1
|
Runyon K, Bui T, Mazanek S, Hartle A, Marschalko K, Howe WM. Distinct cholinergic circuits underlie discrete effects of reward on attention. Front Mol Neurosci 2024; 17:1429316. [PMID: 39268248 PMCID: PMC11390659 DOI: 10.3389/fnmol.2024.1429316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Attention and reward are functions that are critical for the control of behavior, and massive multi-region neural systems have evolved to support the discrete computations associated with each. Previous research has also identified that attention and reward interact, though our understanding of the neural mechanisms that mediate this interplay is incomplete. Here, we review the basic neuroanatomy of attention, reward, and cholinergic systems. We then examine specific contexts in which attention and reward computations interact. Building on this work, we propose two discrete neural circuits whereby acetylcholine, released from cell groups located in different parts of the brain, mediates the impact of stimulus-reward associations as well as motivation on attentional control. We conclude by examining these circuits as a potential shared loci of dysfunction across diseases states associated with deficits in attention and reward.
Collapse
Affiliation(s)
- Kelly Runyon
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Tung Bui
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Sarah Mazanek
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Alec Hartle
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | - Katie Marschalko
- School of Neuroscience at Virginia Tech, Blacksburg, VA, United States
| | | |
Collapse
|
2
|
Chintalacheruvu N, Kalelkar A, Boutin J, Breton-Provencher V, Huda R. A cortical locus for modulation of arousal states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595859. [PMID: 38826269 PMCID: PMC11142248 DOI: 10.1101/2024.05.24.595859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Fluctuations in global arousal are key determinants of spontaneous cortical activity and function. Several subcortical structures, including neuromodulator nuclei like the locus coeruleus (LC), are involved in the regulation of arousal. However, much less is known about the role of cortical circuits that provide top-down inputs to arousal-related subcortical structures. Here, we investigated the role of a major subdivision of the prefrontal cortex, the anterior cingulate cortex (ACC), in arousal modulation. Pupil size, facial movements, heart rate, and locomotion were used as non-invasive measures of arousal and behavioral state. We designed a closed loop optogenetic system based on machine vision and found that real time inhibition of ACC activity during pupil dilations suppresses ongoing arousal events. In contrast, inhibiting activity in a control cortical region had no effect on arousal. Fiber photometry recordings showed that ACC activity scales with the magnitude of spontaneously occurring pupil dilations/face movements independently of locomotion. Moreover, optogenetic ACC activation increases arousal independently of locomotion. In addition to modulating global arousal, ACC responses to salient sensory stimuli scaled with the size of evoked pupil dilations. Consistent with a role in sustaining saliency-linked arousal events, pupil responses to sensory stimuli were suppressed with ACC inactivation. Finally, our results comparing arousal-related ACC and norepinephrinergic LC neuron activity support a role for the LC in initiation of arousal events which are modulated in real time by the ACC. Collectively, our experiments identify the ACC as a key cortical site for sustaining momentary increases in arousal and provide the foundation for understanding cortical-subcortical dynamics underlying the modulation of arousal states.
Collapse
Affiliation(s)
- Nithik Chintalacheruvu
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, Piscataway, New Jersey, USA
| | - Anagha Kalelkar
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, Piscataway, New Jersey, USA
| | - Jöel Boutin
- Department of Psychiatry and Neuroscience, CERVO Brain Research Center, Universite Laval, Québec City, Québec, Canada
| | - Vincent Breton-Provencher
- Department of Psychiatry and Neuroscience, CERVO Brain Research Center, Universite Laval, Québec City, Québec, Canada
| | - Rafiq Huda
- WM Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University – New Brunswick, Piscataway, New Jersey, USA
| |
Collapse
|
3
|
López-Niño J, Padilla-Orozco M, Ortega A, Alejandra Cáceres-Chávez V, Tapia D, Laville A, Galarraga E, Bargas J. Dopaminergic Dependency of Cholinergic Pallidal Neurons. Neuroscience 2023; 528:12-25. [PMID: 37536611 DOI: 10.1016/j.neuroscience.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
We employed the whole-cell patch-clamp method and ChAT-Cre mice to study the electrophysiological attributes of cholinergic neurons in the external globus pallidus. Most neurons were inactive, although approximately 20% displayed spontaneous firing, including burst firing. The resting membrane potential, the whole neuron input resistance, the membrane time constant and the total neuron membrane capacitance were also characterized. The current-voltage relationship showed time-independent inward rectification without a "sag". Firing induced by current injections had a brief initial fast adaptation followed by tonic firing with minimal accommodation. Intensity-frequency plots exhibited maximal average firing rates of about 10 Hz. These traits are similar to those of some cholinergic neurons in the basal forebrain. Also, we examined their dopamine sensitivity by acutely blocking dopamine receptors. This action demonstrated that the membrane potential, excitability, and firing pattern of pallidal cholinergic neurons rely on the constitutive activity of dopamine receptors, primarily D2-class receptors. The blockade of these receptors induced a resting membrane potential hyperpolarization, a decrease in firing for the same stimulus, the disappearance of fast adaptation, and the emergence of a depolarization block. This shift in physiological characteristics was evident even when the hyperpolarization was corrected with D.C. current. Neither the currents that generate the action potentials nor those from synaptic inputs were responsible. Instead, our findings suggest, that subthreshold slow ion currents, that require further investigation, are the target of this novel dopaminergic signaling.
Collapse
Affiliation(s)
- Janintzitzic López-Niño
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Montserrat Padilla-Orozco
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Aidán Ortega
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Dagoberto Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Antonio Laville
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Elvira Galarraga
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - José Bargas
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| |
Collapse
|
4
|
Zhu F, Elnozahy S, Lawlor J, Kuchibhotla KV. The cholinergic basal forebrain provides a parallel channel for state-dependent sensory signaling to auditory cortex. Nat Neurosci 2023; 26:810-819. [PMID: 36973512 PMCID: PMC10625791 DOI: 10.1038/s41593-023-01289-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 02/23/2023] [Indexed: 03/29/2023]
Abstract
Cholinergic basal forebrain (CBF) signaling exhibits multiple timescales of activity with classic slow signals related to brain and behavioral states and fast, phasic signals reflecting behavioral events, including movement, reinforcement and sensory-evoked responses. However, it remains unknown whether sensory cholinergic signals target the sensory cortex and how they relate to local functional topography. Here we used simultaneous two-channel, two-photon imaging of CBF axons and auditory cortical neurons to reveal that CBF axons send a robust, nonhabituating and stimulus-specific sensory signal to the auditory cortex. Individual axon segments exhibited heterogeneous but stable tuning to auditory stimuli allowing stimulus identity to be decoded from population activity. However, CBF axons displayed no tonotopy and their frequency tuning was uncoupled from that of nearby cortical neurons. Chemogenetic suppression revealed the auditory thalamus as a major source of auditory information to the CBF. Finally, slow fluctuations in cholinergic activity modulated the fast, sensory-evoked signals in the same axons, suggesting that a multiplexed combination of fast and slow signals is projected from the CBF to the auditory cortex. Taken together, our work demonstrates a noncanonical function of the CBF as a parallel channel for state-dependent sensory signaling to the sensory cortex that provides repeated representations of a broad range of sound stimuli at all points on the tonotopic map.
Collapse
Affiliation(s)
- Fangchen Zhu
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Sarah Elnozahy
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer Lawlor
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kishore V Kuchibhotla
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins Medical Institute, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
5
|
Ananth MR, Rajebhosale P, Kim R, Talmage DA, Role LW. Basal forebrain cholinergic signalling: development, connectivity and roles in cognition. Nat Rev Neurosci 2023; 24:233-251. [PMID: 36823458 PMCID: PMC10439770 DOI: 10.1038/s41583-023-00677-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 01/18/2023] [Indexed: 02/25/2023]
Abstract
Acetylcholine plays an essential role in fundamental aspects of cognition. Studies that have mapped the activity and functional connectivity of cholinergic neurons have shown that the axons of basal forebrain cholinergic neurons innervate the pallium with far more topographical and functional organization than was historically appreciated. Together with the results of studies using new probes that allow release of acetylcholine to be detected with high spatial and temporal resolution, these findings have implicated cholinergic networks in 'binding' diverse behaviours that contribute to cognition. Here, we review recent findings on the developmental origins, connectivity and function of cholinergic neurons, and explore the participation of cholinergic signalling in the encoding of cognition-related behaviours.
Collapse
Affiliation(s)
- Mala R Ananth
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Prithviraj Rajebhosale
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Ronald Kim
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - David A Talmage
- Section on Genetics of Neuronal Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Lorna W Role
- Section on Circuits, Synapses, and Molecular Signalling, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Zhou H, Li M, Zhao R, Sun L, Yang G. A sleep-active basalocortical pathway crucial for generation and maintenance of chronic pain. Nat Neurosci 2023; 26:458-469. [PMID: 36690899 PMCID: PMC10010379 DOI: 10.1038/s41593-022-01250-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/12/2022] [Indexed: 01/24/2023]
Abstract
Poor sleep is associated with the risk of developing chronic pain, but how sleep contributes to pain chronicity remains unclear. Here we show that following peripheral nerve injury, cholinergic neurons in the anterior nucleus basalis (aNB) of the basal forebrain are increasingly active during nonrapid eye movement (NREM) sleep in a mouse model of neuropathic pain. These neurons directly activate vasoactive intestinal polypeptide-expressing interneurons in the primary somatosensory cortex (S1), causing disinhibition of pyramidal neurons and allodynia. The hyperactivity of aNB neurons is caused by the increased inputs from the parabrachial nucleus (PB) driven by the injured peripheral afferents. Inhibition of this pathway during NREM sleep, but not wakefulness, corrects neuronal hyperactivation and alleviates pain. Our results reveal that the PB-aNB-S1 pathway during sleep is critical for the generation and maintenance of chronic pain. Inhibiting this pathway during the sleep phase could be important for treating neuropathic pain.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Miao Li
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Ruohe Zhao
- Department of Neuroscience and Physiology, Skirball Institute, New York University School of Medicine, New York, NY, USA
| | - Linlin Sun
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Guang Yang
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
7
|
Qi M, Li C, Li J, Zhu XN, Lu C, Luo H, Feng Y, Cai F, Sun X, Li ST, Hu J, Luo Y. Fluoxetine reverses hyperactivity of anterior cingulate cortex and attenuates chronic stress-induced hyperalgesia. Neuropharmacology 2022; 220:109259. [PMID: 36126726 DOI: 10.1016/j.neuropharm.2022.109259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Somatic symptom disorder (SSD), which occurs in about 5-7 percent of the adult population, involves heightened physical and emotional sensitivity to pain. However, its neural mechanism remains elusive and thus hinders effective clinical intervention. In this study, we employed chronic restraint stress (CRS)-induced hyperalgesia as a mouse model to investigate the neural mechanism underlying SSD and its pharmacological treatment. We found that CRS induced hyperactivity of anterior cingulate cortex (ACC), whereas chemogenetic inhibition of such hyperactivity could prevent CRS-induced hyperalgesia. Systematic application and ACC local infusion of fluoxetine alleviated CRS-induced hyperalgesia. Moreover, we found that fluoxetine exerted its anti-hyperalgesic effects through inhibiting the hyperactivity of ACC and upregulating 5-HT1A receptors. Our study thus uncovers the functional role of 5-HT signaling in modulating pain sensation and provides a neural basis for developing precise clinical intervention for SSD.
Collapse
Affiliation(s)
- Meiru Qi
- Department of Psychological Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chenglin Li
- Department of Psychological Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jie Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 200030, China
| | - Xiao-Na Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chen Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Huoqing Luo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yifan Feng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Fang Cai
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xia Sun
- Department of Psychological Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shi-Ting Li
- Xinhua Hospital Shanghai Jiao Tong University 1665# Kongjiang Road Yangpu District, Shanghai, 200092, China.
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Yanli Luo
- Department of Psychological Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
8
|
Lerch O, Laczó M, Vyhnálek M, Nedelská Z, Hort J, Laczó J. APOEɛ4 Allele Moderates the Association Between Basal Forebrain Nuclei Volumes and Allocentric Navigation in Older Adults Without Dementia. J Alzheimers Dis 2022; 86:155-171. [PMID: 35034896 DOI: 10.3233/jad-215034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cholinergic deficit and medial temporal lobe (MTL) atrophy are hallmarks of Alzheimer's disease (AD) leading to early allocentric spatial navigation (aSN) impairment. APOEɛ4 allele (E4) is a major genetic risk factor for late-onset AD and contributes to cholinergic dysfunction. Basal forebrain (BF) nuclei, the major source of acetylcholine, project into multiple brain regions and, along with MTL and prefrontal cortex (PFC), are involved in aSN processing. OBJECTIVE We aimed to determine different contributions of individual BF nuclei atrophy to aSN in E4 positive and E4 negative older adults without dementia and assess whether they operate on aSN through MTL and PFC or independently from these structures. METHODS 120 participants (60 E4 positive, 60 E4 negative) from the Czech Brain Aging Study underwent structural MRI and aSN testing in real-space arena setting. Hippocampal and BF nuclei volumes and entorhinal cortex and PFC thickness were obtained. Associations between brain regions involved in aSN were assessed using MANOVA and complex model of mutual relationships was built using structural equation modelling (SEM). RESULTS Path analysis based on SEM modeling revealed that BF Ch1-2, Ch4p, and Ch4ai nuclei volumes were indirectly associated with aSN performance through MTL (pch1 - 2 = 0.039; pch4p = 0.042) and PFC (pch4ai = 0.044). In the E4 negative group, aSN was indirectly associated with Ch1-2 nuclei volumes (p = 0.015), while in the E4 positive group, there was indirect effect of Ch4p nucleus (p = 0.035). CONCLUSION Our findings suggest that in older adults without dementia, BF nuclei affect aSN processing indirectly, through MTL and PFC, and that APOE E4 moderates these associations.
Collapse
Affiliation(s)
- Ondřej Lerch
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Martina Laczó
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Martin Vyhnálek
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Zuzana Nedelská
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Jan Laczó
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Prague, Czechia.,International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
9
|
Bagnato S. The role of plasticity in the recovery of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:375-395. [PMID: 35034750 DOI: 10.1016/b978-0-12-819410-2.00020-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Disorders of consciousness (DOCs), i.e., coma, vegetative state, and minimally conscious state are the consequences of a severe brain injury that disrupts the brain ability to generate consciousness. Recovery from DOCs requires functional and structural changes in the brain. The sites where these plastic changes take place vary according to the pathophysiology of the DOC. The ascending reticular activating system of the brainstem and its complex connections with the thalamus and cortex are involved in the pathophysiology of coma. Subcortical structures, such as the striatum and globus pallidus, together with thalamocortical and corticothalamic projections, the basal forebrain, and several networks among different cortical areas are probably involved in vegetative and minimally conscious states. Some mechanisms of plasticity that allegedly operate in each of these sites to promote recovery of consciousness will be discussed in this chapter. While some mechanisms of plasticity work at a local level, others produce functional changes in complex neuronal networks, for example by entraining neuronal oscillations. The specific mechanisms of brain plasticity represent potential targets for future treatments aiming to restore consciousness in patients with severe DOCs.
Collapse
Affiliation(s)
- Sergio Bagnato
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Giuseppe Giglio Foundation, Cefalù (PA), Italy.
| |
Collapse
|
10
|
Hotta H, Suzuki H, Inoue T, Stewart M. Involvement of the basal nucleus of Meynert on regional cerebral cortical vasodilation associated with masticatory muscle activity in rats. J Cereb Blood Flow Metab 2020; 40:2416-2428. [PMID: 31847668 PMCID: PMC7820681 DOI: 10.1177/0271678x19895244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We examined the neural mechanisms for increases in regional cerebral blood flow (rCBF) in the neocortex associated with mastication, focusing on the cortical vasodilative system derived from the nucleus basalis of Meynert (NBM). In pentobarbital-anesthetized rats, parietal cortical rCBF was recorded simultaneously with electromyogram (EMG) of jaw muscles, local field potentials of frontal cortex, multi-unit activity of NBM neurons, and systemic mean arterial pressure (MAP). When spontaneous rhythmic EMG activity was observed with cortical desynchronization, an increase in NBM activity and a marked rCBF increase independent of MAP changes were observed. A similar rCBF increase was elicited by repetitive electrical stimulation of unilateral cortical masticatory areas. The magnitude of rCBF increase was partially attenuated by administration of the GABAergic agonist muscimol into the NBM. The rCBF increase persisted after immobilization with systemic muscle relaxant (vecuronium). rCBF did not change when jaw muscle activity was induced by electrical stimulation of the pyramidal tract. The results suggest that activation of NBM vasodilator neurons contributes at least in part to the rCBF increase associated with masticatory muscle activity, and that the NBM activation is induced by central commands from the motor cortex, independently of feedback from brainstem central pattern generator or contracting muscles.
Collapse
Affiliation(s)
- Harumi Hotta
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Harue Suzuki
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Tomio Inoue
- Department of Oral Physiology, School of Dentistry, Showa University, Tokyo, Japan
| | - Mark Stewart
- Department of Physiology & Pharmacology, State University of New York Downstate Medical Center, New York, NY, USA.,Department of Neurology, State University of New York Downstate Medical Center, New York, NY, USA
| |
Collapse
|
11
|
Giorgi FS, Galgani A, Gaglione A, Ferese R, Fornai F. Effects of Prolonged Seizures on Basal Forebrain Cholinergic Neurons: Evidence and Potential Clinical Relevance. Neurotox Res 2020; 38:249-265. [PMID: 32319018 DOI: 10.1007/s12640-020-00198-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 10/24/2022]
Abstract
Seizures originating from limbic structures, especially when prolonged for several minutes/hours up to status epilepticus (SE), can cause specific neurodegenerative phenomena in limbic and subcortical structures. The cholinergic nuclei belonging to the basal forebrain (BF) (namely, medial septal nucleus (MSN), diagonal band of Broca (DBB), and nucleus basalis of Meynert (NBM)) belong to the limbic system, while playing a pivotal role in cognition and sleep-waking cycle. Given the strong interconnections linking these limbic nuclei with limbic cortical structures, a persistent effect of SE originating from limbic structures on cBF morphology is plausible. Nonetheless, only a few experimental studies have addressed this issue. In this review, we describe available data and discuss their significance in the scenario of seizure-induced brain damage. In detail, the manuscript moves from a recent study in a model of focally induced limbic SE, in which the pure effects of seizure spreading through the natural anatomical pathways towards the cholinergic nuclei of BF were tracked by neuronal degeneration. In this experimental setting, a loss of cholinergic neurons was measured in all BF nuclei, to various extents depending on the specific nucleus. These findings are discussed in the light of the effects on the very same nuclei following SE induced by systemic injections of kainate or pilocarpine. The various effects including discrepancies among different studies are discussed. Potential implications for human diseases are included.
Collapse
Affiliation(s)
- Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.
| | - Alessandro Galgani
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | - Francesco Fornai
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.,IRCCS INM Neuromed, Pozzilli, Italy
| |
Collapse
|
12
|
Salience processing by glutamatergic neurons in the ventral pallidum. Sci Bull (Beijing) 2020; 65:389-401. [PMID: 36659230 DOI: 10.1016/j.scib.2019.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/07/2019] [Accepted: 11/25/2019] [Indexed: 01/21/2023]
Abstract
Organisms must make sense of a constant stream of sensory inputs from both internal and external sources which compete for attention by determining which ones are salient. The ability to detect and respond appropriately to potentially salient stimuli in the environment is critical to all organisms. However, the neural circuits that process salience are not fully understood. Here, we identify a population of glutamatergic neurons in the ventral pallidum (VP) that play a unique role in salience processing. Using cell-type-specific fiber photometry, we find that VP glutamatergic neurons are robustly activated by a variety of aversion- and reward-related stimuli, as well as novel social and non-social stimuli. Inhibition of the VP glutamatergic neurons reduces the ability to detect salient stimuli in the environment, such as aversive cue, novel conspecific and novel object. Besides, VP glutamatergic neurons project to both the lateral habenula (LHb) and the ventral tegmental area (VTA). Together, our findings demonstrate that the VP glutamatergic neurons participate in salience processing and therefore provide a new perspective on treating several neuropsychiatric disorders, including dementia and psychosis.
Collapse
|
13
|
Whole-Brain Monosynaptic Inputs to Hypoglossal Motor Neurons in Mice. Neurosci Bull 2020; 36:585-597. [PMID: 32096114 PMCID: PMC7270309 DOI: 10.1007/s12264-020-00468-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Hypoglossal motor neurons (HMNs) innervate tongue muscles and play key roles in a variety of physiological functions, including swallowing, mastication, suckling, vocalization, and respiration. Dysfunction of HMNs is associated with several diseases, such as obstructive sleep apnea (OSA) and sudden infant death syndrome. OSA is a serious breathing disorder associated with the activity of HMNs during different sleep–wake states. Identifying the neural mechanisms by which the state-dependent activities of HMNs are controlled may be helpful in providing a theoretical basis for effective therapy for OSA. However, the presynaptic partners governing the activity of HMNs remain to be elucidated. In the present study, we used a cell-type-specific retrograde tracing system based on a modified rabies virus along with a Cre/loxP gene-expression strategy to map the whole-brain monosynaptic inputs to HMNs in mice. We identified 53 nuclei targeting HMNs from six brain regions: the amygdala, hypothalamus, midbrain, pons, medulla, and cerebellum. We discovered that GABAergic neurons in the central amygdaloid nucleus, as well as calretinin neurons in the parasubthalamic nucleus, sent monosynaptic projections to HMNs. In addition, HMNs received direct inputs from several regions associated with respiration, such as the pre-Botzinger complex, parabrachial nucleus, nucleus of the solitary tract, and hypothalamus. Some regions engaged in sleep–wake regulation (the parafacial zone, parabrachial nucleus, ventral medulla, sublaterodorsal tegmental nucleus, dorsal raphe nucleus, periaqueductal gray, and hypothalamus) also provided primary inputs to HMNs. These results contribute to further elucidating the neural circuits underlying disorders caused by the dysfunction of HMNs.
Collapse
|
14
|
Zhang L, Wu C, Martel DT, West M, Sutton MA, Shore SE. Remodeling of cholinergic input to the hippocampus after noise exposure and tinnitus induction in Guinea pigs. Hippocampus 2019; 29:669-682. [PMID: 30471164 PMCID: PMC7357289 DOI: 10.1002/hipo.23058] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/23/2018] [Accepted: 11/03/2018] [Indexed: 01/12/2023]
Abstract
Here, we investigate remodeling of hippocampal cholinergic inputs after noise exposure and determine the relevance of these changes to tinnitus. To assess the effects of noise exposure on the hippocampus, guinea pigs were exposed to unilateral noise for 2 hr and 2 weeks later, immunohistochemistry was performed on hippocampal sections to examine vesicular acetylcholine transporter (VAChT) expression. To evaluate whether the changes in VAChT were relevant to tinnitus, another group of animals was exposed to the same noise band twice to induce tinnitus, which was assessed using gap-prepulse Inhibition of the acoustic startle (GPIAS) 12 weeks after the first noise exposure, followed by immunohistochemistry. Acoustic Brainstem Response (ABR) thresholds were elevated immediately after noise exposure for all experimental animals but returned to baseline levels several days after noise exposure. ABR wave I amplitude-intensity functions did not show any changes after 2 or 12 weeks of recovery compared to baseline levels. In animals assessed 2-weeks following noise-exposure, hippocampal VAChT puncta density decreased on both sides of the brain by 20-60% in exposed animals. By 12 weeks following the initial noise exposure, changes in VAChT puncta density largely recovered to baseline levels in exposed animals that did not develop tinnitus, but remained diminished in animals that developed tinnitus. These tinnitus-specific changes were particularly prominent in hippocampal synapse-rich layers of the dentate gyrus and areas CA3 and CA1, and VAChT density in these regions negatively correlated with tinnitus severity. The robust changes in VAChT labeling in the hippocampus 2 weeks after noise exposure suggest involvement of this circuitry in auditory processing. After chronic tinnitus induction, tinnitus-specific changes occurred in synapse-rich layers of the hippocampus, suggesting that synaptic processing in the hippocampus may play an important role in the pathophysiology of tinnitus.
Collapse
Affiliation(s)
- Liqin Zhang
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan, USA
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
- Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Calvin Wu
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan, USA
| | - David T. Martel
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael West
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael A. Sutton
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan, USA
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Correspondence to: Michael A. Sutton, Molecular and Behavioral Neuroscience Institute, 5067, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA. Tel: 734-615-2445; ; Susan E. Shore, Kresge Hearing Research Institute, 5434, Medical Science Building, 1100 W. Medical Center Drive, Ann Arbor, MI 48109, USA. Tel: 734-647-2116;
| | - Susan E. Shore
- Kresge Hearing Research Institute, Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Correspondence to: Michael A. Sutton, Molecular and Behavioral Neuroscience Institute, 5067, BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA. Tel: 734-615-2445; ; Susan E. Shore, Kresge Hearing Research Institute, 5434, Medical Science Building, 1100 W. Medical Center Drive, Ann Arbor, MI 48109, USA. Tel: 734-647-2116;
| |
Collapse
|
15
|
Bueno D, Lima LB, Souza R, Gonçalves L, Leite F, Souza S, Furigo IC, Donato J, Metzger M. Connections of the laterodorsal tegmental nucleus with the habenular‐interpeduncular‐raphe system. J Comp Neurol 2019; 527:3046-3072. [DOI: 10.1002/cne.24729] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Debora Bueno
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Leandro B. Lima
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Rudieri Souza
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Luciano Gonçalves
- Department of Human AnatomyFederal University of the Triângulo Mineiro Uberaba Brazil
| | - Fernanda Leite
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Stefani Souza
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Isadora C. Furigo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| | - Martin Metzger
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo São Paulo Brazil
| |
Collapse
|
16
|
Zhang S, Lv F, Yuan Y, Fan C, Li J, Sun W, Hu J. Whole-Brain Mapping of Monosynaptic Afferent Inputs to Cortical CRH Neurons. Front Neurosci 2019; 13:565. [PMID: 31213976 PMCID: PMC6558184 DOI: 10.3389/fnins.2019.00565] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/16/2019] [Indexed: 01/02/2023] Open
Abstract
Corticotropin-releasing hormone (CRH) is a critical neuropeptide modulating the mammalian stress response. It is involved in many functional activities within various brain regions, among which there is a subset of CRH neurons occupying a considerable proportion of the cortical GABAergic interneurons. Here, we utilized rabies virus-based monosynaptic retrograde tracing system to map the whole-brain afferent presynaptic partners of the CRH neurons in the anterior cingulate cortex (ACC). We find that the ACC CRH neurons integrate information from the cortex, thalamus, hippocampal formation, amygdala, and also several other midbrain and hindbrain nuclei. Furthermore, our results reveal that ACC CRH neurons receive direct inputs from two neuromodulatory systems, the basal forebrain cholinergic neurons and raphe serotoninergic neurons. These findings together expand our knowledge about the connectivity of the cortical GABAergic neurons and also provide a basis for further investigation of the circuit function of cortical CRH neurons.
Collapse
Affiliation(s)
- Shouhua Zhang
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Lv
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- iHuman Institute, ShanghaiTech University, Shanghai, China
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yuan Yuan
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Chengyu Fan
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Jiang Li
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Wenzhi Sun
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
- iHuman Institute, ShanghaiTech University, Shanghai, China
- Chinese Institute for Brain Research, Beijing, China
| | - Ji Hu
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
17
|
Luo P, Li A, Zheng Y, Han Y, Tian J, Xu Z, Gong H, Li X. Whole Brain Mapping of Long-Range Direct Input to Glutamatergic and GABAergic Neurons in Motor Cortex. Front Neuroanat 2019; 13:44. [PMID: 31057372 PMCID: PMC6478816 DOI: 10.3389/fnana.2019.00044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/29/2019] [Indexed: 11/25/2022] Open
Abstract
Long-range neuronal circuits play an important role in motor and sensory information processing. Determining direct synaptic inputs of excited and inhibited neurons is important for understanding the circuit mechanisms involved in regulating movement. Here, we used the monosynaptic rabies tracing technique, combined with fluorescent micro-optical sectional tomography, to characterize the brain-wide input to the motor cortex (MC). The whole brain dataset showed that the main excited and inhibited neurons in the MC received inputs from similar brain regions with a quantitative difference. With 3D reconstruction we found that the distribution of input neurons, that target the primary and secondary MC, had different patterns. In the cortex, the neurons projecting to the primary MC mainly distributed in the lateral and anterior portion, while those to the secondary MC distributed in the medial and posterior portion. The input neurons in the subcortical areas also showed the topographic shift model, as in the thalamus, the neurons distributed as outer and inner shells while the neurons in the claustrum and amygdala were in the ventral and dorsal part, respectively. These results lay the anatomical foundation to understanding the organized pattern of motor circuits and the functional differences between the primary and secondary MC.
Collapse
Affiliation(s)
- Pan Luo
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, Suzhou, China
| | - Yanxiao Zheng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Yutong Han
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaojiao Tian
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengchao Xu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, Suzhou, China
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, China.,MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, China.,HUST-Suzhou Institute for Brainsmatics, Suzhou, China
| |
Collapse
|
18
|
Connectional architecture of a mouse hypothalamic circuit node controlling social behavior. Proc Natl Acad Sci U S A 2019; 116:7503-7512. [PMID: 30898882 PMCID: PMC6462064 DOI: 10.1073/pnas.1817503116] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
How hypothalamic cellular heterogeneity maps onto circuit connectivity, and the relationship of this anatomical mapping to behavioral function, remain poorly understood. Here we systematically map the connectivity of estrogen receptor-1–expressing neurons in the ventromedial hypothalamus (VMHvlEsr1), which control aggression and related social behaviors, using multiple viral-genetic tracers. Rather than a simple feed-forward sensory-to-motor processing stream, we find high convergence (fan-in) and divergence (fan-out) in VMHvlEsr1 inputs and projections, respectively, with massive feedback. However, outputs are split into two subpopulations that project either posteriorly, to premotor structures, or anteriorly back to the amygdala and hypothalamus. This fan-in/-out system architecture is consistent with “antenna” and “broadcasting” functions for VMHvlEsr1 neurons, with the feedback pathway possibly controlling behavioral decisions and internal state. Type 1 estrogen receptor-expressing neurons in the ventrolateral subdivision of the ventromedial hypothalamus (VMHvlEsr1) play a causal role in the control of social behaviors, including aggression. Here we use six different viral-genetic tracing methods to systematically map the connectional architecture of VMHvlEsr1 neurons. These data reveal a high level of input convergence and output divergence (“fan-in/fan-out”) from and to over 30 distinct brain regions, with a high degree (∼90%) of bidirectionality, including both direct as well as indirect feedback. Unbiased collateralization mapping experiments indicate that VMHvlEsr1 neurons project to multiple targets. However, we identify two anatomically distinct subpopulations with anterior vs. posterior biases in their collateralization targets. Nevertheless, these two subpopulations receive indistinguishable inputs. These studies suggest an overall system architecture in which an anatomically feed-forward sensory-to-motor processing stream is integrated with a dense, highly recurrent central processing circuit. This architecture differs from the “brain-inspired,” hierarchical feed-forward circuits used in certain types of artificial intelligence networks.
Collapse
|
19
|
Luo T, Yu S, Cai S, Zhang Y, Jiao Y, Yu T, Yu W. Parabrachial Neurons Promote Behavior and Electroencephalographic Arousal From General Anesthesia. Front Mol Neurosci 2018; 11:420. [PMID: 30564094 PMCID: PMC6288364 DOI: 10.3389/fnmol.2018.00420] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
General anesthesia has been used clinically for more than 170 years, yet its underlying mechanisms are still not fully understood. The parabrachial nucleus (PBN) in the brainstem has been known to be crucial for regulating wakefulness and signs of arousal on the cortical electroencephalogram (EEG). Lesions of the parabrachial complex lead to unresponsiveness and a monotonous high-voltage, and a slow-wave EEG, which are the two main features of general anesthesia. However, it is unclear whether and how the PBN functions in the process of general anesthesia. By recording the levels of calcium in vivo in real-time, we found that the neural activity in PBN is suppressed during anesthesia, while it is robustly activated during recovery from propofol and isoflurane anesthesia. The activation of PBN neurons by “designer receptors exclusively activated by designer drugs” (DREADDs) shortened the recovery time but did not change the induction time. Cortical EEG recordings revealed that the neural activation of PBN specifically affected the recovery period, with a decrease of δ-band power or an increase in β-band power; no EEG changes were seen in the anesthesia period. Furthermore, the activation of PBN elicited neural activation in the prefrontal cortex, basal forebrain, lateral hypothalamus, thalamus, and supramammillary nucleus. Thus, PBN is critical for behavioral and electroencephalographic arousal without affecting the induction of general anesthesia.
Collapse
Affiliation(s)
- Tianyuan Luo
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China
| | - Shouyang Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China
| | - Shuang Cai
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China
| | - Yu Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical College, Zunyi, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Zheng Y, Feng S, Zhu X, Jiang W, Wen P, Ye F, Rao X, Jin S, He X, Xu F. Different Subgroups of Cholinergic Neurons in the Basal Forebrain Are Distinctly Innervated by the Olfactory Regions and Activated Differentially in Olfactory Memory Retrieval. Front Neural Circuits 2018; 12:99. [PMID: 30483067 PMCID: PMC6243045 DOI: 10.3389/fncir.2018.00099] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/18/2018] [Indexed: 01/16/2023] Open
Abstract
The mammalian basal forebrain (BF), a heterogenous structure providing the primary cholinergic inputs to cortical and limbic structures, plays a crucial role in various physiological processes such as learning/memory and attention. Despite the involvement of the BF cholinergic neurons (BFCNs) in olfaction related memory has been reported, the underlying neural circuits remain poorly understood. Here, we combined viral trans-synaptic tracing systems and ChAT-cre transgenic mice to systematically reveal the relationship between the olfactory system and the different subsets of BFCNs. The retrograde adeno-associated virus and rabies virus (AAV-RV) tracing showed that different subregional BFCNs received diverse inputs from multiple olfactory cortices. The cholinergic neurons in medial and caudal horizontal diagonal band Broca (HDB), magnocellular preoptic area (MCPO) and ventral substantia innominate (SI; hereafter HMS complex, HMSc) received the inputs from the entire olfactory system such as the olfactory bulb (OB), anterior olfactory nucleus (AON), entorhinal cortex (ENT), basolateral amygdala and especially the piriform cortex (PC) and hippocampus (HIP); while medial septum (MS/DB) and a part of rostral HDB (hereafter MS/DB complex, MS/DBc), predominantly from HIP; and nucleus basalis Meynert (NBM) and dorsal SI (hereafter NBM complex, NBMc), mainly from the central amygdala. The anterograde vesicular stomatitis virus (VSV) tracing further validated that the major target of the OB to the BF is HMSc. To correlate these structural relations between the BFCNs and olfactory functions, the neurons activated in the BF during olfaction related task were mapped with c-fos immunostaining. It was found that some of the BFCNs were activated in go/no-go olfactory discrimination task, but with different activated patterns. Interestingly, the BFCNs in HMSc were more significantly activated than the other subregions. Therefore, our data have demonstrated that among the different subgroups of BFCNs, HMSc is more closely related to the olfactory system, both structurally and functionally. This work provides the evidence for distinct roles of different subsets of BFNCs in olfaction associated memory.
Collapse
Affiliation(s)
- Yingwei Zheng
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Shouya Feng
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xutao Zhu
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Wentao Jiang
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Pengjie Wen
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Feiyang Ye
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaoping Rao
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Sen Jin
- Huazhong University of Science and Technology (HUST)-Suzhou Institute for Brainsmatics, Suzhou, China
| | - Xiaobin He
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Fuqiang Xu
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
- Huazhong University of Science and Technology (HUST)-Suzhou Institute for Brainsmatics, Suzhou, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
21
|
Yuan XS, Wei HH, Xu W, Wang L, Qu WM, Li RX, Huang ZL. Whole-Brain Monosynaptic Afferent Projections to the Cholecystokinin Neurons of the Suprachiasmatic Nucleus. Front Neurosci 2018; 12:807. [PMID: 30455627 PMCID: PMC6230653 DOI: 10.3389/fnins.2018.00807] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/16/2018] [Indexed: 11/24/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) is the principal pacemaker driving the circadian rhythms of physiological behaviors. The SCN consists of distinct neurons expressing neuropeptides, including arginine vasopressin (AVP), vasoactive intestinal polypeptide (VIP), gastrin-releasing peptide (GRP), cholecystokinin (CCK), and so on. AVP, VIP, and GRP neurons receive light stimulation from the retina to synchronize endogenous circadian clocks with the solar day, whereas CCK neurons are not directly innervated by retinal ganglion cells and may be involved in the non-photic regulation of the circadian clock. To better understand the function of CCK neurons in non-photic circadian rhythm, it is vital to clarify the direct afferent inputs to CCK neurons in the SCN. Here, we utilized a recently developed rabies virus- and Cre/loxP-based, cell type-specific, retrograde tracing system to map and quantitatively analyze the whole-brain monosynaptic inputs to SCN CCK neurons. We found that SCN CCK neurons received direct inputs from 29 brain nuclei. Among these nuclei, paraventricular nucleus of the hypothalamus (PVH), paraventricular nucleus of the thalamus (PVT), supraoptic nucleus (SON), ventromedial nucleus of the hypothalamus, and seven other nuclei sent numerous inputs to CCK neurons. Moderate inputs originated from the zona incerta, periventricular hypothalamic nucleus, and five other nuclei. A few inputs to CCK neurons originated from the orbital frontal cortex, prelimbic cortex, cingulate cortex, claustrum, and seven other nuclei. In addition, SCN CCK neurons were preferentially innervated by AVP neurons of the ipsilateral PVH and SON rather than their contralateral counterpart, whereas the contralateral PVT sent more projections to CCK neurons than to its ipsilateral counterpart. Taken together, these results expand our knowledge of the specific innervation to mouse SCN CCK neurons and provide an important indication for further investigations on the function of CCK neurons.
Collapse
Affiliation(s)
- Xiang-Shan Yuan
- Department of Pharmacology, Department of Anatomy, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Hao-Hua Wei
- Department of Pharmacology, Department of Anatomy, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Wei Xu
- Department of Pharmacology, Department of Anatomy, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Lu Wang
- Department of Pharmacology, Department of Anatomy, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Wei-Min Qu
- Department of Pharmacology, Department of Anatomy, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Rui-Xi Li
- Department of Pharmacology, Department of Anatomy, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| | - Zhi-Li Huang
- Department of Pharmacology, Department of Anatomy, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Záborszky L, Gombkoto P, Varsanyi P, Gielow MR, Poe G, Role LW, Ananth M, Rajebhosale P, Talmage DA, Hasselmo ME, Dannenberg H, Minces VH, Chiba AA. Specific Basal Forebrain-Cortical Cholinergic Circuits Coordinate Cognitive Operations. J Neurosci 2018; 38:9446-9458. [PMID: 30381436 PMCID: PMC6209837 DOI: 10.1523/jneurosci.1676-18.2018] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/21/2022] Open
Abstract
Based on recent molecular genetics, as well as functional and quantitative anatomical studies, the basal forebrain (BF) cholinergic projections, once viewed as a diffuse system, are emerging as being remarkably specific in connectivity. Acetylcholine (ACh) can rapidly and selectively modulate activity of specific circuits and ACh release can be coordinated in multiple areas that are related to particular aspects of cognitive processing. This review discusses how a combination of multiple new approaches with more established techniques are being used to finally reveal how cholinergic neurons, together with other BF neurons, provide temporal structure for behavior, contribute to local cortical state regulation, and coordinate activity between different functionally related cortical circuits. ACh selectively modulates dynamics for encoding and attention within individual cortical circuits, allows for important transitions during sleep, and shapes the fidelity of sensory processing by changing the correlation structure of neural firing. The importance of this system for integrated and fluid behavioral function is underscored by its disease-modifying role; the demise of BF cholinergic neurons has long been established in Alzheimer's disease and recent studies have revealed the involvement of the cholinergic system in modulation of anxiety-related circuits. Therefore, the BF cholinergic system plays a pivotal role in modulating the dynamics of the brain during sleep and behavior, as foretold by the intricacies of its anatomical map.
Collapse
Affiliation(s)
- Laszlo Záborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102,
| | - Peter Gombkoto
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102
| | - Peter Varsanyi
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102
| | - Matthew R Gielow
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark 07102
| | - Gina Poe
- Department of Integrative Biology and Physiology, University of California, Los Angeles 90095
| | - Lorna W Role
- Department of Neurobiology and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - Mala Ananth
- Program in Neuroscience and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - Prithviraj Rajebhosale
- Program in Neuroscience and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - David A Talmage
- Department of Pharmacological Sciences and Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794
| | - Michael E Hasselmo
- Center for Systems Neuroscience and Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, and
| | - Holger Dannenberg
- Center for Systems Neuroscience and Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts 02215, and
| | - Victor H Minces
- Department of Cognitive Science, University of California, San Diego 92093
| | - Andrea A Chiba
- Department of Cognitive Science, University of California, San Diego 92093
| |
Collapse
|
23
|
Niu H, Shen L, Li T, Ren C, Ding S, Wang L, Zhang Z, Liu X, Zhang Q, Geng D, Wu X, Li H. Alpha-synuclein overexpression in the olfactory bulb initiates prodromal symptoms and pathology of Parkinson's disease. Transl Neurodegener 2018; 7:25. [PMID: 30356861 PMCID: PMC6192070 DOI: 10.1186/s40035-018-0128-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/11/2018] [Indexed: 01/08/2023] Open
Abstract
Background Parkinson's disease (PD) is a neurodegenerative disease characterized by intraneuronal Lewy Body (LB) aggregates composed of misfolded alpha-synuclein (α-syn). The spread of misfolded α-syn follows a typical pattern: starting in the olfactory bulb (OB) and the gut, this pathology is followed by the progressive invasion of misfolded α-syn to the posterior part of the brain. It is unknown whether the administration of human mutant alpha-synuclein (hm-α-syn, a human mutation which occurs in familial PD) into the OB of rats would trigger similar α-syn propagation and subsequently cause pathological changes in broader brain fields associated to PD and establish an animal model of prodromal PD. Methods hm-α-syn was overexpressed in the OB of rats with an AAV injection. Then motor and non-motor symptoms of the SD rats were tested in different behavioral tasks following the AAV injection. In follow-up studies, pathological mechanisms of α-syn spread were explored at the histological, biochemical and micro-structure levels. Results The experimental results indicated that hm-α-syn was overexpressed in the OB 3 weeks after the AAV injection. 1) overexpression of the Hm-α-syn in the OB by the AAV injection could transfer to wider adjacent fields beyond the monosynaptic scope. 2) The number of tyrosine hydroxylase positive cells body and fibers was decreased in the substantia nigra (SN) 12 weeks after AAV injection. This was consistent with decreased levels of the DA neurotransmitter. Importantly, behavioral dysfunctions were found that included olfactory impairment after 3 weeks, motor ability impairment and decreased muscular coordination on a rotarod 6 weeks after the AAV injection.3) The morphological level studies found that the Golgi staining revealed the number of neuronal branches and synapses in the OB, prefrontal cortex (PFC), hippocampus (Hip) and striatum caudate putamen (CPU) were decreased. 4) phosphorylated α-syn, at Ser-129 (pSer129), was found to be increased in hm-α-syn injected animals in comparison to controls that overexpressed GFP alone, which was also found in the most of LB stained by the thioflavine S (ThS) in the SN field. 5) A marker of autophagy (LC3B) was increased in serval fields, which was colacolizated with a marker of apoptosis in the SN field. Conclusions These results demonstrate that expression of exogenous mutant α-syn in the OB induces pathological changes in the sensitive brain fields by transferring pathogenic α-syn to adjacent fields. This method may be useful for establishing an animal model of prodromal PD.
Collapse
Affiliation(s)
- Haichen Niu
- 1Department of Genetics, Xuzhou Medical University, Xuzhou, 221004 China
| | - Lingyu Shen
- 2Department of Epidemiology and Health Statistics, Xuzhou Medical University, Xuzhou, 221004 China
| | - Tongzhou Li
- 2Department of Epidemiology and Health Statistics, Xuzhou Medical University, Xuzhou, 221004 China
| | - Chao Ren
- 3Department of Neurology, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000 China
| | - Sheng Ding
- 2Department of Epidemiology and Health Statistics, Xuzhou Medical University, Xuzhou, 221004 China
| | - Lei Wang
- 1Department of Genetics, Xuzhou Medical University, Xuzhou, 221004 China
| | - Zhonghai Zhang
- 1Department of Genetics, Xuzhou Medical University, Xuzhou, 221004 China
| | - Xiaoyu Liu
- 4College of Medicine, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH USA
| | - Qiang Zhang
- 1Department of Genetics, Xuzhou Medical University, Xuzhou, 221004 China
| | - Deqin Geng
- 5Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004 China
| | - Xiujuan Wu
- 2Department of Epidemiology and Health Statistics, Xuzhou Medical University, Xuzhou, 221004 China
| | - Haiying Li
- 6Department of Pathology, Xuzhou Medical University, Xuzhou, 221004 China
| |
Collapse
|
24
|
Solari N, Hangya B. Cholinergic modulation of spatial learning, memory and navigation. Eur J Neurosci 2018; 48:2199-2230. [PMID: 30055067 PMCID: PMC6174978 DOI: 10.1111/ejn.14089] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/25/2018] [Accepted: 07/23/2018] [Indexed: 01/02/2023]
Abstract
Spatial learning, including encoding and retrieval of spatial memories as well as holding spatial information in working memory generally serving navigation under a broad range of circumstances, relies on a network of structures. While central to this network are medial temporal lobe structures with a widely appreciated crucial function of the hippocampus, neocortical areas such as the posterior parietal cortex and the retrosplenial cortex also play essential roles. Since the hippocampus receives its main subcortical input from the medial septum of the basal forebrain (BF) cholinergic system, it is not surprising that the potential role of the septo-hippocampal pathway in spatial navigation has been investigated in many studies. Much less is known of the involvement in spatial cognition of the parallel projection system linking the posterior BF with neocortical areas. Here we review the current state of the art of the division of labour within this complex 'navigation system', with special focus on how subcortical cholinergic inputs may regulate various aspects of spatial learning, memory and navigation.
Collapse
Affiliation(s)
- Nicola Solari
- Lendület Laboratory of Systems NeuroscienceDepartment of Cellular and Network NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| | - Balázs Hangya
- Lendület Laboratory of Systems NeuroscienceDepartment of Cellular and Network NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| |
Collapse
|
25
|
Galvin VC, Arnsten AFT, Wang M. Evolution in Neuromodulation-The Differential Roles of Acetylcholine in Higher Order Association vs. Primary Visual Cortices. Front Neural Circuits 2018; 12:67. [PMID: 30210306 PMCID: PMC6121028 DOI: 10.3389/fncir.2018.00067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/06/2018] [Indexed: 11/29/2022] Open
Abstract
This review contrasts the neuromodulatory influences of acetylcholine (ACh) on the relatively conserved primary visual cortex (V1), compared to the newly evolved dorsolateral prefrontal association cortex (dlPFC). ACh is critical both for proper circuit development and organization, and for optimal functioning of mature systems in both cortical regions. ACh acts through both nicotinic and muscarinic receptors, which show very different expression profiles in V1 vs. dlPFC, and differing effects on neuronal firing. Cholinergic effects mediate attentional influences in V1, enhancing representation of incoming sensory stimuli. In dlPFC ACh plays a permissive role for network communication. ACh receptor expression and ACh actions in higher visual areas have an intermediate profile between V1 and dlPFC. This changing role of ACh modulation across association cortices may help to illuminate the particular susceptibility of PFC in cognitive disorders, and provide therapeutic targets to strengthen cognition.
Collapse
Affiliation(s)
- Veronica C Galvin
- Department of Neuroscience, Yale University, New Haven, CT, United States
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University, New Haven, CT, United States
| | - Min Wang
- Department of Neuroscience, Yale University, New Haven, CT, United States
| |
Collapse
|
26
|
Chaves-Coira I, Martín-Cortecero J, Nuñez A, Rodrigo-Angulo ML. Basal Forebrain Nuclei Display Distinct Projecting Pathways and Functional Circuits to Sensory Primary and Prefrontal Cortices in the Rat. Front Neuroanat 2018; 12:69. [PMID: 30158859 PMCID: PMC6104178 DOI: 10.3389/fnana.2018.00069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/27/2018] [Indexed: 12/25/2022] Open
Abstract
Recent evidence supports that specific projections between different basal forebrain (BF) nuclei and their cortical targets are necessary to modulate cognitive functions in the cortex. We tested the hypothesis of the existence of specific neuronal populations in the BF linking with specific sensory, motor, and prefrontal cortices in rats. Neuronal tracing techniques were performed using retrograde tracers injected in the primary somatosensory (S1), auditory (A1), and visual (V1) cortical areas, in the medial prefrontal cortex (mPFC) as well as in BF nuclei. Results indicate that the vertical and horizontal diagonal band of Broca (VDB/HDB) nuclei target specific sensory cortical areas and maintains reciprocal projections with the prelimbic/infralimbic (PL/IL) area of the mPFC. The basal magnocellular nucleus (B nucleus) has more widespread targets in the sensory-motor cortex and does not project to the PL/IL cortex. Optogenetic stimulation was used to establish if BF neurons modulate whisker responses recorded in S1 and PL/IL cortices. We drove the expression of high levels of channelrhodopsin-2, tagged with a fluorescent protein (ChR2-eYFP) by injection of a virus in HDB or B nuclei. Blue-light pulses were delivered to the BF through a thin optic fiber to stimulate these neurons. Blue-light stimulation directed toward the HDB facilitated whisker responses in S1 cortex through activation of muscarinic receptors. The same optogenetic stimulation of HDB induced an inhibition of whisker responses in mPFC by activation of nicotinic receptors. Blue-light stimulation directed toward the B nucleus had lower effects than HDB stimulation. Our findings pointed the presence of specific neuronal networks between the BF and the cortex that may play different roles in the control of cortical activity.
Collapse
Affiliation(s)
- Irene Chaves-Coira
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Martín-Cortecero
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Angel Nuñez
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Margarita L Rodrigo-Angulo
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
27
|
Rho HJ, Kim JH, Lee SH. Function of Selective Neuromodulatory Projections in the Mammalian Cerebral Cortex: Comparison Between Cholinergic and Noradrenergic Systems. Front Neural Circuits 2018; 12:47. [PMID: 29988373 PMCID: PMC6023998 DOI: 10.3389/fncir.2018.00047] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
Abstract
Cortical processing is dynamically modulated by different neuromodulators. Neuromodulation of the cerebral cortex is crucial for maintaining cognitive brain functions such as perception, attention and learning. However, we do not fully understand how neuromodulatory projections are organized in the cerebral cortex to exert various functions. The basal forebrain (BF) cholinergic projection and the locus coeruleus (LC) noradrenergic projection are well-known neuromodulatory projections to the cortex. Decades of studies have identified anatomical and physiological characteristics of these circuits. While both cholinergic and noradrenergic neurons widely project to the cortex, they exhibit different levels of selectivity. Here, we summarize their anatomical and physiological features, highlighting selectivity and specificity of these circuits to different cortical regions. We discuss the importance of selective modulation by comparing their functions in the cortex. We highlight key features in the input-output circuits and target selectivity of these neuromodulatory projections and their roles in controlling four major brain functions: attention, reinforcement, learning and memory, sleep and wakefulness.
Collapse
Affiliation(s)
- Hee-Jun Rho
- Sensory Processing Laboratory, Department of Biological Sciences, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, South Korea
| | - Jae-Hyun Kim
- Sensory Processing Laboratory, Department of Biological Sciences, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, South Korea
| | - Seung-Hee Lee
- Sensory Processing Laboratory, Department of Biological Sciences, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
28
|
Olfactory bulb acetylcholine release dishabituates odor responses and reinstates odor investigation. Nat Commun 2018; 9:1868. [PMID: 29760390 PMCID: PMC5951802 DOI: 10.1038/s41467-018-04371-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 04/25/2018] [Indexed: 11/08/2022] Open
Abstract
Habituation and dishabituation modulate the neural resources and behavioral significance allocated to incoming stimuli across the sensory systems. We characterize these processes in the mouse olfactory bulb (OB) and uncover a role for OB acetylcholine (ACh) in physiological and behavioral olfactory dishabituation. We use calcium imaging in both awake and anesthetized mice to determine the time course and magnitude of OB glomerular habituation during a prolonged odor presentation. In addition, we develop a novel behavioral investigation paradigm to determine how prolonged odor input affects odor salience. We find that manipulating OB ACh release during prolonged odor presentations using electrical or optogenetic stimulation rapidly modulates habituated glomerular odor responses and odor salience, causing mice to suddenly investigate a previously ignored odor. To demonstrate the ethological validity of this effect, we show that changing the visual context can lead to dishabituation of odor investigation behavior, which is blocked by cholinergic antagonists in the OB.
Collapse
|
29
|
Ma S, Hangya B, Leonard CS, Wisden W, Gundlach AL. Dual-transmitter systems regulating arousal, attention, learning and memory. Neurosci Biobehav Rev 2018; 85:21-33. [PMID: 28757457 PMCID: PMC5747977 DOI: 10.1016/j.neubiorev.2017.07.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/16/2017] [Indexed: 01/12/2023]
Abstract
An array of neuromodulators, including monoamines and neuropeptides, regulate most behavioural and physiological traits. In the past decade, dramatic progress has been made in mapping neuromodulatory circuits, in analysing circuit dynamics, and interrogating circuit function using pharmacogenetic, optogenetic and imaging methods This review will focus on several distinct neural networks (acetylcholine/GABA/glutamate; histamine/GABA; orexin/glutamate; and relaxin-3/GABA) that originate from neural hubs that regulate wakefulness and related attentional and cognitive processes, and highlight approaches that have identified dual transmitter roles in these behavioural functions. Modulation of these different neural networks might be effective treatments of diseases related to arousal/sleep dysfunction and of cognitive dysfunction in psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia.
| | - Balázs Hangya
- 'Lendület' Laboratory of Systems Neuroscience, Department of Cellular and Network Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - William Wisden
- Department of Life Sciences, Imperial College London, London, UK
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia.
| |
Collapse
|
30
|
Carter CJ. Genetic, Transcriptome, Proteomic, and Epidemiological Evidence for Blood-Brain Barrier Disruption and Polymicrobial Brain Invasion as Determinant Factors in Alzheimer's Disease. J Alzheimers Dis Rep 2017; 1:125-157. [PMID: 30480234 PMCID: PMC6159731 DOI: 10.3233/adr-170017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diverse pathogens are detected in Alzheimer's disease (AD) brains. A bioinformatics survey showed that AD genome-wide association study (GWAS) genes (localized in bone marrow, immune locations and microglia) relate to multiple host/pathogen interactomes (Candida albicans, Cryptococcus neoformans, Bornavirus, Borrelia burgdorferri, cytomegalovirus, Ebola virus, HSV-1, HERV-W, HIV-1, Epstein-Barr, hepatitis C, influenza, Chlamydia pneumoniae, Porphyrymonas gingivalis, Helicobacter pylori, Toxoplasma gondii, Trypanosoma cruzi). These interactomes also relate to the AD hippocampal transcriptome and to plaque or tangle proteins. Upregulated AD hippocampal genes match those upregulated by multiple bacteria, viruses, fungi, or protozoa in immunocompetent cells. AD genes are enriched in GWAS datasets reflecting pathogen diversity, suggesting selection for pathogen resistance, as supported by the old age of AD patients, implying resistance to earlier infections. APOE4 is concentrated in regions of high parasitic burden and protects against childhood tropical infections and hepatitis C. Immune/inflammatory gain of function applies to APOE4, CR1, and TREM2 variants. AD genes are also expressed in the blood-brain barrier (BBB), which is disrupted by AD risk factors (age, alcohol, aluminum, concussion, cerebral hypoperfusion, diabetes, homocysteine, hypercholesterolemia, hypertension, obesity, pesticides, pollution, physical inactivity, sleep disruption, smoking) and by pathogens, directly or via olfactory routes to basal-forebrain BBB control centers. The BBB benefits from statins, NSAIDs, estrogen, melatonin, memantine, and the Mediterranean diet. Polymicrobial involvement is supported by upregulation of bacterial, viral, and fungal sensors/defenders in the AD brain, blood, or cerebrospinal fluid. AD serum amyloid-β autoantibodies may attenuate its antimicrobial effects favoring microbial survival and cerebral invasion leading to activation of neurodestructive immune/inflammatory processes, which may also be augmented by age-related immunosenescence. AD may thus respond to antibiotic, antifungal, or antiviral therapy.
Collapse
|
31
|
Naser PV, Kuner R. Molecular, Cellular and Circuit Basis of Cholinergic Modulation of Pain. Neuroscience 2017; 387:135-148. [PMID: 28890048 PMCID: PMC6150928 DOI: 10.1016/j.neuroscience.2017.08.049] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 08/26/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022]
Abstract
In addition to being a key component of the autonomic nervous system, acetylcholine acts as a prominent neurotransmitter and neuromodulator upon release from key groups of cholinergic projection neurons and interneurons distributed across the central nervous system. It has been more than forty years since it was discovered that cholinergic transmission profoundly modifies the perception of pain. Directly activating cholinergic receptors or extending the action of endogenous acetylcholine via pharmacological blockade of acetylcholine esterase reduces pain in rodents as well as humans; conversely, inhibition of muscarinic cholinergic receptors induces nociceptive hypersensitivity. Here, we aim to review the considerable progress in our understanding of peripheral, spinal and brain contributions to cholinergic modulation of pain. We discuss the distribution of cholinergic neurons, muscarinic and nicotinic receptors over the central nervous system and the synaptic and circuit-level modulation by cholinergic signaling. AchRs profoundly regulate nociceptive transmission at the level of the spinal cord via pre- as well as postsynaptic mechanisms. Moreover, we attempt to provide an overview of how some of the salient regions in the pain network spanning the brain, such as the primary somatosensory cortex, insular cortex, anterior cingulate cortex, the medial prefrontal cortex and descending modulatory systems are influenced by cholinergic modulation. Finally, we critically discuss the clinical relevance of cholinergic signaling to pain therapy. Cholinergic mechanisms contribute to several both conventional as well as unorthodox forms of pain treatments, and reciprocal interactions between cholinergic and opioidergic modulation impact on the function and efficacy of both opioids and cholinomimetic drugs.
Collapse
Affiliation(s)
- Paul V Naser
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany; Cell Networks Cluster of Excellence, Heidelberg University, Germany.
| |
Collapse
|
32
|
Yang C, Thankachan S, McCarley RW, Brown RE. The menagerie of the basal forebrain: how many (neural) species are there, what do they look like, how do they behave and who talks to whom? Curr Opin Neurobiol 2017; 44:159-166. [PMID: 28538168 PMCID: PMC5525536 DOI: 10.1016/j.conb.2017.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 04/21/2017] [Accepted: 05/08/2017] [Indexed: 12/25/2022]
Abstract
The diverse cell-types of the basal forebrain control sleep-wake states, cortical activity and reward processing. Large, slow-firing, cholinergic neurons suppress cortical delta activity and promote cortical plasticity in response to reinforcers. Large, fast-firing, cortically-projecting GABAergic neurons promote wakefulness and fast cortical activity. In particular, parvalbumin/GABAergic neurons promote neocortical gamma band activity. Conversely, excitation of slower-firing somatostatin/GABAergic neurons promotes sleep through inhibition of cortically-projecting neurons. Activation of glutamatergic neurons promotes wakefulness, likely by exciting other cortically-projecting neurons. Similarly, cholinergic neurons indirectly promote wakefulness by excitation of wake-promoting, cortically-projecting GABAergic neurons and/or inhibition of sleep-promoting somatostatin/GABAergic neurons. Both glia and neurons increase the levels of adenosine during prolonged wakefulness. Adenosine presynaptically inhibits glutamatergic inputs to wake-promoting cholinergic and GABAergic/parvalbumin neurons, promoting sleep.
Collapse
Affiliation(s)
- Chun Yang
- Psychiatry, VA BHS and Harvard Medical School, West Roxbury, MA, 02132, USA
| | - Stephen Thankachan
- Psychiatry, VA BHS and Harvard Medical School, West Roxbury, MA, 02132, USA
| | - Robert W McCarley
- Psychiatry, VA BHS and Harvard Medical School, West Roxbury, MA, 02132, USA.
| | - Ritchie E Brown
- Psychiatry, VA BHS and Harvard Medical School, West Roxbury, MA, 02132, USA.
| |
Collapse
|
33
|
Gielow MR, Zaborszky L. The Input-Output Relationship of the Cholinergic Basal Forebrain. Cell Rep 2017; 18:1817-1830. [PMID: 28199851 PMCID: PMC5725195 DOI: 10.1016/j.celrep.2017.01.060] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 12/05/2016] [Accepted: 01/24/2017] [Indexed: 12/21/2022] Open
Abstract
Basal forebrain cholinergic neurons influence cortical state, plasticity, learning, and attention. They collectively innervate the entire cerebral cortex, differentially controlling acetylcholine efflux across different cortical areas and timescales. Such control might be achieved by differential inputs driving separable cholinergic outputs, although no input-output relationship on a brain-wide level has ever been demonstrated. Here, we identify input neurons to cholinergic cells projecting to specific cortical regions by infecting cholinergic axon terminals with a monosynaptically restricted viral tracer. This approach revealed several circuit motifs, such as central amygdala neurons synapsing onto basolateral amygdala-projecting cholinergic neurons or strong somatosensory cortical input to motor cortex-projecting cholinergic neurons. The presence of input cells in the parasympathetic midbrain nuclei contacting frontally projecting cholinergic neurons suggest that the network regulating the inner eye muscles are additionally regulating cortical state via acetylcholine efflux. This dataset enables future circuit-level experiments to identify drivers of known cortical cholinergic functions.
Collapse
Affiliation(s)
- Matthew R Gielow
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, Newark, NJ 07102, USA
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, the State University of New Jersey, Newark, NJ 07102, USA.
| |
Collapse
|