AD). Clinically available neuroimaging methods are needed for quantitative "scoring" of BBB permeability in AD patients. [18F]2-fluoro-2-deoxy-sorbitol ([18F]FDS), which can be easily obtained from simple chemical reduction of commercial [18F]2-fluoro-2-deoxy-glucose ([18F]FDG), was investigated as a small-molecule marker of BBB permeability, in a pre-clinical model of AD using in vivo PET imaging. Chemical reduction of [18F]FDG to [18F]FDS was obtained with a 100% conversion yield. Dynamic PET acquisitions were performed in the APP/PS1 rat model of AD (TgF344-AD, n=3) compared with age-matched littermates (WT, n=4). The brain uptake of [18F]FDS was determined in selected brain regions, delineated from a coregistered rat brain template. The brain uptake of [18F]FDS in the brain regions of AD rats versus WT rats was compared using a 2-way ANOVA. The uptake of [18F]FDS was significantly higher in the whole brain of AD rats, as compared with WT rats (P<0.001), suggesting increased BBB permeability. Enhanced brain uptake of [18F]FDS in AD rats was significantly different across brain regions (P<0.001). Minimum difference was observed in the amygdala (+89.0±7.6%, P<0.001) and maximum difference was observed in the midbrain (+177.8±29.2%, P<0.001). [18F]FDS, initially proposed as radio-pharmaceutical to estimate renal filtration using PET imaging, can be repurposed for non-invasive and quantitative determination of BBB permeability in vivo. Making the best with the quantitative properties of PET imaging, it was possible to estimate the extent of enhanced BBB permeability in a rat model of AD.
Collapse
Affiliation(s)
- Amélie Soyer
- Service hospitalier Frédéric-Joliot, laboratoire d'imagerie biomédicale multimodale (BioMaps), Inserm, CNRS, CEA, université Paris-Saclay, 91401 Orsay, France
| | - Sébastien Goutal
- Service hospitalier Frédéric-Joliot, laboratoire d'imagerie biomédicale multimodale (BioMaps), Inserm, CNRS, CEA, université Paris-Saclay, 91401 Orsay, France
| | - Sarah Leterrier
- Service hospitalier Frédéric-Joliot, laboratoire d'imagerie biomédicale multimodale (BioMaps), Inserm, CNRS, CEA, université Paris-Saclay, 91401 Orsay, France
| | - Solène Marie
- Service hospitalier Frédéric-Joliot, laboratoire d'imagerie biomédicale multimodale (BioMaps), Inserm, CNRS, CEA, université Paris-Saclay, 91401 Orsay, France
| | - Benoit Larrat
- Centre d'études de Saclay, CEA, CNRS, NeuroSpin/BAOBAB, Paris-Saclay University, 91191 Gif-sur-Yvette, France
| | - Erwan Selingue
- Centre d'études de Saclay, CEA, CNRS, NeuroSpin/BAOBAB, Paris-Saclay University, 91191 Gif-sur-Yvette, France
| | - Alexandra Winkeler
- Service hospitalier Frédéric-Joliot, laboratoire d'imagerie biomédicale multimodale (BioMaps), Inserm, CNRS, CEA, université Paris-Saclay, 91401 Orsay, France
| | - Marie Sarazin
- Service hospitalier Frédéric-Joliot, laboratoire d'imagerie biomédicale multimodale (BioMaps), Inserm, CNRS, CEA, université Paris-Saclay, 91401 Orsay, France
| | - Michel Bottlaender
- Service hospitalier Frédéric-Joliot, laboratoire d'imagerie biomédicale multimodale (BioMaps), Inserm, CNRS, CEA, université Paris-Saclay, 91401 Orsay, France
| | - Nicolas Tournier
- Service hospitalier Frédéric-Joliot, laboratoire d'imagerie biomédicale multimodale (BioMaps), Inserm, CNRS, CEA, université Paris-Saclay, 91401 Orsay, France.
| |
Collapse
|
6
|
Daraban BS, Popa AS, Stan MS. Latest Perspectives on Alzheimer's Disease Treatment: The Role of Blood-Brain Barrier and Antioxidant-Based Drug Delivery Systems. Molecules 2024; 29:4056. [PMID: 39274904 PMCID: PMC11397357 DOI: 10.3390/molecules29174056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
There has been a growing interest recently in exploring the role of the blood-brain barrier (BBB) in the treatment of Alzheimer's disease (AD), a neurodegenerative disorder characterized by cognitive decline and memory loss that affects millions of people worldwide. Research has shown that the BBB plays a crucial role in regulating the entry of therapeutics into the brain. Also, the potential benefits of using antioxidant molecules for drug delivery were highlighted in Alzheimer's treatment to enhance the therapeutic efficacy and reduce oxidative stress in affected patients. Antioxidant-based nanomedicine shows promise for treating AD by effectively crossing the BBB and targeting neuroinflammation, potentially slowing disease progression and improving cognitive function. Therefore, new drug delivery systems are being developed to overcome the BBB and improve the delivery of therapeutics to the brain, ultimately improving treatment outcomes for AD patients. In this context, the present review provides an in-depth analysis of recent advancements in AD treatment strategies, such as silica nanoparticles loaded with curcumin, selenium nanoparticles loaded with resveratrol, and many others, focusing on the critical role of the BBB and the use of antioxidant-based drug delivery systems.
Collapse
Affiliation(s)
- Bianca Sânziana Daraban
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Andrei Sabin Popa
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Miruna S Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
7
|
Serradas ML, Ding Y, Martorell PV, Kulińska I, Castro-Gomez S. Therapeutic Targets in Innate Immunity to Tackle Alzheimer's Disease. Cells 2024; 13:1426. [PMID: 39272998 PMCID: PMC11394242 DOI: 10.3390/cells13171426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
There is an urgent need for effective disease-modifying therapeutic interventions for Alzheimer's disease (AD)-the most prevalent cause of dementia with a profound socioeconomic burden. Most clinical trials targeting the classical hallmarks of this disease-β-amyloid plaques and neurofibrillary tangles-failed, showed discrete clinical effects, or were accompanied by concerning side effects. There has been an ongoing search for novel therapeutic targets. Neuroinflammation, now widely recognized as a hallmark of all neurodegenerative diseases, has been proven to be a major contributor to AD pathology. Here, we summarize the role of neuroinflammation in the pathogenesis and progression of AD and discuss potential targets such as microglia, TREM2, the complement system, inflammasomes, and cytosolic DNA sensors. We also present an overview of ongoing studies targeting specific innate immune system components, highlighting the progress in this field of drug research while bringing attention to the delicate nature of innate immune modulations in AD.
Collapse
Affiliation(s)
- Maria L Serradas
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Yingying Ding
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Paula V Martorell
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Ida Kulińska
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Sergio Castro-Gomez
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
- Center for Neurology, Department of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
8
|
Senapati S, Tripathi K, Awad K, Rahimipour S. Multifunctional Liposomes Targeting Amyloid-β Oligomers for Early Diagnosis and Therapy of Alzheimer's Disease. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311670. [PMID: 38461531 DOI: 10.1002/smll.202311670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/14/2024] [Indexed: 03/12/2024]
Abstract
Early detection and treatment are crucial for Alzheimer's disease (AD) management. Current diagnostic and therapeutic methods focus on late-stage amyloid fibrils and plaques, overlooking toxic soluble amyloid β oligomers (AβOs) accumulating early in AD. A multifunctional liposome-based platform is designed for early diagnosis and therapy of AD, leveraging a novel self-assembled cyclic d,l-α-peptide (CP-2) that selectively targets AβOs. Biocompatible CP-2 conjugated liposomes (CP-2-LPs) effectively disrupt Aβ aggregation and mitigate Aβ-mediated toxicity in human neuroblastoma cells. In transgenic Caenorhabditis elegans AD models, CP-2-LPs significantly outperformed free CP-2 by improving cognitive and behavioral functions, extending lifespan, and reducing toxic AβO levels. Intravenous injection of fluorescently labeled CP-2-LPs reveals effective blood-brain barrier penetration, with significantly higher brain fluorescence in transgenic mice than WT, enabling precise diagnosis. These findings underscore CP-2-LPs as a valuable tool for early detection and targeted therapy in AD.
Collapse
Affiliation(s)
- Sudipta Senapati
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Kuldeep Tripathi
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Khadeja Awad
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Shai Rahimipour
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
9
|
Singh R, Rai S, Bharti PS, Zehra S, Gorai PK, Modi GP, Rani N, Dev K, Inampudi KK, Y VV, Chatterjee P, Nikolajeff F, Kumar S. Circulating small extracellular vesicles in Alzheimer's disease: a case-control study of neuro-inflammation and synaptic dysfunction. BMC Med 2024; 22:254. [PMID: 38902659 PMCID: PMC11188177 DOI: 10.1186/s12916-024-03475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease characterized by Aβ plaques and neurofibrillary tangles. Chronic inflammation and synaptic dysfunction lead to disease progression and cognitive decline. Small extracellular vesicles (sEVs) are implicated in AD progression by facilitating the spread of pathological proteins and inflammatory cytokines. This study investigates synaptic dysfunction and neuroinflammation protein markers in plasma-derived sEVs (PsEVs), their association with Amyloid-β and tau pathologies, and their correlation with AD progression. METHODS A total of 90 [AD = 35, mild cognitive impairment (MCI) = 25, and healthy age-matched controls (AMC) = 30] participants were recruited. PsEVs were isolated using a chemical precipitation method, and their morphology was characterized by transmission electron microscopy. Using nanoparticle tracking analysis, the size and concentration of PsEVs were determined. Antibody-based validation of PsEVs was done using CD63, CD81, TSG101, and L1CAM antibodies. Synaptic dysfunction and neuroinflammation were evaluated with synaptophysin, TNF-α, IL-1β, and GFAP antibodies. AD-specific markers, amyloid-β (1-42), and p-Tau were examined within PsEVs using Western blot and ELISA. RESULTS Our findings reveal higher concentrations of PsEVs in AD and MCI compared to AMC (p < 0.0001). Amyloid-β (1-42) expression within PsEVs is significantly elevated in MCI and AD compared to AMC. We could also differentiate between the amyloid-β (1-42) expression in AD and MCI. Similarly, PsEVs-derived p-Tau exhibited elevated expression in MCI compared with AMC, which is further increased in AD. Synaptophysin exhibited downregulated expression in PsEVs from MCI to AD (p = 0.047) compared to AMC, whereas IL-1β, TNF-α, and GFAP showed increased expression in MCI and AD compared to AMC. The correlation between the neuropsychological tests and PsEVs-derived proteins (which included markers for synaptic integrity, neuroinflammation, and disease pathology) was also performed in our study. The increased number of PsEVs correlates with disease pathological markers, synaptic dysfunction, and neuroinflammation. CONCLUSIONS Elevated PsEVs, upregulated amyloid-β (1-42), and p-Tau expression show high diagnostic accuracy in AD. The downregulated synaptophysin expression and upregulated neuroinflammatory markers in AD and MCI patients suggest potential synaptic degeneration and neuroinflammation. These findings support the potential of PsEV-associated biomarkers for AD diagnosis and highlight synaptic dysfunction and neuroinflammation in disease progression.
Collapse
Affiliation(s)
- Rishabh Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sanskriti Rai
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Prahalad Singh Bharti
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Sadaqa Zehra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Priya Kumari Gorai
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Gyan Prakash Modi
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, India
| | - Neerja Rani
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | | | - Vishnu V Y
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Prasun Chatterjee
- Department of Geriatric Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Fredrik Nikolajeff
- Department of Health, Education, and Technology, Lulea University of Technology, Lulea, 97187, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029, India.
- Department of Health, Education, and Technology, Lulea University of Technology, Lulea, 97187, Sweden.
| |
Collapse
|
10
|
Azzini E, Peña-Corona SI, Hernández-Parra H, Chandran D, Saleena LAK, Sawikr Y, Peluso I, Dhumal S, Kumar M, Leyva-Gómez G, Martorell M, Sharifi-Rad J, Calina D. Neuroprotective and anti-inflammatory effects of curcumin in Alzheimer's disease: Targeting neuroinflammation strategies. Phytother Res 2024; 38:3169-3189. [PMID: 38616356 DOI: 10.1002/ptr.8200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-beta plaques and neurofibrillary tangles, leading to neuronal loss. Curcumin, a polyphenolic compound derived from Curcuma longa, has shown potential neuroprotective effects due to its anti-inflammatory and antioxidant properties. This review aims to synthesize current preclinical data on the anti-neuroinflammatory mechanisms of curcumin in the context of AD, addressing its pharmacokinetics, bioavailability, and potential as a therapeutic adjunct. An exhaustive literature search was conducted, focusing on recent studies within the last 10 years related to curcumin's impact on neuroinflammation and its neuroprotective role in AD. The review methodology included sourcing articles from specialized databases using specific medical subject headings terms to ensure precision and relevance. Curcumin demonstrates significant neuroprotective properties by modulating neuroinflammatory pathways, scavenging reactive oxygen species, and inhibiting the production of pro-inflammatory cytokines. Despite its potential, challenges remain regarding its limited bioavailability and the scarcity of comprehensive human clinical trials. Curcumin emerges as a promising therapeutic adjunct in AD due to its multimodal neuroprotective benefits. However, further research is required to overcome challenges related to bioavailability and to establish effective dosing regimens in human subjects. Developing novel delivery systems and formulations may enhance curcumin's therapeutic potential in AD treatment.
Collapse
Affiliation(s)
- Elena Azzini
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Héctor Hernández-Parra
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, India
| | | | - Yousef Sawikr
- Department of Pharmacology and Toxicology, Faculty of Medicine University of Ajdabiya, Ajdabiya, Libya
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
11
|
Charrière K, Schneider V, Perrignon-Sommet M, Lizard G, Benani A, Jacquin-Piques A, Vejux A. Exploring the Role of Apigenin in Neuroinflammation: Insights and Implications. Int J Mol Sci 2024; 25:5041. [PMID: 38732259 PMCID: PMC11084463 DOI: 10.3390/ijms25095041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Neuroinflammation, a hallmark of various central nervous system disorders, is often associated with oxidative stress and neuronal or oligodendrocyte cell death. It is therefore very interesting to target neuroinflammation pharmacologically. One therapeutic option is the use of nutraceuticals, particularly apigenin. Apigenin is present in plants: vegetables (parsley, celery, onions), fruits (oranges), herbs (chamomile, thyme, oregano, basil), and some beverages (tea, beer, and wine). This review explores the potential of apigenin as an anti-inflammatory agent across diverse neurological conditions (multiple sclerosis, Parkinson's disease, Alzheimer's disease), cancer, cardiovascular diseases, cognitive and memory disorders, and toxicity related to trace metals and other chemicals. Drawing upon major studies, we summarize apigenin's multifaceted effects and underlying mechanisms in neuroinflammation. Our review underscores apigenin's therapeutic promise and calls for further investigation into its clinical applications.
Collapse
Affiliation(s)
- Karine Charrière
- Université de Franche-Comté, CHU Besançon, UMR 1322 LINC, INSERM CIC 1431, 25000 Besançon, France;
| | - Vincent Schneider
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 21000 Dijon, France; (V.S.); (M.P.-S.); (A.B.); (A.J.-P.)
- Neurology and Clinical Neurophysiology Department, CHU F. Mitterrand, 21000 Dijon, France
| | - Manon Perrignon-Sommet
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 21000 Dijon, France; (V.S.); (M.P.-S.); (A.B.); (A.J.-P.)
| | - Gérard Lizard
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne, 21000 Dijon, France;
| | - Alexandre Benani
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 21000 Dijon, France; (V.S.); (M.P.-S.); (A.B.); (A.J.-P.)
| | - Agnès Jacquin-Piques
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 21000 Dijon, France; (V.S.); (M.P.-S.); (A.B.); (A.J.-P.)
- Neurology and Clinical Neurophysiology Department, CHU F. Mitterrand, 21000 Dijon, France
- Memory Resource and Research Center (CMRR), CHU F. Mitterrand, 21000 Dijon, France
| | - Anne Vejux
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, 21000 Dijon, France; (V.S.); (M.P.-S.); (A.B.); (A.J.-P.)
- Bio-PeroxIL Laboratory, EA7270, University of Bourgogne, 21000 Dijon, France;
| |
Collapse
|
12
|
Doran SJ, Sawyer RP. Risk factors in developing amyloid related imaging abnormalities (ARIA) and clinical implications. Front Neurosci 2024; 18:1326784. [PMID: 38312931 PMCID: PMC10834650 DOI: 10.3389/fnins.2024.1326784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Alzheimer's disease (AD) affects over 6 million people over the age of 65. The advent of new anti-amyloid monoclonal antibodies as treatment for early Alzheimer's disease these immunotherapeutics may slow disease progression but also pose significant risks. Amyloid related imaging abnormalities (ARIA) identified on MRI following administration of these new monoclonal antibodies can cause both brain edema (ARIA-E) and hemorrhage (ARIA-H). While most ARIA is asymptomatic, some patients can develop headache, confusion, nausea, dizziness, seizures and in rare cases death. By analyzing lecanemab, aducanumab, gantenerumab, donanemab, and bapineuzumab clinical trials; risk factors for developing ARIA can be identified to mitigate some of the ARIA risk. Risk factors for developing ARIA-E are a positive Apoε4 carrier status and prior multiple cerebral microhemorrhages. Risk factors for ARIA-H are age, antithrombotic use, and history of prior strokes. With lecanemab, ARIA-E and ARIA-H were seen at lower rates 12 and 17%, respectively, compared to aducanumab (ARIA-E 35% and ARIA-H 19%) in treated patients. ARIA risk factors have impacted inclusion and exclusion criteria, determining who can receive lecanemab. In some clinics, almost 90% of Alzheimer's patients are excluded from receiving these new anti-amyloid therapeutics. This review aims to discuss risk factors of ARIA and highlight important areas for further research. With more anti-amyloid monoclonal antibodies approved by the Food and Drug Administration, considering patient risk factors for developing ARIA is important to identify to minimize patient's risk while receiving these new therapies.
Collapse
Affiliation(s)
- Sarah J. Doran
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine|UC Health, Cincinnati, OH, United States
| | | |
Collapse
|