1
|
Willbrand EH, Maboudian SA, Elliott MV, Kellerman GM, Johnson SL, Weiner KS. Variable Presence of an Evolutionarily New Brain Structure is Related to Trait Impulsivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619912. [PMID: 39484399 PMCID: PMC11527008 DOI: 10.1101/2024.10.23.619912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Impulsivity is a multidimensional construct reflecting poor constraint over one's behaviors. Clinical psychology research identifies separable impulsivity dimensions that are each unique transdiagnostic indicators for psychopathology. Yet, despite this apparent clinical importance, the shared and unique neuroanatomical correlates of these factors remain largely unknown. Concomitantly, neuroimaging research identifies variably present human brain structures implicated in cognition and disorder: the folds (sulci) of the cerebral cortex located in the latest developing and most evolutionarily expanded hominoid-specific association cortices. Methods We tethered these two fields to test whether variability in one such structure in anterior cingulate cortex (ACC)-the paracingulate sulcus (PCGS)-was related to individual differences in trait impulsivity. 120 adult participants with internalizing or externalizing psychopathology completed a magnetic resonance imaging scan and the Three-Factor Impulsivity Index. Using precision imaging techniques, we manually identified the PCGS, when present, and acquired quantitative folding metrics (PCGS length and ACC local gyrification index). Results Neuroanatomical-behavioral analyses revealed that participants with leftward or symmetrical PCGS patterns had greater severity of Lack of Follow Through (LFT)-which captures inattention and lack of perseverance-than those with rightward asymmetry. Neuroanatomical-functional analyses identified that the PCGS co-localized with a focal locus found in a neuroimaging meta-analysis on a feature underlying LFT. Both quantitative folding metrics did not relate to any impulsivity dimension. Conclusions This study advances understanding of the neuroanatomical correlates of impulsivity and establishes the notion that the topographical organization of distinct, hominoid-specific cortical expanses underlie separable impulsivity dimensions with robust, transdiagnostic implications for psychopathology.
Collapse
|
2
|
Snyder WE, Vértes PE, Kyriakopoulou V, Wagstyl K, Williams LZJ, Moraczewski D, Thomas AG, Karolis VR, Seidlitz J, Rivière D, Robinson EC, Mangin JF, Raznahan A, Bullmore ET. A bimodal taxonomy of adult human brain sulcal morphology related to timing of fetal sulcation and trans-sulcal gene expression gradients. Neuron 2024; 112:3396-3411.e6. [PMID: 39178859 PMCID: PMC11502256 DOI: 10.1016/j.neuron.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/22/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024]
Abstract
We developed a computational pipeline (now provided as a resource) for measuring morphological similarity between cortical surface sulci to construct a sulcal phenotype network (SPN) from each magnetic resonance imaging (MRI) scan in an adult cohort (n = 34,725; 45-82 years). Networks estimated from pairwise similarities of 40 sulci on 5 morphological metrics comprised two clusters of sulci, represented also by the bimodal distribution of sulci on a linear-to-complex dimension. Linear sulci were more heritable and typically located in unimodal cortex, and complex sulci were less heritable and typically located in heteromodal cortex. Aligning these results with an independent fetal brain MRI cohort (n = 228; 21-36 gestational weeks), we found that linear sulci formed earlier, and the earliest and latest-forming sulci had the least between-adult variation. Using high-resolution maps of cortical gene expression, we found that linear sulcation is mechanistically underpinned by trans-sulcal gene expression gradients enriched for developmental processes.
Collapse
Affiliation(s)
- William E Snyder
- Department of Psychiatry, University of Cambridge, Cambridge, UK; Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA.
| | - Petra E Vértes
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Vanessa Kyriakopoulou
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Konrad Wagstyl
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Logan Z J Williams
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Dustin Moraczewski
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Adam G Thomas
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, MD, USA
| | - Vyacheslav R Karolis
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jakob Seidlitz
- Lifespan Brain Institute, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Denis Rivière
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette 91191, France
| | - Emma C Robinson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Jean-Francois Mangin
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette 91191, France
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, UK; Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
3
|
Denier N, Grieder M, Jann K, Breit S, Mertse N, Walther S, Soravia LM, Meyer A, Federspiel A, Wiest R, Bracht T. Analyzing fractal dimension in electroconvulsive therapy: Unraveling complexity in structural and functional neuroimaging. Neuroimage 2024; 297:120671. [PMID: 38901774 DOI: 10.1016/j.neuroimage.2024.120671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Numerous studies show that electroconvulsive therapy (ECT) induces hippocampal neuroplasticity, but findings are inconsistent regarding its clinical relevance. This study aims to investigate ECT-induced plasticity of anterior and posterior hippocampi using mathematical complexity measures in neuroimaging, namely Higuchi's fractal dimension (HFD) for fMRI time series and the fractal dimension of cortical morphology (FD-CM). Furthermore, we explore the potential of these complexity measures to predict ECT treatment response. METHODS Twenty patients with a current depressive episode (16 with major depressive disorder and 4 with bipolar disorder) underwent MRI-scans before and after an ECT-series. Twenty healthy controls matched for age and sex were also scanned twice for comparison purposes. Resting-state fMRI data were processed, and HFD was computed for anterior and posterior hippocampi. Group-by-time effects for HFD in anterior and posterior hippocampi were calculated and correlations between HFD changes and improvement in depression severity were examined. For FD-CM analyses, we preprocessed structural MRI with CAT12's surface-based methods. We explored group-by-time effects for FD-CM and the predictive value of baseline HFD and FD-CM for treatment outcome. RESULTS Patients exhibited a significant increase in bilateral hippocampal HFD from baseline to follow-up scans. Right anterior hippocampal HFD increase was associated with reductions in depression severity. We found no group differences and group-by-time effects in FD-CM. After applying a whole-brain regression analysis, we found that baseline FD-CM in the left temporal pole predicted reduction of overall depression severity after ECT. Baseline hippocampal HFD did not predict treatment outcome. CONCLUSION This study suggests that HFD and FD-CM are promising imaging markers to investigate ECT-induced neuroplasticity associated with treatment response.
Collapse
Affiliation(s)
- Niklaus Denier
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland.
| | - Matthias Grieder
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Kay Jann
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Sigrid Breit
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Nicolas Mertse
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Leila M Soravia
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Agnes Meyer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland; Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland; Institute of Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
| | - Tobias Bracht
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland; Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
4
|
Bouhali F, Dubois J, Hoeft F, Weiner KS. Unique longitudinal contributions of sulcal interruptions to reading acquisition in children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605574. [PMID: 39131390 PMCID: PMC11312548 DOI: 10.1101/2024.07.30.605574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
A growing body of literature indicates strong associations between indentations of the cerebral cortex (i.e., sulci) and individual differences in cognitive performance. Interruptions, or gaps, of sulci (historically known as pli de passage) are particularly intriguing as previous work suggests that these interruptions have a causal effect on cognitive development. Here, we tested how the presence and morphology of sulcal interruptions in the left posterior occipitotemporal sulcus (pOTS) longitudinally impact the development of a culturally-acquired skill: reading. Forty-three children were successfully followed from age 5 in kindergarten, at the onset of literacy instruction, to ages 7 and 8 with assessments of cognitive, pre-literacy, and literacy skills, as well as MRI anatomical scans at ages 5 and 8. Crucially, we demonstrate that the presence of a left pOTS gap at 5 years is a specific and robust longitudinal predictor of better future reading skills in children, with large observed benefits on reading behavior ranging from letter knowledge to reading comprehension. The effect of left pOTS interruptions on reading acquisition accumulated through time, and was larger than the impact of benchmark cognitive and familial predictors of reading ability and disability. Finally, we show that increased local U-fiber white matter connectivity associated with such sulcal interruptions possibly underlie these behavioral benefits, by providing a computational advantage. To our knowledge, this is the first quantitative evidence supporting a potential integrative gray-white matter mechanism underlying the cognitive benefits of macro-anatomical differences in sulcal morphology related to longitudinal improvements in a culturally-acquired skill.
Collapse
Affiliation(s)
- Florence Bouhali
- Department of Psychiatry and Behavioral Sciences & Weil Institute of Neuroscience, University of California San Francisco, San Francisco, CA, USA
- Aix-Marseille University, CNRS, CRPN, Marseille, France
| | - Jessica Dubois
- University Paris Cité, NeuroDiderot, INSERM, Paris, France
- University Paris-Saclay, NeuroSpin, UNIACT, CEA, France
| | - Fumiko Hoeft
- Department of Psychological Sciences, University of Connecticut Waterbury, Waterbury, CT, USA
| | - Kevin S. Weiner
- Department of Psychology, Department of Neuroscience, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
5
|
Taubert M, Ziegler G, Lehmann N. Higher surface folding of the human premotor cortex is associated with better long-term learning capability. Commun Biol 2024; 7:635. [PMID: 38796622 PMCID: PMC11127997 DOI: 10.1038/s42003-024-06309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/08/2024] [Indexed: 05/28/2024] Open
Abstract
The capacity to learn enabled the human species to adapt to various challenging environmental conditions and pass important achievements on to the next generation. A growing body of research suggests links between neocortical folding properties and numerous aspects of human behavior, but their impact on enhanced human learning capacity remains unexplored. Here we leverage three training cohorts to demonstrate that higher levels of premotor cortical folding reliably predict individual long-term learning gains in a challenging new motor task, above and beyond initial performance differences. Individual folding-related predisposition to motor learning was found to be independent of cortical thickness and intracortical microstructure, but dependent on larger cortical surface area in premotor regions. We further show that learning-relevant features of cortical folding occurred in close spatial proximity to practice-induced structural brain plasticity. Our results suggest a link between neocortical surface folding and human behavioral adaptability.
Collapse
Affiliation(s)
- Marco Taubert
- Department of Sport Science, Institute III, Faculty of Humanities, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany.
- Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany.
- Collaborative Research Center 1436 Neural Resources of Cognition, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Gabriel Ziegler
- Collaborative Research Center 1436 Neural Resources of Cognition, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Germany German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Nico Lehmann
- Department of Sport Science, Institute III, Faculty of Humanities, Otto von Guericke University, Zschokkestraße 32, 39104, Magdeburg, Germany
- Collaborative Research Center 1436 Neural Resources of Cognition, Otto von Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103, Leipzig, Germany
| |
Collapse
|
6
|
Willbrand EH, Tsai YH, Gagnant T, Weiner KS. Updating the sulcal landscape of the human lateral parieto-occipital junction provides anatomical, functional, and cognitive insights. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.08.544284. [PMID: 38798426 PMCID: PMC11118496 DOI: 10.1101/2023.06.08.544284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Recent work has uncovered relationships between evolutionarily new small and shallow cerebral indentations, or sulci, and human behavior. Yet, this relationship remains unexplored in the lateral parietal cortex (LPC) and the lateral parieto-occipital junction (LPOJ). After defining thousands of sulci in a young adult cohort, we revised the previous LPC/LPOJ sulcal landscape to include four previously overlooked, small, shallow, and variable sulci. One of these sulci (ventral supralateral occipital sulcus, slocs-v) is present in nearly every hemisphere and is morphologically, architecturally, and functionally dissociable from neighboring sulci. A data-driven, model-based approach, relating sulcal depth to behavior further revealed that the morphology of only a subset of LPC/LPOJ sulci, including the slocs-v, is related to performance on a spatial orientation task. Our findings build on classic neuroanatomical theories and identify new neuroanatomical targets for future "precision imaging" studies exploring the relationship among brain structure, brain function, and cognitive abilities in individual participants.
Collapse
Affiliation(s)
- Ethan H. Willbrand
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI USA
| | - Yi-Heng Tsai
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas Gagnant
- Medical Science Faculty, University of Bordeaux, Bordeaux, France
| | - Kevin S. Weiner
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
7
|
Santacroce F, Cachia A, Fragueiro A, Grande E, Roell M, Baldassarre A, Sestieri C, Committeri G. Human intraparietal sulcal morphology relates to individual differences in language and memory performance. Commun Biol 2024; 7:520. [PMID: 38698168 PMCID: PMC11065983 DOI: 10.1038/s42003-024-06175-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
The sulco-gyral pattern is a qualitative feature of the cortical anatomy that is determined in utero, stable throughout lifespan and linked to brain function. The intraparietal sulcus (IPS) is a nodal associative brain area, but the relation between its morphology and cognition is largely unknown. By labelling the left and right IPS of 390 healthy participants into two patterns, according to the presence or absence of a sulcus interruption, here we demonstrate a strong association between the morphology of the right IPS and performance on memory and language tasks. We interpret the results as a morphological advantage of a sulcus interruption, probably due to the underlying white matter organization. The right-hemisphere specificity of this effect emphasizes the neurodevelopmental and plastic role of sulcus morphology in cognition prior to lateralisation processes. The results highlight a promising area of investigation on the relationship between cognitive performance, sulco-gyral pattern and white matter bundles.
Collapse
Affiliation(s)
- Federica Santacroce
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy.
| | - Arnaud Cachia
- Université Paris Cité, Laboratoire de Psychologie du développement et de l'Education de l'Enfant (LaPsyDÉ), CNRS UMR 8240, Paris, France
- Université Paris Cité, Institut de Psychiatrie et Neurosciences de Paris (IPNP), INSERM, UMR S1266, Paris, France
| | - Agustina Fragueiro
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Eleonora Grande
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Margot Roell
- Université Paris Cité, Laboratoire de Psychologie du développement et de l'Education de l'Enfant (LaPsyDÉ), CNRS UMR 8240, Paris, France
| | - Antonello Baldassarre
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy
| | - Giorgia Committeri
- Department of Neuroscience, Imaging and Clinical Sciences, and ITAB, Gabriele d'Annunzio University, Via Luigi Polacchi 11, 66100, Chieti, Italy.
| |
Collapse
|
8
|
Häkkinen S, Voorhies WI, Willbrand EH, Tsai YH, Gagnant T, Yao JK, Weiner KS, Bunge SA. Lateral frontoparietal functional connectivity based on individual sulcal morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590165. [PMID: 38659961 PMCID: PMC11042283 DOI: 10.1101/2024.04.18.590165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A salient neuroanatomical feature of the human brain is its pronounced cortical folding, and there is mounting evidence that sulcal morphology is relevant to functional brain architecture and cognition. Recent studies have emphasized putative tertiary sulci (pTS): small, shallow, late-developing, and evolutionarily new sulci that have been posited to serve as functional landmarks in association cortices. A fruitful approach to characterizing brain architecture has been to delineate regions based on transitions in fMRI-based functional connectivity profiles; however, exact regional boundaries can change depending on the data used to generate the parcellation. As sulci are fixed neuroanatomical structures, here, we propose to anchor functional connectivity to individual-level sulcal anatomy. We characterized fine-grained patterns of functional connectivity across 42 sulci in lateral prefrontal (LPFC) and lateral parietal cortices (LPC) in a pediatric sample (N = 43; 20 female; ages 7-18). Further, we test for relationships between pTS morphology and functional network architecture, focusing on depth as a defining characteristic of these shallow sulci, and one that has been linked to variability in cognition. We find that 1) individual sulci have distinct patterns of connectivity, but nonetheless cluster together into groups with similar patterns - in some cases with distant rather than neighboring sulci, 2) there is moderate agreement in cluster assignments at the group and individual levels, underscoring the need for individual-level analyses, and 3) across individuals, greater depth was associated with higher network centrality for several pTS. These results highlight the importance of considering individual sulcal morphology for understanding functional brain organization. Significance Statement A salient, and functionally relevant, feature of the human brain is its pronounced cortical folding. However, the links between sulcal anatomy and brain function are still poorly understood - particularly for small, shallow, individually variable sulci in association cortices. Here, we explore functional connectivity among individually defined sulci in lateral prefrontal and parietal regions. We find that individual sulci have distinct patterns of connectivity but nonetheless cluster together into groups with similar connectivity - in some cases spanning lateral prefrontal and parietal sulci. We further show that the network centrality of specific sulci is positively associated with their depth, thereby helping to bridge the gap between individual differences in brain anatomy and functional networks leveraging the sulcal anatomy of the individual.
Collapse
Affiliation(s)
- Suvi Häkkinen
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720 USA
| | - Willa I. Voorhies
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
| | - Ethan H. Willbrand
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, 53726 USA
| | - Yi-Heng Tsai
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Thomas Gagnant
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Medical Science Faculty, University of Bordeaux, Bordeaux, France
| | | | - Kevin S. Weiner
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720 USA
| | - Silvia A. Bunge
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720 USA
| |
Collapse
|
9
|
Willbrand EH, Jackson S, Chen S, Hathaway CB, Voorhies WI, Bunge SA, Weiner KS. Sulcal variability in anterior lateral prefrontal cortex contributes to variability in reasoning performance among young adults. Brain Struct Funct 2024; 229:387-402. [PMID: 38184493 DOI: 10.1007/s00429-023-02734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/12/2023] [Indexed: 01/08/2024]
Abstract
Identifying structure-function correspondences is a major goal among biologists, cognitive neuroscientists, and brain mappers. Recent studies have identified relationships between performance on cognitive tasks and the presence or absence of small, shallow indentations, or sulci, of the human brain. Building on the previous finding that the presence of the ventral para-intermediate frontal sulcus (pimfs-v) in the left anterior lateral prefrontal cortex (aLPFC) was related to reasoning task performance in children and adolescents, we tested whether this relationship extended to a different sample, age group, and reasoning task. As predicted, the presence of this aLPFC sulcus was also associated with higher reasoning scores in young adults (ages 22-36). These findings have not only direct developmental, but also evolutionary relevance-as recent work shows that the pimfs-v is exceedingly rare in chimpanzees. Thus, the pimfs-v is a key developmental, cognitive, and evolutionarily relevant feature that should be considered in future studies examining how the complex relationships among multiscale anatomical and functional features of the brain give rise to abstract thought.
Collapse
Affiliation(s)
- Ethan H Willbrand
- Medical Scientist Training Program, School of Medicine and Public Health, University of WI-Madison, Madison, WI, USA
| | - Samantha Jackson
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Szeshuen Chen
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Willa I Voorhies
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Silvia A Bunge
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA.
| | - Kevin S Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
10
|
Snyder WE, Vértes PE, Kyriakopoulou V, Wagstyl K, Williams LZJ, Moraczewski D, Thomas AG, Karolis VR, Seidlitz J, Rivière D, Robinson EC, Mangin JF, Raznahan A, Bullmore ET. A bipolar taxonomy of adult human brain sulcal morphology related to timing of fetal sulcation and trans-sulcal gene expression gradients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572454. [PMID: 38168226 PMCID: PMC10760196 DOI: 10.1101/2023.12.19.572454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We developed a computational pipeline (now provided as a resource) for measuring morphological similarity between cortical surface sulci to construct a sulcal phenotype network (SPN) from each magnetic resonance imaging (MRI) scan in an adult cohort (N=34,725; 45-82 years). Networks estimated from pairwise similarities of 40 sulci on 5 morphological metrics comprised two clusters of sulci, represented also by the bipolar distribution of sulci on a linear-to-complex dimension. Linear sulci were more heritable and typically located in unimodal cortex; complex sulci were less heritable and typically located in heteromodal cortex. Aligning these results with an independent fetal brain MRI cohort (N=228; 21-36 gestational weeks), we found that linear sulci formed earlier, and the earliest and latest-forming sulci had the least between-adult variation. Using high-resolution maps of cortical gene expression, we found that linear sulcation is mechanistically underpinned by trans-sulcal gene expression gradients enriched for developmental processes.
Collapse
Affiliation(s)
- William E Snyder
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Petra E Vértes
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Vanessa Kyriakopoulou
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Konrad Wagstyl
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Logan Z J Williams
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Dustin Moraczewski
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Adam G Thomas
- Data Science and Sharing Team, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Vyacheslav R Karolis
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Jakob Seidlitz
- Lifespan Brain Institute, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Denis Rivière
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette, 91191, France
| | - Emma C Robinson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Science, King's College London, London, UK
| | - Jean-Francois Mangin
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette, 91191, France
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Cambridgeshire & Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
11
|
Akula SK, Exposito-Alonso D, Walsh CA. Shaping the brain: The emergence of cortical structure and folding. Dev Cell 2023; 58:2836-2849. [PMID: 38113850 PMCID: PMC10793202 DOI: 10.1016/j.devcel.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/08/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023]
Abstract
The cerebral cortex-the brain's covering and largest region-has increased in size and complexity in humans and supports higher cognitive functions such as language and abstract thinking. There is a growing understanding of the human cerebral cortex, including the diversity and number of cell types that it contains, as well as of the developmental mechanisms that shape cortical structure and organization. In this review, we discuss recent progress in our understanding of molecular and cellular processes, as well as mechanical forces, that regulate the folding of the cerebral cortex. Advances in human genetics, coupled with experimental modeling in gyrencephalic species, have provided insights into the central role of cortical progenitors in the gyrification and evolutionary expansion of the cerebral cortex. These studies are essential for understanding the emergence of structural and functional organization during cortical development and the pathogenesis of neurodevelopmental disorders associated with cortical malformations.
Collapse
Affiliation(s)
- Shyam K Akula
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - David Exposito-Alonso
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA; Allen Discovery Center for Human Brain Evolution, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
| |
Collapse
|
12
|
Willbrand EH, Parker BJ, Weiner KS. Individual differences, missing sulci, and nomenclature: A comment on "On presentation of the human cerebral sulci from inside the cerebrum". J Anat 2023; 243:1066-1068. [PMID: 37458159 PMCID: PMC10641028 DOI: 10.1111/joa.13932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
An average hemisphere of the human cerebral cortex contains over 100 individual folds (sulci). Many of these sulci have been overlooked by classic and modern atlases and neuroimaging tools. These sulci also show prominent individual differences: They can be broken into variable "complexes" and some sulci may not be present altogether.
Collapse
Affiliation(s)
- Ethan H Willbrand
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
- Department of Psychology, University of California, Berkeley, Berkeley, California, USA
- Medical Scientist Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Benjamin J Parker
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
| | - Kevin S Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
- Department of Psychology, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
13
|
de Vareilles H. Folding into shape. eLife 2023; 12:e93122. [PMID: 37943162 PMCID: PMC10635642 DOI: 10.7554/elife.93122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
A new computational tool provides insights into the structure of the cerebellum in mammals.
Collapse
|
14
|
Willbrand EH, Bunge SA, Weiner KS. Neuroanatomical and Functional Dissociations between Variably Present Anterior Lateral Prefrontal Sulci. J Cogn Neurosci 2023; 35:1846-1867. [PMID: 37677051 PMCID: PMC10586811 DOI: 10.1162/jocn_a_02049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The lateral prefrontal cortex (LPFC) is an evolutionarily expanded region in humans that is critical for numerous complex functions, many of which are largely hominoid specific. Although recent work shows that the presence or absence of specific sulci in anterior LPFC is associated with cognitive performance across age groups, it is unknown whether the presence of these structures relates to individual differences in the functional organization of LPFC. To fill this gap in knowledge, we leveraged multimodal neuroimaging data from two samples encompassing 82 young adult humans (aged 22-36 years) and show that the dorsal and ventral components of the paraintermediate frontal sulcus, or pimfs, present distinct morphological (surface area), architectural (thickness and myelination), and functional (resting-state connectivity networks) properties. We further contextualize the pimfs components within classic and modern cortical parcellations. Taken together, the dorsal and ventral pimfs components mark transitions in LPFC anatomy and function, across metrics and parcellations. These results emphasize that the pimfs is a critical structure to consider when examining individual differences in the anatomical and functional organization of LPFC and suggest that future individual-level parcellations could benefit from incorporating sulcal anatomy when delineating LPFC cortical regions.
Collapse
|
15
|
Moyal M, Haroche A, Attali D, Dadi G, Raoelison M, Le Berre A, Iftimovici A, Chaumette B, Leroy S, Charron S, Debacker C, Oppenheim C, Cachia A, Plaze M. Orbitofrontal sulcal patterns in catatonia. Eur Psychiatry 2023; 67:e6. [PMID: 37853748 DOI: 10.1192/j.eurpsy.2023.2461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Catatonia is a psychomotor syndrome frequently observed in disorders with neurodevelopmental impairments, including psychiatric disorders such as schizophrenia. The orbitofrontal cortex (OFC) has been repeatedly associated with catatonia. It presents with an important interindividual morphological variability, with three distinct H-shaped sulcal patterns, types I, II, and III, based on the continuity of the medial and lateral orbital sulci. Types II and III have been identified as neurodevelopmental risk factors for schizophrenia. The sulcal pattern of the OFC has never been investigated in catatonia despite the role of the OFC in the pathophysiology and the neurodevelopmental component of catatonia. METHODS In this context, we performed a retrospective analysis of the OFC sulcal pattern in carefully selected homogeneous and matched subgroups of schizophrenia patients with catatonia (N = 58) or without catatonia (N = 65), and healthy controls (N = 82). RESULTS Logistic regression analyses revealed a group effect on OFC sulcal pattern in the left (χ2 = 18.1; p < .001) and right (χ2 = 28.3; p < .001) hemispheres. Catatonia patients were found to have more type III and less type I in both hemispheres compared to healthy controls and more type III on the left hemisphere compared to schizophrenia patients without catatonia. CONCLUSION Because the sulcal patterns are indirect markers of early brain development, our findings support a neurodevelopmental origin of catatonia and may shed light on the pathophysiology of this syndrome.
Collapse
Affiliation(s)
- Mylène Moyal
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
| | - Alexandre Haroche
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
| | - David Attali
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
- Physics for Medicine Paris, Inserm U1273, CNRS UMR 8063, ESPCI Paris, PSL University, Paris, France
| | - Ghita Dadi
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Matthieu Raoelison
- Université Paris Cité, Laboratory for the Psychology of Child Development and Education, CNRS UMR 8240, Sorbonne, Paris, France
| | - Alice Le Berre
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
| | - Anton Iftimovici
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
- NeuroSpin, Atomic Energy Commission, Gif sur Yvette, France
| | - Boris Chaumette
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Sylvain Leroy
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Sylvain Charron
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
| | - Clément Debacker
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
| | - Catherine Oppenheim
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
| | - Arnaud Cachia
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
- Université Paris Cité, Laboratory for the Psychology of Child Development and Education, CNRS UMR 8240, Sorbonne, Paris, France
| | - Marion Plaze
- GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Paris, France
| |
Collapse
|
16
|
Willbrand EH, Jackson S, Chen S, Hathaway CB, Voorhies WI, Bunge SA, Weiner KS. Sulcal variability in anterior lateral prefrontal cortex contributes to variability in reasoning performance among young adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.528061. [PMID: 36798378 PMCID: PMC9934691 DOI: 10.1101/2023.02.10.528061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Identifying structure-function correspondences is a major goal among biologists, cognitive neuroscientists, and brain mappers. Recent studies have identified relationships between performance on cognitive tasks and the presence or absence of small, shallow indentations, or sulci, of the human brain. Building on the previous finding that the presence of one such sulcus in the left anterior lateral prefrontal cortex (aLPFC) was related to reasoning task performance in children and adolescents, we tested whether this relationship extended to a different sample, age group, and reasoning task. As predicted, the presence of this aLPFC sulcus-the ventral para-intermediate frontal sulcus-was also associated with higher reasoning scores in young adults (ages 22-36). These findings have not only direct developmental, but also evolutionary relevance-as recent work shows that the pimfs-v is exceedingly rare in chimpanzees. Thus, the pimfs-v is a novel developmental, cognitive, and evolutionarily relevant feature that should be considered in future studies examining how the complex relationships among multiscale anatomical and functional features of the brain give rise to abstract thought.
Collapse
Affiliation(s)
- Ethan H. Willbrand
- Medical Scientist Training Program, University of Wisconsin–Madison, Madison, WI USA
- School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI USA
| | - Samantha Jackson
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Szeshuen Chen
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Willa I. Voorhies
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Silvia A. Bunge
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Kevin S. Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
17
|
de Vareilles H, Rivière D, Mangin JF, Dubois J. Development of cortical folds in the human brain: An attempt to review biological hypotheses, early neuroimaging investigations and functional correlates. Dev Cogn Neurosci 2023; 61:101249. [PMID: 37141790 PMCID: PMC10311195 DOI: 10.1016/j.dcn.2023.101249] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/28/2023] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
The folding of the human brain mostly takes place in utero, making it challenging to study. After a few pioneer studies looking into it in post-mortem foetal specimen, modern approaches based on neuroimaging have allowed the community to investigate the folding process in vivo, its normal progression, its early disturbances, and its relationship to later functional outcomes. In this review article, we aimed to first give an overview of the current hypotheses on the mechanisms governing cortical folding. After describing the methodological difficulties raised by its study in fetuses, neonates and infants with magnetic resonance imaging (MRI), we reported our current understanding of sulcal pattern emergence in the developing brain. We then highlighted the functional relevance of early sulcal development, through recent insights about hemispheric asymmetries and early factors influencing this dynamic such as prematurity. Finally, we outlined how longitudinal studies have started to relate early folding markers and the child's sensorimotor and cognitive outcome. Through this review, we hope to raise awareness on the potential of studying early sulcal patterns both from a fundamental and clinical perspective, as a window into early neurodevelopment and plasticity in relation to growth in utero and postnatal environment of the child.
Collapse
Affiliation(s)
- H de Vareilles
- Université Paris-Saclay, NeuroSpin-BAOBAB, CEA, CNRS, Gif-sur-Yvette, France.
| | - D Rivière
- Université Paris-Saclay, NeuroSpin-BAOBAB, CEA, CNRS, Gif-sur-Yvette, France
| | - J F Mangin
- Université Paris-Saclay, NeuroSpin-BAOBAB, CEA, CNRS, Gif-sur-Yvette, France
| | - J Dubois
- Université Paris Cité, NeuroDiderot, Inserm, Paris, France; Université Paris-Saclay, NeuroSpin-UNIACT, CEA, Gif-sur-Yvette, France
| |
Collapse
|
18
|
Willbrand EH, Bunge SA, Weiner KS. Neuroanatomical and functional dissociations between variably present anterior lateral prefrontal sulci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542301. [PMID: 37292839 PMCID: PMC10245924 DOI: 10.1101/2023.05.25.542301] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The lateral prefrontal cortex (LPFC) is an evolutionarily expanded region in humans that is critical for numerous complex functions, many of which are largely hominoid-specific. While recent work shows that the presence or absence of specific sulci in anterior LPFC is associated with cognitive performance across age groups, it is unknown whether the presence of these structures relates to individual differences in the functional organization of LPFC. To fill this gap in knowledge, we leveraged multimodal neuroimaging data from 72 young adult humans aged 22-36 and show that dorsal and ventral components of the paraintermediate frontal sulcus (pimfs) present distinct morphological (surface area), architectural (thickness and myelination), and functional (resting-state connectivity networks) properties. We further contextualize the pimfs components within classic and modern cortical parcellations. Taken together, the dorsal and ventral pimfs components mark transitions in anatomy and function in LPFC, across metrics and parcellations. These results emphasize that the pimfs is a critical structure to consider when examining individual differences in the anatomical and functional organization of LPFC and highlight the importance of considering individual anatomy when investigating structural and functional features of the cortex.
Collapse
Affiliation(s)
- Ethan H. Willbrand
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
| | - Silvia A. Bunge
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
| | - Kevin S. Weiner
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
| |
Collapse
|
19
|
Lefrere A, Auzias G, Favre P, Kaltenmark I, Houenou J, Piguet C, Polosan M, Eyler LT, Phillips ML, Versace A, Wessa M, McDonald C, Cannon DM, Brambilla P, Bellani M, Deruelle C, Belzeaux R. Global and local cortical folding alterations are associated with neurodevelopmental subtype in bipolar disorders: a sulcal pits analysis. J Affect Disord 2023; 325:224-230. [PMID: 36608853 DOI: 10.1016/j.jad.2022.12.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/10/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Analyzing cortical folding may provide insight into the biological underpinnings of neurodevelopmental diseases. A neurodevelopmental subtype of bipolar disorders (BD-ND) has been characterized by the combination of early age of onset and psychotic features. We investigate potential cortical morphology differences associated with this subtype. We analyze, for the first time in bipolar disorders, the sulcal pits, the deepest points in each fold of the cerebral cortex. METHODS We extracted the sulcal pits from anatomical MRI among 512 participants gathered from 7 scanning sites. We compared the number of sulcal pits in each hemisphere as well as their regional occurrence and depth between the BD-ND subgroup (N = 184), a subgroup without neurodevelopmental features (BD, N = 77) and a group of healthy controls (HC, N = 251). RESULTS In whole brain analysis, BD-ND group have a higher number of sulcal pits in comparison to the BD group. The local analysis revealed, after correction for multiple testing, a higher occurrence of sulcal pits in the left premotor cortex among the BD-ND subgroup compared to the BD and the HC groups. CONCLUSION Our findings confirm that BD-ND is associated with a specific brain morphology revealed by the analysis of sulcal pits. These markers may help to better understand neurodevelopment in mood disorder and stratify patients according to a pathophysiological hypothesis.
Collapse
Affiliation(s)
- Antoine Lefrere
- Department of Psychiatry Sainte Marguerite Hospital, Assistance Publique Hôpitaux de Marseille, 13009 Marseille, France; Institut de Neurosciences de la Timone UMR 7289, Aix-Marseille Université & CNRS, Marseille, France; Fondation Fondamental, Créteil, France
| | - Guillaume Auzias
- Institut de Neurosciences de la Timone UMR 7289, Aix-Marseille Université & CNRS, Marseille, France
| | - Pauline Favre
- Fondation Fondamental, Créteil, France; Paris Saclay University, UNIACT, Eq. Psychiatry, NeuroSpin, CEA Saclay, Gif-sur-Yvette, France; Paris Est University, INSERM U955, Eq. Neuropsychiatrie Translationnelle, Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Mondor, DMU IMPACT de Psychiatrie et d'Addictologie, Créteil, France
| | | | - Josselin Houenou
- Fondation Fondamental, Créteil, France; Paris Saclay University, UNIACT, Eq. Psychiatry, NeuroSpin, CEA Saclay, Gif-sur-Yvette, France; Paris Est University, INSERM U955, Eq. Neuropsychiatrie Translationnelle, Assistance Publique Hôpitaux de Paris, Hôpitaux Universitaires Mondor, DMU IMPACT de Psychiatrie et d'Addictologie, Créteil, France
| | - Camille Piguet
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Switzerland
| | - Mircea Polosan
- Grenoble Alpes University, Inserm U1216 Grenoble Institute of Neuroscience, CHU Grenoble Alpes, Grenoble, France
| | - Lisa T Eyler
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA, USA
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amelia Versace
- University of Pittsburgh Medical Center, University of Pittsburgh
| | - Michèle Wessa
- Department of Clinical Psychology and Neuropsychology, Johannes Gutenberg University, Mainz, Germany
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, H91 TK33, Galway, Ireland
| | - Dara M Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, H91 TK33, Galway, Ireland
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marcella Bellani
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry, University of Verona, Italy; UOC of Psychiatry, Azienda Ospedaliera Universitaria Integrata (AOUI) of Verona, Italy
| | - Christine Deruelle
- Institut de Neurosciences de la Timone UMR 7289, Aix-Marseille Université & CNRS, Marseille, France
| | - Raoul Belzeaux
- Institut de Neurosciences de la Timone UMR 7289, Aix-Marseille Université & CNRS, Marseille, France; Fondation Fondamental, Créteil, France; Pôle Universitaire de Psychiatrie, CHU de Montpellier, France.
| |
Collapse
|
20
|
Pu Y, An J, Mo X. Liquid Biopsy in Adverse Neurodevelopment of Children: Problems and Prospects. Methods Mol Biol 2023; 2695:337-349. [PMID: 37450130 DOI: 10.1007/978-1-0716-3346-5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Neurodevelopmental disorders in children have an important impact on the quality of life in the whole life cycle. Severe neurodevelopmental disorders will become a serious social and family burden and an important social and economic problem. The early and middle childhood is the critical period of children's neurodevelopment. Early diagnosis of neurological disorders plays an important role in guiding children's neurological development. Existing monitoring tools lack prenatal and even early assessment of children's neurodevelopment, so reliable biomarkers are conducive to personalized care at an earlier stage. In this review, we will discuss different methods of neurodevelopmental monitoring at different times and the role and evaluation of liquid biopsy in neurodevelopmental monitoring.
Collapse
Affiliation(s)
- Yiwei Pu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jia An
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
21
|
Troiani V, Snyder W, Kozick S, Patti MA, Beiler D. Variability and concordance of sulcal patterns in the orbitofrontal cortex: A twin study. Psychiatry Res Neuroimaging 2022; 324:111492. [PMID: 35597228 DOI: 10.1016/j.pscychresns.2022.111492] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/15/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
Sulcogyral patterns have been identified in the orbitofrontal cortex (OFC) based on the continuity of the medial and lateral orbital sulci. Pattern types are named according to their frequency in the population, with Type I present in ∼60%, Type II in ∼25%, Type III in ∼10%, and Type IV in ∼5%. Previous work has demonstrated that psychiatric conditions with high estimated heritability (e.g. schizophrenia, bipolar disorder) are associated with reduced frequency of Type I patterns, but the general heritability of the OFC sulcogyral patterns is unknown. We examined concordance of OFC patterns in 304 monozygotic (MZ) twins relative to 172 dizygotic (DZ) twins using structural magnetic resonance imaging data. We find that the frequency of pattern types within MZ and DZ twins are similar and bilateral concordance rates across all pattern types in DZ twins were 14% and 21% for MZ twins. Results from follow-up analyses confirm that continuity in the rostral-caudal direction is an important source of variability within the OFC, and subtype analyses indicate that variability is present in other sulci that are not represented by overall OFC pattern type. Overall, these results suggest that OFC sulcogyral patterns may reflect important variance that is not genetic in origin.
Collapse
Affiliation(s)
- Vanessa Troiani
- Geisinger Autism and Developmental Medicine Institute, 120 Hamm Drive, Suite 2A, Lewisburg, PA 17837, United States.
| | - Will Snyder
- Geisinger Autism and Developmental Medicine Institute, 120 Hamm Drive, Suite 2A, Lewisburg, PA 17837, United States
| | - Shane Kozick
- Geisinger Autism and Developmental Medicine Institute, 120 Hamm Drive, Suite 2A, Lewisburg, PA 17837, United States
| | - Marisa A Patti
- Geisinger Autism and Developmental Medicine Institute, 120 Hamm Drive, Suite 2A, Lewisburg, PA 17837, United States
| | - Donielle Beiler
- Geisinger Autism and Developmental Medicine Institute, 120 Hamm Drive, Suite 2A, Lewisburg, PA 17837, United States
| |
Collapse
|
22
|
Abstract
We are interested here in the central organ of our thoughts: the brain. Advances in neuroscience have made it possible to obtain increasing information on the anatomy of this organ, at ever-higher resolutions, with different imaging techniques, on ever-larger samples. At the same time, paleoanthropology has to deal with partial reflections on the shape of the brain, on fragmentary specimens and small samples in an attempt to approach the morphology of the brain of past human species. It undeniably emerges from the perspective we propose here that paleoanthropology has much to gain from interacting more with the field of neuroimaging. Improving our understanding of the morphology of the endocast necessarily involves studying the external surface of the brain and the link it maintains with the internal surface of the skull. The contribution of neuroimaging will allow us to better define the relationship between brain and endocast. Models of intra- and inter-species variability in brain morphology inferred from large neuroimaging databases will help make the most of the rare endocasts of extinct species. We also conclude that exchanges between these two disciplines will also be beneficial to our knowledge of the Homo sapiens brain. Documenting the anatomy among other human species and including the variation over time within our own species are approaches that offer us a new perspective through which to appreciate what really characterizes the brain of humanity today.
Collapse
|