1
|
Chou D, Peng HY, Lin TB, Hsieh MC, Lai CY, Lee CS. Methylone regulates fear memory and amygdala activity: A potential treatment for posttraumatic stress disorder? Prog Neuropsychopharmacol Biol Psychiatry 2024; 136:111201. [PMID: 39581488 DOI: 10.1016/j.pnpbp.2024.111201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Methylone (3,4-methylenedioxy-N-methylcathinone) is a rapid-acting entactogen that has demonstrated significant benefits for patients with post-traumatic stress disorder (PTSD) and exhibits good tolerability in phase 1 clinical trials. Despite these promising results, its preclinical effects on fear memory regulation and the underlying mechanisms remain largely unexplored. This study aims to investigate the impact of methylone on auditory fear extinction and its influence on neuronal and synaptic activity in the basolateral amygdala (BLA). Using C57BL/6 mice, we employed an auditory fear conditioning paradigm along with immunofluorescent staining, extracellular electrophysiological recording, and chemogenetic techniques. The results revealed that administering methylone at a dosage of 10 mg/kg, in conjunction with extinction trials, significantly decreased the retrieval of both recent and remote fear memories. Additionally, methylone effectively inhibited the renewal of remote fear memories and blocked spontaneous recovery. It also reduced fear generalization to both context and tone. At the cellular level, methylone increased c-fos expression in the BLA and induced sustained elevations in long-term potentiation and long-term depression at the synaptic level. Furthermore, intra-BLA microinfusion of methylone directly enhanced the extinction memory. Chemogenetic activation of the BLA mimicked the effects of methylone, whereas chemogenetic inhibition blocked them. These findings suggest that methylone modulates fear memories through its action on the BLA. This preclinical study offers a knowledge base and critical insights into the potential future application of methylone for PTSD treatment.
Collapse
Affiliation(s)
- Dylan Chou
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
| | - Hsien-Yu Peng
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan; Institute of Biomedical Sciences, MacKay Medical College, New Taipei, Taiwan.
| | - Tzer-Bin Lin
- Institute of New Drug Development, College of Medicine, China Medical University, Taichung, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Chun Hsieh
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
| | - Cheng-Yuan Lai
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei, Taiwan.
| | - Chau-Shoun Lee
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan; Department of Psychiatry, MacKay Memorial Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Ferreira M, Carneiro P, Costa VM, Carvalho F, Meisel A, Capela JP. Amphetamine and methylphenidate potential on the recovery from stroke and traumatic brain injury: a review. Rev Neurosci 2024; 35:709-746. [PMID: 38843463 DOI: 10.1515/revneuro-2024-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/21/2024] [Indexed: 10/10/2024]
Abstract
The prevalence of stroke and traumatic brain injury is increasing worldwide. However, current treatments do not fully cure or stop their progression, acting mostly on symptoms. Amphetamine and methylphenidate are stimulants already approved for attention deficit hyperactivity disorder and narcolepsy treatment, with neuroprotective potential and benefits when used in appropriate doses. This review aimed to summarize pre-clinical and clinical trials testing either amphetamine or methylphenidate for the treatment of stroke and traumatic brain injury. We used PubMed as a database and included the following keywords ((methylphenidate) OR (Ritalin) OR (Concerta) OR (Biphentin) OR (amphetamine) OR (Adderall)) AND ((stroke) OR (brain injury) OR (neuroplasticity)). Overall, studies provided inconsistent results regarding cognitive and motor function. Neurite outgrowth, synaptic proteins, dendritic complexity, and synaptic plasticity increases were reported in pre-clinical studies along with function improvement. Clinical trials have demonstrated that, depending on the brain region, there is an increase in motor activity, attention, and memory due to the stimulation of the functionally depressed catecholamine system and the activation of neuronal remodeling proteins. Nevertheless, more clinical trials and pre-clinical studies are needed to understand the drugs' full potential for their use in these brain diseases namely, to ascertain the treatment time window, ideal dosage, long-term effects, and mechanisms, while avoiding their addictive potential.
Collapse
Affiliation(s)
- Mariana Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Patrícia Carneiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Andreas Meisel
- Department of Neurology with Experimental Neurology, Center for Stroke Research Berlin, Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - João Paulo Capela
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- FP3ID, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal
| |
Collapse
|
3
|
Carreño D, Facundo A, Cardenas A, Lotfipour S. Sub-chronic nicotine exposure influences methamphetamine self-administration and dopamine overflow in a sex-and genotype-dependent manner in humanized CHRNA6 3'-UTR SNP (rs2304297) adolescent rats. Front Pharmacol 2024; 15:1445303. [PMID: 39206256 PMCID: PMC11349519 DOI: 10.3389/fphar.2024.1445303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction: The rewarding effects of drugs of abuse are associated with the dopaminergic system in the limbic circuitry. Nicotine exposure during adolescence is linked to increased use of drugs of abuse with nicotine and methamphetamine (METH) commonly used together. Nicotine acts on neuronal nicotinic acetylcholine receptor (nAChR) systems, critical for reward processing and drug reinforcement, while METH leads to a higher dopamine (DA) efflux in brain reward regions. A human single nucleotide polymorphism (SNP) in the 3'-untranslated region (UTR) of the α6 nicotinic receptor subunit gene (CHRNA6, rs2304297), has been linked with tobacco/nicotine and general substance use during adolescence. Using CRISPR-Cas9 genomic engineering, our lab recapitulated the CHRNA6 3'UTRC123G SNP, generating α6CC and α6GG allele carriers in Sprague Dawley rats. We hypothesized the CHRNA6 3'UTRC123G SNP would sex- and genotype-dependently enhance nicotine-induced METH self-administration as well as nicotine-induced DA overflow in the nucleus accumbens shell of adolescent α6GG and α6CC carriers. Methods: Adolescent male and female rats underwent a 4-day sub-chronic, low-dose (0.03 mg/kg/0.1 mL, x2) nicotine pretreatment paradigm to assess intravenous METH (0.02 mg/kg/0.1 mL) self-administration as well as nicotine- and METH (0.02 mg/kg/0.1 mL)-induced DA overflow in the nucleus accumbens shell (NAcS) using in vivo microdialysis coupled with high-performance liquid-chromatography-electrochemical detection (HPLC-ECD). Results: Nicotine pretreatment sex- and genotype-dependently enhanced subsequent METH self-administration in adolescent CHRNA6 3'UTRC123G SNP rats. Further nicotine and METH-induced DA overflow is observed in α6CC females as compared to α6GG females, with METH-induced DA overflow enhanced in α6GG males when compared to α6CC males. Conclusion: These findings demonstrate that the CHRNA6 3'-UTRC123G SNP can sex- and genotype-dependently impact adolescent nicotine-induced effects on METH self-administration and stimulant-induced DA overflow in reward regions of the brain.
Collapse
Affiliation(s)
- Diana Carreño
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| | - Antonella Facundo
- Department of Emergency Medicine, University of California, Irvine, Irvine, CA, United States
| | - Anjelica Cardenas
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shahrdad Lotfipour
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
- Department of Emergency Medicine, University of California, Irvine, Irvine, CA, United States
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
4
|
Nourani N, Taghvimi A, Bavili-Tabrizi A, Javadzadeh Y, Dastmalchi S. Microextraction Techniques for Sample Preparation of Amphetamines in Urine: A Comprehensive Review. Crit Rev Anal Chem 2024; 54:1304-1319. [PMID: 36093632 DOI: 10.1080/10408347.2022.2113028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Psychological disorders and dramatic social problems are serious concerns regarding the abuse of amphetamine and its stimulant derivatives worldwide. Consumers of such drugs experience great euphoria along with serious health problems. Determination and quantification of amphetamine-type stimulants are indispensable skills for clinical and forensic laboratories. Analysis of low drug doses in bio-matrices necessitates applications of simple and also effective preparation steps. The preparation procedures not only eliminate adverse matrix effects, but also provide reasonable clean-up and pre-concentration benefits. The current review presents different methods used for sample preparation of amphetamines from urine as the most frequently used biological matrix. The advantages and limitations of various sample preparation methods were discussed focusing on the miniaturized methods.
Collapse
Affiliation(s)
- Nasim Nourani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Taghvimi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Bavili-Tabrizi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Javadzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Pharmacy, Near East University, North Cyprus, Turkey
| |
Collapse
|
5
|
Sikiric P, Sever M, Krezic I, Vranes H, Kalogjera L, Smoday IM, Vukovic V, Oroz K, Coric L, Skoro M, Kavelj I, Zubcic S, Sikiric S, Beketic Oreskovic L, Oreskovic I, Blagaic V, Brcic K, Strbe S, Staresinic M, Boban Blagaic A, Skrtic A, Seiwerth S. New studies with stable gastric pentadecapeptide protecting gastrointestinal tract. significance of counteraction of vascular and multiorgan failure of occlusion/occlusion-like syndrome in cytoprotection/organoprotection. Inflammopharmacology 2024:10.1007/s10787-024-01499-8. [PMID: 38980576 DOI: 10.1007/s10787-024-01499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024]
Abstract
Since the early 1990s, when Robert's and Szabo's cytoprotection concept had already been more than one decade old, but still not implemented in therapy, we suggest the stable gastric pentadecapeptide BPC 157 as the most relevant mediator of the cytoprotection concept. Consequently, it can translate stomach and gastrointestinal mucosal maintenance, epithelium, and endothelium cell protection to the therapy of other tissue healing (organoprotection), easily applicable, as native and stable in human gastric juice for more than 24 h. These overwhelm current clinical evidence (i.e., ulcerative colitis, phase II, no side effects, and no lethal dose (LD1) in toxicology studies), as BPC 157 therapy effectively combined various tissue healing and lesions counteraction. BPC 157 cytoprotection relevance and vascular recovery, activation of collateral pathways, membrane stabilizer, eye therapy, wound healing capability, brain-gut and gut-brain functioning, tumor cachexia counteraction, muscle, tendon, ligament, and bone disturbances counteraction, and the heart disturbances, myocardial infarction, heart failure, pulmonary hypertension, arrhythmias, and thrombosis counteraction appeared in the recent reviews. Here, as concept resolution, we review the counteraction of advanced Virchow triad circumstances by activation of the collateral rescuing pathways, depending on injury, activated azygos vein direct blood flow delivery, to counteract occlusion/occlusion-like syndromes starting with the context of alcohol-stomach lesions. Counteraction of major vessel failure (congested inferior caval vein and superior mesenteric vein, collapsed azygos vein, collapsed abdominal aorta) includes counteraction of the brain (intracerebral and intraventricular hemorrhage), heart (congestion, severe arrhythmias), lung (hemorrhage), and congestion and lesions in the liver, kidney, and gastrointestinal tract, intracranial (superior sagittal sinus), portal and caval hypertension, aortal hypotension, and thrombosis, peripherally and centrally.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Marko Sever
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vlasta Vukovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Luka Coric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marija Skoro
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Diagnostic and Interventional Radiology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Ivana Kavelj
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Diagnostic and Interventional Radiology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Slavica Zubcic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | | | - Ivana Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimir Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Klara Brcic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Staresinic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| |
Collapse
|
6
|
Elder HJ, Walentiny DM, Beardsley PM. Enantiomeric contributions to methamphetamine's bidirectional effects on basal and fentanyl-depressed respiration in mice. Pharmacol Biochem Behav 2024; 238:173735. [PMID: 38373600 PMCID: PMC11015966 DOI: 10.1016/j.pbb.2024.173735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
RATIONALE Fentanyl remains the primary cause of fatal overdoses, and its co-use with methamphetamine (METH) is a growing concern. We previously demonstrated that racemic METH can either enhance or mitigate opioid-induced respiratory depression (OIRD) dependent upon whether a low or high dose is administered. The optical isomers of METH, dextromethamphetamine (d-METH) and levomethamphetamine (l-METH), differ substantially in their selectivity and potency to activate various monoamine (MA) receptors, and these pharmacological differences may underlie the bidirectional effects of the racemate. Since it is unknown which of METH's MA receptor mechanisms mediate these respiratory effects, examination of METH's pharmacologically distinct enantiomers may provide insight into treatment targets for OIRD. METHODS The two optical isomers of METH, d-METH and l-METH, were tested in adult male mice to determine their effects on basal and fentanyl-depressed respiratory frequency, tidal volume, and minute ventilation (MVb; i.e., respiratory frequency x tidal volume) using whole-body plethysmography. RESULTS When tested at dose ranges of 1.0-10 mg/kg, d-METH elevated MVb and l-METH decreased basal MVb. A dose of 30 mg/kg l-METH increased basal MVb. Under fentanyl-depressed conditions, the bidirectional effects of racemic METH were observed with d-METH treatment while l-METH significantly exacerbated OIRD at 1.0 and 3.0 mg/kg. CONCLUSIONS d-METH and l-METH differentially contribute to the bidirectional respiratory modulation observed by the racemate, with d-METH exhibiting predominantly stimulatory effects and l-METH exhibiting primarily depressant effects depending on dose.
Collapse
Affiliation(s)
- Harrison J Elder
- Now at Behavioral Pharmacology Research Unit, Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| | - D Matthew Walentiny
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Patrick M Beardsley
- Department of Pharmacology & Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Center for Biomarker Research & Precision Medicine, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| |
Collapse
|
7
|
Chmiel J, Malinowska A, Rybakowski F, Leszek J. The Effectiveness of Mindfulness in the Treatment of Methamphetamine Addiction Symptoms: Does Neuroplasticity Play a Role? Brain Sci 2024; 14:320. [PMID: 38671972 PMCID: PMC11047954 DOI: 10.3390/brainsci14040320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
INTRODUCTION Methamphetamine is a highly stimulating psychoactive drug that causes life-threatening addictions and affects millions of people around the world. Its effects on the brain are complex and include disturbances in the neurotransmitter systems and neurotoxicity. There are several known treatment methods, but their effectiveness is moderate. It must be emphasised that no drugs have been approved for treatment. For this reason, there is an urgent need to develop new, effective, and safe treatments for methamphetamine. One of the potential treatments is mindfulness meditation. In recent years, this technique has been researched extensively in the context of many neurological and psychiatric disorders. METHODS This review explores the use of mindfulness in the treatment of methamphetamine addiction. Searches were conducted in the PubMed/Medline, Research Gate, and Cochrane databases. RESULTS Ten studies were identified that used mindfulness-based interventions in the treatment of methamphetamine addiction. The results show that mindfulness is an effective form of reducing hunger, risk of relapses, stress indicators, depression, and aggression, alone or in combination with transcranial direct current stimulation (tDCS). Mindfulness also improved the cognitive function in addicts. The included studies used only behavioural measures. The potential mechanisms of mindfulness in addiction were explained, and it was proposed that it can induce neuroplasticity, alleviating the symptoms of addiction. CONCLUSIONS Evidence from the studies suggest that mindfulness may be an effective treatment option for methamphetamine addiction, used alone or in combination with tDCS. However, further high-quality research is required to establish the role of this treatment option in this field. The use of neuroimaging and neurophysiological measures is fundamental to understand the mechanisms of mindfulness.
Collapse
Affiliation(s)
- James Chmiel
- Institute of Neurofeedback and tDCS Poland, 70-393 Szczecin, Poland
| | | | - Filip Rybakowski
- Department and Clinic of Psychiatry, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Jerzy Leszek
- Department and Clinic of Psychiatry, Wrocław Medical University, 54-235 Wrocław, Poland
| |
Collapse
|
8
|
Gölöncsér F, Baranyi M, Tod P, Maácz F, Sperlágh B. P2X7 receptor inhibition alleviates mania-like behavior independently of interleukin-1β. iScience 2024; 27:109284. [PMID: 38444608 PMCID: PMC10914489 DOI: 10.1016/j.isci.2024.109284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/15/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Purinergic dysfunctions are associated with mania and depression pathogenesis. P2X7 receptor (P2X7R) mediates the IL-1β maturation via NLRP3 inflammasome activation. We tested in a mouse model of the subchronic amphetamine (AMPH)-induced hyperactivity whether P2X7R inhibition alleviated mania-like behavior through IL-1β. Treatment with JNJ-47965567, a P2X7R antagonist, abolished AMPH-induced hyperlocomotion in wild-type and IL-1α/β-knockout male mice. The NLRP3 inhibitor MCC950 failed to reduce AMPH-induced locomotion in WT mice, whereas the IL-1 receptor antagonist anakinra slightly increased it. AMPH increased IL-10, TNF-α, and TBARS levels, but did not influence BDNF levels, serotonin, dopamine, and noradrenaline content in brain tissues in either genotypes. JNJ-47965567 and P2rx7-gene deficiency, but not IL-1α/β-gene deficiency, attenuated AMPH-induced [3H]dopamine release from striatal slices. In wild-type and IL-1α/β-knockout female mice, JNJ-47965567 was also effective in attenuating AMPH-induced hyperlocomotion. This study suggests that AMPH-induced hyperactivity is modulated by P2X7Rs, but not through IL-1β.
Collapse
Affiliation(s)
- Flóra Gölöncsér
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Mária Baranyi
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Pál Tod
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Fruzsina Maácz
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of Ph.D Studies, 1083 Budapest, Hungary
| | - Beáta Sperlágh
- Laboratory of Molecular Pharmacology, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of Ph.D Studies, 1083 Budapest, Hungary
| |
Collapse
|
9
|
Karabulut S, Kaur H, Gauld JW. Uncovering Structure-Activity Relationships of Phenethylamines: Paving the Way for Innovative Mental Health Treatments. ACS Chem Neurosci 2024; 15:972-982. [PMID: 38381069 DOI: 10.1021/acschemneuro.3c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024] Open
Abstract
The rapidly evolving psychedelic industry has garnered considerable attention due to 3,4-methylenedioxymethamphetamine-assisted psychotherapy's ground-breaking success in treating moderate-to-severe Post-traumatic Stress Disorder in two Phase 3 clinical trials. This has opened Pandora's box for the development of innovative therapeutic modalities. Of particular interest are the phenethylamines and their ability to inhibit monoamine transporters. In this study, we employed the quantitative structure-activity relationship methodology to develop three vigorous models for the reuptake of serotonin, dopamine, and norepinephrine through monoamine transporters. These models were thoroughly validated using various criteria, including fitting (R2DAT = 0.869, R2SERT = 0.828, and R2NET = 0.887), internal (Q2looDAT = 0.795, Q2looSERT = 0.784, and Q2looNET = 0.820), and external (RMSEextDAT = 0.373, R2extDAT = 0.831, RMSEextSERT = 0.200, R2extSERT = 0.955, RMSEextNET = 0.318, and R2extNET = 0.711) criteria.
Collapse
Affiliation(s)
- Sedat Karabulut
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Harpreet Kaur
- Pharmala Biotech, 82 Richmond Street E, Toronto, Ontario M5C 1P1, Canada
| | - James W Gauld
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
10
|
Bellot M, Soria F, López-Arnau R, Gómez-Canela C, Barata C. Daphnia magna an emerging environmental model of neuro and cardiotoxicity of illicit drugs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123355. [PMID: 38228265 DOI: 10.1016/j.envpol.2024.123355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/10/2023] [Accepted: 01/13/2024] [Indexed: 01/18/2024]
Abstract
Cocaine, methamphetamine, ectasy (3,4-methylenedioxy amphetamine (MDMA)) and ketamine are among the most consumed drugs worldwide causing cognitive, oxidative stress and cardiovascular problems in humans. Residue levels of these drugs and their transformation products may still enter the aquatic environment, where concentrations up to hundreds of ng/L have been measured. In the present work we tested the hypothesis that psychotropic effects and the mode of action of these drugs in D. magna cognitive, oxidative stress and cardiovascular responses are equivalent to those reported in humans and other vertebrate models. Accordingly we expose D. magna juveniles to pharmacological and environmental relevant concentrations. The study was complemented with the measurement of the main neurotransmitters involved in the known mechanisms of action of these drugs in mammals and physiological relevant amino acids. Behavioural cognitive patters clearly differentiate the 3 psychostimulant drugs (methamphetamine, cocaine, MDMA) from the dissociative one ketamine. Psychostimulant drugs at pharmacological doses (10-200 μM), increased basal locomotion activities and responses to light, and decreased habituation to it. Ketamine only increased habituation to light. The four drugs enhanced the production of reactive oxygen species in a concentration related manner, and at moderate concentrations (10-60 μM) increased heartbeats, diminishing them at high doses (200 μM). In chronic exposures to environmental low concentrations (10-1000 ng/L) the four drugs did not affect any of the behavioural responses measured but methamphetamine and cocaine inhibited reproduction at 10 ng/L. Observed effects on neurotransmitters and related metabolites were in concern with reported responses in mammalian and other vertebrate models: cocaine and MDMA enhanced dopamine and serotonin levels, respectively, methamphetamine and MDMA decreased dopamine and octopamine, and all but MDMA decreased 3 MT levels. Drug effects on the concentration of up to 10 amino acids evidence disruptive effects on neurotransmitter synthesis, the urea cycle, lipid metabolism and cardiac function.
Collapse
Affiliation(s)
- Marina Bellot
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Barcelona, Spain
| | - Fernando Soria
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Barcelona, Spain
| | - Raul López-Arnau
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Institut de Biomedicina IBUB, University of Barcelona, Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Barcelona, Spain
| | - Carlos Barata
- Institute for Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, 08034 Barcelona, Spain.
| |
Collapse
|
11
|
Li Z, Peng HY, Lee CS, Lin TB, Hsieh MC, Lai CY, Wu HF, Chen LC, Chen MC, Chou D. Methylone produces antidepressant-relevant actions and prosocial effects. Neuropharmacology 2024; 242:109787. [PMID: 37913982 DOI: 10.1016/j.neuropharm.2023.109787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Methylone (3,4-methylenedioxy-N-methylcathinone) is a rapid-acting entactogen that has been shown to have significant benefits in patients with post-traumatic stress disorder and major depressive disorder and is well tolerated in phase 1 clinical trials. A recent preclinical study reported that methylone produced robust antidepressant-like actions in naïve rats. However, its antidepressant effects on various stress-related psychopathologies and other neuropsychological actions remain unclear. In the present study, we examined the antidepressant-relevant effects of methylone in learned helplessness (LH) and social defeat stress C57BL/6J male mouse models and further explored its sociability-relevant neuropsychological actions. Our results indicate that methylone produces antidepressant-relevant effects on the helpless phenotype, LH-evoked depressive-like behaviors, and psychosocial stress-induced social avoidance, and induced depressive-like behaviors. In addition, methylone was found to enhance social preference and increase various social behaviors, including social contact, sniffing, allogrooming, and following. Moreover, methylone appeared to elevate empathy-like phenotypes and was also found to increase helping-like behavior. Overall, the present results suggest that methylone plays an antidepressant-like role in various stress-relevant psychopathologies and could be an ideal antidepressant candidate. In addition, novel findings on the elevated tendencies of social preference and empathy-like and helping-like phenotypes reveal that methylone may have potential application in patients with social deficits.
Collapse
Affiliation(s)
- Zhenlong Li
- School of Basic Medical Sciences, Zhuhai Campus of Zunyi Medical University, Zhuhai, Guangdong, China.
| | - Hsien-Yu Peng
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
| | - Chau-Shoun Lee
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan; Department of Psychiatry, MacKay Memorial Hospital, Taipei, Taiwan.
| | - Tzer-Bin Lin
- Institute of New Drug Development, College of Medicine, China Medical University, Taichung, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Chun Hsieh
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
| | - Cheng-Yuan Lai
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei, Taiwan.
| | - Han-Fang Wu
- Department of Optometry, MacKay Medical College, New Taipei, Taiwan.
| | - Lih-Chyang Chen
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
| | - Mei-Ci Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taiwan.
| | - Dylan Chou
- Department of Medicine, MacKay Medical College, New Taipei, Taiwan.
| |
Collapse
|
12
|
Vincent B, Shukla M. The Common Denominators of Parkinson's Disease Pathogenesis and Methamphetamine Abuse. Curr Neuropharmacol 2024; 22:2113-2156. [PMID: 37691228 PMCID: PMC11337683 DOI: 10.2174/1570159x21666230907151226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023] Open
Abstract
The pervasiveness and mortality associated with methamphetamine abuse have doubled during the past decade, suggesting a possible worldwide substance use crisis. Epitomizing the pathophysiology and toxicology of methamphetamine abuse proclaims severe signs and symptoms of neurotoxic and neurobehavioral manifestations in both humans and animals. Most importantly, chronic use of this drug enhances the probability of developing neurodegenerative diseases manifolds. Parkinson's disease is one such neurological disorder, which significantly and evidently not only shares a number of toxic pathogenic mechanisms induced by methamphetamine exposure but is also interlinked both structurally and genetically. Methamphetamine-induced neurodegeneration involves altered dopamine homeostasis that promotes the aggregation of α-synuclein protofibrils in the dopaminergic neurons and drives these neurons to make them more vulnerable to degeneration, as recognized in Parkinson's disease. Moreover, the pathologic mechanisms such as mitochondrial dysfunction, oxidative stress, neuroinflammation and decreased neurogenesis detected in methamphetamine abusers dramatically resemble to what is observed in Parkinson's disease cases. Therefore, the present review comprehensively cumulates a holistic illustration of various genetic and molecular mechanisms putting across the notion of how methamphetamine administration and intoxication might lead to Parkinson's disease-like pathology and Parkinsonism.
Collapse
Affiliation(s)
- Bruno Vincent
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| | - Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 10210, Bangkok, Thailand
| |
Collapse
|
13
|
Bu M, Follett J, Deng I, Tatarnikov I, Wall S, Guenther D, Maczis M, Wimsatt G, Milnerwood A, Moehle MS, Khoshbouei H, Farrer MJ. Inhibition of LRRK2 kinase activity rescues deficits in striatal dopamine physiology in VPS35 p.D620N knock-in mice. NPJ Parkinsons Dis 2023; 9:167. [PMID: 38110354 PMCID: PMC10728137 DOI: 10.1038/s41531-023-00609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023] Open
Abstract
Dysregulation of dopamine neurotransmission profoundly affects motor, motivation and learning behaviors, and can be observed during the prodromal phase of Parkinson's disease (PD). However, the mechanism underlying these pathophysiological changes remains to be elucidated. Mutations in vacuolar protein sorting 35 (VPS35) and leucine-rich repeat kinase 2 (LRRK2) both lead to autosomal dominant PD, and VPS35 and LRRK2 may physically interact to govern the trafficking of synaptic cargos within the endo-lysosomal network in a kinase-dependent manner. To better understand the functional role of VPS35 and LRRK2 on dopamine physiology, we examined Vps35 haploinsufficient (Haplo) and Vps35 p.D620N knock-in (VKI) mice and how their behavior, dopamine kinetics and biochemistry are influenced by LRRK2 kinase inhibitors. We found Vps35 p.D620N significantly elevates LRRK2-mediated phosphorylation of Rab10, Rab12 and Rab29. In contrast, Vps35 haploinsufficiency reduces phosphorylation of Rab12. While striatal dopamine transporter (DAT) expression and function is similarly impaired in both VKI and Haplo mice, that physiology is normalized in VKI by treatment with the LRRK2 kinase inhibitor, MLi-2. As a corollary, VKI animals show a significant increase in amphetamine induced hyperlocomotion, compared to Haplo mice, that is also abolished by MLi-2. Taken together, these data show Vps35 p.D620N confers a gain-of-function with respect to LRRK2 kinase activity, and that VPS35 and LRRK2 functionally interact to regulate DAT function and striatal dopamine transmission.
Collapse
Affiliation(s)
- Mengfei Bu
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Jordan Follett
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Isaac Deng
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Igor Tatarnikov
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Shannon Wall
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Dylan Guenther
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Melissa Maczis
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Genevieve Wimsatt
- Department of Neurology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Austen Milnerwood
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mark S Moehle
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Habibeh Khoshbouei
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Matthew J Farrer
- Department of Neurology, University of Florida, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
14
|
Kukułowicz J, Pietrzak-Lichwa K, Klimończyk K, Idlin N, Bajda M. The SLC6A15-SLC6A20 Neutral Amino Acid Transporter Subfamily: Functions, Diseases, and Their Therapeutic Relevance. Pharmacol Rev 2023; 76:142-193. [PMID: 37940347 DOI: 10.1124/pharmrev.123.000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
The neutral amino acid transporter subfamily that consists of six members, consecutively SLC6A15-SLC620, also called orphan transporters, represents membrane, sodium-dependent symporter proteins that belong to the family of solute carrier 6 (SLC6). Primarily, they mediate the transport of neutral amino acids from the extracellular milieu toward cell or storage vesicles utilizing an electric membrane potential as the driving force. Orphan transporters are widely distributed throughout the body, covering many systems; for instance, the central nervous, renal, or intestinal system, supplying cells into molecules used in biochemical, signaling, and building pathways afterward. They are responsible for intestinal absorption and renal reabsorption of amino acids. In the central nervous system, orphan transporters constitute a significant medium for the provision of neurotransmitter precursors. Diseases related with aforementioned transporters highlight their significance; SLC6A19 mutations are associated with metabolic Hartnup disorder, whereas altered expression of SLC6A15 has been associated with a depression/stress-related disorders. Mutations of SLC6A18-SLCA20 cause iminoglycinuria and/or hyperglycinuria. SLC6A18-SLC6A20 to reach the cellular membrane require an ancillary unit ACE2 that is a molecular target for the spike protein of the SARS-CoV-2 virus. SLC6A19 has been proposed as a molecular target for the treatment of metabolic disorders resembling gastric surgery bypass. Inhibition of SLC6A15 appears to have a promising outcome in the treatment of psychiatric disorders. SLC6A19 and SLC6A20 have been suggested as potential targets in the treatment of COVID-19. In this review, we gathered recent advances on orphan transporters, their structure, functions, related disorders, and diseases, and in particular their relevance as therapeutic targets. SIGNIFICANCE STATEMENT: The following review systematizes current knowledge about the SLC6A15-SLCA20 neutral amino acid transporter subfamily and their therapeutic relevance in the treatment of different diseases.
Collapse
Affiliation(s)
- Jędrzej Kukułowicz
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Pietrzak-Lichwa
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Klimończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Nathalie Idlin
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
15
|
Rezayof A, Ghasemzadeh Z, Sahafi OH. Addictive drugs modify neurogenesis, synaptogenesis and synaptic plasticity to impair memory formation through neurotransmitter imbalances and signaling dysfunction. Neurochem Int 2023; 169:105572. [PMID: 37423274 DOI: 10.1016/j.neuint.2023.105572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Drug abuse changes neurophysiological functions at multiple cellular and molecular levels in the addicted brain. Well-supported scientific evidence suggests that drugs negatively affect memory formation, decision-making and inhibition, and emotional and cognitive behaviors. The mesocorticolimbic brain regions are involved in reward-related learning and habitual drug-seeking/taking behaviors to develop physiological and psychological dependence on the drugs. This review highlights the importance of specific drug-induced chemical imbalances resulting in memory impairment through various neurotransmitter receptor-mediated signaling pathways. The mesocorticolimbic modifications in the expression levels of brain-derived neurotrophic factor (BDNF) and the cAMP-response element binding protein (CREB) impair reward-related memory formation following drug abuse. The contributions of protein kinases and microRNAs (miRNAs), along with the transcriptional and epigenetic regulation have also been considered in memory impairment underlying drug addiction. Overall, we integrate the research on various types of drug-induced memory impairment in distinguished brain regions and provide a comprehensive review with clinical implications addressing the upcoming studies.
Collapse
Affiliation(s)
- Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Zahra Ghasemzadeh
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Oveis Hosseinzadeh Sahafi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
16
|
Skolariki K, Vrahatis AG, Krokidis MG, Exarchos TP, Vlamos P. Assessing and Modelling of Post-Traumatic Stress Disorder Using Molecular and Functional Biomarkers. BIOLOGY 2023; 12:1050. [PMID: 37626936 PMCID: PMC10451531 DOI: 10.3390/biology12081050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a complex psychological disorder that develops following exposure to traumatic events. PTSD is influenced by catalytic factors such as dysregulated hypothalamic-pituitary-adrenal (HPA) axis, neurotransmitter imbalances, and oxidative stress. Genetic variations may act as important catalysts, impacting neurochemical signaling, synaptic plasticity, and stress response systems. Understanding the intricate gene networks and their interactions is vital for comprehending the underlying mechanisms of PTSD. Focusing on the catalytic factors of PTSD is essential because they provide valuable insights into the underlying mechanisms of the disorder. By understanding these factors and their interplay, researchers may uncover potential targets for interventions and therapies, leading to more effective and personalized treatments for individuals with PTSD. The aforementioned gene networks, composed of specific genes associated with the disorder, provide a comprehensive view of the molecular pathways and regulatory mechanisms involved in PTSD. Through this study valuable insights into the disorder's underlying mechanisms and opening avenues for effective treatments, personalized interventions, and the development of biomarkers for early detection and monitoring are provided.
Collapse
Affiliation(s)
| | | | - Marios G. Krokidis
- Bioinformatics and Human Electrophysiology Laboratory, Department of Informatics, Ionian University, 49100 Corfu, Greece; (K.S.); (A.G.V.); (T.P.E.); (P.V.)
| | | | | |
Collapse
|
17
|
Unterwald EM, Rawls SM. Bath Salts to Therapies: Can Separation of Adverse and Therapeutic Effects of Substituted Cathinones Lead to a Medication for Psychostimulant Use Disorder? J Pharmacol Exp Ther 2023; 385:159-161. [PMID: 37197988 DOI: 10.1124/jpet.123.001650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/03/2023] [Indexed: 05/19/2023] Open
Affiliation(s)
- Ellen M Unterwald
- Department of Neural Sciences and Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Scott M Rawls
- Department of Neural Sciences and Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
18
|
Strbe S, Smoday IM, Krezic I, Kalogjera L, Vukovic V, Zizek H, Gojkovic S, Vranes H, Barisic I, Sikiric S, Tepes M, Oroz K, Brkic F, Drinkovic M, Beketic Oreskovic L, Popic J, Boban Blagaic A, Skrtic A, Staresinic M, Seiwerth S, Sikiric P. Innate Vascular Failure by Application of Neuroleptics, Amphetamine, and Domperidone Rapidly Induced Severe Occlusion/Occlusion-like Syndromes in Rats and Stable Gastric Pentadecapeptide BPC 157 as Therapy. Pharmaceuticals (Basel) 2023; 16:788. [PMID: 37375736 DOI: 10.3390/ph16060788] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Even before behavioral disturbances, neuroleptics, amphetamine, and domperidone application rapidly emerged severe occlusion/occlusion-like syndrome, shared innate vascular and multiorgan failure in rats, comparable to occlusion/occlusion-like syndrome described with vessel(s) occlusion or similar noxious procedures application. As therapy, i.e., activation of the collateral pathways, "bypassing key" (activated azygos vein pathway, direct blood flow delivery), the stable gastric pentadecapeptide BPC 157 is a novel solution. Recently, BPC 157 therapy particularly counteracted neuroleptic- or L-NAME-induced catalepsy, lithium intoxication, and schizophrenia positive and negative symptoms (amphetamine/methamphetamine/apomorphine/ketamine). In rats with complete calvariectomy, medication (BPC 157 10 µg/kg, 10 ng/kg ip or ig) was given 5 min after distinctive dopamine agents (mg/kg ip) (haloperidol (5), fluphenazine (5), clozapine (10), risperidone (5), olanzapine (10), quetiapine (10), or aripiprazole (10), domperidone (25), amphetamine (10), and combined amphetamine and haloperidol) and assessed at 15 min thereafter. All neuroleptic-, domperidone-, and amphetamine-induced comparable vascular and multiorgan failure severe syndrome was alleviated with BPC 157 therapy as before major vessel(s) occlusion or other similar noxious procedures. Specifically, all severe lesions in the brain (i.e., immediate swelling, hemorrhage), heart (i.e., congestion, arrhythmias), and lung (i.e., congestion, hemorrhage), as well as congestion in the liver, kidney, and gastrointestinal (stomach) tract, were resolved. Intracranial (superior sagittal sinus), portal, and caval hypertension and aortal hypotension were attenuated or eliminated. BPC 157 therapy almost annihilated arterial and venous thrombosis, peripherally and centrally. Thus, rapidly acting Virchow triad circumstances that occur as dopamine central/peripheral antagonists and agonist essential class-points, fully reversed by BPC 157 therapy, might be overwhelming for both neuroleptics and amphetamine.
Collapse
Affiliation(s)
- Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Vlasta Vukovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marijan Tepes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Filip Brkic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Martin Drinkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Jelena Popic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mario Staresinic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
19
|
Shabani M, Jamali Z, Bayrami D, Salimi A. Vanillic acid alleviates methamphetamine-induced mitochondrial toxicity in cardiac mitochondria via antioxidant activity and inhibition of MPT Pore opening: an in-vitro study. BMC Pharmacol Toxicol 2023; 24:33. [PMID: 37208773 DOI: 10.1186/s40360-023-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Methamphetamine is widely abused in all parts of the world. It has been reported that short-term and long-term methamphetamine exposure could damage the dopaminergic system and induce cardiomyopathy and cardiotoxicity via mitochondrial dysfunction and oxidative stress. Vanillic acid (VA), a phenolic acid compound derived from plants, is known for its antioxidant and mitochondrial protection properties. METHODS In the current study we used VA for attenuating of Methamphetamine-induced mitochondrial toxicity in cardiac mitochondria. Isolated mitochondria obtained from rat heart were grouped as: control, methamphetamine (250 µM), VA (10, 50 and 100 µM) was cotreated with methamphetamine (250 µM) and VA (100 µM) alone. After 60 min, mitochondrial fraction including: succinate dehydrogenases (SDH) activity, mitochondrial membrane potential (MMP), mitochondrial swelling, mitochondrial glutathione (GSH), reactive oxygen species (ROS) and lipid peroxidation (LPO) were evaluated. RESULTS Methamphetamine exposure significantly disrupted mitochondrial function and induced ROS formation, lipid peroxidation, GSH depletion, MMP collapse and mitochondrial swelling, while VA significantly increased SDH activity as indicator of mitochondrial toxicity and dysfunction. VA also significantly decreased ROS formation, lipid peroxidation, mitochondrial swelling, MMP collapse and depletion of GSH in cardiac mitochondria in the presence of methamphetamine. CONCLUSION These findings suggested that VA is able to reduce methamphetamine-induced mitochondrial dysfunction and oxidative stress. Our results demonstrate that VA could potentially serve as a promising and accessible cardioprotective agent against methamphetamine-induced cardiotoxicity, via antioxidant and mitochondrial protection properties.
Collapse
Affiliation(s)
- Mohammad Shabani
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Zhaleh Jamali
- Department of Addiction Studies, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Deniz Bayrami
- Students Research Committee, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ahmad Salimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
- Toxicology and Pharmacology School of Pharmacy, Ardabil University of Medical Sciences, P.O. Box: 56189-53141, Ardabil, Iran.
| |
Collapse
|
20
|
Kim DD, Procyshyn RM, Jones AA, Lee LHN, Panenka WJ, Stubbs JL, Cho LL, Leonova O, Gicas K, Thornton AE, Lang DJ, MacEwan GW, Honer WG, Barr AM. Movement disorders associated with substance use in adults living in precarious housing or homelessness. Prog Neuropsychopharmacol Biol Psychiatry 2023; 126:110795. [PMID: 37196752 DOI: 10.1016/j.pnpbp.2023.110795] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVE Many individuals living in precarious housing or homelessness have multimorbid illnesses, including substance use, psychiatric, and neurological disorders. Movement disorders (MDs) associated substance use are amongst the poorly studied subtopics of drug-induced MDs. The aim of the present study was, therefore, to determine the proportion affected and severity of different signs of MDs, as well as their associations with substance use in a community-based sample of precariously housed and homeless individuals. METHODS Participants were recruited from an impoverished urban neighborhood and were assessed for substance dependence and self-reported substance use (alcohol, cannabis, cocaine, methamphetamine, nicotine, and opioids), as well as for the severity of signs of MDs (akathisia, dyskinesia, dystonia, and parkinsonism). Adjusted regression models were used to estimate the associations of the severity of signs with the frequency of substance use over the past 4 weeks and with the baseline diagnosis of substance dependence. RESULTS The proportion of the sample with clinically relevant signs of MDs in any of the four categories was 18.6% (n = 401), and these participants demonstrated lower levels of functioning than those without signs. Of the different types of substance use, only methamphetamine (its frequency of use and dependence) was significantly associated with greater severity of overall signs of MDs. Frequency of methamphetamine use significantly interacted with age and sex, whereby older female participants exhibited the greatest overall severity with increased methamphetamine use. Of the different signs of MDs, methamphetamine use frequency was positively associated with the severity of trunk/limb dyskinesia and hypokinetic parkinsonism. Relative to no use, concurrent use of antipsychotics demonstrated lower severity of trunk/limb dyskinesia and greater severity of hypokinetic parkinsonism with methamphetamine use, and greater severity of dystonia with cocaine use. CONCLUSIONS Our study found a high proportion of MDs in a relatively young sample, and their severity was consistently associated with methamphetamine use, moderated by participant demographics and antipsychotic use. These disabling sequelae represent an important and understudied neurological condition that may affect quality of life and will require further study.
Collapse
Affiliation(s)
- David D Kim
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC, Canada; BC Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada
| | - Ric M Procyshyn
- BC Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Andrea A Jones
- BC Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada; Department of Medicine, Division of Neurology, University of British Columbia, Vancouver, BC, Canada
| | - Lik Hang N Lee
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - William J Panenka
- BC Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Jacob L Stubbs
- BC Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Lianne L Cho
- BC Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Olga Leonova
- BC Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Kristina Gicas
- Department of Psychology, York University, Toronto, Ontario, Canada
| | - Allen E Thornton
- Department of Psychology, Simon Fraser University, Burnaby, BC, Canada
| | - Donna J Lang
- BC Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada; Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - G William MacEwan
- BC Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - William G Honer
- BC Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Alasdair M Barr
- Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC, Canada; BC Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
21
|
Yen CF, Chou WP, Hsu CY, Wu HC, Wang PW. Effects of heart rate variability biofeedback (HRVBFB) on sleep quality and depression among methamphetamine users. J Psychiatr Res 2023; 162:132-139. [PMID: 37149922 DOI: 10.1016/j.jpsychires.2023.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/29/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Methamphetamine is garnering concern due to its increasing use worldwide. Depression and sleep quality are major mental health issues in substance users. Heart rate variability biofeedback (HRVBFB) has shown promising results in terms of reducing depression and increasing sleep quality. The present study aimed to explore the effects of HRVBFB on these two issues in methamphetamine users. Sixty-one methamphetamine users were enrolled and allocated randomly into a treatment as usual (TAU) group and a HRVBFB plus TAU group. The levels of depressive symptoms and sleep quality were assessed at intake, end of the intervention, and end of follow-up. Compared with baseline, the levels of depressive symptoms and poor sleep quality were decreased at the end of the intervention and follow-up in the HRVBFB group. The HRVBFB group exhibited a greater decrease in depressive symptoms and a better improvement in sleep quality than the TAU group. The associations of HRV indices with levels of depressive symptoms and poor sleep quality were different in the two groups. Our results showed that HRVBFB is a promising intervention for reducing depressive symptoms and improving sleep quality in methamphetamine users. The benefits with respect to depressive symptoms and poor sleep quality can extend beyond the end of HRVBFB intervention.
Collapse
Affiliation(s)
- Cheng-Fang Yen
- Department of Psychiatry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Wei-Po Chou
- Department of Psychiatry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Chih-Yao Hsu
- Department of Addiction Science, Kai-Suan Psychiatric Hospital, Kaohsiung, Taiwan
| | - Hung-Chi Wu
- Department of Addiction Science, Kai-Suan Psychiatric Hospital, Kaohsiung, Taiwan
| | - Peng-Wei Wang
- Department of Psychiatry, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
22
|
Conn KA, Zou S, Das J, Alexander S, Burne TH, Kesby JP. Activating the dorsomedial and ventral midbrain projections to the striatum differentially impairs goal-directed action in male mice. Neuropharmacology 2023; 234:109550. [PMID: 37085011 DOI: 10.1016/j.neuropharm.2023.109550] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/29/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
The cognitive symptoms of schizophrenia are wide ranging and include impaired goal-directed action. This could be driven by an increase in dopamine transmission in the dorsomedial striatum, a pathophysiological hallmark of schizophrenia. Although commonly associated with psychotic symptoms, dopamine signalling in this region also modulates associative learning that aids in the execution of actions. To gain a better understanding of the role of subcortical dopamine in learning and decision-making, we assessed goal-directed action in male mice using the cross-species outcome-specific devaluation task (ODT). First, we administered systemic amphetamine during training to determine the impact of altered dopaminergic signaling on associative learning. Second, we used pathway-specific chemogenetic approaches to activate the dorsomedial and ventral striatal pathways (that originate in the midbrain) to separately assess learning and performance. Amphetamine treatment during learning led to a dose-dependent impairment in goal-directed action. Activation of both striatal pathways during learning also impaired performance. However, when these pathways were activated during choice, only activation of the ventral pathway impaired goal-directed action. This suggests that elevated transmission in the dorsomedial striatal pathway impairs associative learning processes that guide the goal-directed execution of actions. By contrast, elevated transmission of the ventral striatal pathway disrupts the encoding of outcome values that are important for both associative learning and choice performance. These findings highlight the differential roles of the dorsomedial and ventral inputs into the striatum in goal-directed action and provides insight into how striatal dopamine signaling may contribute to the cognitive problems in those with schizophrenia.
Collapse
Affiliation(s)
- Kyna-Anne Conn
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Simin Zou
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Joyosmita Das
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Suzy Alexander
- Queensland Centre for Mental Health Research, Wacol, QLD, 4076, Australia
| | - Thomas Hj Burne
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia; Queensland Centre for Mental Health Research, Wacol, QLD, 4076, Australia
| | - James P Kesby
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia; Queensland Centre for Mental Health Research, Wacol, QLD, 4076, Australia; QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia.
| |
Collapse
|
23
|
Dobšíková K, Michal P, Spálovská D, Kuchař M, Paškanová N, Jurok R, Kapitán J, Setnička V. Conformational analysis of amphetamine and methamphetamine: a comprehensive approach by vibrational and chiroptical spectroscopy. Analyst 2023; 148:1337-1348. [PMID: 36857656 DOI: 10.1039/d2an02014a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
After cannabis, the most commonly used illicit substance worldwide is amphetamine and its derivatives, such as methamphetamine, with an ever-increasing number of synthetic modifications. Thus, fast and reliable methods are needed to identify them according to their spectral patterns and structures. Here, we have investigated the use of molecular spectroscopy methods to describe the 3D structures of these substances in a solution that models the physiological environment. The substances were analyzed by Raman and infrared (IR) absorption spectroscopy and by chiroptical methods, vibrational circular dichroism (VCD) and Raman optical activity (ROA). The obtained experimental data were supported by three different computational approaches based on density functional theory (DFT) and molecular dynamics (MD). Successful interpretation relies on good agreement between experimental and predicted spectra. The determination of the conformer populations of the studied molecules was based on maximizing the similarity overlap of weighted conformer spectra by a global minimization algorithm. Very good agreement was obtained between the experimental spectra and optimized-population weighted spectra from MD, providing a detailed insight into the structure of the molecules and their interaction with the solvent. The relative population of three amphetamine and six methamphetamine conformers was determined and is consistent with a previous NMR study. However, this work shows that only a few isolated conformers are not sufficient for the successful interpretation of the spectra, but the entire conformational space needs to be sampled appropriately and explicit interaction with the solvent needs to be included.
Collapse
Affiliation(s)
- Kristýna Dobšíková
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.
| | - Pavel Michal
- Department of Optics, Palacký University Olomouc, Olomouc, 771 46, Czech Republic.
| | - Dita Spálovská
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.
| | - Martin Kuchař
- Forensic Laboratory of Biologically Active Substances, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.,Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.,National Institute of Mental Health, Klecany 250 67, Czech Republic
| | - Natalie Paškanová
- Forensic Laboratory of Biologically Active Substances, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.,Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic
| | - Radek Jurok
- Forensic Laboratory of Biologically Active Substances, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.,Department of Chemistry of Natural Compounds, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.,Department of Organic Chemistry, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic
| | - Josef Kapitán
- Department of Optics, Palacký University Olomouc, Olomouc, 771 46, Czech Republic.
| | - Vladimír Setnička
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague 6, 166 28, Czech Republic.
| |
Collapse
|
24
|
Żmudzka E, Lustyk K, Głuch-Lutwin M, Wolak M, Jaśkowska J, Kołaczkowski M, Sapa J, Pytka K. Novel Multimodal Salicylamide Derivative with Antidepressant-like, Anxiolytic-like, Antipsychotic-like, and Anti-Amnesic Activity in Mice. Pharmaceuticals (Basel) 2023; 16:175. [PMID: 37259325 PMCID: PMC9967428 DOI: 10.3390/ph16020175] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 10/24/2023] Open
Abstract
Depression, anxiety, and schizophrenia may coexist in psychiatric patients. Moreover, these disorders are very often associated with cognitive impairments. However, pharmacotherapy of these conditions remains challenging due to limited drug effectiveness or numerous side effects. Therefore, there is an urgent need to develop novel multimodal compounds that can be used to treat depression, anxiety, and schizophrenia, as well as memory deficits. Thus, this study aimed to evaluate the potential antidepressant-like, anxiolytic-like, antipsychotic-like effects, and anti-amnesic properties, of the novel arylpiperazine derivative of salicylamide, JJGW07, with an affinity towards serotonin 5-HT1A, 5-HT2A, and 5-HT7 and dopamine D2 receptors. Firstly, we investigated the compound's affinity for 5-HT6 receptors and its functional activity by using in vitro assays. JJGW07 did not bind to 5-HT6 receptors and showed antagonistic properties for 5-HT1A, 5-HT2A, 5-HT7, and D2 receptors. Based on the receptor profile, we performed behavioral studies in mice to evaluate the antidepressant-like, anxiolytic-like, and antipsychotic-like activity of the tested compound using forced swim and tail suspension tests; four-plate, marble-burying, and elevated plus maze tests; and MK-801- and amphetamine-induced hyperlocomotion tests, respectively. JJGW07 revealed antidepressant-like properties in the tail suspension test, anxiolytic-like effects in the four-plate and marble-burying tests, and antipsychotic-like activity in the MK-801-induced hyperlocomotion test. Importantly, the tested compound did not induce catalepsy and motor impairments or influence locomotor activity in rodents. Finally, to assess the potential procognitive and anti-amnesic properties of JJGW07, we used passive avoidance and object recognition tests in mice. JJGW07 demonstrated positive effects on long-term emotional memory and also ameliorated MK-801-induced emotional memory impairments in mice, but showed no procognitive properties in the case of recognition memory. Our results encourage the search for new compounds among salicylamide derivatives, which could be model structures with multitarget mechanisms of action that could be used in psychiatric disorder therapy.
Collapse
Affiliation(s)
- Elżbieta Żmudzka
- Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Klaudia Lustyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Małgorzata Wolak
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Jolanta Jaśkowska
- Department of Organic Chemistry and Technology, Faculty of Chemical and Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Marcin Kołaczkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Jacek Sapa
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland
| |
Collapse
|
25
|
Sadgrove NJ. Rumors of Psychedelics, Psychotropics and Related Derivatives in Vachellia and Senegalia in Contrast with Verified Records in Australian Acacia. PLANTS (BASEL, SWITZERLAND) 2022; 11:3356. [PMID: 36501395 PMCID: PMC9738376 DOI: 10.3390/plants11233356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
There are almost 1000 species of Acacia sensu stricto in Australia, while the 44 species and 4 subspecies in southern Africa were taxonomically revised in the year 2011 to Senegalia and Vachellia. There are rumors of a chemical similarity between the Australian Acacia and their southern African sister genera. Chemical analysis has unequivocally demonstrated the presence of tryptamines (i.e., DMT), β-carbolines, histamines, and phenethylamines in Australian species. However, reliable published data were not found in support of similar alkaloids in southern African (or even African) species, indicating the need for exploratory phytochemical analysis. Interestingly, the Australian species are more like the Vachellia and Senegalia from the Americas. While many reliable chemical studies have been found, there are several more that report only tentative results. Tentative data and anecdotal accounts are included in the current review to guide researchers to areas where further work can be done. For example, the current review encourages further phytochemical work to confirm if the two metabolite families, tryptamine and β-carboline alkaloids, occur together in a single specimen. Tryptamines and β-carbolines are the prerequisite ingredients of the South American psychotropic drink ayahuasca, which utilizes two different species to create this synergistic combination. These observations and others are discussed in light of geochemical variability, the potential ethnobotanical implications, and the need for further research to confirm or nullify anecdotal reports and tentative chromatographic/spectroscopic data in southern African species.
Collapse
Affiliation(s)
- Nicholas J Sadgrove
- Department of Botany and Plant Biotechnology, University of Johannesburg (Auckland Park Campus), Auckland Park, P.O. Box 524, Johannesburg 2006, South Africa
| |
Collapse
|
26
|
Coliță D, Coliță CI, Hermann DM, Coliță E, Doeppner TR, Udristoiu I, Popa-Wagner A. Therapeutic Use and Chronic Abuse of CNS Stimulants and Anabolic Drugs. Curr Issues Mol Biol 2022; 44:4902-4920. [PMID: 36286048 PMCID: PMC9600088 DOI: 10.3390/cimb44100333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
The available evidence suggests that affective disorders, such as depression and anxiety, increase risk for accelerated cognitive decline and late-life dementia in aging individuals. Behavioral neuropsychology studies also showed that cognitive decline is a central feature of aging impacting the quality of life. Motor deficits are common after traumatic brain injuries and stroke, affect subjective well-being, and are linked with reduced quality of life. Currently, restorative therapies that target the brain directly to restore cognitive and motor tasks in aging and disease are available. However, the very same drugs used for therapeutic purposes are employed by athletes as stimulants either to increase performance for fame and financial rewards or as recreational drugs. Unfortunately, most of these drugs have severe side effects and pose a serious threat to the health of athletes. The use of performance-enhancing drugs by children and teenagers has increased tremendously due to the decrease in the age of players in competitive sports and the availability of various stimulants in many forms and shapes. Thus, doping may cause serious health-threatening conditions including, infertility, subdural hematomas, liver and kidney dysfunction, peripheral edema, cardiac hypertrophy, myocardial ischemia, thrombosis, and cardiovascular disease. In this review, we focus on the impact of doping on psychopathological disorders, cognition, and depression. Occasionally, we also refer to chronic use of therapeutic drugs to increase physical performance and highlight the underlying mechanisms. We conclude that raising awareness on the health risks of doping in sport for all shall promote an increased awareness for healthy lifestyles across all generations.
Collapse
Affiliation(s)
- Daniela Coliță
- Doctoral School, University of Medicine and Pharmacy “Carol Davila”, 020276 Bucharest, Romania
| | - Cezar-Ivan Coliță
- Doctoral School, University of Medicine and Pharmacy “Carol Davila”, 020276 Bucharest, Romania
- Correspondence: (C.-I.C.); (I.U.); (A.P.-W.)
| | - Dirk M. Hermann
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Eugen Coliță
- Doctoral School, University of Medicine and Pharmacy “Carol Davila”, 020276 Bucharest, Romania
| | - Thorsten R. Doeppner
- Department of Neurology, University Medical Center Göttingen, 37075 Gottingen, Germany
- Department of Neurology, University Hospital Giessen, 35394 Giessen, Germany
| | - Ion Udristoiu
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Correspondence: (C.-I.C.); (I.U.); (A.P.-W.)
| | - Aurel Popa-Wagner
- Chair of Vascular Neurology, Dementia and Ageing, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Department of Psychiatry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Correspondence: (C.-I.C.); (I.U.); (A.P.-W.)
| |
Collapse
|
27
|
Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:298. [PMID: 36031641 PMCID: PMC9420733 DOI: 10.1038/s41392-022-01149-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Obesity is a complex, chronic disease and global public health challenge. Characterized by excessive fat accumulation in the body, obesity sharply increases the risk of several diseases, such as type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease, and is linked to lower life expectancy. Although lifestyle intervention (diet and exercise) has remarkable effects on weight management, achieving long-term success at weight loss is extremely challenging, and the prevalence of obesity continues to rise worldwide. Over the past decades, the pathophysiology of obesity has been extensively investigated, and an increasing number of signal transduction pathways have been implicated in obesity, making it possible to fight obesity in a more effective and precise way. In this review, we summarize recent advances in the pathogenesis of obesity from both experimental and clinical studies, focusing on signaling pathways and their roles in the regulation of food intake, glucose homeostasis, adipogenesis, thermogenesis, and chronic inflammation. We also discuss the current anti-obesity drugs, as well as weight loss compounds in clinical trials, that target these signals. The evolving knowledge of signaling transduction may shed light on the future direction of obesity research, as we move into a new era of precision medicine.
Collapse
|
28
|
Chavva H, Belcher AM, Brazeau DA, Rorabaugh BR. Prenatal Exposure to Methamphetamine Causes Vascular Dysfunction in Adult Male Rat Offspring. Front Cardiovasc Med 2022; 9:830983. [PMID: 35155639 PMCID: PMC8826446 DOI: 10.3389/fcvm.2022.830983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
Abstract
Methamphetamine use during pregnancy can have negative consequences on the offspring. However, most studies investigating the impact of prenatal exposure to methamphetamine have focused on behavioral and neurological outcomes. Relatively little is known regarding the impact of prenatal methamphetamine on the adult cardiovascular system. This study investigated the impact of chronic fetal exposure to methamphetamine on vascular function in adult offspring. Pregnant female rats received daily saline or methamphetamine (5 mg/kg) injections starting on gestational day 1 and continuing until the pups were born. Vascular function was assessed in 5 month old offspring. Prenatal methamphetamine significantly decreased both the efficacy and potency of acetylcholine-induced relaxation in isolated male (but not female) aortas when perivascular adipose tissue (PVAT) remained intact. However, prenatal methamphetamine had no impact on acetylcholine-induced relaxation when PVAT was removed. Nitroprusside-induced relaxation of the aorta was unaffected by prenatal methamphetamine. Angiotensin II-induced contractile responses were significantly potentiated in male (but not female) aortas regardless of the presence of PVAT. This effect was reversed by L-nitro arginine methyl ester (L-NAME). Serotonin- and phenylephrine-induced contraction were unaffected by prenatal methamphetamine. Prenatal methamphetamine had no impact on acetylcholine-induced relaxation of third order mesenteric arteries and no effect on basal blood pressure. These data provide evidence that prenatal exposure to methamphetamine sex-dependently alters vasomotor function in the vasculature and may increase the risk of developing vascular disorders later in adult life.
Collapse
Affiliation(s)
- Hasitha Chavva
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, United States
| | - Adam M Belcher
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, United States
| | - Daniel A Brazeau
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, United States.,Department of Biomedical Sciences, Marshall University School of Medicine, Huntington, WV, United States
| | - Boyd R Rorabaugh
- Department of Pharmaceutical Sciences, Marshall University School of Pharmacy, Huntington, WV, United States.,Department of Biomedical Sciences, Marshall University School of Medicine, Huntington, WV, United States
| |
Collapse
|
29
|
Davis S, Zhu J. Substance abuse and neurotransmission. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 93:403-441. [PMID: 35341573 PMCID: PMC9759822 DOI: 10.1016/bs.apha.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The number of people who suffer from a substance abuse disorder has continued to rise over the last decade; particularly, the number of drug-related overdose deaths has sharply increased during the COVID-19 pandemic. Converging lines of clinical observations, supported by imaging and neuropsychological performance testing, have demonstrated that substance abuse-induced dysregulation of neurotransmissions in the brain is critical for development and expression of the addictive properties of abused substances. Recent scientific advances have allowed for better understanding of the neurobiological processes that mediates drugs of abuse and addiction. This chapter presents the past classic concepts and the recent advances in our knowledge about how cocaine, amphetamines, opioids, alcohol, and nicotine alter multiple neurotransmitter systems, which contribute to the behaviors associated with each drug. Additionally, we discuss the interactive effects of HIV-1 or COVID-19 and substance abuse on neurotransmission and neurobiological pathways. Finally, we introduce therapeutic strategies for development of pharmacotherapies for substance abuse disorders.
Collapse
Affiliation(s)
- Sarah Davis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Jun Zhu
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
30
|
Warner-Schmidt J, Pittenger C, Stogniew M, Mandell B, Olmstead SJ, Kelmendi B. Methylone, a rapid acting entactogen with robust anxiolytic and antidepressant-like activity. Front Psychiatry 2022; 13:1041277. [PMID: 36704743 PMCID: PMC9873307 DOI: 10.3389/fpsyt.2022.1041277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Selective serotonin reuptake inhibitor (SSRI) antidepressants represent first-line pharmacological treatment for a variety of neuropsychiatric illnesses, including major depressive disorder (MDD), anxiety, and post-traumatic stress disorder (PTSD), which show high rates of comorbidity. SSRIs have a delayed onset of action. Most patients do not show significant effects until 4-8 weeks of continuous treatment, have impairing side effects and as many as 40% of patients do not respond. Methylone (3,4-methylenedioxy-N-methylcathinone; MDMC, βk-MDMA, M1) is a rapid-acting entactogen that showed significant benefit in a clinical case series of PTSD patients and was well-tolerated in two Phase 1 studies of healthy volunteers. Based on these early observations in humans, in the current study we tested the hypothesis that methylone has antidepressant-like and anxiolytic effects in preclinical tests. METHODS For all studies, 6-8-week-old male Sprague Dawley rats (N = 6-16) were used. We employed the Forced Swim Test (FST), a classic and widely used screen for antidepressants, to explore the effects of methylone and to probe dose-response relationships, durability of effect, and potential interactions with combined SSRI treatment. We compared the effect of methylone with the prototypical SSRI fluoxetine. RESULTS Three doses of fluoxetine (10 mg/kg) given within 24 h before FST testing caused a 50% reduction in immobility compared with controls that lasted less than 24 h. In contrast, a single dose of methylone (5-30 mg/kg) administered 30 min prior to testing produced a rapid, robust, and durable antidepressant-like response in the FST, greater in magnitude than fluoxetine. Immobility was reduced by nearly 95% vs. controls and effects persisted for at least 72 h after a single dose (15 mg/kg). Effects on swimming and climbing behavior in the FST, which reflect serotonergic and noradrenergic activity, respectively, were consistent with studies showing that methylone is less serotoninergic than MDMA. Fluoxetine pretreatment did not change methylone's antidepressant-like effect in the FST, suggesting the possibility that the two may be co-administered. In addition, methylone (5-30 mg/kg) exhibited anxiolytic effects measured as increased time spent in the center of an open field. DISCUSSION Taken together, and consistent with initial clinical findings, our study suggests that methylone may have potential for treating depression and anxiety.
Collapse
Affiliation(s)
| | | | | | | | | | - Benjamin Kelmendi
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States.,Clinical Neurosciences Division, United States Department of Veterans Affairs, National Center for PTSD, West Haven, CT, United States
| |
Collapse
|
31
|
ČECHOVÁ B, ŠLAMBEROVÁ R. Methamphetamine, Neurotransmitters and Neurodevelopment. Physiol Res 2021; 70:S301-S315. [DOI: 10.33549/physiolres.934821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Methamphetamine (MA), as massively abused psychoactive stimulant, has been associated with many neurological diseases. It has various potent and neurotoxic properties. There are many mechanisms of action that contribute to its neurotoxic and degenerative effects, including excessive neurotransmitter (NEU) release, blockage of NEU uptake transporters, degeneration of NEU receptors, process of oxidative stress etc. MA intoxication is caused by blood-brain barrier disruption resulted from MA-induced oxidation stress. In our laboratory we constantly work on animal research of MA. Our current interest is to investigate processes of MA-induced alteration in neurotransmission, especially during development of laboratory rat. This review will describe current understanding in role of NEUs, which are affected by MA-induced neurotoxicity caused by altering the action of NEUs in the central nervous system (CNS). It also briefly brings information about NEUs development in critical periods of development.
Collapse
Affiliation(s)
- B ČECHOVÁ
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - R ŠLAMBEROVÁ
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
32
|
Alm PA. The Dopamine System and Automatization of Movement Sequences: A Review With Relevance for Speech and Stuttering. Front Hum Neurosci 2021; 15:661880. [PMID: 34924974 PMCID: PMC8675130 DOI: 10.3389/fnhum.2021.661880] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
The last decades of research have gradually elucidated the complex functions of the dopamine system in the vertebrate brain. The multiple roles of dopamine in motor function, learning, attention, motivation, and the emotions have been difficult to reconcile. A broad and detailed understanding of the physiology of cerebral dopamine is of importance in understanding a range of human disorders. One of the core functions of dopamine involves the basal ganglia and the learning and execution of automatized sequences of movements. Speech is one of the most complex and highly automatized sequential motor behaviors, though the exact roles that the basal ganglia and dopamine play in speech have been difficult to determine. Stuttering is a speech disorder that has been hypothesized to be related to the functions of the basal ganglia and dopamine. The aim of this review was to provide an overview of the current understanding of the cerebral dopamine system, in particular the mechanisms related to motor learning and the execution of movement sequences. The primary aim was not to review research on speech and stuttering, but to provide a platform of neurophysiological mechanisms, which may be utilized for further research and theoretical development on speech, speech disorders, and other behavioral disorders. Stuttering and speech are discussed here only briefly. The review indicates that a primary mechanism for the automatization of movement sequences is the merging of isolated movements into chunks that can be executed as units. In turn, chunks can be utilized hierarchically, as building blocks of longer chunks. It is likely that these mechanisms apply also to speech, so that frequent syllables and words are produced as motor chunks. It is further indicated that the main learning principle for sequence learning is reinforcement learning, with the phasic release of dopamine as the primary teaching signal indicating successful sequences. It is proposed that the dynamics of the dopamine system constitute the main neural basis underlying the situational variability of stuttering.
Collapse
Affiliation(s)
- Per A Alm
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Mahaffey AL. "N.A.M.E." FUN! Emojis may illustrate structure-function relationships of neurotransmitters to health professions students. ADVANCES IN PHYSIOLOGY EDUCATION 2021; 45:895-901. [PMID: 34499561 DOI: 10.1152/advan.00123.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
This article provides a qualitative examination of student responses to an enjoyable online experience illustrating structure-function relationships of chemical messengers (neurotransmitters) in the human nervous system via text messaging emojis (often employed during mobile phone messaging). The "N.A.M.E." (Neurotransmitters as Messaging Emojis) FUN! experience was presented to 216 undergraduate health professions students enrolled in a human physiology course during Spring 2020 (N = 117) and Spring 2021 (N = 99) semesters as a learning tool, during a time in which students struggled with the concepts of neurotransmitter function. Additional goals for this fun experience design are to 1) engage health professions students in the topics of chemical messengers in the nervous system, and provide 2) a learning tool for students enrolled in the human physiology courses and 3) a memorization online worksheet for select neurotransmitter function. Student participants were able to access the online neurotransmitter fun experience via mobile phone and/or laptop. Resulting analyses of the voluntary and anonymous survey highlight positive responses in both Spring 2020 and 2021 semesters to the online "N.A.M.E." experience and furthermore the recommendation of student participants to include this online experience in future lecture assignments for the Human Physiology course. Here, we examine several data sets (tables) as we review student choices for matching emojis to neurotransmitter function and qualitative responses on the efficacy of this online match-up fun as a learning tool in a human physiology course for health professions.
Collapse
Affiliation(s)
- Angela L Mahaffey
- Marcella Niehoff School of Nursing, Loyola University Chicago, Chicago, Illinois
| |
Collapse
|
34
|
Pharmacological Cognitive Enhancement and Cheapened Achievement: A New Dilemma. NEUROETHICS-NETH 2021. [DOI: 10.1007/s12152-021-09477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Recent discussions of cognitive enhancement often note that drugs and technologies that improve cognitive performance may do so at the risk of “cheapening” our resulting cognitive achievements (e.g., Kass, Life, liberty and the defense of dignity: the challenge for bioethics, Encounter Books, San Francisco, 2004; Agar, Humanity’s end: why we should reject radical enhancement, MIT Press, Cambridge, 2010; Sandel, The case against perfection. Harvard University Press, Cambridge, 2007; Sandel, The case against perfection: what’s wrong with designer children, bionic athletes, and genetic engineering?”. In: Holland (ed) Arguing about bioethics, Routledge, London, 2012; Harris in Bioethics 25:102–111, 2011). While there are several possible responses to this worry, we will highlight what we take to be one of the most promising—one which draws on a recent strand of thinking in social and virtue epistemology to construct an integrationist defence of cognitive enhancement. (e.g., Pritchard in Synthese 175:133–151, 2010; Palermos in Synthese 192:2955–2286, 2015; Clark in Synthese 192:3757–3375, 2015). According to such a line, there is—despite initial appearances to the contrary—no genuine tension between using enhancements to attain our goals and achieving these goals in a valuable way provided the relevant enhancement is appropriately integrated into the agent’s cognitive architecture (in some suitably specified way). In this paper, however, we show that the kind of integration recommended by such views will likely come at a high cost. More specifically, we highlight a dilemma for users of pharmacological cognitive enhancement: they can (1) meet the conditions for cognitive integration (and on this basis attain valuable achievements) at the significant risk of dangerous dependency, or (2) remain free of such dependency while foregoing integration and the valuable achievements that such integration enables. After motivating and clarifying the import of this dilemma, we offer recommendations for how future cognitive enhancement research may offer potential routes for navigating past it.
Collapse
|
35
|
Shukla M, Vincent B. Methamphetamine abuse disturbs the dopaminergic system to impair hippocampal-based learning and memory: An overview of animal and human investigations. Neurosci Biobehav Rev 2021; 131:541-559. [PMID: 34606820 DOI: 10.1016/j.neubiorev.2021.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/09/2021] [Accepted: 09/12/2021] [Indexed: 12/12/2022]
Abstract
Diverse intellectual functions including memory are some important aspects of cognition. Dopamine is a neurotransmitter of the catecholamine family, which contributes to the experience of pleasure and/or emotional states but also plays crucial roles in learning and memory. Methamphetamine is an illegal drug, the abuse of which leads to long lasting pathological manifestations in the brain. Chronic methamphetamine-induced neurotoxicity results in an alteration of various parts of the memory systems by affecting learning processes, an effect attributed to the structural similarities of this drug with dopamine. An evolving field of research established how cognitive deficits in abusers arise and how they could possibly trigger neurodegenerative disorders. Thus, the drugs-induced tenacious neurophysiological changes of the dopamine system trigger cognitive deficits, thereby affirming the influence of this addictive drug on learning, memory and executive function in human abusers. Here we present an overview of the effects of methamphetamine abuse on cognitive functions, dopaminergic transmission and hippocampal integrity as they have been validated in animals and in humans during the past 20 years.
Collapse
Affiliation(s)
- Mayuri Shukla
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand; Centre National de la Recherche Scientifique, 2 Rue Michel Ange, 75016, Paris, France.
| |
Collapse
|
36
|
Foti F, Bilel S, Tirri M, Arfè R, Boccuto F, Bernardi T, Serpelloni G, De-Giorgio F, Marti M. Low-normal doses of methiopropamine induce aggressive behaviour in mice. Psychopharmacology (Berl) 2021; 238:1847-1856. [PMID: 33770233 DOI: 10.1007/s00213-021-05813-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/01/2021] [Indexed: 02/06/2023]
Abstract
Recreational use of illicit methiopropamine (MPA) is a public health concern because it produces neurochemical effects comparable with those induced by methamphetamine (METH). The present study investigated the effects of MPA on the expression of an aggressive behaviour. Eighty CD-1 male mice, after receiving intraperitoneal injection of saline, MPA (0.01-10 mg/kg), METH (0.01-10 mg/kg), or AMPH (0.01-10 mg/kg), once a week over a 5-week period, underwent the resident-intruder test and spontaneous locomotor activity measurement. Results showed that all psychostimulants induce aggressive behaviour even at low doses, with a dose-dependent increase and a time-dependent sensitisation. MPA potency was similar to METH and superior to AMPH. Therefore, MPA-induced aggressive behaviour may appear even at MPA dosages free of cardiovascular or other behavioural adverse effects and could become a non-intentional side effect that users experience after increasing and repeating MPA consumption.
Collapse
Affiliation(s)
- Federica Foti
- Department of Healthcare Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Micaela Tirri
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Raffaella Arfè
- Department of Healthcare Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Federica Boccuto
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Tatiana Bernardi
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Serpelloni
- Department of Psychiatry in the College of Medicine, Drug Policy Institute, University of Florida, Gainesville, FL, USA
| | - Fabio De-Giorgio
- Department of Healthcare Surveillance and Bioethics, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy. .,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| | - Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy. .,Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Rome, Italy. .,Department of Morphology, Experimental Medicine and Surgery, Section of Legal Medicine, University of Ferrara, via Fossato di Mortara 70, 44121, Ferrara, Italy.
| |
Collapse
|
37
|
Limanaqi F, Busceti CL, Celli R, Biagioni F, Fornai F. Autophagy as a gateway for the effects of methamphetamine: From neurotransmitter release and synaptic plasticity to psychiatric and neurodegenerative disorders. Prog Neurobiol 2021; 204:102112. [PMID: 34171442 DOI: 10.1016/j.pneurobio.2021.102112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/27/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
As a major eukaryotic cell clearing machinery, autophagy grants cell proteostasis, which is key for neurotransmitter release, synaptic plasticity, and neuronal survival. In line with this, besides neuropathological events, autophagy dysfunctions are bound to synaptic alterations that occur in mental disorders, and early on, in neurodegenerative diseases. This is also the case of methamphetamine (METH) abuse, which leads to psychiatric disturbances and neurotoxicity. While consistently altering the autophagy machinery, METH produces behavioral and neurotoxic effects through molecular and biochemical events that can be recapitulated by autophagy blockade. These consist of altered physiological dopamine (DA) release, abnormal stimulation of DA and glutamate receptors, as well as oxidative, excitotoxic, and neuroinflammatory events. Recent molecular insights suggest that METH early impairs the autophagy machinery, though its functional significance remains to be investigated. Here we discuss evidence suggesting that alterations of DA transmission and autophagy are intermingled within a chain of events underlying behavioral alterations and neurodegenerative phenomena produced by METH. Understanding how METH alters the autophagy machinery is expected to provide novel insights into the neurobiology of METH addiction sharing some features with psychiatric disorders and parkinsonism.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56126, Pisa, PI, Italy
| | | | - Roberta Celli
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56126, Pisa, PI, Italy; IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy.
| |
Collapse
|
38
|
Colucci P, Santori A, Romanelli L, Zwergel C, Mai A, Scaccianoce S, Campolongo P. Amphetamine Modulation of Long-Term Object Recognition Memory in Rats: Influence of Stress. Front Pharmacol 2021; 12:644521. [PMID: 33716754 PMCID: PMC7943736 DOI: 10.3389/fphar.2021.644521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
Amphetamine is a potent psychostimulant that increases brain monoamine levels. Extensive evidence demonstrated that norepinephrine is crucially involved in the regulation of memory consolidation for stressful experiences. Here, we investigated amphetamine effects on the consolidation of long-term recognition memory in rats exposed to different intensities of forced swim stress immediately after training. Furthermore, we evaluated whether such effects are dependent on the activation of the peripheral adrenergic system. To this aim, male adult Sprague Dawley rats were subjected to an object recognition task and intraperitoneally administered soon after training with amphetamine (0.5 or 1 mg/kg), or its corresponding vehicle. Rats were thereafter exposed to a mild (1 min, 25 ± 1°C) or strong (5 min, 19 ± 1°C) forced swim stress procedure. Recognition memory retention was assessed 24-h after training. Our findings showed that amphetamine enhances the consolidation of memory in rats subjected to mild stress condition, while it impairs long-term memory performance in rats exposed to strong stress. These dichotomic effects is dependent on stress-induced activation of the peripheral adrenergic response.
Collapse
Affiliation(s)
- Paola Colucci
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Neurobiology of Behavior Laboratory, Section of Neuropsychopharmacology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Alessia Santori
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Neurobiology of Behavior Laboratory, Section of Neuropsychopharmacology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Luca Romanelli
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Clemens Zwergel
- Dept. of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy
| | - Antonello Mai
- Dept. of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy
| | - Sergio Scaccianoce
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Patrizia Campolongo
- Dept. of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Neurobiology of Behavior Laboratory, Section of Neuropsychopharmacology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
39
|
Autophagy status as a gateway for stress-induced catecholamine interplay in neurodegeneration. Neurosci Biobehav Rev 2021; 123:238-256. [PMID: 33497785 DOI: 10.1016/j.neubiorev.2021.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022]
Abstract
The catecholamine-containing brainstem nuclei locus coeruleus (LC) and ventral tegmental area (VTA) are critically involved in stress responses. Alterations of catecholamine systems during chronic stress may contribute to neurodegeneration, including cognitive decline. Stress-related catecholamine alterations, while contributing to anxiety and depression, might accelerate neuronal degeneration by increasing the formation of toxic dopamine and norepinephrine by-products. These, in turn, may impair proteostasis within a variety of cortical and subcortical areas. In particular, the molecular events governing neurotransmission, neuroplasticity, and proteostasis within LC and VTA affect a variety of brain areas. Therefore, we focus on alterations of autophagy machinery in these nuclei as a relevant trigger in this chain of events. In fact, these catecholamine-containing areas are mostly prone to autophagy-dependent neurodegeneration. Thus, we propose a dynamic hypothesis according to which stress-induced autophagy alterations within the LC-VTA network foster a cascade towards early neurodegeneration within these nuclei.
Collapse
|
40
|
Rodriguez EA, Yamamoto BK. Toxic Effects of Methamphetamine on Perivascular Health: Co-morbid Effects of Stress and Alcohol Use Disorders. Curr Neuropharmacol 2021; 19:2092-2107. [PMID: 34344290 PMCID: PMC9185763 DOI: 10.2174/1570159x19666210803150023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/04/2022] Open
Abstract
Methamphetamine (Meth) abuse presents a global problem and commonly occurs with stress and/or alcohol use disorders. Regardless, the biological causes and consequences of these comorbidities are unclear. Whereas the mechanisms of Meth, stress, and alcohol abuse have been examined individually and well-characterized, these processes overlap significantly and can impact the neural and peripheral consequences of Meth. This review focuses on the deleterious cardio- and cerebrovascular effects of Meth, stress, alcohol abuse, and their comorbid effects on the brain and periphery. Points of emphasis are on the composition of the blood-brain barrier and their effects on the heart and vasculature. The autonomic nervous system, inflammation, and oxidative stress are specifically highlighted as common mediators of the toxic consequences to vascular and perivascular health. A significant portion of the Meth abusing population also presents with stress and alcohol use disorders, prompting a need to understand the mechanisms underlying their comorbidities. Little is known about their possible convergent effects. Therefore, the purpose of this critical review is to identify shared mechanisms of Meth, chronic stress, and alcohol abuse that contributes to the dysfunction of vascular health and underscores the need for studies that directly address their interactions.
Collapse
Affiliation(s)
- Eric A. Rodriguez
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bryan K. Yamamoto
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
41
|
Feeney W, Moorthy AS, Sisco E. Spectral trends in GC-EI-MS data obtained from the SWGDRUG mass spectral library and literature: A resource for the identification of unknown compounds. Forensic Chem 2020; 31:10.1016/j.forc.2022.100459. [PMID: 36578315 PMCID: PMC9793444 DOI: 10.1016/j.forc.2022.100459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Rapid identification of new or emerging psychoactive substances remains a critical challenge in forensic drug chemistry laboratories. Current analytical protocols are well-designed for confirmation of known substances yet struggle when new compounds are encountered. Many laboratories initially attempt to classify new compounds using gas chromatography-electron ionization-mass spectrometry (GC-EI-MS). Though there is a large body of research focused on the analysis of illicit substances with GC-EI-MS, there is little high-level discussion of mass spectral trends for different classes of drugs. This manuscript compiles literature information and performs simple exploratory analyses on evaluated GC-EI-MS data to investigate mass spectral trends for illicit substance classes. Additionally, this work offers other important aspects: brief discussions of how each class of drugs is used; illustrations of EI mass spectra with proposed structures of commonly observed ions; and summaries of mass spectral trends that can help an analyst classify new illicit compounds.
Collapse
Affiliation(s)
- William Feeney
- Corresponding author at: Surface and Trace Chemical Analysis Group, Material Measurement Laboratory, 100 Bureau Drive, Gaithersburg, MD 20899, USA. (W. Feeney)
| | | | | |
Collapse
|
42
|
König N, Bimpisidis Z, Dumas S, Wallén-Mackenzie Å. Selective Knockout of the Vesicular Monoamine Transporter 2 ( Vmat2) Gene in Calbindin2/Calretinin-Positive Neurons Results in Profound Changes in Behavior and Response to Drugs of Abuse. Front Behav Neurosci 2020; 14:578443. [PMID: 33240055 PMCID: PMC7680758 DOI: 10.3389/fnbeh.2020.578443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022] Open
Abstract
The vesicular monoamine transporter 2 (VMAT2) has a range of functions in the central nervous system, from sequestering toxins to providing conditions for the quantal release of monoaminergic neurotransmitters. Monoamine signaling regulates diverse functions from arousal to mood, movement, and motivation, and dysregulation of VMAT2 function is implicated in various neuropsychiatric diseases. While all monoamine-releasing neurons express the Vmat2 gene, only a subset is positive for the calcium-binding protein Calbindin 2 (Calb2; aka Calretinin, 29 kDa Calbindin). We recently showed that about half of the dopamine neurons in the mouse midbrain are positive for Calb2 and that Calb2 is an early developmental marker of midbrain dopamine cells. Calb2-positive neurons have also been identified in other monoaminergic areas, yet the role of Calb2-positive monoaminergic neurons is poorly understood. To selectively address the impact of Calb2-positive monoaminergic neurons in behavioral regulation, we took advantage of the Cre-LoxP system to create a new conditional knockout (cKO) mouse line in which Vmat2 expression is deleted selectively in Calb2-Cre-positive neurons. In this Vmat2lox/lox;Calb2−Cre cKO mouse line, gene targeting of Vmat2 was observed in several distinct monoaminergic areas. By comparing control and cKO mice in a series of behavioral tests, specific dissimilarities were identified. In particular, cKO mice were smaller than control mice and showed heightened sensitivity to the stereotypy-inducing effects of amphetamine and slight reductions in preference toward sucrose and ethanol, as well as a blunted response in the elevated plus maze test. These data uncover new knowledge about the role of genetically defined subtypes of neurons in the brain’s monoaminergic systems.
Collapse
Affiliation(s)
- Niclas König
- Unit of Comparative Physiology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Zisis Bimpisidis
- Unit of Comparative Physiology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | | - Åsa Wallén-Mackenzie
- Unit of Comparative Physiology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
43
|
Mansouriyeh N, Mahmoud-Aliloo M, Rostami R. The Effect of High-frequency Repetitive Transcranial Magnetic Stimulation on Reducing Depression and Anxiety in Methamphetamine Users. ADDICTION & HEALTH 2020; 12:278-286. [PMID: 33623647 PMCID: PMC7878001 DOI: 10.22122/ahj.v12i4.288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Methamphetamine use has been associated with higher rates of depression and anxiety. The mesocorticolimbic dopaminergic reward system seems to play a crucial role in inducing depression and anxiety in methamphetamine users. High-frequency repetitive transcranial magnetic stimulation (rTMS) has been shown to alter dopaminergic neurotransmission considering the acute rewarding and reinforcing effects in the subcortical structure. The aim of this study was to investigate the efficacy of rTMS in reducing depression and anxiety symptoms in methamphetamine users. METHODS In a single-subject method with concurrent multiple baseline designs, in 2017, in Iran, eight methamphetamine users were included, which compared 15 days of active versus placebo stimulation and control group. Two subjects received rTMS on the right dorsolateral prefrontal cortex (DLPFC) and two subjects received rTMS on the left DLPFC. We carried out the measurement using the Beck Anxiety Inventory (BAI) and Beck Depression Inventory (BDI) before, during, and after 15 and 30 days of the procedure. FINDINGS Right and left DLPFC stimulation significantly reduced depression and anxiety, but the reduction of depression and anxiety by the right DLPFC stimulation was noticeable in this study. CONCLUSION High-frequency rTMS is useful for the treatment of depression and anxiety in methamphetamine users.
Collapse
Affiliation(s)
- Nastaran Mansouriyeh
- Department of Psychology, School of Psychology, Tabriz Branch, Islamic Azad University, Tabriz, Iran,Correspondence to: Nastaran Mansouriyeh; Department of Psychology, School of Educational Sciences and Psychology, Tabriz
Branch, Islamic Azad University, Tabriz, Iran;
| | - Majid Mahmoud-Aliloo
- Department of Psychology, School of Educational Sciences and Psychology, University of Tabriz, Tabriz, Iran
| | - Reza Rostami
- Department of Psychology, School of Educational Sciences and Psychology, University of Tehran, Tehran, Iran
| |
Collapse
|
44
|
Alasmari F, Alsanea S, Masood A, Alhazzani K, Alanazi IO, Musambil M, Alfadda AA, Alshammari MA, Alasmari AF, Benabdelkamel H. Serum proteomic profiling of patients with amphetamine use disorder. Drug Alcohol Depend 2020; 214:108157. [PMID: 32652378 DOI: 10.1016/j.drugalcdep.2020.108157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/22/2020] [Accepted: 06/23/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Amphetamine use disorder has been recently classified as an epidemic condition. Amphetamine use/abuse has been associated with several neurological and inflammatory effects. However, the exact mechanism involved in these effects warrants further investigation. The aim of this study was to determine any alterations in the serum proteome of individuals classified as patients with amphetamine use disorder compared to that of control subjects. METHODS An untargeted proteomic approach employing two-dimensional difference in gel electrophoresis coupled with mass spectrometry was used to identify the patterns of differentially expressed proteins. Serum samples were collected from 20 individuals (males) including 10 subjects with amphetamine use disorder and 10 healthy controls for the present study. RESULTS The analysis revealed 78 proteins with a significant difference in protein abundance between the amphetamine-addicted subjects and controls. Among them, 71 proteins were upregulated while 7 proteins remained downregulated in the amphetamine-addicted group. These proteins were further analyzed by ingenuity pathway analysis (IPA) to investigate their correlation with other biomarkers. IPA revealed the correlation of altered proteins with mitogen-activated protein kinase (MAP2K1/K2), p38MAPK, protein kinase-B (PKB; Akt), extracellular signal-regulated kinase (ERK1/2), and nuclear factor-κB signaling pathways. Importantly, these pathways are highly involved in neurological diseases, inflammatory responses, and cellular compromise. CONCLUSIONS Our data suggest that the changes in the levels of serum proteins between amphetamine and control groups might affect cellular compromise, inflammatory response, and neurological diseases.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Sary Alsanea
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ibrahim O Alanazi
- The National Center of Biotechnology (NCB), Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh, Saudi Arabia
| | - Mohthash Musambil
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Assim A Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; Department of Medicine, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Musaad A Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia.
| |
Collapse
|
45
|
Shukla M, Vincent B. The multi-faceted impact of methamphetamine on Alzheimer's disease: From a triggering role to a possible therapeutic use. Ageing Res Rev 2020; 60:101062. [PMID: 32304732 DOI: 10.1016/j.arr.2020.101062] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/05/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022]
Abstract
Although it has been initially synthesized for therapeutic purposes and currently FDA-approved and prescribed for obesity, attention-deficit/hyperactivity disorder, narcolepsy and depression, methamphetamine became a recreational drug that is nowadays massively manufactured illegally. Because it is a powerful and extremely addictive psychotropic agent, its abuse has turned out to become a major health problem worldwide. Importantly, the numerous effects triggered by this drug induce neurotoxicity in the brain ultimately leading to serious neurological impairments, tissue damage and neuropsychological disturbances that are reminiscent to most of the symptoms observed in Alzheimer's disease and other pathological manifestations in aging brain. In this context, there is a growing number of compelling evidence linking methamphetamine abuse with a higher probability of developing premature Alzheimer's disease and consequent neurodegeneration. This review proposes to establish a broad assessment of the effects that this drug can generate at the cellular and molecular levels in connection with the development of the age-related Alzheimer's disease. Altogether, the objective is to warn against the long-term effects that methamphetamine abuse may convey on young consumers and the increased risk of developing this devastating brain disorder at later stages of their lives, but also to discuss a more recently emerging concept suggesting a possible use of methamphetamine for treating this pathology under proper and strictly controlled conditions.
Collapse
|
46
|
Sander CY, Hansen HD, Wey HY. Advances in simultaneous PET/MR for imaging neuroreceptor function. J Cereb Blood Flow Metab 2020; 40:1148-1166. [PMID: 32169011 PMCID: PMC7238372 DOI: 10.1177/0271678x20910038] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hybrid imaging using PET/MRI has emerged as a platform for elucidating novel neurobiology, molecular and functional changes in disease, and responses to physiological or pharmacological interventions. For the central nervous system, PET/MRI has provided insights into biochemical processes, linking selective molecular targets and distributed brain function. This review highlights several examples that leverage the strengths of simultaneous PET/MRI, which includes measuring the perturbation of multi-modal imaging signals on dynamic timescales during pharmacological challenges, physiological interventions or behavioral tasks. We discuss important considerations for the experimental design of dynamic PET/MRI studies and data analysis approaches for comparing and quantifying simultaneous PET/MRI data. The primary focus of this review is on functional PET/MRI studies of neurotransmitter and receptor systems, with an emphasis on the dopamine, opioid, serotonin and glutamate systems as molecular neuromodulators. In this context, we provide an overview of studies that employ interventions to alter the activity of neuroreceptors or the release of neurotransmitters. Overall, we emphasize how the synergistic use of simultaneous PET/MRI with appropriate study design and interventions has the potential to expand our knowledge about the molecular and functional dynamics of the living human brain. Finally, we give an outlook on the future opportunities for simultaneous PET/MRI.
Collapse
Affiliation(s)
- Christin Y Sander
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, MA, USA
| | - Hanne D Hansen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, MA, USA.,Neurobiology Research Unit and NeuroPharm, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, MA, USA
| |
Collapse
|
47
|
Reed EJ, Uddenberg S, Suthaharan P, Mathys CD, Taylor JR, Groman SM, Corlett PR. Paranoia as a deficit in non-social belief updating. eLife 2020; 9:56345. [PMID: 32452769 PMCID: PMC7326495 DOI: 10.7554/elife.56345] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Paranoia is the belief that harm is intended by others. It may arise from selective pressures to infer and avoid social threats, particularly in ambiguous or changing circumstances. We propose that uncertainty may be sufficient to elicit learning differences in paranoid individuals, without social threat. We used reversal learning behavior and computational modeling to estimate belief updating across individuals with and without mental illness, online participants, and rats chronically exposed to methamphetamine, an elicitor of paranoia in humans. Paranoia is associated with a stronger prior on volatility, accompanied by elevated sensitivity to perceived changes in the task environment. Methamphetamine exposure in rats recapitulates this impaired uncertainty-driven belief updating and rigid anticipation of a volatile environment. Our work provides evidence of fundamental, domain-general learning differences in paranoid individuals. This paradigm enables further assessment of the interplay between uncertainty and belief-updating across individuals and species. Everyone has had fleeting concerns that others might be against them at some point in their lives. Sometimes these concerns can escalate into paranoia and become debilitating. Paranoia is a common symptom in serious mental illnesses like schizophrenia. It can cause extreme distress and is linked with an increased risk of violence towards oneself or others. Understanding what happens in the brains of people experiencing paranoia might lead to better ways to treat or manage it. Some experts argue that paranoia is caused by errors in the way people assess social situations. An alternative idea is that paranoia stems from the way the brain forms and updates beliefs about the world. Now, Reed et al. show that both people with paranoia and rats exposed to a paranoia-inducing substance expect the world will change frequently, change their minds often, and have a harder time learning in response to changing circumstances. In the experiments, human volunteers with and without psychiatric disorders played a game where the best choices change. Then, the participants completed a survey to assess their level of paranoia. People with higher levels of paranoia predicted more changes would occur and made less predictable choices. In a second set of experiments, rats were put in a cage with three holes where they sometimes received sugar rewards. Some of the rats received methamphetamine, a drug that causes paranoia in humans. Rats given the drug also expected the location of the sugar reward would change often. The drugged animals had harder time learning and adapting to changing circumstances. The experiments suggest that brain processes found in both rats, which are less social than humans, and humans contribute to paranoia. This suggests paranoia may make it harder to update beliefs. This may help scientists understand what causes paranoia and develop therapies or drugs that can reduce paranoia. This information may also help scientists understand why during societal crises like wars or natural disasters humans are prone to believing conspiracies. This is particularly important now as the world grapples with climate change and a global pandemic. Reed et al. note paranoia may impede the coordination of collaborative solutions to these challenging situations.
Collapse
Affiliation(s)
- Erin J Reed
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, United States.,Yale MD-PhD Program, Yale School of Medicine, New Haven, United States
| | - Stefan Uddenberg
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Praveen Suthaharan
- Department of Psychiatry, Connecticut Mental Health Center, Yale University, New Have, United States
| | - Christoph D Mathys
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Jane R Taylor
- Department of Psychiatry, Connecticut Mental Health Center, Yale University, New Have, United States
| | - Stephanie Mary Groman
- Department of Psychiatry, Connecticut Mental Health Center, Yale University, New Have, United States
| | - Philip R Corlett
- Department of Psychiatry, Connecticut Mental Health Center, Yale University, New Have, United States
| |
Collapse
|
48
|
LC3 and ATG5 overexpression and neuronal cell death in the prefrontal cortex of postmortem chronic methamphetamine users. J Chem Neuroanat 2020; 107:101802. [PMID: 32416129 DOI: 10.1016/j.jchemneu.2020.101802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022]
Abstract
Methamphetamine (METH) abuse is accompanied by oxidative stress, METH-induced neurotoxicity, and apoptosis. Oxidative stress has devastating effects on the structure of proteins and cells. Autophagy is an evolutionarily conserved intracellular regulated mechanism for orderly degradation of dysfunctional proteins or removing damaged organelles. The precise role of autophagy in oxidative stress-induced apoptosis of dopaminergic neuronal cells caused by METH has not clarified completely. In this study, we sought to evaluate the effects of METH abuse on autophagy in the prefrontal cortex of postmortem users, mainly focusing on the ATG5 and LC3 during neuroinflammation. Postmortem molecular and histological examination was done for two groups containing 12 non-addicted and 14 METH addicted cases. ATG5 and LC3 expression were analyzed by real-time PCR and immunohistochemistry (IHC) methods. Histopathological analysis was performed by stereological cell counting of neuronal cells using Hematoxylin and Eosin (H & E) staining technique. In order to detect DNA damage in the prefrontal lobe, Tunnel staining was performed. Real-time PCR and IHC assay showed overexpression of ATG5 and LC3 protein in the prefrontal cortex of Meth users. The cell death and neuronal degeneration were increased significantly based on Tunel assay and the stereological analysis in the Prefrontal cortex. Chronic METH exposure probably induces ATG5 and LC3 overexpression and neuronal cell death in the Prefrontal cortex of the postmortem cases.
Collapse
|
49
|
Pavlek LR, Dillard J, Rogers LK. The role of oxidative stress in toxicities due to drugs of abuse. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Liu L, Luo T, Dong H, Zhang C, Liu T, Zhang X, Hao W. Genome-Wide DNA Methylation Analysis in Male Methamphetamine Users With Different Addiction Qualities. Front Psychiatry 2020; 11:588229. [PMID: 33192735 PMCID: PMC7645035 DOI: 10.3389/fpsyt.2020.588229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/24/2020] [Indexed: 12/20/2022] Open
Abstract
This paper aimed to explore the genome-wide DNA methylation status of methamphetamine (MA) abusers with different qualities to addiction and to identify differentially methylated candidate genes. A total of 207 male MA abusers with an MA abuse frequency of ≥10 times and an MA abuse duration of ≥1 year were assigned to the high MA addiction quality group (HMAQ group; 168 subjects who met the diagnostic criteria for MA dependence according to the DSM-IV) or to the low MA addictive quality group (LMAQ group; 39 subjects who did not meet the criteria for MA dependence). In addition 105 healthy controls were recruited. Eight HMAQ subjects, eight LMAQ subjects, and eight healthy controls underwent genome-wide DNA methylation scans with an Infinium Human Methylation 450 array (Illumina). The differentially methylated region (DMR) data were entered into pathway analysis, and the differentially methylated position (DMP) data were screened for candidate genes and verified by MethyLight qPCR with all samples. Seven specific pathways with an abnormal methylation status were identified, including the circadian entrainment, cholinergic synapse, glutamatergic synapse, retrograde endocannabinoid signaling, GABAergic synapse, morphine addiction and PI3K-Akt signaling pathways. SLC1A6, BHLHB9, LYNX1, CAV2, and PCSK9 showed differences in their methylation levels in the three groups. Only the number of methylated copies of CAV2 was significantly higher in the LMAQ group than in the HMAQ group. Our findings suggest that the circadian entrainment pathway and the caveolin-2 gene may play key roles in MA addiction quality. Further studies on their functions and mechanisms will help us to better understand the pathogenesis of MA addiction and to explore new targets for drug intervention.
Collapse
Affiliation(s)
- Liang Liu
- Department of Geriatric Psychiatry, Wuxi Mental Health Center, Nanjing Medical University, Wuxi, China.,Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry and Mental Health Institute of the Second Xiangya Hospital, National Clinical Research Center on Mental Disorders, National Technology Institute on Mental Disorders, Central South University, Changsha, China
| | - Tao Luo
- Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry and Mental Health Institute of the Second Xiangya Hospital, National Clinical Research Center on Mental Disorders, National Technology Institute on Mental Disorders, Central South University, Changsha, China.,Department of Clinic Psychiatry, Jiangxi Mental Hospital, Nanchang University, Nanchang, China
| | - Huixi Dong
- Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry and Mental Health Institute of the Second Xiangya Hospital, National Clinical Research Center on Mental Disorders, National Technology Institute on Mental Disorders, Central South University, Changsha, China
| | - Chenxi Zhang
- Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry and Mental Health Institute of the Second Xiangya Hospital, National Clinical Research Center on Mental Disorders, National Technology Institute on Mental Disorders, Central South University, Changsha, China
| | - Tieqiao Liu
- Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry and Mental Health Institute of the Second Xiangya Hospital, National Clinical Research Center on Mental Disorders, National Technology Institute on Mental Disorders, Central South University, Changsha, China
| | - Xiangyang Zhang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Wei Hao
- Hunan Key Laboratory of Psychiatry and Mental Health, Department of Psychiatry and Mental Health Institute of the Second Xiangya Hospital, National Clinical Research Center on Mental Disorders, National Technology Institute on Mental Disorders, Central South University, Changsha, China
| |
Collapse
|