1
|
Wilson DA, Sullivan RM, Smiley JF, Saito M, Raineki C. Developmental alcohol exposure is exhausting: Sleep and the enduring consequences of alcohol exposure during development. Neurosci Biobehav Rev 2024; 158:105567. [PMID: 38309498 PMCID: PMC10923002 DOI: 10.1016/j.neubiorev.2024.105567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Prenatal alcohol exposure is the leading nongenetic cause of human intellectual impairment. The long-term impacts of prenatal alcohol exposure on health and well-being are diverse, including neuropathology leading to behavioral, cognitive, and emotional impairments. Additionally negative effects also occur on the physiological level, such as the endocrine, cardiovascular, and immune systems. Among these diverse impacts is sleep disruption. In this review, we describe how prenatal alcohol exposure affects sleep, and potential mechanisms of those effects. Furthermore, we outline the evidence that sleep disruption across the lifespan may be a mediator of some cognitive and behavioral impacts of developmental alcohol exposure, and thus may represent a promising target for treatment.
Collapse
Affiliation(s)
- Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA.
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, USA
| | - John F Smiley
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University Medical Center, New York, NY, USA
| | - Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University Medical Center, New York, NY, USA
| | - Charlis Raineki
- Department of Psychology, Brock University, St. Catharines, ON, Canada; Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
2
|
Shah P, Kaneria A, Fleming G, Williams CRO, Sullivan RM, Lemon CH, Smiley J, Saito M, Wilson DA. Homeostatic NREM sleep and salience network function in adult mice exposed to ethanol during development. Front Neurosci 2023; 17:1267542. [PMID: 38033546 PMCID: PMC10682725 DOI: 10.3389/fnins.2023.1267542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Developmental exposure to ethanol is a leading cause of cognitive, emotional and behavioral problems, with fetal alcohol spectrum disorder (FASD) affecting more than 1:100 children. Recently, comorbid sleep deficits have been highlighted in these disorders, with sleep repair a potential therapeutic target. Animal models of FASD have shown non-REM (NREM) sleep fragmentation and slow-wave oscillation impairments that predict cognitive performance. Here we use a mouse model of perinatal ethanol exposure to explore whether reduced sleep pressure may contribute to impaired NREM sleep, and compare the function of a brain network reported to be impacted by insomnia-the Salience network-in developmental ethanol-exposed mice with sleep-deprived, saline controls. Mice were exposed to ethanol or saline on postnatal day 7 (P7) and allowed to mature to adulthood for testing. At P90, telemetered cortical recordings were made for assessment of NREM sleep in home cage before and after 4 h of sleep deprivation to assess basal NREM sleep and homeostatic NREM sleep response. To assess Salience network functional connectivity, mice were exposed to the 4 h sleep deprivation period or left alone, then immediately sacrificed for immunohistochemical analysis of c-Fos expression. The results show that developmental ethanol severely impairs both normal rebound NREM sleep and sleep deprivation induced increases in slow-wave activity, consistent with reduced sleep pressure. Furthermore, the Salience network connectome in rested, ethanol-exposed mice was most similar to that of sleep-deprived, saline control mice, suggesting a sleep deprivation-like state of Salience network function after developmental ethanol even without sleep deprivation.
Collapse
Affiliation(s)
- Prachi Shah
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
| | - Aayush Kaneria
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
| | - Gloria Fleming
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
| | - Colin R. O. Williams
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
| | - Regina M. Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
- School of Biological Sciences, University of Oklahoma, Norman, OK, United States
- Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, United States
| | - Christian H. Lemon
- School of Biological Sciences, University of Oklahoma, Norman, OK, United States
| | - John Smiley
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
- Department of Psychiatry, New York University Medical Center, New York, NY,United States
| | - Mariko Saito
- Division of Neurochemistry, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
- Department of Psychiatry, New York University Medical Center, New York, NY,United States
| | - Donald A. Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY,United States
- School of Biological Sciences, University of Oklahoma, Norman, OK, United States
- Department of Child and Adolescent Psychiatry, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
3
|
Collier AD, Abdulai AR, Leibowitz SF. Utility of the Zebrafish Model for Studying Neuronal and Behavioral Disturbances Induced by Embryonic Exposure to Alcohol, Nicotine, and Cannabis. Cells 2023; 12:2505. [PMID: 37887349 PMCID: PMC10605371 DOI: 10.3390/cells12202505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
It is estimated that 5% of pregnant women consume drugs of abuse during pregnancy. Clinical research suggests that intake of drugs during pregnancy, such as alcohol, nicotine and cannabis, disturbs the development of neuronal systems in the offspring, in association with behavioral disturbances early in life and an increased risk of developing drug use disorders. After briefly summarizing evidence in rodents, this review focuses on the zebrafish model and its inherent advantages for studying the effects of embryonic exposure to drugs of abuse on behavioral and neuronal development, with an emphasis on neuropeptides known to promote drug-related behaviors. In addition to stimulating the expression and density of peptide neurons, as in rodents, zebrafish studies demonstrate that embryonic drug exposure has marked effects on the migration, morphology, projections, anatomical location, and peptide co-expression of these neurons. We also describe studies using advanced methodologies that can be applied in vivo in zebrafish: first, to demonstrate a causal relationship between the drug-induced neuronal and behavioral disturbances and second, to discover underlying molecular mechanisms that mediate these effects. The zebrafish model has great potential for providing important information regarding the development of novel and efficacious therapies for ameliorating the effects of early drug exposure.
Collapse
Affiliation(s)
| | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
4
|
Knez R, Stevanovic D, Fernell E, Gillberg C. Orexin/Hypocretin System Dysfunction in ESSENCE (Early Symptomatic Syndromes Eliciting Neurodevelopmental Clinical Examinations). Neuropsychiatr Dis Treat 2022; 18:2683-2702. [PMID: 36411777 PMCID: PMC9675327 DOI: 10.2147/ndt.s358373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Early Symptomatic Syndromes Eliciting Neurodevelopmental Clinical Examinations (ESSENCE) is an umbrella term covering a wide range of neurodevelopmental difficulties and disorders. Thus, ESSENCE includes attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and other neurodevelopmental disorders (NDDs) and difficulties, with a variety of symptoms in cognitive, motor, sensory, social, arousal, regulatory, emotional, and behavioral developmental domains, frequently co-occurring and likely having partly common neurobiological substrates. The ESSENCE concept is a clinical paradigm that promotes organizing NDDs in everyday clinical practice according to their coexistence, symptom dimensions overlapping, and treatment possibilities. Despite increased knowledge regarding NDDs, the neurobiological mechanisms that underlie them and other ESSENCE-related problems, are not well understood. With its wide range of neural circuits and interactions with numerous neurotransmitters, the orexin/hypocretin system (Orx-S) is possibly associated with a variety of neurocognitive, psychobiological, neuroendocrine, and physiological functions and behaviors. Dysfunction of Orx-S has been implicated in various psychiatric and neurological disorders. This article provides an overview of Orx-S dysfunctions' possible involvement in the development, presentation, and maintenance of ESSENCE. We provide a focused review of current research evidence linking orexin neuropeptides with specific clinical NDDs symptoms, mostly in ADHD and ASD, within the Research Domain Criteria (RDoC) framework. We propose that Orx-S dysfunction might have an important role in some of these neurodevelopmental symptom domains, such as arousal, wakefulness, sleep, motor and sensory processing, mood and emotional regulation, fear processing, reward, feeding, attention, executive functions, and sociability. Our perspective is presented from a clinical point of view. Further, more thorough systematic reviews are needed as well as planning of extensive new research into the Orx-S's role in ESSENCE, especially considering RDoC elements.
Collapse
Affiliation(s)
- Rajna Knez
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Skaraborg Hospital, Skövde, Sweden
- School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Dejan Stevanovic
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Fernell
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christopher Gillberg
- Gillberg Neuropsychiatry Centre, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
5
|
Collier AD, Yasmin N, Chang GQ, Karatayev O, Khalizova N, Fam M, Abdulai AR, Yu B, Leibowitz SF. Embryonic ethanol exposure induces ectopic Hcrt and MCH neurons outside hypothalamus in rats and zebrafish: Role in ethanol-induced behavioural disturbances. Addict Biol 2022; 27:e13238. [PMID: 36301208 PMCID: PMC9625080 DOI: 10.1111/adb.13238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/02/2022] [Accepted: 09/22/2022] [Indexed: 01/24/2023]
Abstract
Embryonic exposure to ethanol increases the risk for alcohol use disorder in humans and stimulates alcohol-related behaviours in different animal models. Evidence in rats and zebrafish suggests that this phenomenon induced by ethanol at low-moderate concentrations involves a stimulatory effect on neurogenesis and density of hypothalamic neurons expressing the peptides, hypocretin/orexin (Hcrt) and melanin-concentrating hormone (MCH), known to promote alcohol consumption. Building on our report in zebrafish showing that ethanol induces ectopic expression of Hcrt neurons outside the hypothalamus, we investigated here whether embryonic ethanol exposure also induces ectopic peptide neurons in rats similar to zebrafish and affects their morphological characteristics and if these ectopic neurons are functional and have a role in the ethanol-induced disturbances in behaviour. We demonstrate in rats that ethanol at a low-moderate dose, in addition to increasing Hcrt and MCH neurons in the lateral hypothalamus where they are normally concentrated, induces ectopic expression of these peptide neurons further anterior in the nucleus accumbens core and ventromedial caudate putamen where they have not been previously observed and causes morphological changes relative to normally located hypothalamic neurons. Similar to rats, embryonic ethanol exposure at a low-moderate dose in zebrafish induces ectopic Hcrt neurons anterior to the hypothalamus and alters their morphology. Notably, laser ablation of these ectopic Hcrt neurons blocks the behavioural effects induced by ethanol exposure, including increased anxiety and locomotor activity. These findings suggest that the ectopic peptide neurons are functional and contribute to the ethanol-induced behavioural disturbances related to the overconsumption of alcohol.
Collapse
Affiliation(s)
- Adam D. Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| | - Nushrat Yasmin
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| | - Guo-Qing Chang
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| | - Olga Karatayev
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| | - Nailya Khalizova
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| | - Milisia Fam
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| | - Abdul R. Abdulai
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| | - Boyi Yu
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
6
|
Grafe EL, Fontaine CJ, Thomas JD, Christie BR. Effects of prenatal ethanol exposure on choline-induced long-term depression in the hippocampus. J Neurophysiol 2021; 126:1622-1634. [PMID: 34495785 DOI: 10.1152/jn.00136.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Choline is an essential nutrient under evaluation as a cognitive enhancing treatment for fetal alcohol spectrum disorders (FASD) in clinical trials. As a result, there is increased pressure to identify therapeutic mechanism(s) of action. Choline is not only a precursor for several essential cell membrane components and signaling molecules but also has the potential to directly affect synaptic mechanisms that are believed important for cognitive processes. In the current work, we study how the direct application of choline can affect synaptic transmission in the dentate gyrus (DG) of hippocampal slices obtained from adolescent (postnatal days 21-28) Sprague-Dawley rats (Rattus norvegicus). The acute administration of choline chloride (2 mM) reliably induced a long-term depression (LTD) of field excitatory postsynaptic potentials (fEPSPs) in the DG in vitro. The depression required the involvement of M1 receptors, and the magnitude of the effect was similar in slices obtained from male and female animals. To further study the impact of choline in an animal model of FASD, we examined offspring from dams fed an ethanol-containing diet (35.5% ethanol-derived calories) throughout gestation. In slices from the adolescent animals that experienced prenatal ethanol exposure (PNEE), we found that the choline induced an LTD that uniquely involved the activation of N-methyl-d-aspartate (NMDA) and M1 receptors. This study provides a novel insight into how choline can modulate hippocampal transmission at the level of the synapse and that it can have unique effects following PNEE.NEW & NOTEWORTHY Choline supplementation is a nutraceutical therapy with significant potential for a variety of developmental disorders; however, the mechanisms involved in its therapeutic effects remain poorly understood. Our research shows that choline directly impacts synaptic communication in the brain, inducing a long-term depression of synaptic efficacy in brain slices. The depression is equivalent in male and female animals, involves M1 receptors in control animals, but uniquely involves NMDA receptors in a model of FASD.
Collapse
Affiliation(s)
- Erin L Grafe
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Christine J Fontaine
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Jennifer D Thomas
- Department of Psychology, San Diego State University, San Diego, California
| | - Brian R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Island Medical Program, Department of Cellular and Physiological Sciences, University of British Columbia, Victoria, British Columbia, Canada
| |
Collapse
|
7
|
McGregor R, Thannickal TC, Siegel JM. Pleasure, addiction, and hypocretin (orexin). HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:359-374. [PMID: 34225941 DOI: 10.1016/b978-0-12-820107-7.00022-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hypocretins/orexins were discovered in 1998. Within 2 years, this led to the discovery of the cause of human narcolepsy, a 90% loss of hypothalamic neurons containing these peptides. Further work demonstrated that these neurons were not simply linked to waking. Rather these neurons were active during pleasurable behaviors in waking and were silenced by aversive stimulation. This was seen in wild-type mice, rats, cats, and dogs. It was also evident in humans, with increased Hcrt release during pleasurable activities and decreased release, to the levels seen in sleep, during pain. We found that human heroin addicts have, on average, an increase of 54% in the number of detectable Hcrt neurons compared to "control" human brains and that these Hcrt neurons are substantially smaller than those in control brains. We found that in mice, chronic morphine administration induced the same changes in Hcrt neuron number and size. Our studies in the mouse allowed us to determine the specificity, dose response relations, time course of the change in the number of Hcrt neurons, and that the increased number of Hcrt neurons after opiates was not due to neurogenesis. Furthermore, we found that it took a month or longer for these anatomical changes in the mouse brain to return to baseline. Human narcoleptics, despite their prescribed use of several commonly addictive drugs, do not show significant evidence of dose escalation or substance use disorder. Similarly, mice in which the peptide has been eliminated are resistant to addiction. These findings are consistent with the concept that an increased number of Hcrt neurons may underlie and maintain opioid or cocaine use disorders.
Collapse
Affiliation(s)
- Ronald McGregor
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, CA, United States; Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Thomas C Thannickal
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, CA, United States; Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Jerome M Siegel
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, CA, United States; Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
8
|
Kamara D, Beauchaine TP. A Review of Sleep Disturbances among Infants and Children with Neurodevelopmental Disorders. REVIEW JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS 2020; 7:278-294. [PMID: 33344102 PMCID: PMC7747783 DOI: 10.1007/s40489-019-00193-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Sleep problems are common among children with neurodevelopmental disorders (NDDs). We review sleep disturbance in three major NDDs: autism spectrum disorder, Down syndrome, and fetal alcohol spectrum disorder (FASD). We review associations with functional impairment, discuss how patterns of sleep disturbance inform understanding of etiology, and theorize about mechanisms of impairment. Sleep disturbance is a transdiagnostic feature of NDDs. Caregivers report high rates of sleep problems, including difficulty falling or staying asleep. Polysomnography data reveal differences in sleep architecture and increased rates of sleep disorders. Sleep disturbance is associated with functional impairment and stress among families. Further research is needed to elucidate mechanisms of impairment and develop more effective interventions. Despite significant sleep disturbance in FASD, limited research is available.
Collapse
Affiliation(s)
- Dana Kamara
- The Ohio State University, Department of Psychology, 1835 Neil Ave., Columbus, OH 43210
| | | |
Collapse
|
9
|
Yates JF, Troester MM, Ingram DG. Sleep in Children with Congenital Malformations of the Central Nervous System. Curr Neurol Neurosci Rep 2018; 18:38. [PMID: 29789951 DOI: 10.1007/s11910-018-0850-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Congenital malformations of the central nervous system may be seen in isolation or in association with syndromes that have multiorgan involvement. Among the potential health challenges these children may face, sleep concerns are frequent and may include chronic insomnia, sleep-related breathing disorders, and circadian rhythm disorders. RECENT FINDINGS In this review, we describe recent research into sleep disorders affecting children with congenital malformations of the CNS including visual impairment, septo-optic dysplasia, agenesis of the corpus callosum, Aicardi syndrome, Chiari malformation, spina bifida, achondroplasia, Joubert syndrome, fetal alcohol spectrum disorders, and congenital Zika syndrome. In many cases, the sleep disturbance can be directly related to observed anatomical differences in the brain (such as in apnea due to Chiari malformation), but in most syndromes, a complete understanding of the underlying pathophysiology connecting the malformation with sleep problem is still being elucidated. Our review provides a synthesis of available evidence for clinicians who treat this patient population, in whom appropriate diagnosis and management of sleep problems may improve the quality of life for both patient and caregiver.
Collapse
Affiliation(s)
| | - Matthew M Troester
- Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, USA
| | - David G Ingram
- Department of Pediatrics, Children's Mercy Hospital, 2401 Gillham Road, Kansas City, MO, USA.
| |
Collapse
|