1
|
Liu X, Hike D, Choi S, Man W, Ran C, Zhou XA, Jiang Y, Yu X. Identifying the bioimaging features of Alzheimer's disease based on pupillary light response-driven brain-wide fMRI in awake mice. Nat Commun 2024; 15:9657. [PMID: 39511186 PMCID: PMC11543808 DOI: 10.1038/s41467-024-53878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
Pupil dynamics has emerged as a critical non-invasive indicator of brain state changes. In particular, pupillary-light-responses (PLR) in Alzheimer's disease (AD) patients show potential as biomarkers for brain degeneration. To investigate AD-specific PLR and its underlying neuromodulatory sources, we combine high-resolution awake mouse fMRI with real-time pupillometry to map brain-wide event-related correlation patterns based on illumination-driven pupil constriction (P c ) and post-illumination pupil dilation recovery (amplitude,P d , and time, T). TheP c -driven differential analysis reveals altered visual signal processing and reduced thalamocortical activation in AD mice in comparison with wild-type (WT) control mice. In contrast, the post-illumination pupil dilation recovery-based fMRI highlights multiple brain areas associated with AD brain degeneration, including the cingulate cortex, hippocampus, septal area of the basal forebrain, medial raphe nucleus, and pontine reticular nuclei (PRN). Additionally, the brain-wide functional connectivity analysis highlights the most significant changes in PRN of AD mice, which serves as the major subcortical relay nuclei underlying oculomotor function. This work integrates non-invasive pupil-fMRI measurements in preclinical models to identify pupillary biomarkers based on brain-wide functional changes, including neuromodulatory dysfunction coupled with AD brain degeneration.
Collapse
Affiliation(s)
- Xiaochen Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - David Hike
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sangcheon Choi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Weitao Man
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Xiaoqing Alice Zhou
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yuanyuan Jiang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA.
| |
Collapse
|
2
|
Zhu J, Liu X, Liu Z, Deng Y, Xu J, Liu K, Zhang R, Meng X, Fei P, Yu T, Zhu D. SOLID: minimizing tissue distortion for brain-wide profiling of diverse architectures. Nat Commun 2024; 15:8303. [PMID: 39333107 PMCID: PMC11436996 DOI: 10.1038/s41467-024-52560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Brain-wide profiling of diverse biological components is fundamental for understanding complex brain pathology. Despite the availability in whole-brain imaging, it is still challenging to conduct multiplexed, brain-wide analysis with current tissue clearing techniques. Here, we propose SOLID, a hydrophobic tissue clearing method that can minimize tissue distortion while offering impressive clearing performance. SOLID achieves high-quality imaging of multi-color labeled mouse brain, and the acquired datasets can be effectively registered to the Allen Brain Atlas via commonly-used algorithms. SOLID enables generation of neural and vascular maps within one mouse brain, as well as tracing of specific neural projections labeled with viruses. SOLID also allows cross-channel investigations of β-amyloid plaques and neurovascular lesions in the reconstructed all-in-one panorama, providing quantitative insights into structural interactions at different stages of Alzheimer's disease. Altogether, SOLID provides a robust pipeline for whole-brain mapping, which may widen the utility of tissue clearing techniques in diverse neuroscience research.
Collapse
Affiliation(s)
- Jingtan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xiaomei Liu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Zhang Liu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Yating Deng
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Jianyi Xu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Kunxing Liu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Ruiying Zhang
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Xizhi Meng
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Peng Fei
- School of Optical Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Tingting Yu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Dan Zhu
- Britton Chance Center for Biomedical Photonics - MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
3
|
Baek S, Jang J, Jung HJ, Lee H, Choe Y. Advanced Immunolabeling Method for Optical Volumetric Imaging Reveals Dystrophic Neurites of Dopaminergic Neurons in Alzheimer's Disease Mouse Brain. Mol Neurobiol 2024; 61:3976-3999. [PMID: 38049707 PMCID: PMC11236860 DOI: 10.1007/s12035-023-03823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Optical brain clearing combined with immunolabeling is valuable for analyzing molecular tissue structures, including complex synaptic connectivity. However, the presence of aberrant lipid deposition due to aging and brain disorders poses a challenge for achieving antibody penetration throughout the entire brain volume. Herein, we present an efficient brain-wide immunolabeling method, the immuno-active clearing technique (iACT). The treatment of brain tissues with a zwitterionic detergent, specifically SB3-12, significantly enhanced tissue permeability by effectively mitigating lipid barriers. Notably, Quadrol treatment further refines the methodology by effectively eliminating residual detergents from cleared brain tissues, subsequently amplifying volumetric fluorescence signals. Employing iACT, we uncover disrupted axonal projections within the mesolimbic dopaminergic (DA) circuits in 5xFAD mice. Subsequent characterization of DA neural circuits in 5xFAD mice revealed proximal axonal swelling and misrouting of distal axonal compartments in proximity to amyloid-beta plaques. Importantly, these structural anomalies in DA axons correlate with a marked reduction in DA release within the nucleus accumbens. Collectively, our findings highlight the efficacy of optical volumetric imaging with iACT in resolving intricate structural alterations in deep brain neural circuits. Furthermore, we unveil the compromised integrity of DA pathways, contributing to the underlying neuropathology of Alzheimer's disease. The iACT technique thus holds significant promise as a valuable asset for advancing our understanding of complex neurodegenerative disorders and may pave the way for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Soonbong Baek
- Developmental Disorders & Rare Diseases Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea
| | - Jaemyung Jang
- Developmental Disorders & Rare Diseases Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea
| | - Hyun Jin Jung
- Developmental Disorders & Rare Diseases Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea
| | - Hyeyoung Lee
- Division of Applied Bioengineering, Dong-eui University, Busanjin-gu, Busan, 47340, Republic of Korea
| | - Youngshik Choe
- Developmental Disorders & Rare Diseases Research Group, Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea.
| |
Collapse
|
4
|
Mar KD, So C, Hou Y, Kim JC. Age dependent path integration deficit in 5xFAD mice. Behav Brain Res 2024; 463:114919. [PMID: 38408521 DOI: 10.1016/j.bbr.2024.114919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder and the most common form of dementia in elderly individuals, characterized by memory deficits, cognitive decline, and neuropathology. The identification of preclinical markers for AD remains elusive. We employed an ultrasound-evoked spatial memory assay to investigate path integration (PI) in wild type C57BL/6 J and 5xFAD mice. We observed significant recruitment of the mammillary bodies (MB) and subiculum (Sub) - core regions of the Papez circuit during PI, as indicated by increased expression of the immediate early gene c-Fos in C57BL/6 J mice. In 5xFAD mice, amyloid-beta (Aβ) vulnerability in the MB and Sub was evident at 3-months of age, preceding widespread pathology at 5-months of age. In parallel, we detected significant behavioral deficits in PI in the 5XFAD mice at 5- but not 3-months of age. Sex based analysis revealed a more profound deficit in males compared to females at 5-months of age. Our data suggest PI may be as an early indicator of AD, potentially associated with dysfunction within the Papez circuit.
Collapse
Affiliation(s)
- Kendall D Mar
- Department of Psychology, University of Toronto, 100 St. George Street, Sidney Smith Hall, Toronto, Ontario M5S 3G3, Canada.
| | - Chanbee So
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada.
| | - Yixin Hou
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada.
| | - Jun Chul Kim
- Department of Psychology, University of Toronto, 100 St. George Street, Sidney Smith Hall, Toronto, Ontario M5S 3G3, Canada; Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada.
| |
Collapse
|
5
|
Yang S, Niou ZX, Enriquez A, LaMar J, Huang JY, Ling K, Jafar-Nejad P, Gilley J, Coleman MP, Tennessen JM, Rangaraju V, Lu HC. NMNAT2 supports vesicular glycolysis via NAD homeostasis to fuel fast axonal transport. Mol Neurodegener 2024; 19:13. [PMID: 38282024 PMCID: PMC10823734 DOI: 10.1186/s13024-023-00690-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/28/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. METHODS We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of techniques, including genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. RESULTS We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. CONCLUSION NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.
Collapse
Affiliation(s)
- Sen Yang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Zhen-Xian Niou
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Andrea Enriquez
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Jacob LaMar
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
- Present address: Department of Biomedical Science, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Jui-Yen Huang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
| | - Karen Ling
- Neuroscience Drug Discovery, Ionis Pharmaceuticals, Inc., 2855, Gazelle Court, Carlsbad, CA, 92010, USA
| | - Paymaan Jafar-Nejad
- Neuroscience Drug Discovery, Ionis Pharmaceuticals, Inc., 2855, Gazelle Court, Carlsbad, CA, 92010, USA
| | - Jonathan Gilley
- Department of Clinical Neuroscience, Cambridge University, Cambridge, UK
| | - Michael P Coleman
- Department of Clinical Neuroscience, Cambridge University, Cambridge, UK
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Vidhya Rangaraju
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
6
|
Grieco SF, Holmes TC, Xu X. Probing neural circuit mechanisms in Alzheimer's disease using novel technologies. Mol Psychiatry 2023; 28:4407-4420. [PMID: 36959497 PMCID: PMC10827671 DOI: 10.1038/s41380-023-02018-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023]
Abstract
The study of Alzheimer's Disease (AD) has traditionally focused on neuropathological mechanisms that has guided therapies that attenuate neuropathological features. A new direction is emerging in AD research that focuses on the progressive loss of cognitive function due to disrupted neural circuit mechanisms. Evidence from humans and animal models of AD show that dysregulated circuits initiate a cascade of pathological events that culminate in functional loss of learning, memory, and other aspects of cognition. Recent progress in single-cell, spatial, and circuit omics informs this circuit-focused approach by determining the identities, locations, and circuitry of the specific cells affected by AD. Recently developed neuroscience tools allow for precise access to cell type-specific circuitry so that their functional roles in AD-related cognitive deficits and disease progression can be tested. An integrated systems-level understanding of AD-associated neural circuit mechanisms requires new multimodal and multi-scale interrogations that longitudinally measure and/or manipulate the ensemble properties of specific molecularly-defined neuron populations first susceptible to AD. These newly developed technological and conceptual advances present new opportunities for studying and treating circuits vulnerable in AD and represent the beginning of a new era for circuit-based AD research.
Collapse
Affiliation(s)
- Steven F Grieco
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
- Center for Neural Circuit Mapping (CNCM), University of California, Irvine, CA, 92697, USA
| | - Todd C Holmes
- Center for Neural Circuit Mapping (CNCM), University of California, Irvine, CA, 92697, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Center for Neural Circuit Mapping (CNCM), University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
7
|
Yang S, Park JH, Lu HC. Axonal energy metabolism, and the effects in aging and neurodegenerative diseases. Mol Neurodegener 2023; 18:49. [PMID: 37475056 PMCID: PMC10357692 DOI: 10.1186/s13024-023-00634-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/08/2023] [Indexed: 07/22/2023] Open
Abstract
Human studies consistently identify bioenergetic maladaptations in brains upon aging and neurodegenerative disorders of aging (NDAs), such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Glucose is the major brain fuel and glucose hypometabolism has been observed in brain regions vulnerable to aging and NDAs. Many neurodegenerative susceptible regions are in the topological central hub of the brain connectome, linked by densely interconnected long-range axons. Axons, key components of the connectome, have high metabolic needs to support neurotransmission and other essential activities. Long-range axons are particularly vulnerable to injury, neurotoxin exposure, protein stress, lysosomal dysfunction, etc. Axonopathy is often an early sign of neurodegeneration. Recent studies ascribe axonal maintenance failures to local bioenergetic dysregulation. With this review, we aim to stimulate research in exploring metabolically oriented neuroprotection strategies to enhance or normalize bioenergetics in NDA models. Here we start by summarizing evidence from human patients and animal models to reveal the correlation between glucose hypometabolism and connectomic disintegration upon aging/NDAs. To encourage mechanistic investigations on how axonal bioenergetic dysregulation occurs during aging/NDAs, we first review the current literature on axonal bioenergetics in distinct axonal subdomains: axon initial segments, myelinated axonal segments, and axonal arbors harboring pre-synaptic boutons. In each subdomain, we focus on the organization, activity-dependent regulation of the bioenergetic system, and external glial support. Second, we review the mechanisms regulating axonal nicotinamide adenine dinucleotide (NAD+) homeostasis, an essential molecule for energy metabolism processes, including NAD+ biosynthetic, recycling, and consuming pathways. Third, we highlight the innate metabolic vulnerability of the brain connectome and discuss its perturbation during aging and NDAs. As axonal bioenergetic deficits are developing into NDAs, especially in asymptomatic phase, they are likely exaggerated further by impaired NAD+ homeostasis, the high energetic cost of neural network hyperactivity, and glial pathology. Future research in interrogating the causal relationship between metabolic vulnerability, axonopathy, amyloid/tau pathology, and cognitive decline will provide fundamental knowledge for developing therapeutic interventions.
Collapse
Affiliation(s)
- Sen Yang
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Jung Hyun Park
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA
| | - Hui-Chen Lu
- The Linda and Jack Gill Center for Biomolecular Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, 47405, USA.
- Program in Neuroscience, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
8
|
Tian J, Chen Y, Jiang T, Jia X, Gong H, Li X. Low-temperature resin embedding of the whole brain for various precise structures dissection. iScience 2023; 26:106705. [PMID: 37216109 PMCID: PMC10192521 DOI: 10.1016/j.isci.2023.106705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/03/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Resin embedding combined with ultra-thin sectioning has been widely used in microscopic and electron imaging to acquire precise structural information of biological tissues. However, the existing embedding method was detrimental to quenchable fluorescent signals of precise structures and pH-insensitive fluorescent dyes. Here, we developed a low-temperature chemical polymerization method named HM20-T to maintain weak signals of various precise structures and to decrease background fluorescence. The fluorescence preservation ratio of green fluorescent protein (GFP) tagged presynaptic elements and tdTomato labeled axons doubled. The HM20-T method was suitable for a variety of fluorescent dyes, such as DyLight 488 conjugated Lycopersicon esculentum lectin. Moreover, the brains also retained immunoreactivity after embedding. In summary, the HM20-T method was suitable for the characterization of multi-color labeled precise structures, which would contribute to the acquisition of complete morphology of various biological tissues and to the investigation of composition and circuit connection in the whole brain.
Collapse
Affiliation(s)
- Jiaojiao Tian
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yingying Chen
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tao Jiang
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainmatics, JITRI, Suzhou 215125, China
| | - Xueyan Jia
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainmatics, JITRI, Suzhou 215125, China
| | - Hui Gong
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainmatics, JITRI, Suzhou 215125, China
| | - Xiangning Li
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
- Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainmatics, JITRI, Suzhou 215125, China
| |
Collapse
|
9
|
Yang S, Niou ZX, Enriquez A, LaMar J, Huang JY, Ling K, Jafar-Nejad P, Gilley J, Coleman MP, Tennessen JM, Rangaraju V, Lu HC. NMNAT2 supports vesicular glycolysis via NAD homeostasis to fuel fast axonal transport. RESEARCH SQUARE 2023:rs.3.rs-2859584. [PMID: 37292715 PMCID: PMC10246254 DOI: 10.21203/rs.3.rs-2859584/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Bioenergetic maladaptations and axonopathy are often found in the early stages of neurodegeneration. Nicotinamide adenine dinucleotide (NAD), an essential cofactor for energy metabolism, is mainly synthesized by Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) in CNS neurons. NMNAT2 mRNA levels are reduced in the brains of Alzheimer's, Parkinson's, and Huntington's disease. Here we addressed whether NMNAT2 is required for axonal health of cortical glutamatergic neurons, whose long-projecting axons are often vulnerable in neurodegenerative conditions. We also tested if NMNAT2 maintains axonal health by ensuring axonal ATP levels for axonal transport, critical for axonal function. Methods We generated mouse and cultured neuron models to determine the impact of NMNAT2 loss from cortical glutamatergic neurons on axonal transport, energetic metabolism, and morphological integrity. In addition, we determined if exogenous NAD supplementation or inhibiting a NAD hydrolase, sterile alpha and TIR motif-containing protein 1 (SARM1), prevented axonal deficits caused by NMNAT2 loss. This study used a combination of genetics, molecular biology, immunohistochemistry, biochemistry, fluorescent time-lapse imaging, live imaging with optical sensors, and anti-sense oligos. Results We provide in vivo evidence that NMNAT2 in glutamatergic neurons is required for axonal survival. Using in vivo and in vitro studies, we demonstrate that NMNAT2 maintains the NAD-redox potential to provide "on-board" ATP via glycolysis to vesicular cargos in distal axons. Exogenous NAD+ supplementation to NMNAT2 KO neurons restores glycolysis and resumes fast axonal transport. Finally, we demonstrate both in vitro and in vivo that reducing the activity of SARM1, an NAD degradation enzyme, can reduce axonal transport deficits and suppress axon degeneration in NMNAT2 KO neurons. Conclusion NMNAT2 ensures axonal health by maintaining NAD redox potential in distal axons to ensure efficient vesicular glycolysis required for fast axonal transport.
Collapse
|
10
|
A Transgenic 5xFAD-M Line of Mice for Dendritic Spine Morphology Analysis in Alzheimer's Disease. Brain Sci 2023; 13:brainsci13020307. [PMID: 36831849 PMCID: PMC9954381 DOI: 10.3390/brainsci13020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Cognitive impairments are closely related to synaptic loss in Alzheimer's disease (AD). Functional changes in synaptic contacts are reflected in dendritic spine morphology. Visualization of neurons for morphological studies in vivo is complicated by the fixed brain slice staining or expensive adeno-associated virus injections. We created a transgenic 5xFAD-M line of mice with AD-associated mutations and expressed GFP protein in single neurons of the brain. This mouse model of AD is a useful tool for the simplified visualization of the hippocampal neurons' morphology in vivo without additional staining manipulations. The progressive elimination of mushroom spines was demonstrated in 5xFAD-M mice between 4 and 5 months of age. Five-month-old 5xFAD-M male and female mice showed change both in the total density and the mushroom spines number compared to sex-matched control. We conclude 5xFAD-M mice can be a useful AD model for studying the mechanisms of synaptic pathology under neurodegenerative conditions and evaluating the effects of potential therapeutic agents on spine morphology as crucial aspect of memory loss in AD.
Collapse
|
11
|
Chen S, Liu G, Li A, Liu Z, Long B, Yang X, Gong H, Li X. Three-dimensional mapping in multi-samples with large-scale imaging and multiplexed post staining. Commun Biol 2023; 6:148. [PMID: 36737476 PMCID: PMC9898531 DOI: 10.1038/s42003-023-04456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Dissection of the anatomical information at the single-cell level is crucial for understanding the organization rule and pathological mechanism of biological tissues. Mapping the whole organ in numerous groups with multiple conditions brings the challenges in imaging and analysis. Here, we describe an approach, named array fluorescent micro-optical sectioning tomography (array-fMOST), to identify the three-dimensional information at single-cell resolution from multi-samples. The pipeline contains array embedding, large-scale imaging, post-imaging staining and data analysis, which could image over 24 mouse brains simultaneously and collect the slices for further analysis. With transgenic mice, we acquired the distribution information of neuropeptide somatostatin neurons during natural aging and compared the changes in the microenvironments by multi-component labeling of serial sections with precise co-registration of serial datasets quantitatively. With viral labeling, we also analyzed the input circuits of the medial prefrontal cortex in the whole brain of Alzheimer's disease and autism model mice. This pipeline is highly scalable to be applied to anatomical alterations screening and identification. It provides new opportunities for combining multi-sample whole-organ imaging and molecular phenotypes identification analysis together. Such integrated high-dimensional information acquisition method may accelerate our understanding of pathogenesis and progression of disease in situ at multiple levels.
Collapse
Affiliation(s)
- Siqi Chen
- grid.33199.310000 0004 0368 7223Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Guangcai Liu
- grid.33199.310000 0004 0368 7223Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Anan Li
- grid.33199.310000 0004 0368 7223Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China ,grid.495419.4Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215125 China
| | - Zhixiang Liu
- grid.33199.310000 0004 0368 7223Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Ben Long
- grid.428986.90000 0001 0373 6302Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228 China
| | - Xiaoquan Yang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215125, China.
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215125, China.
| | - Xiangning Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Research Unit of Multimodal Cross Scale Neural Signal Detection and Imaging, Chinese Academy of Medical Sciences, HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou, 215125, China. .,Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
12
|
Dissection of the long-range projections of specific neurons at the synaptic level in the whole mouse brain. Proc Natl Acad Sci U S A 2022; 119:e2202536119. [PMID: 36161898 PMCID: PMC9546530 DOI: 10.1073/pnas.2202536119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Through synaptic connections, long-range circuits transmit information among neurons and connect different brain regions to form functional motifs and execute specific functions. Tracing the synaptic distribution of specific neurons requires submicron-level resolution information. However, it is a great challenge to map the synaptic terminals completely because these fine structures span multiple regions, even in the whole brain. Here, we develop a pipeline including viral tracing, sample embedding, fluorescent micro-optical sectional tomography, and big data processing. We mapped the whole-brain distribution and architecture of long projections of the parvalbumin neurons in the basal forebrain at the synaptic level. These neurons send massive projections to multiple downstream regions with subregional preference. With three-dimensional reconstruction in the targeted areas, we found that synaptic degeneration was inconsistent with the accumulation of amyloid-β plaques but was preferred in memory-related circuits, such as hippocampal formation and thalamus, but not in most hypothalamic nuclei in 8-month-old mice with five familial Alzheimer's disease mutations. Our pipeline provides a platform for generating a whole-brain atlas of cell-type-specific synaptic terminals in the physiological and pathological brain, which can provide an important resource for the study of the organizational logic of specific neural circuits and the circuitry changes in pathological conditions.
Collapse
|
13
|
Yin X, Zhang X, Zhang J, Yang W, Sun X, Zhang H, Gao Z, Jiang H. High-Resolution Digital Panorama of Multiple Structures in Whole Brain of Alzheimer's Disease Mice. Front Neurosci 2022; 16:870520. [PMID: 35516801 PMCID: PMC9067162 DOI: 10.3389/fnins.2022.870520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/11/2022] [Indexed: 11/24/2022] Open
Abstract
Simultaneously visualizing Amyloid-β (Aβ) plaque with its surrounding brain structures at the subcellular level in the intact brain is essential for understanding the complex pathology of Alzheimer's disease, but is still rarely achieved due to the technical limitations. Combining the micro-optical sectioning tomography (MOST) system, whole-brain Nissl staining, and customized image processing workflow, we generated a whole-brain panorama of Alzheimer's disease mice without specific labeling. The workflow employed the steps that include virtual channel splitting, feature enhancement, iso-surface rendering, direct volume rendering, and feature fusion to extract and reconstruct the different signals with distinct gray values and morphologies. Taking advantage of this workflow, we found that the denser-distribution areas of Aβ plaques appeared with relatively more somata and smaller vessels, but show a dissimilar distributing pattern with nerve tracts. In addition, the entorhinal cortex and adjacent subiculum regions present the highest density and biggest diameter of plaques. The neuronal processes in the vicinity of these Aβ plaques showed significant structural alternation such as bending or abrupt branch ending. The capillaries inside or adjacent to the plaques were observed with abundant distorted micro-vessels and abrupt ending. Depicting Aβ plaques, somata, nerve processes and tracts, and blood vessels simultaneously, this panorama enables us for the first time, to analyze how the Aβ plaques interact with capillaries, somata, and processes at a submicron resolution of 3D whole-brain scale, which reveals potential pathological effects of Aβ plaques from a new cross-scale view. Our approach opens a door to routine systematic studies of complex interactions among brain components in mouse models of Alzheimer's disease.
Collapse
Affiliation(s)
- Xianzhen Yin
- Center for MOST and Image Fusion Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Lingang Laboratory, Shanghai, China
- *Correspondence: Xianzhen Yin
| | - Xiaochuan Zhang
- Center for MOST and Image Fusion Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jingjing Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Weicheng Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xian Sun
- Center for MOST and Image Fusion Analysis, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Haiyan Zhang
| | - Zhaobing Gao
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, China
- Zhaobing Gao
| | - Hualiang Jiang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Lingang Laboratory, Shanghai, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- School of Life Science and Technology, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- Hualiang Jiang
| |
Collapse
|