1
|
Halgren AS, Siegel Z, Golden R, Bazhenov M. Multielectrode Cortical Stimulation Selectively Induces Unidirectional Wave Propagation of Excitatory Neuronal Activity in Biophysical Neural Model. J Neurosci 2023; 43:2482-2496. [PMID: 36849415 PMCID: PMC10082457 DOI: 10.1523/jneurosci.1784-21.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 03/01/2023] Open
Abstract
Cortical stimulation is emerging as an experimental tool in basic research and a promising therapy for a range of neuropsychiatric conditions. As multielectrode arrays enter clinical practice, the possibility of using spatiotemporal patterns of electrical stimulation to induce desired physiological patterns has become theoretically possible, but in practice can only be implemented by trial-and-error because of a lack of predictive models. Experimental evidence increasingly establishes traveling waves as fundamental to cortical information-processing, but we lack an understanding of how to control wave properties despite rapidly improving technologies. This study uses a hybrid biophysical-anatomical and neural-computational model to predict and understand how a simple pattern of cortical surface stimulation could induce directional traveling waves via asymmetric activation of inhibitory interneurons. We found that pyramidal cells and basket cells are highly activated by the anodal electrode and minimally activated by the cathodal electrodes, while Martinotti cells are moderately activated by both electrodes but exhibit a slight preference for cathodal stimulation. Network model simulations found that this asymmetrical activation results in a traveling wave in superficial excitatory cells that propagates unidirectionally away from the electrode array. Our study reveals how asymmetric electrical stimulation can easily facilitate traveling waves by relying on two distinct types of inhibitory interneuron activity to shape and sustain the spatiotemporal dynamics of endogenous local circuit mechanisms.SIGNIFICANCE STATEMENT Electrical brain stimulation is becoming increasingly useful to probe the workings of brain and to treat a variety of neuropsychiatric disorders. However, stimulation is currently performed in a trial-and-error fashion as there are no methods to predict how different electrode arrangements and stimulation paradigms will affect brain functioning. In this study, we demonstrate a hybrid modeling approach, which makes experimentally testable predictions that bridge the gap between the microscale effects of multielectrode stimulation and the resultant circuit dynamics at the mesoscale. Our results show how custom stimulation paradigms can induce predictable, persistent changes in brain activity, which has the potential to restore normal brain function and become a powerful therapy for neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Alma S Halgren
- Department of Medicine, University of California - San Diego, La Jolla, California 92093-7374
- Department of Integrative Biology, University of California - Berkeley, Berkeley, California 94720
| | - Zarek Siegel
- Department of Medicine, University of California - San Diego, La Jolla, California 92093-7374
- Neurosciences Graduate Program, University of California - San Diego, La Jolla, California 92093-7374
| | - Ryan Golden
- Department of Medicine, University of California - San Diego, La Jolla, California 92093-7374
- Neurosciences Graduate Program, University of California - San Diego, La Jolla, California 92093-7374
| | - Maxim Bazhenov
- Department of Medicine, University of California - San Diego, La Jolla, California 92093-7374
- Neurosciences Graduate Program, University of California - San Diego, La Jolla, California 92093-7374
| |
Collapse
|
2
|
Trepka EB, Zhu S, Xia R, Chen X, Moore T. Functional interactions among neurons within single columns of macaque V1. eLife 2022; 11:e79322. [PMID: 36321687 PMCID: PMC9662816 DOI: 10.7554/elife.79322] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/30/2022] [Indexed: 11/16/2022] Open
Abstract
Recent developments in high-density neurophysiological tools now make it possible to record from hundreds of single neurons within local, highly interconnected neural networks. Among the many advantages of such recordings is that they dramatically increase the quantity of identifiable, functional interactions between neurons thereby providing an unprecedented view of local circuits. Using high-density, Neuropixels recordings from single neocortical columns of primary visual cortex in nonhuman primates, we identified 1000s of functionally interacting neuronal pairs using established crosscorrelation approaches. Our results reveal clear and systematic variations in the synchrony and strength of functional interactions within single cortical columns. Despite neurons residing within the same column, both measures of interactions depended heavily on the vertical distance separating neuronal pairs, as well as on the similarity of stimulus tuning. In addition, we leveraged the statistical power afforded by the large numbers of functionally interacting pairs to categorize interactions between neurons based on their crosscorrelation functions. These analyses identified distinct, putative classes of functional interactions within the full population. These classes of functional interactions were corroborated by their unique distributions across defined laminar compartments and were consistent with known properties of V1 cortical circuitry, such as the lead-lag relationship between simple and complex cells. Our results provide a clear proof-of-principle for the use of high-density neurophysiological recordings to assess circuit-level interactions within local neuronal networks.
Collapse
Affiliation(s)
- Ethan B Trepka
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
- Neurosciences Program, Stanford UniversityStanfordUnited States
| | - Shude Zhu
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Ruobing Xia
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Xiaomo Chen
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
- Center for Neuroscience, Department of Neurobiology, Physiology, and Behavior, University of California, DavisDavisUnited States
| | - Tirin Moore
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
3
|
Ma Y, Giardino WJ. Neural circuit mechanisms of the cholecystokinin (CCK) neuropeptide system in addiction. ADDICTION NEUROSCIENCE 2022; 3:100024. [PMID: 35983578 PMCID: PMC9380858 DOI: 10.1016/j.addicn.2022.100024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Given historical focus on the roles for cholecystokinin (CCK) as a peripheral hormone controlling gastrointestinal processes and a brainstem peptide regulating food intake, the study of CCK as a limbic neuromodulator coordinating reward-seeking and emotional behavior remains underappreciated. Furthermore, localization of CCK to specialized interneurons throughout the hippocampus and cortex relegated CCK to being examined primarily as a static cell type marker rather than a dynamic functional neuromodulator. Yet, over three decades of literature have been generated by efforts to delineate the central mechanisms of addiction-related behaviors mediated by the CCK system across the striatum, amygdala, hypothalamus, and midbrain. Here, we cover fundamental findings that implicate CCK neuron activity and CCK receptor signaling in modulating drug intake and drug-seeking (focusing on psychostimulants, opioids, and alcohol). In doing so, we highlight the few studies that indicate sex differences in CCK expression and corresponding drug effects, emphasizing the importance of examining hormonal influences and sex as a biological variable in translating basic science discoveries to effective treatments for substance use disorders in human patients. Finally, we point toward understudied subcortical sources of endogenous CCK and describe how continued neurotechnology advancements can be leveraged to modernize understanding of the neural circuit mechanisms underlying CCK release and signaling in addiction-relevant behaviors.
Collapse
Affiliation(s)
- Yihe Ma
- Department of Psychiatry & Behavioral Sciences and Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - William J. Giardino
- Department of Psychiatry & Behavioral Sciences and Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
4
|
Pomrenze MB, Walker LC, Giardino WJ. Gray areas: Neuropeptide circuits linking the Edinger-Westphal and Dorsal Raphe nuclei in addiction. Neuropharmacology 2021; 198:108769. [PMID: 34481834 PMCID: PMC8484048 DOI: 10.1016/j.neuropharm.2021.108769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/16/2023]
Abstract
The circuitry of addiction comprises several neural networks including the midbrain - an expansive region critically involved in the control of motivated behaviors. Midbrain nuclei like the Edinger-Westphal (EW) and dorsal raphe (DR) contain unique populations of neurons that synthesize many understudied neuroactive molecules and are encircled by the periaqueductal gray (PAG). Despite the proximity of these special neuron classes to the ventral midbrain complex and surrounding PAG, functions of the EW and DR remain substantially underinvestigated by comparison. Spanning approximately -3.0 to -5.2 mm posterior from bregma in the mouse, these various cell groups form a continuum of neurons that we refer to collectively as the subaqueductal paramedian zone. Defining how these pathways modulate affective behavioral states presents a difficult, yet conquerable challenge for today's technological advances in neuroscience. In this review, we cover the known contributions of different neuronal subtypes of the subaqueductal paramedian zone. We catalogue these cell types based on their spatial, molecular, connectivity, and functional properties and integrate this information with the existing data on the EW and DR in addiction. We next discuss evidence that links the EW and DR anatomically and functionally, highlighting the potential contributions of an EW-DR circuit to addiction-related behaviors. Overall, we aim to derive an integrated framework that emphasizes the contributions of EW and DR nuclei to addictive states and describes how these cell groups function in individuals suffering from substance use disorders. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
Affiliation(s)
- Matthew B Pomrenze
- Dept. of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - William J Giardino
- Dept. of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA.
| |
Collapse
|
5
|
Cano G, Hernan SL, Sved AF. Centrally Projecting Edinger-Westphal Nucleus in the Control of Sympathetic Outflow and Energy Homeostasis. Brain Sci 2021; 11:1005. [PMID: 34439626 PMCID: PMC8392615 DOI: 10.3390/brainsci11081005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
The centrally projecting Edinger-Westphal nucleus (EWcp) is a midbrain neuronal group, adjacent but segregated from the preganglionic Edinger-Westphal nucleus that projects to the ciliary ganglion. The EWcp plays a crucial role in stress responses and in maintaining energy homeostasis under conditions that require an adjustment of energy expenditure, by virtue of modulating heart rate and blood pressure, thermogenesis, food intake, and fat and glucose metabolism. This modulation is ultimately mediated by changes in the sympathetic outflow to several effector organs, including the adrenal gland, heart, kidneys, brown and white adipose tissues and pancreas, in response to environmental conditions and the animal's energy state, providing for appropriate energy utilization. Classic neuroanatomical studies have shown that the EWcp receives inputs from forebrain regions involved in these functions and projects to presympathetic neuronal populations in the brainstem. Transneuronal tracing with pseudorabies virus has demonstrated that the EWcp is connected polysynaptically with central circuits that provide sympathetic innervation to all these effector organs that are critical for stress responses and energy homeostasis. We propose that EWcp integrates multimodal signals (stress, thermal, metabolic, endocrine, etc.) and modulates the sympathetic output simultaneously to multiple effector organs to maintain energy homeostasis under different conditions that require adjustments of energy demands.
Collapse
Affiliation(s)
- Georgina Cano
- Department of Neuroscience, A210 Langley Hall, University of Pittsburgh, Pittsburgh, PA 15260, USA; (S.L.H.); (A.F.S.)
| | | | | |
Collapse
|
6
|
Martini FJ, Guillamón-Vivancos T, Moreno-Juan V, Valdeolmillos M, López-Bendito G. Spontaneous activity in developing thalamic and cortical sensory networks. Neuron 2021; 109:2519-2534. [PMID: 34293296 DOI: 10.1016/j.neuron.2021.06.026] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/05/2021] [Accepted: 06/23/2021] [Indexed: 11/19/2022]
Abstract
Developing sensory circuits exhibit different patterns of spontaneous activity, patterns that are related to the construction and refinement of functional networks. During the development of different sensory modalities, spontaneous activity originates in the immature peripheral sensory structures and in the higher-order central structures, such as the thalamus and cortex. Certainly, the perinatal thalamus exhibits spontaneous calcium waves, a pattern of activity that is fundamental for the formation of sensory maps and for circuit plasticity. Here, we review our current understanding of the maturation of early (including embryonic) patterns of spontaneous activity and their influence on the assembly of thalamic and cortical sensory networks. Overall, the data currently available suggest similarities between the developmental trajectory of brain activity in experimental models and humans, which in the future may help to improve the early diagnosis of developmental disorders.
Collapse
Affiliation(s)
- Francisco J Martini
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| | - Teresa Guillamón-Vivancos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Verónica Moreno-Juan
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Miguel Valdeolmillos
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Spain.
| |
Collapse
|
7
|
Kulkarni A, Ranft J, Hakim V. Synchronization, Stochasticity, and Phase Waves in Neuronal Networks With Spatially-Structured Connectivity. Front Comput Neurosci 2020; 14:569644. [PMID: 33192427 PMCID: PMC7604323 DOI: 10.3389/fncom.2020.569644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/18/2020] [Indexed: 01/15/2023] Open
Abstract
Oscillations in the beta/low gamma range (10–45 Hz) are recorded in diverse neural structures. They have successfully been modeled as sparsely synchronized oscillations arising from reciprocal interactions between randomly connected excitatory (E) pyramidal cells and local interneurons (I). The synchronization of spatially distant oscillatory spiking E–I modules has been well-studied in the rate model framework but less so for modules of spiking neurons. Here, we first show that previously proposed modifications of rate models provide a quantitative description of spiking E–I modules of Exponential Integrate-and-Fire (EIF) neurons. This allows us to analyze the dynamical regimes of sparsely synchronized oscillatory E–I modules connected by long-range excitatory interactions, for two modules, as well as for a chain of such modules. For modules with a large number of neurons (> 105), we obtain results similar to previously obtained ones based on the classic deterministic Wilson-Cowan rate model, with the added bonus that the results quantitatively describe simulations of spiking EIF neurons. However, for modules with a moderate (~ 104) number of neurons, stochastic variations in the spike emission of neurons are important and need to be taken into account. On the one hand, they modify the oscillations in a way that tends to promote synchronization between different modules. On the other hand, independent fluctuations on different modules tend to disrupt synchronization. The correlations between distant oscillatory modules can be described by stochastic equations for the oscillator phases that have been intensely studied in other contexts. On shorter distances, we develop a description that also takes into account amplitude modes and that quantitatively accounts for our simulation data. Stochastic dephasing of neighboring modules produces transient phase gradients and the transient appearance of phase waves. We propose that these stochastically-induced phase waves provide an explanative framework for the observations of traveling waves in the cortex during beta oscillations.
Collapse
Affiliation(s)
- Anirudh Kulkarni
- Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS, Ecole Normale Supérieure, PSL University, Sorbonne Université, Université de Paris, Paris, France.,IBENS, Ecole Normale Supérieure, PSL University, CNRS, INSERM, Paris, France
| | - Jonas Ranft
- Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS, Ecole Normale Supérieure, PSL University, Sorbonne Université, Université de Paris, Paris, France.,IBENS, Ecole Normale Supérieure, PSL University, CNRS, INSERM, Paris, France
| | - Vincent Hakim
- Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS, Ecole Normale Supérieure, PSL University, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
8
|
Zuniga A, Ryabinin AE. Involvement of Centrally Projecting Edinger-Westphal Nucleus Neuropeptides in Actions of Addictive Drugs. Brain Sci 2020; 10:brainsci10020067. [PMID: 31991932 PMCID: PMC7071833 DOI: 10.3390/brainsci10020067] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 11/16/2022] Open
Abstract
The centrally-projecting Edinger-Westphal nucleus (EWcp) is a brain region distinct from the preganglionic Edinger-Westphal nucleus (EWpg). In contrast to the EWpg, the EWcp does not send projections to the ciliary ganglion and appears not to regulate oculomotor function. Instead, evidence is accumulating that the EWcp is extremely sensitive to alcohol and several other drugs of abuse. Studies using surgical, genetic knockout, and shRNA approaches further implicate the EWcp in the regulation of alcohol sensitivity and self-administration. The EWcp is also known as the site of preferential expression of urocortin 1, a peptide of the corticotropin-releasing factor family. However, neuroanatomical data indicate that the EWcp is not a monotypic brain region and consists of several distinct subpopulations of neurons. It is most likely that these subpopulations of the EWcp are differentially involved in the regulation of actions of addictive drugs. This review summarizes and analyzes the current literature of the EWcp's involvement in actions of drugs of abuse in male and female subjects in light of the accumulating evidence of complexities of this brain region.
Collapse
|
9
|
André N, Audiffren M, Baumeister RF. An Integrative Model of Effortful Control. Front Syst Neurosci 2019; 13:79. [PMID: 31920573 PMCID: PMC6933500 DOI: 10.3389/fnsys.2019.00079] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/06/2019] [Indexed: 11/21/2022] Open
Abstract
This article presents an integrative model of effortful control, a resource-limited top-down control mechanism involved in mental tasks and physical exercises. Based on recent findings in the fields of neuroscience, social psychology and cognitive psychology, this model posits the intrinsic costs related to a weakening of the connectivity of neural networks underpinning effortful control as the main cause of mental fatigue in long and high-demanding tasks. In this framework, effort reflects three different inter-related aspects of the same construct. First, effort is a mechanism comprising a limited number of interconnected processing units that integrate information regarding the task constraints and subject’s state. Second, effort is the main output of this mechanism, namely, the effort signal that modulates neuronal activity in brain regions involved in the current task to select pertinent information. Third, effort is a feeling that emerges in awareness during effortful tasks and reflects the costs associated with goal-directed behavior. Finally, the model opens new avenues for research investigating effortful control at the behavioral and neurophysiological levels.
Collapse
Affiliation(s)
- Nathalie André
- Research Centre on Cognition and Learning, UMR CNRS 7295, University of Poitiers, Poitiers, France
| | - Michel Audiffren
- Research Centre on Cognition and Learning, UMR CNRS 7295, University of Poitiers, Poitiers, France
| | - Roy F Baumeister
- School of Psychology, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
10
|
Pauzin FP, Schwarz N, Krieger P. Activation of Corticothalamic Layer 6 Cells Decreases Angular Tuning in Mouse Barrel Cortex. Front Neural Circuits 2019; 13:67. [PMID: 31736714 PMCID: PMC6838007 DOI: 10.3389/fncir.2019.00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/30/2019] [Indexed: 01/21/2023] Open
Abstract
In the mouse whisker system, the contribution of L6 corticothalamic cells (L6 CT) to cortical and thalamic processing of the whisker deflection direction was investigated. A genetically defined population of L6 CT cells project to infragranular GABAergic interneurons that hyperpolarize neurons in somatosensory barrel cortex (BC). Optogenetic activation of these neurons switched BC to an adapted mode in which excitatory cells lost their angular tuning. In contrast, however, this was not the case with a general activation of inhibitory interneurons via optogenetic activation of Gad2-expressing cells. The decrease in angular tuning, when L6 CT cells were activated, was due to changes in cortical inhibition, and not inherited from changes in the thalamic output. Furthermore, L6 CT driven cortical inhibition, but not the general activation of GABAergic interneurons, abolished adaptation to whisker responses. In the present study, evidence is presented that a subpopulation of L6 CT activates a specific circuit of GABAergic interneurons that will predispose neocortex toward processing of tactile information requiring multiple whisker touches, such as in a texture discrimination task.
Collapse
Affiliation(s)
- François Philippe Pauzin
- Department of Systems Neuroscience, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Nadja Schwarz
- Department of Systems Neuroscience, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Patrik Krieger
- Department of Systems Neuroscience, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
11
|
Selective recruitment of cortical neurons by electrical stimulation. PLoS Comput Biol 2019; 15:e1007277. [PMID: 31449517 PMCID: PMC6742409 DOI: 10.1371/journal.pcbi.1007277] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 09/12/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023] Open
Abstract
Despite its critical importance in experimental and clinical neuroscience, at present there is no systematic method to predict which neural elements will be activated by a given stimulation regime. Here we develop a novel approach to model the effect of cortical stimulation on spiking probability of neurons in a volume of tissue, by applying an analytical estimate of stimulation-induced activation of different cell types across cortical layers. We utilize the morphology and properties of axonal arborization profiles obtained from publicly available anatomical reconstructions of the twelve main categories of neocortical neurons to derive the dependence of activation probability on cell type, layer and distance from the source. We then propagate this activity through the local network incorporating connectivity, synaptic and cellular properties. Our work predicts that (a) intracranial cortical stimulation induces selective activation across cell types and layers; (b) superficial anodal stimulation is more effective than cathodal at cell activation; (c) cortical surface stimulation focally activates layer I axons, and (d) there is an optimal stimulation intensity capable of eliciting cell activation lasting beyond the end of stimulation. We conclude that selective effects of cortical electrical stimulation across cell types and cortical layers are largely driven by their different axonal arborization and myelination profiles. Brain stimulation is widely used to probe the neural system to learn about its properties, to normalize dysfunction (e.g., deep brain stimulation for Parkinsonian patients), or to manipulate brain activity, including enhancing memory and learning. Despite its critical importance in experimental and clinical neuroscience, at present there are no systematic methods to predict which neural elements of the brain will be activated by a given stimulation regime. To address this question, we propose a novel theoretical framework that models the effect of cortical stimulation on the spiking probability of a neuron based on its location, type and morphology. Our study predicts that short-lived superficial electrical stimulation has the ability to trigger spiking in layer IV pyramidal cells, and to evoke network activity that could persist for hundreds of milliseconds. It further predicts a much higher spiking response to anodal stimulation compared to cathodal one, as the existence of an optimal stimulation intensity, capable of inducing a maximal response in a population of cortical cells. The results of our study can be directly taken into account in planning future electrical stimulation experiments.
Collapse
|
12
|
Petanjek Z, Sedmak D, Džaja D, Hladnik A, Rašin MR, Jovanov-Milosevic N. The Protracted Maturation of Associative Layer IIIC Pyramidal Neurons in the Human Prefrontal Cortex During Childhood: A Major Role in Cognitive Development and Selective Alteration in Autism. Front Psychiatry 2019; 10:122. [PMID: 30923504 PMCID: PMC6426783 DOI: 10.3389/fpsyt.2019.00122] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
The human specific cognitive shift starts around the age of 2 years with the onset of self-awareness, and continues with extraordinary increase in cognitive capacities during early childhood. Diffuse changes in functional connectivity in children aged 2-6 years indicate an increase in the capacity of cortical network. Interestingly, structural network complexity does not increase during this time and, thus, it is likely to be induced by selective maturation of a specific neuronal subclass. Here, we provide an overview of a subclass of cortico-cortical neurons, the associative layer IIIC pyramids of the human prefrontal cortex. Their local axonal collaterals are in control of the prefrontal cortico-cortical output, while their long projections modulate inter-areal processing. In this way, layer IIIC pyramids are the major integrative element of cortical processing, and changes in their connectivity patterns will affect global cortical functioning. Layer IIIC neurons have a unique pattern of dendritic maturation. In contrast to other classes of principal neurons, they undergo an additional phase of extensive dendritic growth during early childhood, and show characteristic molecular changes. Taken together, circuits associated with layer IIIC neurons have the most protracted period of developmental plasticity. This unique feature is advanced but also provides a window of opportunity for pathological events to disrupt normal formation of cognitive circuits involving layer IIIC neurons. In this manuscript, we discuss how disrupted dendritic and axonal maturation of layer IIIC neurons may lead into global cortical disconnectivity, affecting development of complex communication and social abilities. We also propose a model that developmentally dictated incorporation of layer IIIC neurons into maturing cortico-cortical circuits between 2 to 6 years will reveal a previous (perinatal) lesion affecting other classes of principal neurons. This "disclosure" of pre-existing functionally silent lesions of other neuronal classes induced by development of layer IIIC associative neurons, or their direct alteration, could be found in different forms of autism spectrum disorders. Understanding the gene-environment interaction in shaping cognitive microcircuitries may be fundamental for developing rehabilitation and prevention strategies in autism spectrum and other cognitive disorders.
Collapse
Affiliation(s)
- Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Domagoj Džaja
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Hladnik
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mladen Roko Rašin
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Nataša Jovanov-Milosevic
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
13
|
Liu J, Heinsen H, Grinberg LT, Alho E, Amaro E, Pasqualucci CA, Rüb U, Seidel K, den Dunnen W, Arzberger T, Schmitz C, Kiessling MC, Bader B, Danek A. Pathoarchitectonics of the cerebral cortex in chorea-acanthocytosis and Huntington's disease. Neuropathol Appl Neurobiol 2018; 45:230-243. [PMID: 29722054 DOI: 10.1111/nan.12495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 02/27/2018] [Indexed: 11/29/2022]
Abstract
AIMS Quantitative estimation of cortical neurone loss in cases with chorea-acanthocytosis (ChAc) and its impact on laminar composition. METHODS We used unbiased stereological tools to estimate the degree of cortical pathology in serial gallocyanin-stained brain sections through the complete hemispheres of three subjects with genetically verified ChAc and a range of disease durations. We compared these results with our previous data of five Huntington's disease (HD) and five control cases. Pathoarchitectonic changes were exemplarily documented in TE1 of a 61-year-old female HD-, a 60-year-old female control case, and ChAc3. RESULTS Macroscopically, the cortical volume of our ChAc cases (ChAc1-3) remained close to normal. However, the average number of neurones was reduced by 46% in ChAc and by 33% in HD (P = 0.03 for ChAc & HD vs. controls; P = 0.64 for ChAc vs. HD). Terminal HD cases featured selective laminar neurone loss with pallor of layers III, V and VIa, a high density of small, pale, closely packed radial fibres in deep cortical layers VI and V, shrinkage, and chromophilia of subcortical white matter. In ChAc, pronounced diffuse astrogliosis blurred the laminar borders, thus masking the complete and partial loss of pyramidal cells in layer IIIc and of neurones in layers III, V and VI. CONCLUSION ChAc is a neurodegenerative disease with distinct cortical neurodegeneration. The hypertrophy of the peripheral neuropil space of minicolumns with coarse vertical striation was characteristic of ChAc. The role of astroglia in the pathogenesis of this disorder remains to be elucidated.
Collapse
Affiliation(s)
- J Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, München, Germany
| | - H Heinsen
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany.,Ageing Brain Study Group, Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - L T Grinberg
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - E Alho
- Praça Amadeu Amaral, São Paulo, Brazil
| | - E Amaro
- Department of Radiology, University of São Paulo Medical School, São Paulo, Brazil
| | - C A Pasqualucci
- Ageing Brain Study Group, Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - U Rüb
- Experimental Neurobiology (Anatomical Institute II), Goethe-University, Frankfurt/Main, Germany
| | - K Seidel
- Experimental Neurobiology (Anatomical Institute II), Goethe-University, Frankfurt/Main, Germany.,Anatomy & Cell Biology, Medical Faculty, Anatomical Institute, University of Bonn, Bonn, Germany
| | - W den Dunnen
- Department of Pathology and Medical Biology, University Medical Center Groningen University of Groningen, Groningen, The Netherlands
| | - T Arzberger
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Munich, Germany.,Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - C Schmitz
- Department of Neuroanatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - M C Kiessling
- Department of Neuroanatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - B Bader
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, München, Germany.,Clienia Privatklinik für Psychiatrie und Psychotherapie, Oetwil am See, Switzerland
| | - A Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, München, Germany
| |
Collapse
|
14
|
Opris I, Chang S, Noga BR. What Is the Evidence for Inter-laminar Integration in a Prefrontal Cortical Minicolumn? Front Neuroanat 2017; 11:116. [PMID: 29311848 PMCID: PMC5735117 DOI: 10.3389/fnana.2017.00116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/27/2017] [Indexed: 12/25/2022] Open
Abstract
The objective of this perspective article is to examine columnar inter-laminar integration during the executive control of behavior. The integration hypothesis posits that perceptual and behavioral signals are integrated within the prefrontal cortical inter-laminar microcircuits. Inter-laminar minicolumnar activity previously recorded from the dorsolateral prefrontal cortex (dlPFC) of nonhuman primates, trained in a visual delay match-to-sample (DMS) task, was re-assessed from an integrative perspective. Biomorphic multielectrode arrays (MEAs) played a unique role in the in vivo recording of columnar cell firing in the dlPFC layers 2/3 and 5/6. Several integrative aspects stem from these experiments: 1. Functional integration of perceptual and behavioral signals across cortical layers during executive control. The integrative effect of dlPFC minicolumns was shown by: (i) increased correlated firing on correct vs. error trials; (ii) decreased correlated firing when the number of non-matching images increased; and (iii) similar spatial firing preference across cortical-striatal cells during spatial-trials, and less on object-trials. 2. Causal relations to integration of cognitive signals by the minicolumnar turbo-engines. The inter-laminar integration between the perceptual and executive circuits was facilitated by stimulating the infra-granular layers with firing patterns obtained from supra-granular layers that enhanced spatial preference of percent correct performance on spatial trials. 3. Integration across hierarchical levels of the brain. The integration of intention signals (visual spatial, direction) with movement preparation (timing, velocity) in striatum and with the motor command and posture in midbrain is also discussed. These findings provide evidence for inter-laminar integration of executive control signals within brain's prefrontal cortical microcircuits.
Collapse
Affiliation(s)
- Ioan Opris
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Stephano Chang
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Brian R. Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
15
|
Ancestral Circuits for the Coordinated Modulation of Brain State. Cell 2017; 171:1411-1423.e17. [PMID: 29103613 PMCID: PMC5725395 DOI: 10.1016/j.cell.2017.10.021] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/13/2017] [Accepted: 10/12/2017] [Indexed: 11/21/2022]
Abstract
Internal states of the brain profoundly influence behavior. Fluctuating states such as alertness can be governed by neuromodulation, but the underlying mechanisms and cell types involved are not fully understood. We developed a method to globally screen for cell types involved in behavior by integrating brain-wide activity imaging with high-content molecular phenotyping and volume registration at cellular resolution. We used this method (MultiMAP) to record from 22 neuromodulatory cell types in behaving zebrafish during a reaction-time task that reports alertness. We identified multiple monoaminergic, cholinergic, and peptidergic cell types linked to alertness and found that activity in these cell types was mutually correlated during heightened alertness. We next recorded from and controlled homologous neuromodulatory cells in mice; alertness-related cell-type dynamics exhibited striking evolutionary conservation and modulated behavior similarly. These experiments establish a method for unbiased discovery of cellular elements underlying behavior and reveal an evolutionarily conserved set of diverse neuromodulatory systems that collectively govern internal state.
Collapse
|
16
|
Roy A. The Theory of Localist Representation and of a Purely Abstract Cognitive System: The Evidence from Cortical Columns, Category Cells, and Multisensory Neurons. Front Psychol 2017; 8:186. [PMID: 28261127 PMCID: PMC5311062 DOI: 10.3389/fpsyg.2017.00186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 01/30/2017] [Indexed: 11/17/2022] Open
Abstract
The debate about representation in the brain and the nature of the cognitive system has been going on for decades now. This paper examines the neurophysiological evidence, primarily from single cell recordings, to get a better perspective on both the issues. After an initial review of some basic concepts, the paper reviews the data from single cell recordings - in cortical columns and of category-selective and multisensory neurons. In neuroscience, columns in the neocortex (cortical columns) are understood to be a basic functional/computational unit. The paper reviews the fundamental discoveries about the columnar organization and finds that it reveals a massively parallel search mechanism. This columnar organization could be the most extensive neurophysiological evidence for the widespread use of localist representation in the brain. The paper also reviews studies of category-selective cells. The evidence for category-selective cells reveals that localist representation is also used to encode complex abstract concepts at the highest levels of processing in the brain. A third major issue is the nature of the cognitive system in the brain and whether there is a form that is purely abstract and encoded by single cells. To provide evidence for a single-cell based purely abstract cognitive system, the paper reviews some of the findings related to multisensory cells. It appears that there is widespread usage of multisensory cells in the brain in the same areas where sensory processing takes place. Plus there is evidence for abstract modality invariant cells at higher levels of cortical processing. Overall, that reveals the existence of a purely abstract cognitive system in the brain. The paper also argues that since there is no evidence for dense distributed representation and since sparse representation is actually used to encode memories, there is actually no evidence for distributed representation in the brain. Overall, it appears that, at an abstract level, the brain is a massively parallel, distributed computing system that is symbolic. The paper also explains how grounded cognition and other theories of the brain are fully compatible with localist representation and a purely abstract cognitive system.
Collapse
Affiliation(s)
- Asim Roy
- Department of Information Systems, Arizona State University, TempeAZ, USA
| |
Collapse
|
17
|
Giardino WJ, Rodriguez ED, Smith ML, Ford MM, Galili D, Mitchell SH, Chen A, Ryabinin AE. Control of chronic excessive alcohol drinking by genetic manipulation of the Edinger-Westphal nucleus urocortin-1 neuropeptide system. Transl Psychiatry 2017; 7:e1021. [PMID: 28140406 PMCID: PMC5299395 DOI: 10.1038/tp.2016.293] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/25/2016] [Accepted: 12/15/2016] [Indexed: 11/23/2022] Open
Abstract
Midbrain neurons of the centrally projecting Edinger-Westphal nucleus (EWcp) are activated by alcohol, and enriched with stress-responsive neuropeptide modulators (including the paralog of corticotropin-releasing factor, urocortin-1). Evidence suggests that EWcp neurons promote behavioral processes for alcohol-seeking and consumption, but a definitive role for these cells remains elusive. Here we combined targeted viral manipulations and gene array profiling of EWcp neurons with mass behavioral phenotyping in C57BL/6 J mice to directly define the links between EWcp-specific urocortin-1 expression and voluntary binge alcohol intake, demonstrating a specific importance for EWcp urocortin-1 activity in escalation of alcohol intake.
Collapse
Affiliation(s)
- W J Giardino
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - E D Rodriguez
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - M L Smith
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - M M Ford
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - D Galili
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - S H Mitchell
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - A Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel,Department of Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - A E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA,Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. E-mail:
| |
Collapse
|
18
|
Kliminski V, Uziel O, Kessler-Icekson G. Popdc1/Bves Functions in the Preservation of Cardiomyocyte Viability While Affecting Rac1 Activity and Bnip3 Expression. J Cell Biochem 2016; 118:1505-1517. [PMID: 27886395 DOI: 10.1002/jcb.25810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 11/23/2016] [Indexed: 01/15/2023]
Abstract
The Popeye domain containing1, also called Bves (Popdc1/Bves), is a transmembrane protein that functions in muscle regeneration, heart rate regulation, hypoxia tolerance, and ischemia preconditioning. The expression of Popdc1/Bves is elevated in cardiomyocytes maintained in serum free defined medium. We hypothesized that Popdc1/Bves is important for cardiomyocyte survival under the stress of serum deprivation and investigated the mechanisms involved. A deficit in Popdc1/Bves, achieved by siRNA-mediated gene silencing, results in cardiomyocyte injury and death, upregulation of the pro-apoptotic protein Bcl-2/adenovirus E1B 19-kDa interacting protein3 (Bnip3), as well as reduction in Rac1-GTPase activity and in Akt phosphorylation. Combined Popdc1/Bves and Bnip3 silencing attenuated cell injury and prevented Bnip3 upregulation induced by the silencing of Popdc1/Bves alone. Chromatin immunoprecipitation indicated an increased binding of the transcription factor FoxO3 to the Bnip3 promoter although augmentation of FoxO3 in the nuclei was not detected. By contrast, the transcription factor NFκB was excluded from the nuclei of Popdc1/Bves deficient cardiomyocytes and exhibited decreased binding to the Bnip3 promoter. The data indicates that Popdc1/Bves plays a role in the preservation of cardiomyocyte viability under serum deficiency through the alteration of Rac1 activity and the regulation of Bnip3 expression by FoxO3 and NFκB transcription factors pointing to Popdc1/Bves as a potential target to enhance heart protection. J. Cell. Biochem. 118: 1505-1517, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vitaly Kliminski
- The Felsenstein Medical Research Center, Sackler Faculty of Medicine and Rabin Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Orit Uziel
- The Felsenstein Medical Research Center, Sackler Faculty of Medicine and Rabin Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| | - Gania Kessler-Icekson
- The Felsenstein Medical Research Center, Sackler Faculty of Medicine and Rabin Medical Center, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
19
|
Wanger T, Wetzel W, Scheich H, Ohl FW, Goldschmidt J. Spatial patterns of neuronal activity in rat cerebral cortex during non-rapid eye movement sleep. Brain Struct Funct 2015; 220:3469-84. [PMID: 25113606 PMCID: PMC4575691 DOI: 10.1007/s00429-014-0867-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/29/2014] [Indexed: 11/06/2022]
Abstract
It is commonly assumed that cortical activity in non-rapid eye movement sleep (NREMS) is spatially homogeneous on the mesoscopic scale. This is partly due to the limited observational scope of common metabolic or imaging methods in sleep. We used the recently developed technique of thallium-autometallography (TlAMG) to visualize mesoscopic patterns of activity in the sleeping cortex with single-cell resolution. We intravenously injected rats with the lipophilic chelate complex thallium diethyldithiocarbamate (TlDDC) during spontaneously occurring periods of NREMS and mapped the patterns of neuronal uptake of the potassium (K+) probe thallium (Tl+). Using this method, we show that cortical activity patterns are not spatially homogeneous during discrete 5-min episodes of NREMS in unrestrained rats-rather, they are complex and spatially diverse. Along with a relative predominance of infragranular layer activation, we find pronounced differences in metabolic activity of neighboring neuronal assemblies, an observation which lends support to the emerging paradigm that sleep is a distributed process with regulation on the local scale.
Collapse
Affiliation(s)
- Tim Wanger
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology (LIN), Brenneckestraße 6, 39118, Magdeburg, Germany.
| | - Wolfram Wetzel
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology (LIN), Brenneckestraße 6, 39118, Magdeburg, Germany
| | - Henning Scheich
- Emeritus Group Lifelong Learning, Leibniz Institute for Neurobiology (LIN), Brenneckestraße 6, 39118, Magdeburg, Germany
| | - Frank W Ohl
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology (LIN), Brenneckestraße 6, 39118, Magdeburg, Germany
- Otto-von-Guericke University, 39106, Magdeburg, Germany
- Center for Behavioral Brain Science (CBBS), Magdeburg, Germany
| | - Jürgen Goldschmidt
- Department Systems Physiology of Learning, Leibniz Institute for Neurobiology (LIN), Brenneckestraße 6, 39118, Magdeburg, Germany
- Otto-von-Guericke University, 39106, Magdeburg, Germany
| |
Collapse
|
20
|
Wright JJ, Bourke PD, Favorov OV. Möbius-strip-like columnar functional connections are revealed in somato-sensory receptive field centroids. Front Neuroanat 2014; 8:119. [PMID: 25400552 PMCID: PMC4215792 DOI: 10.3389/fnana.2014.00119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 10/06/2014] [Indexed: 12/20/2022] Open
Abstract
Receptive fields of neurons in the forelimb region of areas 3b and 1 of primary somatosensory cortex, in cats and monkeys, were mapped using extracellular recordings obtained sequentially from nearly radial penetrations. Locations of the field centroids indicated the presence of a functional system in which cortical homotypic representations of the limb surfaces are entwined in three-dimensional Möbius-strip-like patterns of synaptic connections. Boundaries of somatosensory receptive field in nested groups irregularly overlie the centroid order, and are interpreted as arising from the superposition of learned connections upon the embryonic order. Since the theory of embryonic synaptic self-organization used to model these results was devised and earlier used to explain findings in primary visual cortex, the present findings suggest the theory may be of general application throughout cortex and may reveal a modular functional synaptic system, which, only in some parts of the cortex, and in some species, is manifest as anatomical ordering into columns.
Collapse
Affiliation(s)
- James Joseph Wright
- Department of Psychological Medicine, Faculty of Medicine, The University of Auckland Auckland, New Zealand
| | | | | |
Collapse
|
21
|
Džaja D, Hladnik A, Bičanić I, Baković M, Petanjek Z. Neocortical calretinin neurons in primates: increase in proportion and microcircuitry structure. Front Neuroanat 2014; 8:103. [PMID: 25309344 PMCID: PMC4174738 DOI: 10.3389/fnana.2014.00103] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/07/2014] [Indexed: 12/04/2022] Open
Abstract
In this article we first point at the expansion of associative cortical areas in primates, as well as at the intrinsic changes in the structure of the cortical column. There is a huge increase in proportion of glutamatergic cortical projecting neurons located in the upper cortical layers (II/III). Inside this group, a novel class of associative neurons becomes recognized for its growing necessity in both inter-areal and intra-areal columnar integration. Equally important to the changes in glutamatergic population, we found that literature data suggest a 50% increase in the proportion of neocortical GABAergic neurons between primates and rodents. This seems to be a result of increase in proportion of calretinin interneurons in layers II/III, population which in associative areas represents 15% of all neurons forming those layers. Evaluating data about functional properties of their connectivity we hypothesize that such an increase in proportion of calretinin interneurons might lead to supra-linear growth in memory capacity of the associative neocortical network. An open question is whether there are some new calretinin interneuron subtypes, which might substantially change micro-circuitry structure of the primate cerebral cortex.
Collapse
Affiliation(s)
- Domagoj Džaja
- Laboratory for Neuromorphometry, Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb Zagreb, Croatia
| | - Ana Hladnik
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb Zagreb, Croatia
| | - Ivana Bičanić
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb Zagreb, Croatia
| | - Marija Baković
- Institute of Forensic Medicine and Criminalistics, School of Medicine, University of Zagreb Zagreb, Croatia
| | - Zdravko Petanjek
- Laboratory for Neuromorphometry, Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb Zagreb, Croatia ; Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb Zagreb, Croatia
| |
Collapse
|
22
|
Salinas AG, Nguyen CTQ, Ahmadi-Tehrani D, Morrisett RA. Reduced ethanol consumption and preference in cocaine- and amphetamine-regulated transcript (CART) knockout mice. Addict Biol 2014; 19:175-84. [PMID: 22823101 DOI: 10.1111/j.1369-1600.2012.00475.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cocaine- and amphetamine-regulated transcript (CART) is a neuropeptide implicated in addiction to drugs of abuse. Several studies have characterized the role of CART in addiction to psychostimulants, but few have examined the role of CART in alcohol use disorders including alcoholism. The current study utilized a CART knockout (KO) mouse model to investigate the role of CART in ethanol appetitive behaviors. A two-bottle choice, unlimited-access paradigm was used to compare ethanol appetitive behaviors between CART wild type (WT) and KO mice. The mice were presented with an ethanol solution (3%-21%) and water, each concentration for 4 days, and their consumption was measured daily. Consumption of quinine (bitter) and saccharin (sweet) solutions was measured following the ethanol preference tests. In addition, ethanol metabolism rates and ethanol sensitivity were compared between genotypes. CART KO mice consumed and preferred ethanol less than their WT counterparts in both sexes. This genotype effect could not be attributed to differences in bitter or sweet taste perception or ethanol metabolism rates. There was also no difference in ethanol sensitivity in male mice; however, CART KO female mice showed a greater ethanol sensitivity than the WT females. Taken together, these data demonstrate a role for CART in ethanol appetitive behaviors and as a possible therapeutic drug target for alcoholism and abstinence enhancement.
Collapse
Affiliation(s)
- Armando G. Salinas
- Division of Pharmacology and Toxicology; College of Pharmacy; The University of Texas at Austin; Austin TX USA
| | - Chinh T. Q. Nguyen
- Division of Pharmacology and Toxicology; College of Pharmacy; The University of Texas at Austin; Austin TX USA
| | - Dara Ahmadi-Tehrani
- Division of Pharmacology and Toxicology; College of Pharmacy; The University of Texas at Austin; Austin TX USA
| | - Richard A. Morrisett
- Division of Pharmacology and Toxicology; College of Pharmacy; The University of Texas at Austin; Austin TX USA
| |
Collapse
|
23
|
Opris I, Casanova MF. Prefrontal cortical minicolumn: from executive control to disrupted cognitive processing. ACTA ACUST UNITED AC 2014; 137:1863-75. [PMID: 24531625 DOI: 10.1093/brain/awt359] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The prefrontal cortex of the primate brain has a modular architecture based on the aggregation of neurons in minicolumnar arrangements having afferent and efferent connections distributed across many brain regions to represent, select and/or maintain behavioural goals and executive commands. Prefrontal cortical microcircuits are assumed to play a key role in the perception to action cycle that integrates relevant information about environment, and then selects and enacts behavioural responses. Thus, neurons within the interlaminar microcircuits participate in various functional states requiring the integration of signals across cortical layers and the selection of executive variables. Recent research suggests that executive abilities emerge from cortico-cortical interactions between interlaminar prefrontal cortical microcircuits, whereas their disruption is involved in a broad spectrum of neurologic and psychiatric disorders such as autism, schizophrenia, Alzheimer's and drug addiction. The focus of this review is on the structural, functional and pathological approaches involving cortical minicolumns. Based on recent technological progress it has been demonstrated that microstimulation of infragranular cortical layers with patterns of microcurrents derived from supragranular layers led to an increase in cognitive performance. This suggests that interlaminar prefrontal cortical microcircuits are playing a causal role in improving cognitive performance. An important reason for the new interest in cortical modularity comes from both the impressive progress in understanding anatomical, physiological and pathological facets of cortical microcircuits and the promise of neural prosthetics for patients with neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ioan Opris
- 1 Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Manuel F Casanova
- 2 Department of Psychiatry and Behavioural Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
24
|
Opris I. Inter-laminar microcircuits across neocortex: repair and augmentation. Front Syst Neurosci 2013; 7:80. [PMID: 24312019 PMCID: PMC3832795 DOI: 10.3389/fnsys.2013.00080] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 10/19/2013] [Indexed: 02/01/2023] Open
Affiliation(s)
- Ioan Opris
- Department of Physiology and Pharmacology, Wake Forest University School of MedicineWinston-Salem, NC, USA
| |
Collapse
|
25
|
Ryabinin AE, Cocking DL, Kaur S. Inhibition of VTA neurons activates the centrally projecting Edinger-Westphal nucleus: evidence of a stress-reward link? J Chem Neuroanat 2013; 54:57-61. [PMID: 23792226 DOI: 10.1016/j.jchemneu.2013.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 12/20/2022]
Abstract
The primary site of urocortin 1 (Ucn1) expression in the brain is the centrally projecting Edinger-Westphal nucleus. The EWcp is innervated by dopaminergic neurons of the ventral tegmental area (VTA). To investigate whether activity of EWcp is regulated by the VTA, we investigated the effects of local pharmacological inhibition of VTA activity on the induction of Fos immunoreactivity in the EWcp of male C57BL/6J mice. A unilateral intracranial administration of the GABA agonist muscimol aimed at the VTA resulted in increased number of Fos-positive cells in the EWcp. This induction was lower than that produced by an intraperitoneal injection of 2.5 g/kg of ethanol. To investigate whether inhibition of dopaminergic neurons was responsible for induction of Fos, a second experiment was performed where the dopamine agonist quinpirole was unilaterally injected targeting the VTA. Injections of quinpirole also significantly induced Fos in the EWcp neurons. The induction occurred only on the side of the EWcp ipsilateral to the VTA injection. These results indicate that activity of EWcp is inhibited by tonic activity of dopaminergic VTA neurons, and that unilateral projections of VTA onto Ucn1-containing EWcp neurons provide a link between systems regulating approach and avoidance behaviors.
Collapse
Affiliation(s)
- Andrey E Ryabinin
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | | | |
Collapse
|
26
|
Han Z, Liu Q, Huang Z, Cui W, Tian Y, Yan W, Wu Q. Expression and imprinting analysis of AK044800, a transcript from the Dlk1-Dio3 imprinted gene cluster during mouse embryogenesis. Mol Cells 2013; 35:285-90. [PMID: 23515577 PMCID: PMC3887882 DOI: 10.1007/s10059-013-2275-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/25/2013] [Accepted: 02/04/2013] [Indexed: 01/11/2023] Open
Abstract
Recent advances of induced pluripotent stem cells (iPSCs) has demonstrated that full development potential is closely related with the expression state of noncoding RNAs (ncRNAs) of the Dlk1-Dio3 imprinted gene cluster. However, few of them, especially the long noncoding RNAs (lncRNAs), have been characterized in detail. AK044800 is a transcript from the Dlk1-Dio3 imprinted region with little known information. This study reports original data on the expression pattern of AK044800 during embryogenesis. Expression analysis showed that AK044800 was specifically expressed in the brain at mid-gestation, E9.5 and E11.5. And at E15.5, its expression was mainly concentrated in the forebrain. In the late-gestation stage (E18.5), AK044800 expression was weaker in the brain and began to emerge in some other tissues during this period. Notably, the expression of AK044800 was biallelic in the brain, unlike other noncoding transcripts from this imprinted region. In addition, its expression was dependent on inbred mouse strains. This may be the first lncRNA that has been identified with a different expression between inbred mouse strains. This study may provide useful clues for further investigations of expression regulation and functions of lncRNAs of the Dlk1-Dio3 imprinted region.
Collapse
Affiliation(s)
- Zhengbin Han
- School of Life Science and Technology, Harbin Institute of Technology, Science Park of Harbin Institute of Technology, Harbin,
China
| | - Qi Liu
- School of Life Science and Technology, Harbin Institute of Technology, Science Park of Harbin Institute of Technology, Harbin,
China
| | - Zhijun Huang
- School of Life Science and Technology, Harbin Institute of Technology, Science Park of Harbin Institute of Technology, Harbin,
China
| | - Wei Cui
- School of Life Science and Technology, Harbin Institute of Technology, Science Park of Harbin Institute of Technology, Harbin,
China
| | - Yijun Tian
- School of Life Science and Technology, Harbin Institute of Technology, Science Park of Harbin Institute of Technology, Harbin,
China
| | - Weili Yan
- School of Life Science and Technology, Harbin Institute of Technology, Science Park of Harbin Institute of Technology, Harbin,
China
| | - Qiong Wu
- School of Life Science and Technology, Harbin Institute of Technology, Science Park of Harbin Institute of Technology, Harbin,
China
| |
Collapse
|
27
|
Giardino WJ, Ryabinin AE. CRF1 receptor signaling regulates food and fluid intake in the drinking-in-the-dark model of binge alcohol consumption. Alcohol Clin Exp Res 2013; 37:1161-70. [PMID: 23398267 DOI: 10.1111/acer.12076] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/30/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Several recent studies implementing the standard "drinking-in-the-dark" (DID) model of short-term binge-like ethanol (EtOH) intake in C57BL/6J mice highlighted a role for the stress-related neuropeptide corticotropin-releasing factor (CRF) and its primary binding partner, the CRF type-1 (CRF1) receptor. METHODS We evaluated the selectivity of CRF1 involvement in binge-like EtOH intake by interrupting CRF1 function via pharmacological and genetic methods in a slightly modified 2-bottle choice DID model that allowed calculation of an EtOH preference ratio. In addition to determining EtOH intake and preference, we also measured consumption of food and H2 O during the DID period, both in the presence and absence of EtOH and sweet tastant solutions. RESULTS Treatment with either of the CRF1-selective antagonists CP-376,395 (CP; 10 to 20 mg/kg, i.p.) or NBI-27914 (10 to 30 mg/kg, i.p.) decreased intake of 15% EtOH in male C57BL/6J mice, but did so in the absence of a concomitant decrease in EtOH preference. These findings were replicated genetically in a CRF1 knockout (KO) mouse model (also on a C57BL/6J background). In contrast to effects on EtOH intake, pharmacological blockade of CRF1 with CP increased intake of 10% sucrose, consistent with previous findings in CRF1 KO mice. Finally, pharmacological and genetic disruption of CRF1 activity significantly reduced feeding and/or total caloric intake in all experiments, confirming the existence of nonspecific effects. CONCLUSIONS Our findings indicate that blockade of CRF1 receptors does not exert specific effects on EtOH intake in the DID paradigm, and that slight modifications to this procedure, as well as additional consummatory control experiments, may be useful when evaluating the selectivity of pharmacological and genetic manipulations on binge-like EtOH intake.
Collapse
Affiliation(s)
- William J Giardino
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239, USA
| | | |
Collapse
|
28
|
Schank JR, Ryabinin AE, Giardino WJ, Ciccocioppo R, Heilig M. Stress-related neuropeptides and addictive behaviors: beyond the usual suspects. Neuron 2012; 76:192-208. [PMID: 23040815 PMCID: PMC3495179 DOI: 10.1016/j.neuron.2012.09.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Addictive disorders are chronic, relapsing conditions that cause extensive disease burden. Genetic factors partly account for susceptibility to addiction, but environmental factors such as stressful experiences and prolonged exposure of the brain to addictive drugs promote its development. Progression to addiction involves neuroadaptations within neurocircuitry that mediates stress responses and is influenced by several peptidergic neuromodulators. While corticotrophin releasing factor is the prototypic member of this class, recent work has identified several additional stress-related neuropeptides that play an important role in regulation of drug intake and relapse, including the urocortins, nociceptin, substance P, and neuropeptide S. Here, we review this emerging literature, discussing to what extent the properties of these neuromodulators are shared or distinct and considering their potential as drug targets.
Collapse
Affiliation(s)
- Jesse R. Schank
- Laboratory of Clinical and Translational Studies, National Inst. on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| | - Andrey E. Ryabinin
- Dept. of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239-3098
| | - William J. Giardino
- Dept. of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239-3098
| | - Roberto Ciccocioppo
- Dept. of Experimental Medicine and Public Health, Camerino University, Italy
| | - Markus Heilig
- Laboratory of Clinical and Translational Studies, National Inst. on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|