1
|
Toivainen S, Petrella M, Xu L, Visser E, Weiss T, Vellere S, Zeier Z, Wahlestedt C, Barbier E, Domi E, Heilig M. Generation and Characterization of a Novel Prkcd-Cre Rat Model. J Neurosci 2024; 44:e0528242024. [PMID: 38977300 PMCID: PMC11308323 DOI: 10.1523/jneurosci.0528-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
Activity of central amygdala (CeA) PKCδ expressing neurons has been linked to appetite regulation, anxiety-like behaviors, pain sensitivity, and addiction-related behaviors. Studies of the role that CeA PKCδ+ neurons play in these behaviors have largely been carried out in mice, and genetic tools that would allow selective manipulation of PKCδ+ cells in rats have been lacking. Here, we used a CRISPR/Cas9 strategy to generate a transgenic Prkcd-cre knock-in rat and characterized this model using anatomical, electrophysiological, and behavioral approaches in both sexes. In the CeA, Cre was selectively expressed in PKCδ+ cells. Anterograde projections of PKCδ+ neurons to cortical regions, subcortical regions, several hypothalamic nuclei, the amygdala complex, and midbrain dopaminergic regions were largely consistent with published mouse data. In a behavioral screen, we found no differences between Cre+ rats and Cre- wild-type littermates. Optogenetic stimulation of CeA PKCδ+ neurons in a palatable food intake assay resulted in an increased latency to first feeding and decreased total food intake, once again replicating published mouse findings. Lastly, using a real-time place preference task, we found that stimulation of PKCδ+ neurons promoted aversion, without affecting locomotor activity. Collectively, these findings establish the novel Prkcd-Cre rat line as a valuable tool that complements available mouse lines for investigating the functional role of PKCδ+ neurons.
Collapse
Affiliation(s)
- Sanne Toivainen
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping 58225, Sweden
| | - Michele Petrella
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping 58225, Sweden
| | - Li Xu
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping 58225, Sweden
| | - Esther Visser
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping 58225, Sweden
| | - Tamina Weiss
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping 58225, Sweden
| | - Sofia Vellere
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino 62032, Italy
| | - Zane Zeier
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Claes Wahlestedt
- Department of Psychiatry and Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Estelle Barbier
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping 58225, Sweden
| | - Esi Domi
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping 58225, Sweden
- School of Pharmacy, Center for Neuroscience, Pharmacology Unit, University of Camerino, Camerino 62032, Italy
| | - Markus Heilig
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping 58225, Sweden
| |
Collapse
|
2
|
Arakawa H. Revisiting sociability: Factors facilitating approach and avoidance during the three-chamber test. Physiol Behav 2023; 272:114373. [PMID: 37805136 DOI: 10.1016/j.physbeh.2023.114373] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
The three-chamber test, the so-called sociability test, has been widely used to assess social deficits based on impaired socially oriented investigations in rodent models. An innate motivation for investigating conspecifics is theoretically a prerequisite for gaining sociability scores in this paradigm. However, several relevant factors mediating investigatory motives, such as familiarity, attractiveness, and aggression, may affect sociability scores, which must be verified to obtain an adequate evaluation of the psychiatric phenotypes exhibited by disease-relevant rodent models. We assessed the social and non-social factors that mediate proximity preference by the three-chamber test with standard C57BL/6 J (B6) mice and low sociability BTBR+ltpr3tf/J (BTBR) mice. Strains of the opponents had no effect. Sexual cues (i.e., opposite sex) increased proximity preference in both strains of mice; in contrast, novel objects induced an approach in B6 mice but avoidance in BTBR mice. Single-housing before testing, stimulated social motive, affected BTBR mice but not B6 mice. BTBR females showed increased proximity preference across the sessions, and BTBR males showed increased preference toward a male B6 stimulus, but not a male BTBR stimulus. The male preference was restored when the male BTBR stimulus was anesthetized. In addition, self-grooming was facilitated by social and non-social novelty cues in both strains. B6 mice predominantly exhibited an investigatory approach toward social or non-social stimuli, whereas BTBR mice recognized social cues but tended to show avoidance. The three-chamber test could evaluate approach-avoidance strategies in target mouse strains that comprise innate social distance between mice.
Collapse
Affiliation(s)
- Hiroyuki Arakawa
- Department Systems Physiology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215, Japan.
| |
Collapse
|
3
|
Marangoni C, Tam M, Robinson ESJ, Jackson MG. Pharmacological characterisation of the effort for reward task as a measure of motivation for reward in male mice. Psychopharmacology (Berl) 2023; 240:2271-2284. [PMID: 37474757 PMCID: PMC10593616 DOI: 10.1007/s00213-023-06420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023]
Abstract
RATIONALE Motivational deficits are a common symptom shared across multiple psychiatric and neurodegenerative disorders. Effort-based decision-making tasks are a translatable method for assessing motivational state. Much of the preclinical validation of the task derives from acute pharmacological manipulations in rats. However, mice currently offer a greater genetic toolkit to study risk genes and phenotypic models. Despite this, there is limited characterisation of their behaviour in this type of motivation task. OBJECTIVES Here, we investigate the effort for reward (EfR) task as a measure of motivational state in mice using drugs previously shown to modulate effort-based decision-making in rats and humans. METHOD Using male C57bl/6j mice, we test the effects of drugs which modulate DA transmission. We also test the effects of CP101-606 which does not act directly via DA modulation but has been shown to exert beneficial effects on motivational state. Finally, we test the sensitivity of the task to a chronic corticosterone (CORT) treatment. RESULTS Amphetamine, methylphenidate, and CP101606 in mice increased high-effort responses for high-value reward, while administration of haloperidol decreased high-effort responses. Surprisingly, tetrabenazine had no effect at the doses tested. Chronic, low-dose CORT consumption did not alter task performance. CONCLUSION These data suggest that the EfR task is sensitive to acute dopaminergic modulation and NR2B selective antagonism in mice. However, it may lack sensitivity to non-acute phenotypic models. Further work is required to demonstrate the utility of the task in this context.
Collapse
Affiliation(s)
- Caterina Marangoni
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Melissa Tam
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Emma S J Robinson
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Megan G Jackson
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
4
|
Granza AE, Amaral IM, Monteiro DG, Salti A, Hofer A, El Rawas R. Social Interaction Is Less Rewarding in Adult Female than in Male Mice. Brain Sci 2023; 13:1445. [PMID: 37891813 PMCID: PMC10605033 DOI: 10.3390/brainsci13101445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: Positive social relationships are essential for mental and physical health. However, not all individuals experience social interaction as a rewarding activity. (2) Methods: Social interaction reward in mice can be assessed by social conditioned place preference (CPP). The aim of this study is to investigate sex-dependent differences in the neurological underpinnings underlying social versus non-social phenotypes, using adult male and female C57BL/6J mice. (3) Results: Adult female mice expressed significantly less social reward than males from the same strain. Accordingly, pairs of male mice spent more time interacting as compared to female pairs. Subsequently, we analyzed neuropeptides previously reported to be important regulators of social behavior such as oxytocin, vasopressin, and orexin, in addition to Ca2+/calmodulin-dependent protein kinase II (αCaMKII), shown to be involved in social reward. Levels of neuropeptides and αCaMKII were comparable between males and females in all investigated regions. Yet, a significant negative correlation was found between endogenous oxytocin expression and social reward in female pairs. (4) Conclusions: Sex differences in the prevalence of many mental health disorders might at least in part be due to sex differences in social reward. Therefore, more research is needed to unravel the candidate(s) underlying this behavioral difference.
Collapse
Affiliation(s)
- Anna E. Granza
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Inês M. Amaral
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Diogo G. Monteiro
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Ahmad Salti
- University Clinic of Ophthalmology and Optometry, Kepler University Hospital, Johannes Kepler University Linz, Krankenhausstrasse 5, 4020 Linz, Austria
| | - Alex Hofer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
Giovanniello J, Bravo-Rivera C, Rosenkranz A, Matthew Lattal K. Stress, associative learning, and decision-making. Neurobiol Learn Mem 2023; 204:107812. [PMID: 37598745 DOI: 10.1016/j.nlm.2023.107812] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/02/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Exposure to acute and chronic stress has significant effects on the basic mechanisms of associative learning and memory. Stress can both impair and enhance associative learning depending on type, intensity, and persistence of the stressor, the subject's sex, the context that the stress and behavior is experienced in, and the type of associative learning taking place. In some cases, stress can cause or exacerbate the maladaptive behavior that underlies numerous psychiatric conditions including anxiety disorders, obsessive-compulsive disorder, post-traumatic stress disorder, substance use disorder, and others. Therefore, it is critical to understand how the varied effects of stress, which may normally facilitate adaptive behavior, can also become maladaptive and even harmful. In this review, we highlight several findings of associative learning and decision-making processes that are affected by stress in both human and non-human subjects and how they are related to one another. An emerging theme from this work is that stress biases behavior towards less flexible strategies that may reflect a cautious insensitivity to changing contingencies. We consider how this inflexibility has been observed in different associative learning procedures and suggest that a goal for the field should be to clarify how factors such as sex and previous experience influence this inflexibility.
Collapse
Affiliation(s)
| | - Christian Bravo-Rivera
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR 00935, United States.
| | - Amiel Rosenkranz
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Chicago Medical School, Rosalind Franklin University of Medicine and Science, United States.
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, United States.
| |
Collapse
|
6
|
Yates JR. Quantifying conditioned place preference: a review of current analyses and a proposal for a novel approach. Front Behav Neurosci 2023; 17:1256764. [PMID: 37693282 PMCID: PMC10484009 DOI: 10.3389/fnbeh.2023.1256764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/02/2023] [Indexed: 09/12/2023] Open
Abstract
Conditioned place preference (CPP) is used to measure the conditioned rewarding effects of a stimulus, including food, drugs, and social interaction. Because various analytic approaches can be used to quantify CPP, this can make direct comparisons across studies difficult. Common methods for analyzing CPP involve comparing the time spent in the CS+ compartment (e.g., compartment paired with drug) at posttest to the time spent in the CS+ compartment at pretest or to the CS- compartment (e.g., compartment paired with saline) at posttest. Researchers can analyze the time spent in the compartment(s), or they can calculate a difference score [(CS+post - CS+pre) or (CS+post - CS-post)] or a preference ratio (e.g., CS+post/(CS+post + CS-post)). While each analysis yields results that are, overall, highly correlated, there are situations in which different analyses can lead to discrepant interpretations. The current paper discusses some of the limitations associated with current analytic approaches and proposes a novel method for quantifying CPP, the adjusted CPP score, which can help resolve the limitations associated with current approaches. The adjusted CPP score is applied to both hypothetical and previously published data. Another major topic covered in this paper is methodologies for determining if individual subjects have met criteria for CPP. The paper concludes by highlighting ways in which researchers can increase transparency and replicability in CPP studies.
Collapse
Affiliation(s)
- Justin R. Yates
- Department of Psychological Science, Northern Kentucky University, Highland Heights, KY, United States
| |
Collapse
|
7
|
Ramsey LA, Holloman FM, Lee SS, Venniro M. An operant social self-administration and choice model in mice. Nat Protoc 2023:10.1038/s41596-023-00813-y. [PMID: 36964403 DOI: 10.1038/s41596-023-00813-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 01/12/2023] [Indexed: 03/26/2023]
Abstract
Little is known about how social factors contribute to neurobiology or neuropsychiatric disorders. The use of mice allows one to probe the neurobiological bases of social interaction, offering the genetic diversity and versatility to identify cell types and neural circuits of social behavior. However, mice typically show lower social motivation compared with rats, leading to the question of whether mice should be used to model complex social behaviors displayed by humans. Studies on mouse social behavior often rely on measures such as time spent in contact with a social partner or preference for a social-paired context, but fail to assess volitional (subject-controlled) rewarding social interaction. Here, we describe a volitional social self-administration and choice model that is an extension of our previous work on rats. Using mice, we systematically compared female adolescent and adult C57BL/6 mice and outbred CD1 mice, showing that operant social self-administration, social seeking during periods of isolation and choice of social interaction over palatable food is significantly stronger in female CD1 mice than in female C57BL/6J mice, independently of age. We describe the requirements for building the social self-administration and choice apparatus and we provide guidance for studying the role of operant social reward in mice. We also discuss its use to study brain mechanisms of operant social reward, potentially extending its application to mouse models of neuropsychiatric disorders. The training commonly requires ~4 weeks for stable social self-administration and 3-4 additional weeks for tests, including social seeking and choice.
Collapse
Affiliation(s)
- Leslie A Ramsey
- Behavioral Neuroscience Branch Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA.
| | - Fernanda M Holloman
- Behavioral Neuroscience Branch Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Samantha S Lee
- Behavioral Neuroscience Branch Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Marco Venniro
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
CHIBA S, NUMAKAWA T, MURATA T, KAWAMINAMI M, HIMI T. Enhanced social reward response and anxiety-like behavior with downregulation of nucleus accumbens glucocorticoid receptor in BALB/c mice. J Vet Med Sci 2023; 85:30-39. [PMID: 36403974 PMCID: PMC9887208 DOI: 10.1292/jvms.22-0103] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022] Open
Abstract
Social anhedonia is a psychological state with difficulty in experiencing pleasure from social interactions and is observed in various diseases, such as depressive disorders. Although the relationships between social reward responses and anxiety- and depression-like behaviors have remained unclear, a social reward conditioned place preference (SCPP) test can be used to analyze the rewarding nature of social interactions. To elucidate these relationships, we used 5-week-old male mice of AKR, BALB/c, and C57BL/6J strains and conducted behavioral tests in the following order: elevated plus-maze test (EPM), open field test (OFT), SCPP, saccharin preference test (SPT), and passive avoidance test. The nucleus accumbens of these mice were collected 24 hr after these behavioral tests and were used for western blotting to determine the levels of receptors for brain-derived neurotrophic factors and glucocorticoids. BALB/c mice displayed the highest levels of anxiety-like behavior in EPM and OFT as well as physical anhedonia-like behaviors in SPT. They also showed increased responses to social rewards and huddling behaviors in SCPP, with downregulated glucocorticoid receptor (GR). Regression analysis results revealed positive influences of anxiety- and physical anhedonia-like behaviors and expressions of GR on social reward responses. Collectively, temperament associated with anxiety and physical anhedonia may affect social reward responses, which possibly is influenced by the expression of GR that can modify these psychological traits.
Collapse
Affiliation(s)
- Shuichi CHIBA
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Tadahiro NUMAKAWA
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takuya MURATA
- Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | | | - Toshiyuki HIMI
- Faculty of Pharmacy and Research Institute of Pharmaceutical Science, Musashino University, Tokyo, Japan
| |
Collapse
|
9
|
Blanchard DC. Are cognitive aspects of defense a core feature of anxiety and depression? Neurosci Biobehav Rev 2023; 144:104947. [PMID: 36343691 DOI: 10.1016/j.neubiorev.2022.104947] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Anxiety and depression are highly prevalent behavior disorders, particularly in women. Recent preclinical work using animal models has been suboptimal in predicting the efficacy of drugs targeted at these conditions, suggesting a potential discrepancy between such models and the human disorders. Notably female animals tend to be equal to, or less responsive than, males in these tasks. A number of analyses suggest that mammalian defense patterns are complex: In addition to relatively discrete and immediate fight, flight, and freezing responses, a risk assessment pattern may occur in response to threat stimuli or situations with ambiguous elements. This pattern combines defensiveness with a number of cognition-linked behaviors such as sensory attention and orientation, approach, contact, and investigation of the potential threat. Studies measuring elements of this pattern suggest that female rats, and perhaps female mice, show higher levels than equivalent males. Higher female involvement may also occur in tasks involving learning/generalization/extinction of defensiveness to conditioned stimuli. Such findings are consonant with recent analyses of "female survival strategies" based on differential adaptiveness of cognitive components of defensiveness in females, due to the necessity of female care of offspring until they are independent. These data suggest the value of additional behavioral and functional analyses of cognitive aspects of defensive behavior; contributing to both an understanding of their underlying mechanisms, and providing more sensitive measures of drug responsivity for use with animal models.
Collapse
Affiliation(s)
- D Caroline Blanchard
- Pacific Biosciences Research Center, University of Hawaii, Manoa, Honolulu, HI, USA; Institute of Biomedical Sciences at the University of São Paulo, Sao Paulo, Brazil.
| |
Collapse
|
10
|
The Protective Effect of Social Reward on Opioid and Psychostimulant Reward and Relapse: Behavior, Pharmacology, and Brain Regions. J Neurosci 2022; 42:9298-9314. [PMID: 36517252 PMCID: PMC9794371 DOI: 10.1523/jneurosci.0931-22.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 12/30/2022] Open
Abstract
Until recently, most modern neuroscience research on addiction using animal models did not incorporate manipulations of social factors. Social factors play a critical role in human addiction: social isolation and exclusion can promote drug use and relapse, while social connections and inclusion tend to be protective. Here, we discuss the state of the literature on social factors in animal models of opioid and psychostimulant preference, self-administration, and relapse. We first summarize results from rodent studies on behavioral, pharmacological, and circuit mechanisms of the protective effect of traditional experimenter-controlled social interaction procedures on opioid and psychostimulant conditioned place preference, self-administration, and relapse. Next, we summarize behavioral and brain-mechanism results from studies using newer operant social-interaction procedures that inhibit opioid and psychostimulant self-administration and relapse. We conclude by discussing how the reviewed studies point to future directions for the addiction field and other neuroscience and psychiatric fields, and their implications for mechanistic understanding of addiction and development of new treatments.SIGNIFICANCE STATEMENT In this review, we propose that incorporating social factors into modern neuroscience research on addiction could improve mechanistic accounts of addiction and help close gaps in translating discovery to treatment. We first summarize rodent studies on behavioral, pharmacological, and circuit mechanisms of the protective effect of both traditional experimenter-controlled and newer operant social-interaction procedures. We then discuss potential future directions and clinical implications.
Collapse
|
11
|
Kuo JY, Denman AJ, Beacher NJ, Glanzberg JT, Zhang Y, Li Y, Lin DT. Using deep learning to study emotional behavior in rodent models. Front Behav Neurosci 2022; 16:1044492. [PMID: 36483523 PMCID: PMC9722968 DOI: 10.3389/fnbeh.2022.1044492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2023] Open
Abstract
Quantifying emotional aspects of animal behavior (e.g., anxiety, social interactions, reward, and stress responses) is a major focus of neuroscience research. Because manual scoring of emotion-related behaviors is time-consuming and subjective, classical methods rely on easily quantified measures such as lever pressing or time spent in different zones of an apparatus (e.g., open vs. closed arms of an elevated plus maze). Recent advancements have made it easier to extract pose information from videos, and multiple approaches for extracting nuanced information about behavioral states from pose estimation data have been proposed. These include supervised, unsupervised, and self-supervised approaches, employing a variety of different model types. Representations of behavioral states derived from these methods can be correlated with recordings of neural activity to increase the scope of connections that can be drawn between the brain and behavior. In this mini review, we will discuss how deep learning techniques can be used in behavioral experiments and how different model architectures and training paradigms influence the type of representation that can be obtained.
Collapse
Affiliation(s)
- Jessica Y. Kuo
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Alexander J. Denman
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Nicholas J. Beacher
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Joseph T. Glanzberg
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Yan Zhang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Yun Li
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
12
|
Paired Housing or a Socially-Paired Context Decreases Ethanol Conditioned Place Preference in Male Rats. Brain Sci 2022; 12:brainsci12111485. [DOI: 10.3390/brainsci12111485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Alcohol abuse dramatically affects individuals’ lives nationwide. The 2020 National Survey on Drug Use and Health (NSDUH) estimated that 10.2% of Americans suffer from alcohol use disorder. Although social support has been shown to aid in general addiction prevention and rehabilitation, the benefits of social support are not entirely understood. The present study sought to compare the benefits of social interaction on the conditioned ethanol approach behavior in rats through a conditioned place preference (CPP) paradigm in which a drug is paired with one of two distinct contexts. In experiment 1A, rats were single-housed and received conditioning trials in which ethanol was paired with the less preferred context. In experiment 1B, rats underwent procedures identical to experiment 1A, but were pair-housed throughout the paradigm. In experiment 1C, rats were single-housed, but concurrently conditioned to a socially-paired context and an ethanol-paired context. By comparing the time spent between the ethanol-paired environment and the saline-paired or socially-paired environment, we extrapolated the extent of ethanol approach behavior in the pair-housed, single-housed, and concurrently conditioned rats. Our results revealed that social interaction, both in pair-housed animals or concurrently socially-conditioned animals, diminished the ethanol approach behavior, which highlights the importance of social support in addiction prevention, treatment, and recovery programs.
Collapse
|
13
|
Amaral IM, Scheffauer L, Hofer A, El Rawas R. Protein kinases in natural versus drug reward. Pharmacol Biochem Behav 2022; 221:173472. [PMID: 36244528 DOI: 10.1016/j.pbb.2022.173472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
Natural and drug rewards act on the same neural pathway, the mesolimbic dopaminergic system. In brain regions such as the nucleus accumbens and ventral tegmental area, drugs of abuse-induced stimulation of signaling pathways can lead to synaptic reshaping within this system. This is believed to be underlying the maladaptive alterations in behaviors associated with addiction. In this review, we discuss animal studies disclosing the implication of several protein kinases, namely protein kinase A (PKA), extracellular signal regulated kinase (ERK) mitogen-activated protein kinases (MAPK), p38 MAPK, and calcium/calmodulin-dependent kinase II (CaMKII), in reward-related brain regions in drug and natural reward. Furthermore, we refer to studies that helped pave the way toward a better understanding of the neurobiology underlying non-drug and drug reward through genetic deletion or brain region-specific pharmacological inhibition of these kinases. Whereas the role of kinases in drug reward has been extensively studied, their implication in natural reward, such as positive social interaction, is less investigated. Discovering molecular candidates, recruited specifically by drug versus natural rewards, can promote the identification of novel targets for the pharmacological treatment of addiction with less off-target effects and being effective when used combined with behavioral-based therapies.
Collapse
Affiliation(s)
- Inês M Amaral
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Austria.
| | - Laura Scheffauer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Austria.
| | - Alex Hofer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Austria.
| | - Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Austria.
| |
Collapse
|
14
|
Jabarin R, Netser S, Wagner S. Beyond the three-chamber test: toward a multimodal and objective assessment of social behavior in rodents. Mol Autism 2022; 13:41. [PMID: 36284353 PMCID: PMC9598038 DOI: 10.1186/s13229-022-00521-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/06/2022] [Indexed: 12/31/2022] Open
Abstract
MAIN: In recent years, substantial advances in social neuroscience have been realized, including the generation of numerous rodent models of autism spectrum disorder. Still, it can be argued that those methods currently being used to analyze animal social behavior create a bottleneck that significantly slows down progress in this field. Indeed, the bulk of research still relies on a small number of simple behavioral paradigms, the results of which are assessed without considering behavioral dynamics. Moreover, only few variables are examined in each paradigm, thus overlooking a significant portion of the complexity that characterizes social interaction between two conspecifics, subsequently hindering our understanding of the neural mechanisms governing different aspects of social behavior. We further demonstrate these constraints by discussing the most commonly used paradigm for assessing rodent social behavior, the three-chamber test. We also point to the fact that although emotions greatly influence human social behavior, we lack reliable means for assessing the emotional state of animals during social tasks. As such, we also discuss current evidence supporting the existence of pro-social emotions and emotional cognition in animal models. We further suggest that adequate social behavior analysis requires a novel multimodal approach that employs automated and simultaneous measurements of multiple behavioral and physiological variables at high temporal resolution in socially interacting animals. We accordingly describe several computerized systems and computational tools for acquiring and analyzing such measurements. Finally, we address several behavioral and physiological variables that can be used to assess socio-emotional states in animal models and thus elucidate intricacies of social behavior so as to attain deeper insight into the brain mechanisms that mediate such behaviors. CONCLUSIONS: In summary, we suggest that combining automated multimodal measurements with machine-learning algorithms will help define socio-emotional states and determine their dynamics during various types of social tasks, thus enabling a more thorough understanding of the complexity of social behavior.
Collapse
Affiliation(s)
- Renad Jabarin
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.
| | - Shai Netser
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel
| |
Collapse
|
15
|
Establishment of a social conditioned place preference paradigm for the study of social reward in female mice. Sci Rep 2022; 12:11271. [PMID: 35789188 PMCID: PMC9253334 DOI: 10.1038/s41598-022-15427-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/23/2022] [Indexed: 11/12/2022] Open
Abstract
Social interactions can be and often are rewarding. The effect of social contact strongly depends on circumstances, and the reward may be driven by varied motivational processes, ranging from parental or affiliative behaviors to investigation or aggression. Reward associated with nonreproductive interactions in rodents is measured using the social conditioned place preference (sCPP) paradigm, where a change in preference for an initially neutral context confirms reinforcing effects of social contact. Here, we revised the sCPP method and reexamined social reward in adult female mice. Contrary to earlier studies, we found that robust rewarding effects of social contact could be detected in adult (14-week-old) female C57BL/6 mice when the sCPP task was refined to remove confounding factors. Strikingly, the rewarding effects of social interaction were only observed among female siblings who remained together from birth. Contact with same-age nonsiblings was not rewarding even after 8 weeks of cohousing. Other factors critical for the social reward effect in the sCPP paradigm included the number of conditioning sessions and the inherent preference for contextual cues. Thus, we show that social interaction is rewarding in adult female mice, but this effect strictly depends on the familiarity of the interaction partners. Furthermore, by identifying confounding factors, we provide a behavioral model to study the mechanisms underlying the rewarding effects of nonreproductive social interaction in adult mice.
Collapse
|
16
|
Ramsey LA, Holloman FM, Hope BT, Shaham Y, Venniro M. Waving Through the Window: A Model of Volitional Social Interaction in Female Mice. Biol Psychiatry 2022; 91:988-997. [PMID: 35074211 PMCID: PMC9081292 DOI: 10.1016/j.biopsych.2021.10.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/12/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mouse models of social behavior fail to account for volitional aspects of social interaction, and current neurobiological investigation of social behavior is performed almost exclusively using C57BL/6J mice, the background strain of most transgenic mice. Here, we introduce a mouse model of operant social self-administration and choice, using a custom-made apparatus. METHODS First, we trained adolescent and adult female C57BL/6J and CD1 mice to self-administer palatable food pellets and then to lever press under increasing fixed-ratio response requirements for access to an age-matched female social partner. Next, we tested their motivation to seek social interaction using a progressive ratio reinforcement schedule, relapse to social seeking after social isolation, and choice between palatable food versus social interaction. We also tested social conditioned place preference in adult female CD1 and C57BL/6J mice. RESULTS Adolescent and adult female mice of both strains showed similar rates of food self-administration. In contrast, CD1 mice demonstrated significantly stronger social self-administration than C57BL/6J mice under both reinforcement schedules. CD1 but not C57BL/6J mice demonstrated robust social seeking after social isolation. In the choice task, CD1 mice preferred social interaction, whereas C57BL/6J mice preferred food. CD1 but not C57BL/6J mice demonstrated robust social conditioned place preference. The strain differences were age independent. CONCLUSIONS Our data show that CD1 mice are a better strain for studying female social reward learning. Our mouse operant social model provides a tool for research on neurobiological substrates of female social reward and disruption of social reward in psychiatric disorders using mouse-specific genetic tools.
Collapse
Affiliation(s)
- Leslie A. Ramsey
- Behavioral Neuroscience Branch Intramural Research Program, NIDA, NIH, Baltimore, USA,Corresponding Authors: Leslie A. Ramsey, 251 Bayview Blvd, Baltimore, MD, 21224, (443) 740-2693, (); Marco Venniro, 20 Penn St, Baltimore, MD ()
| | - Fernanda M. Holloman
- Behavioral Neuroscience Branch Intramural Research Program, NIDA, NIH, Baltimore, USA
| | - Bruce T. Hope
- Behavioral Neuroscience Branch Intramural Research Program, NIDA, NIH, Baltimore, USA
| | - Yavin Shaham
- Behavioral Neuroscience Branch Intramural Research Program, NIDA, NIH, Baltimore, USA
| | - Marco Venniro
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
17
|
Sharp JL, Smith MA. The Effects of Drugs on Behavior Maintained by Social Contact: Role of Monoamines in Social Reinforcement. Front Behav Neurosci 2022; 15:805139. [PMID: 35264935 PMCID: PMC8899311 DOI: 10.3389/fnbeh.2021.805139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Drug use is highly concordant among members of adolescent and young adult peer groups. One potential explanation for this observation is that drugs may increase the reinforcing effects of social contact, leading to greater motivation to establish and maintain contact with other members of the peer group. Several classes of drugs, particularly drugs that increase synaptic dopamine, increase the reinforcing effects of contextual stimuli, but the extent to which these drugs enhance the reinforcing effects of social contact is not known. The purpose of this study was to determine the extent to which drugs that increase synaptic dopamine, norepinephrine, and serotonin enhance the positive reinforcing effects of social contact. To this end, male and female Long-Evans rats were pretreated with acute doses of the selective dopamine reuptake inhibitor, WIN-35,428, the selective norepinephrine reuptake inhibitor, atomoxetine, the selective serotonin reuptake inhibitor, fluoxetine, the non-selective monoamine reuptake inhibitor, cocaine, and the non-selective monoamine releasers d-amphetamine and (±)-MDMA. Ten minutes later, the positive reinforcing effects of 30-s access to a same-sex social partner was examined on a progressive ratio schedule of reinforcement. To determine whether the reinforcement-altering effects of these drugs were specific to the social stimulus, the reinforcing effects of a non-social stimulus (30-s access to an athletic sock of similar size and coloring as another rat) was determined in control subjects. WIN-35,428, d-amphetamine, and cocaine, but not atomoxetine, fluoxetine, or MDMA, dose-dependently increased breakpoints maintained by a social partner under conditions in which responding maintained by a non-social stimulus was not affected. These data indicate that increases in extracellular dopamine, but not extracellular norepinephrine or serotonin, increases the positive reinforcing effects of social contact in both male and female rats. These data also provide support for the hypothesis that some drugs with high abuse liability increase the motivation to establish and maintain contact with social peers.
Collapse
|
18
|
Effects of Cohousing Mice and Rats on Stress Levels, and the Attractiveness of Dyadic Social Interaction in C57BL/6J and CD1 Mice as Well as Sprague Dawley Rats. BIOLOGY 2022; 11:biology11020291. [PMID: 35205157 PMCID: PMC8869709 DOI: 10.3390/biology11020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022]
Abstract
Rats, including those of the Sprague Dawley strain, may kill mice. Because of this muricidal behavior, it is standard practice in many research animal housing facilities to separate mice from rats (i.e., the predators) to minimize stress for the mice. We tested the effect of cohousing on the stress levels of mice from either the C57BL/6J (BL6) or the CD1 strain and Sprague Dawley rats (SD rat) by quantifying their fecal corticosterone and metabolites (FCM) concentration. We also investigated cohousing impacts a behavioral assay, i.e., conditioned place preference for intragenus (i.e., mouse–mouse or rat–rat) dyadic social interaction (DSI CPP) that was shown be sensitive to social factors, especially to handling by humans. We found that the two delivery batches of BL6 mice or SD rats, respectively, had different stress levels at delivery that were statistically significant for the BL6 mice. Even so, the BL6 mice cohoused with rats had significantly increased FCM concentrations, indicative of higher stress levels, as compared to (1) BL6 mice housed alone or (2) BL6 mice at delivery. In contrast to their elevated stress levels, the attractiveness of contextual cues associated with mouse–mouse social interaction (DSI CPP) even increased in rat-cohoused BL6 mice, albeit non-significantly. Thus, cohousing BL6 mice and rats did not impair a behavioral assay in BL6 mice that was proven to be sensitive to handling stress by humans in our laboratory. SD rats cohoused with BL6- or CD1 mice, and CD1 mice cohoused with SD rats, showed DSI CPP that was not different from our previously published data on SD rats and BL6 mice of the Jackson- or NIH substrain obtained in the absence of cohousing. CD1 mice cohoused with rats did not show an increased FCM concentration compared to delivery. Our findings suggest that the effect of cohousing rats and mice under the conditions described above on their stress levels as opposed to their behavior might be less clearcut than generally assumed and might be overriden by conditions that cannot be controlled, i.e., different deliveries. Our findings can help to use research animal housing resources, which are usually limited, more efficiently.
Collapse
|
19
|
Amaral IM, Scheffauer L, Langeder AB, Hofer A, El Rawas R. Rewarding Social Interaction in Rats Increases CaMKII in the Nucleus Accumbens. Biomedicines 2021; 9:1886. [PMID: 34944702 PMCID: PMC8698734 DOI: 10.3390/biomedicines9121886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/04/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CaMKII) is known to be involved in the sensitized locomotor responses and drug-seeking behavior to psychostimulants. However, little is known about the contribution of CaMKII signaling in the nucleus accumbens (NAc) in natural rewards such as social interaction. The present experiments explored the implication of CaMKII signaling in drug versus natural reward. In the NAc of rats expressing cocaine or social interaction conditioned place preference (CPP), αCaMKII activation was induced in those expressing social interaction but not cocaine CPP. In order to investigate the role of NAc CaMKII in the expression of reward-related learning of drug versus non-drug stimuli, we inhibited CaMKII through an infusion of KN-93, a CaMKII inhibitor, directly into the NAc shell or core, before the CPP test in a concurrent paradigm in which social interaction was made available in the compartment alternative to the one associated with cocaine during conditioning. Whereas vehicle infusions led to equal preference to both stimuli, inhibition of CaMKII by a KN-93 infusion before the CPP test in the shell but not the core of the NAc shifted the rats' preference toward the cocaine-associated compartment. Altogether, these results suggest that social interaction reward engages CaMKII in the NAc.
Collapse
Affiliation(s)
| | | | | | | | - Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.M.A.); (L.S.); (A.B.L.); (A.H.)
| |
Collapse
|
20
|
Amaral IM, Lemos C, Cera I, Dechant G, Hofer A, El Rawas R. Involvement of cAMP-Dependent Protein Kinase in the Nucleus Accumbens in Cocaine Versus Social Interaction Reward. Int J Mol Sci 2020; 22:E345. [PMID: 33396297 PMCID: PMC7794935 DOI: 10.3390/ijms22010345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022] Open
Abstract
Evidence suggests that PKA activity in the nucleus accumbens (NAc) plays an essential role in reward-related learning. In this study, we investigated whether PKA is differentially involved in the expression of learning produced by either natural reinforcers or psychostimulants. For that purpose, we inhibited PKA through a bilateral infusion of Rp-cAMPS, a specific PKA inhibitor, directly into the NAc. The effects of PKA inhibition in the NAc on the expression of concurrent conditioned place preference (CPP) for cocaine (drug) and social interaction (natural reward) in rats were evaluated. We found that PKA inhibition increased the expression of cocaine preference. This effect was not due to altered stress levels or decreased social reward. PKA inhibition did not affect the expression of natural reward as intra-NAc Rp-cAMPS infusion did not affect expression of social preference. When rats were trained to express cocaine or social interaction CPP and tested for eventual persisting preference 7 and 14 days after CPP expression, cocaine preference was persistent, but social preference was abolished after the first test. These results suggest that PKA in the NAc is involved in drug reward learning that might lead to addiction and that only drug, but not natural, reward is persistent.
Collapse
Affiliation(s)
- Inês M. Amaral
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.M.A.); (C.L.); (A.H.)
| | - Cristina Lemos
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.M.A.); (C.L.); (A.H.)
| | - Isabella Cera
- Institute for Neuroscience, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.C.); (G.D.)
| | - Georg Dechant
- Institute for Neuroscience, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.C.); (G.D.)
| | - Alex Hofer
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.M.A.); (C.L.); (A.H.)
| | - Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy and Psychosomatics, Medical University Innsbruck, 6020 Innsbruck, Austria; (I.M.A.); (C.L.); (A.H.)
| |
Collapse
|
21
|
Reppucci CJ, Brown LA, Chambers AQ, Veenema AH. Wistar rats and C57BL/6 mice differ in their motivation to seek social interaction versus food in the Social versus Food Preference Test. Physiol Behav 2020; 227:113162. [PMID: 32877644 PMCID: PMC7655716 DOI: 10.1016/j.physbeh.2020.113162] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/08/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Here we characterized the Social versus Food Preference Test, a behavioral paradigm designed to investigate the competition between the choice to seek social interaction versus the choice to seek food. We assessed how this competition was modulated by internal cues (social isolation, food deprivation), external cues (stimulus salience), sex (males, females), age (adolescents, adults), and rodent model (Wistar rats, C57BL/6 mice). We found that changes in stimulus preference in response to the internal and external cue manipulations were similar across cohorts. Specifically, social over food preference scores were reduced by food deprivation and social familiarly in Wistar rats and C57BL/6 mice of both sexes. Interestingly, the degree of food deprivation-induced changes in stimulus investigation patterns were greater in adolescents compared to adults in Wistar rats and C57BL/6 mice. Strikingly, baseline stimulus preference and investigation times varied greatly between rodent models: across manipulations, Wistar rats were generally more social-preferring and C57BL/6 mice were generally more food-preferring. Adolescent Wistar rats spent more time investigating the social and food stimuli than adult Wistar rats, while adolescent and adult C57BL/6 mice investigated the stimuli a similar amount. Social isolation did not alter behavior in the Social versus Food Preference Test. Together, our results indicate that the Social versus Food Preference Test is a flexible behavioral paradigm suitable for future interrogations of the peripheral and central systems that can coordinate the expression of stimulus preference related to multiple motivated behaviors.
Collapse
Affiliation(s)
- Christina J Reppucci
- Department of Psychology & Neuroscience Program, Michigan State University, 766 Service Road, 4016 ISTB, East Lansing, MI 48824, United States.
| | - Leigha A Brown
- Department of Psychology & Neuroscience Program, Michigan State University, 766 Service Road, 4016 ISTB, East Lansing, MI 48824, United States
| | - Ashley Q Chambers
- Department of Psychology & Neuroscience Program, Michigan State University, 766 Service Road, 4016 ISTB, East Lansing, MI 48824, United States
| | - Alexa H Veenema
- Department of Psychology & Neuroscience Program, Michigan State University, 766 Service Road, 4016 ISTB, East Lansing, MI 48824, United States
| |
Collapse
|
22
|
Netser S, Meyer A, Magalnik H, Zylbertal A, de la Zerda SH, Briller M, Bizer A, Grinevich V, Wagner S. Distinct dynamics of social motivation drive differential social behavior in laboratory rat and mouse strains. Nat Commun 2020; 11:5908. [PMID: 33219219 PMCID: PMC7679456 DOI: 10.1038/s41467-020-19569-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/14/2020] [Indexed: 12/21/2022] Open
Abstract
Mice and rats are widely used to explore mechanisms of mammalian social behavior in health and disease, raising the question whether they actually differ in their social behavior. Here we address this question by directly comparing social investigation behavior between two mouse and rat strains used most frequently for behavioral studies and as models of neuropathological conditions: C57BL/6 J mice and Sprague Dawley (SD) rats. Employing novel experimental systems for behavioral analysis of both subjects and stimuli during the social preference test, we reveal marked differences in behavioral dynamics between the strains, suggesting stronger and faster induction of social motivation in SD rats. These different behavioral patterns, which correlate with distinctive c-Fos expression in social motivation-related brain areas, are modified by competition with non-social rewarding stimuli, in a strain-specific manner. Thus, these two strains differ in their social behavior, which should be taken into consideration when selecting an appropriate model organism. Laboratory rat and mouse strains serve as animal models to explore brain mechanisms underlying social behavior. Here, the authors describe differences in social behavior between commonly used rat and mouse strains, which may reflect distinct dynamics of social motivation.
Collapse
Affiliation(s)
- Shai Netser
- Sagol Department of Neurobiology, the Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Ana Meyer
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, J5, 69159, Germany
| | - Hen Magalnik
- Sagol Department of Neurobiology, the Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Asaph Zylbertal
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WCE1 6BT, UK
| | - Shani Haskal de la Zerda
- Sagol Department of Neurobiology, the Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Mayan Briller
- Sagol Department of Neurobiology, the Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel
| | - Alexander Bizer
- Faculty of Natural Sciences, University of Haifa, Haifa, 3498838, Israel
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, J5, 69159, Germany
| | - Shlomo Wagner
- Sagol Department of Neurobiology, the Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, 3498838, Israel.
| |
Collapse
|
23
|
Social interaction reward: A resilience approach to overcome vulnerability to drugs of abuse. Eur Neuropsychopharmacol 2020; 37:12-28. [PMID: 32624295 DOI: 10.1016/j.euroneuro.2020.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/10/2020] [Accepted: 06/10/2020] [Indexed: 12/23/2022]
Abstract
Drug addiction is a multifactorial disorder resulting from the complex interaction between biological, environmental and drug-induced effects. Generally, stress is a well-known risk factor for the development of drug addiction and relapse. While most of the research focuses on risk factors that increase the vulnerability to drugs of abuse, recent studies are focusing on the areas of strength/positive coping approaches that can increase resistance to drugs of abuse. In this review, we concentrate on resilience, seen as a dynamic process, which can allow individuals to positively adapt within the context of a specific risk for psychiatric illness. Here, we discuss the effects of social stress in animal models on drug use, particularly cocaine. In contrast, we suggest social interaction reward when available as an alternative to drug use as an approach contracting negative stress effects and increasing resistance to drug use. Indeed, interventions, which aim at enhancing resilience to stress through the facilitation of social interaction and the enhancement of social support, could be particularly effective in helping people cope with stress and preventing drug use problems or relapse. Finally, understanding the neurobiological mechanisms underlying protective factors such as social interaction reward should provide the basis for future evidence-based interventions targeting substance abuse and stress-related pathologies.
Collapse
|
24
|
Diniz GB, Battagello DS, Klein MO, Bono BSM, Ferreira JGP, Motta‐Teixeira LC, Duarte JCG, Presse F, Nahon J, Adamantidis A, Chee MJ, Sita LV, Bittencourt JC. Ciliary melanin‐concentrating hormone receptor 1 (MCHR1) is widely distributed in the murine CNS in a sex‐independent manner. J Neurosci Res 2020; 98:2045-2071. [DOI: 10.1002/jnr.24651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/24/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Giovanne B. Diniz
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
- Department of Neurosurgery Yale School of Medicine New Haven CT USA
| | - Daniella S. Battagello
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - Marianne O. Klein
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | | | - Jozélia G. P. Ferreira
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - Livia C. Motta‐Teixeira
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - Jessica C. G. Duarte
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - Françoise Presse
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC) Université Côte d’AzurCNRS Valbonne France
| | - Jean‐Louis Nahon
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC) Université Côte d’AzurCNRS Valbonne France
| | | | - Melissa J. Chee
- Department of Neuroscience Carleton University Ottawa ON Canada
| | - Luciane V. Sita
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
| | - Jackson C. Bittencourt
- Department of Anatomy Institute of Biomedical Sciences University of Sao Paulo Sao Paulo Brazil
- Center for Neuroscience and Behavior Institute of Psychology University of Sao Paulo Sao Paulo Brazil
| |
Collapse
|
25
|
Żakowski W. Animal Use in Neurobiological Research. Neuroscience 2020; 433:1-10. [PMID: 32156550 DOI: 10.1016/j.neuroscience.2020.02.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022]
Abstract
The fact that neurobiological research is reliant upon laboratory-reared rodents is well known. The following paper discusses this topic broadly, but also aims to highlight other species used in the study of the nervous system and the evolution of animal species usage from the end of World War II through recent investigations. Attention is drawn to the dramatic reduction in the diversity of species used in neuroscience, with a significant shift toward two species, the mouse (Mus musculus) and rat (Rattus norvegicus). Such a limitation in animal species causes many difficulties in the development of new therapies for various neuropsychiatric diseases. Based on numerous scientific publications, the advantages of using a greater diversity of species in neuroscience and the disadvantages of focusing on mice and rats are presented.
Collapse
Affiliation(s)
- Witold Żakowski
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland.
| |
Collapse
|
26
|
Dodge A, Peters MM, Greene HE, Dietrick C, Botelho R, Chung D, Willman J, Nenninger AW, Ciarlone S, Kamath SG, Houdek P, Sumová A, Anderson AE, Dindot SV, Berg EL, O'Geen H, Segal DJ, Silverman JL, Weeber EJ, Nash KR. Generation of a Novel Rat Model of Angelman Syndrome with a Complete Ube3a Gene Deletion. Autism Res 2020; 13:397-409. [PMID: 31961493 PMCID: PMC7787396 DOI: 10.1002/aur.2267] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/02/2020] [Accepted: 01/06/2020] [Indexed: 11/08/2022]
Abstract
Angelman syndrome (AS) is a rare genetic disorder characterized by severe intellectual disability, seizures, lack of speech, and ataxia. The gene responsible for AS was identified as Ube3a and it encodes for E6AP, an E3 ubiquitin ligase. Currently, there is very little known about E6AP's mechanism of action in vivo or how the lack of this protein in neurons may contribute to the AS phenotype. Elucidating the mechanistic action of E6AP would enhance our understanding of AS and drive current research into new avenues that could lead to novel therapeutic approaches that target E6AP's various functions. To facilitate the study of AS, we have generated a novel rat model in which we deleted the rat Ube3a gene using CRISPR. The AS rat phenotypically mirrors human AS with loss of Ube3a expression in the brain and deficits in motor coordination as well as learning and memory. This model offers a new avenue for the study of AS. Autism Res 2020, 13: 397-409. © 2020 International Society for Autism Research,Wiley Periodicals, Inc. LAY SUMMARY: Angelman syndrome (AS) is a rare genetic disorder characterized by severe intellectual disability, seizures, difficulty speaking, and ataxia. The gene responsible for AS was identified as UBE3A, yet very little is known about its function in vivo or how the lack of this protein in neurons may contribute to the AS phenotype. To facilitate the study of AS, we have generated a novel rat model in which we deleted the rat Ube3a gene using CRISPR. The AS rat mirrors human AS with loss of Ube3a expression in the brain and deficits in motor coordination as well as learning and memory. This model offers a new avenue for the study of AS.
Collapse
Affiliation(s)
- Andie Dodge
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Melinda M Peters
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Hayden E Greene
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Clifton Dietrick
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Robert Botelho
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Diana Chung
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Jonathan Willman
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Austin W Nenninger
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Stephanie Ciarlone
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- PTC Therapeutics Inc., Plainfield, 07080, New Jersey
| | - Siddharth G Kamath
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Pavel Houdek
- Department of Neurohumoral Regulations, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Sumová
- Department of Neurohumoral Regulations, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Anne E Anderson
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Scott V Dindot
- Department of Veterinary Pathobiology, Texas A&M, College Station, Texas
| | - Elizabeth L Berg
- School of Medicine, MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California - Davis, Sacramento, California
| | - Henriette O'Geen
- Genome Center and MIND Institute, University of California - Davis, Davis, California
| | - David J Segal
- Genome Center and MIND Institute, University of California - Davis, Davis, California
| | - Jill L Silverman
- School of Medicine, MIND Institute, Department of Psychiatry and Behavioral Sciences, University of California - Davis, Sacramento, California
| | - Edwin J Weeber
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
- PTC Therapeutics Inc., Plainfield, 07080, New Jersey
| | - Kevin R Nash
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| |
Collapse
|
27
|
Sampedro-Piquero P, Ávila-Gámiz F, Moreno Fernández RD, Castilla-Ortega E, Santín LJ. The presence of a social stimulus reduces cocaine-seeking in a place preference conditioning paradigm. J Psychopharmacol 2019; 33:1501-1511. [PMID: 31542987 DOI: 10.1177/0269881119874414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND One challenge in the treatment of substance use disorders is to re-engage the interest toward non-drug-related activities. Among these activities, social interaction has had a prominent role due to its positive influence on treatment outcome. AIMS AND METHODS Our aim was to study whether the presence of a social stimulus during the cocaine-induced conditioned place preference test was able to reduce the time spent in the drug-paired compartment. For that purpose, mice were trained for four days on a conditioned place preference task with one compartment paired with cocaine and the opposite with saline. On the test day, we introduced an unfamiliar juvenile male mouse into the saline-conditioned compartment (inside a pencil cup) to analyse the animal preference towards the two rewarding stimuli (cocaine vs mouse). Additionally, to discard the possible effect of novelty, as well as the housing condition (social isolation) on social preference, we decided to include a novel object during the test session, as well as perform the same conditioned place preference protocol with a group of animals in social housing conditions. RESULTS The social stimulus was able to reduce the preference for cocaine and enhance the active interaction with the juvenile mouse (sniffing) compared to the empty pencil cup paired with the drug. The introduction of a novel object during the test session did not reduce the preference for the cocaine-paired compartment, and interestingly, the preference for the social stimulus was independent of the housing condition. c-Fos immunohistochemistry revealed a different pattern of activation based on cocaine-paired conditioning or the presence of social stimulus. CONCLUSIONS These results suggest that social interaction could constitute a valuable component in the treatment of substance use disorders by reducing the salience of the drug.
Collapse
Affiliation(s)
- Patricia Sampedro-Piquero
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Malaga, Spain
| | - Fabiola Ávila-Gámiz
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Malaga, Spain
| | - Román D Moreno Fernández
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Malaga, Spain
| | - Estela Castilla-Ortega
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.,Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Malaga, Spain
| | - Luis J Santín
- Instituto de Investigación Biomédica de Málaga (IBIMA), Malaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, Malaga, Spain
| |
Collapse
|
28
|
Therapeutic efficacy of environmental enrichment for substance use disorders. Pharmacol Biochem Behav 2019; 188:172829. [PMID: 31778722 DOI: 10.1016/j.pbb.2019.172829] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022]
Abstract
Addiction to drug and alcohol is regarded as a major health problem worldwide for which available treatments show limited effectiveness. The biggest challenge remains to enhance the capacities of interventions to reduce craving, prevent relapse and promote long-term recovery. New strategies to meet these challenges are being explored. Findings from preclinical work suggest that environmental enrichment (EE) holds therapeutic potential for the treatment of substance use disorders, as demonstrated in a number of animal models of drug abuse. The EE intervention introduced after drug exposure leads to attenuation of compulsive drug taking, attenuation of the rewarding (and reinforcing) effects of drugs, reductions in control of behavior by drug cues, and, very importantly, relapse prevention. Clinical work also suggests that multidimensional EE interventions (involving physical activity, social interaction, vocational training, recreational and community involvement) might produce similar therapeutic effects, if implemented continuously and rigorously. In this review we survey preclinical and clinical studies assessing the efficacy of EE as a behavioral intervention for substance use disorders and address related challenges. We also review work providing empirical evidence for EE-induced neuroplasticity within the mesocorticolimbic system that is believed to contribute to the seemingly therapeutic effects of EE on drug and alcohol-related behaviors.
Collapse
|
29
|
Social modulation of drug use and drug addiction. Neuropharmacology 2019; 159:107545. [PMID: 30807753 DOI: 10.1016/j.neuropharm.2019.02.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/05/2019] [Accepted: 02/21/2019] [Indexed: 01/01/2023]
Abstract
This review aims to demonstrate how social science and behavioral neurosciences have highlighted the influence of social interactions on drug use in animal models. In neurosciences, the effect of global social context that are distal from drug use has been widely studied. For human and other social animals such as monkeys and rodents, positive social interactions are rewarding, can overcome drug reward and, in all, protect from drug use. In contrast, as other types of stress, negative social experiences facilitate the development and maintenance of drug abuse. However, interest recently emerged in the effect of so-called "proximal" social factors, that is, social interactions during drug-taking. These recent studies have characterized the role of the drug considered, the sharing of drug experience and the familiarity of the peer which interaction are made with. We also examine the few studies regarding the sensorial mediator of social behaviors and critically review the neural mediation of social factors on drug use. However, despite considerable characterization of the factors modulating distal influences, the mechanisms for proximal influences on drug use remain largely unknown. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.
Collapse
|
30
|
Abstract
In this chapter, we briefly review the use of rats as a genetic model for the study of behavior. Rats were the first mammalian species used for genetic and biological research. Since the development of the first inbred rat strain in 1909, more than 700 unique inbred and outbred rat lines have been generated. Although rats have been somewhat eclipsed by mice in the last few decades, a renewed appreciation of the advantages of rats for behavioral and other types of research is upon us. We briefly review the pertinent characteristics of the rat and highlight the key advantages of using the rat to examine behavioral phenotypes.
Collapse
Affiliation(s)
- Yangsu Ren
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA. .,Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
31
|
Drozd HP, Karathanasis SF, Molosh AI, Lukkes JL, Clapp DW, Shekhar A. From bedside to bench and back: Translating ASD models. PROGRESS IN BRAIN RESEARCH 2018; 241:113-158. [PMID: 30447753 DOI: 10.1016/bs.pbr.2018.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autism spectrum disorders (ASD) represent a heterogeneous group of disorders defined by deficits in social interaction/communication and restricted interests, behaviors, or activities. Models of ASD, developed based on clinical data and observations, are used in basic science, the "bench," to better understand the pathophysiology of ASD and provide therapeutic options for patients in the clinic, the "bedside." Translational medicine creates a bridge between the bench and bedside that allows for clinical and basic science discoveries to challenge one another to improve the opportunities to bring novel therapies to patients. From the clinical side, biomarker work is expanding our understanding of possible mechanisms of ASD through measures of behavior, genetics, imaging modalities, and serum markers. These biomarkers could help to subclassify patients with ASD in order to better target treatments to a more homogeneous groups of patients most likely to respond to a candidate therapy. In turn, basic science has been responding to developments in clinical evaluation by improving bench models to mechanistically and phenotypically recapitulate the ASD phenotypes observed in clinic. While genetic models are identifying novel therapeutics targets at the bench, the clinical efforts are making progress by defining better outcome measures that are most representative of meaningful patient responses. In this review, we discuss some of these challenges in translational research in ASD and strategies for the bench and bedside to bridge the gap to achieve better benefits to patients.
Collapse
Affiliation(s)
- Hayley P Drozd
- Program in Medical Neurobiology, Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Sotirios F Karathanasis
- Program in Medical Neurobiology, Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Andrei I Molosh
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jodi L Lukkes
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - D Wade Clapp
- Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Anantha Shekhar
- Program in Medical Neurobiology, Stark Neurosciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States; Indiana Clinical and Translation Sciences Institute, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
32
|
Salti A, Apostolova G, Kummer KK, Lemos C, Dechant G, El Rawas R. Cocaine Paired Environment Increases SATB2 Levels in the Rat Paraventricular Thalamus. Front Behav Neurosci 2018; 12:224. [PMID: 30356831 PMCID: PMC6190852 DOI: 10.3389/fnbeh.2018.00224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/07/2018] [Indexed: 11/23/2022] Open
Abstract
SATB2 is a DNA binding protein that specifically binds the nuclear matrix attachment region and functions as a regulator of the transcription of large chromatin domains. Unlike its well addressed role during brain development, the role of SATB2 in adult brain is under-investigated. It has been shown that deletion of SATB2 from the forebrain of adult mice significantly impaired long-term memory for contextual fear and object recognition memory. The aim of the present study was to investigate the effects of appetitive stimuli such as cocaine and social interaction (SI) on SATB2 expression in the adult rat brain. For that, we performed conditioned place preference (CPP) to cocaine (15 mg/kg) and to SI, then assessed SATB2 expression in the brain 1 h (24 h after the last conditioning) and 24 h (48 h after the last conditioning) after the CPP test. We found that SATB2 expression in the paraventricular thalamus of rats was increased 1 h after the cocaine CPP test. This increase was selective for the cocaine-paired environment since the SI-paired environment did not increase SATB2 expression in the paraventricular thalamus. Also, the cocaine paired environment-induced increase of SATB2 levels in the paraventricular thalamus was due to cocaine conditioning as the unpaired cocaine group did not show an increase of SATB2 in the paraventricular thalamus. These results suggest that SATB2 in the paraventricular thalamus appears to be involved in the association between cocaine effects and environmental context. Further studies are needed to address the functional role of SATB2 in cocaine conditioning.
Collapse
Affiliation(s)
- Ahmad Salti
- Experimental Psychiatry Unit, Medical University of Innsbruck, Innsbruck, Austria.,Institute of Molecular Biology, University of Innsbruck, Innsbruck, Austria
| | - Galina Apostolova
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Kai K Kummer
- Division of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cristina Lemos
- Experimental Psychiatry Unit, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Dechant
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Rana El Rawas
- Experimental Psychiatry Unit, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
33
|
Abstract
Interest for the use of oxytocin as a treatment for addiction began over 40years ago. Better known for its roles in parturition, lactation and pair bonding, oxytocin also has anxiolytic properties, reduces immune and inflammatory responses, and has a role in learning and memory. In this chapter, oxytocin effects on addiction processes are described by highlighting research findings that have used oxytocin within current preclinical animal models of addiction, relapse, or craving. First, we provide a brief background of the endogenous oxytocin system followed by descriptions of the behavioral models used to study addiction, including models of drug taking and seeking. Then we review recent preclinical studies that have used oxytocin as a therapeutic intervention throughout multiple stages of the addiction cycle from a behavioral and neurobiological perspective. These models encompass the entire range of the addiction cycle including acquisition and maintenance of drug taking, withdrawal and craving during periods of drug abstinence, and ultimately relapse. We then posit several theories about how oxytocin interacts with both drug and social reward, as well as presenting a mechanistic account of how specific oxytocin receptor localization may contribute to oxytocin's efficacy as an addiction therapeutic.
Collapse
|
34
|
McDougall SA, Apodaca MG, Mohd-Yusof A, Mendez AD, Katz CG, Teran A, Garcia-Carachure I, Quiroz AT, Crawford CA. Ontogeny of cocaine-induced behaviors and cocaine pharmacokinetics in male and female neonatal, preweanling, and adult rats. Psychopharmacology (Berl) 2018; 235:1967-1980. [PMID: 29671013 PMCID: PMC7008939 DOI: 10.1007/s00213-018-4894-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/29/2018] [Indexed: 11/29/2022]
Abstract
RATIONALE Ontogenetic differences in the behavioral responsiveness to cocaine have often been attributed to the maturation of dopaminergic elements (e.g., dopamine transporters, D2High receptors, receptor coupling, etc.). OBJECTIVE The purpose of this study was to determine whether ontogenetic changes in cocaine pharmacokinetics might contribute to age-dependent differences in behavioral responsiveness. METHODS Male and female neonatal (PD 5), preweanling (PD 10 and PD 20), and adult (PD 70) rats were injected (IP) with cocaine or saline and various behaviors (e.g., locomotor activity, forelimb paddle, vertical activity, head-down sniffing, etc.) were measured for 90 min. In a separate experiment, the dorsal striata of young and adult rats were removed at 10 time points (0-210 min) after IP cocaine administration. Peak cocaine values, cocaine half-life, and dopamine levels were determined using HPLC. RESULTS When converted to percent of saline controls, PD 5 and PD 10 rats were generally more sensitive to cocaine than older rats, but this effect varied according to the behavior being assessed. Peak cocaine values did not differ according to age or sex, but cocaine half-life in brain was approximately 2 times longer in PD 5 and PD 10 rats than adults. Cocaine pharmacokinetics did not differ between PD 20 and PD 70 rats. CONCLUSIONS Differences in the cocaine-induced behavioral responsiveness of very young rats (PD 5 and PD 10) and adults may be attributable, at least in part, to pharmacokinetic factors; whereas, age-dependent behavioral differences between the late preweanling period and adulthood cannot readily be ascribed to cocaine pharmacokinetics.
Collapse
Affiliation(s)
- Sanders A McDougall
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA.
| | - Matthew G Apodaca
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Alena Mohd-Yusof
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Adrian D Mendez
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Caitlin G Katz
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Angie Teran
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Israel Garcia-Carachure
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Anthony T Quiroz
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Cynthia A Crawford
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| |
Collapse
|
35
|
Abstract
Rodents (especially Mus musculus and Rattus norvegicus) have been the most widely used models in biomedical research for many years. A notable shift has taken place over the last two decades, with mice taking a more and more prominent role in biomedical science compared to rats. This shift was primarily instigated by the availability of a much larger genetic toolbox for mice, particularly embryonic-stem-cell-based targeting technology for gene disruption. With the recent emergence of tools for altering the rat genome, notably genome-editing technologies, the technological gap between the two organisms is closing, and it is becoming more important to consider the physiological, anatomical, biochemical and pharmacological differences between rats and mice when choosing the right model system for a specific biological question. The aim of this short review and accompanying poster is to highlight some of the most important differences, and to discuss their impact on studies of human diseases, with a special focus on neuropsychiatric disorders.
Collapse
Affiliation(s)
- Bart Ellenbroek
- School of Psychology, Victoria University of Wellington, PO Box 600, Wellington 6041, New Zealand
| | - Jiun Youn
- School of Psychology, Victoria University of Wellington, PO Box 600, Wellington 6041, New Zealand
| |
Collapse
|
36
|
Bregolin T, Pinheiro BS, El Rawas R, Zernig G. Preventive Strength of Dyadic Social Interaction against Reacquisition/Reexpression of Cocaine Conditioned Place Preference. Front Behav Neurosci 2017; 11:225. [PMID: 29167636 PMCID: PMC5682322 DOI: 10.3389/fnbeh.2017.00225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/27/2017] [Indexed: 11/15/2022] Open
Abstract
The reorientation away from drugs of abuse and toward social interaction is a highly desirable but as yet elusive goal in the therapy of substance dependence. We could previously show that cocaine preferring Sprague-Dawley rats which engaged in only four 15 min episodes of dyadic social interaction (DSI) did not reacquire and reexpress cocaine conditioned place preference (CPP) after a single cocaine exposure. In the present study, we investigated how strong this preventive effect of DSI is. In corroboration of our previous findings in rats, four 15 min DSI episodes prevented the reacquisition/reexpression of cocaine CPP in mice. However, this effect was only observed if only one cocaine conditioning session (15 min) was used. If mice were counterconditioned with a total of four cocaine sessions, the cocaine CPP reemerged. Interestingly, the opposite also held true: in mice that had acquired/expressed cocaine CPP, one conditioning session with DSI did not prevent the persistence of cocaine CPP, whereas four DSI conditioning sessions reversed CPP for 15 mg/kg intraperitoneal cocaine. Of note, this cocaine dose was a strong reward in C57BL/6J mice, causing CPP in all tested animals. Our findings suggest that both the reversal (reconditioning) of CPP from cocaine to DSI as well as that from DSI to cocaine requires four conditioning sessions. As previously shown in C57BL/6 mice from the NIH substrain, mice from the Jackson substrain also showed a greater relative preference for 15 mg/kg intraperitoneal cocaine over DSI, whereas Sprague-Dawley rats were equally attracted to contextual stimuli associated with this cocaine dose and DSI. Also in corroboration of previous findings, both C57BL/6J mice and experimenters several generations removed from the original ones produced CPP for DSI to a lesser degree than Sprague-Dawley rats. Our findings demonstrate the robustness of our experimental model across several subject- and experimenter generations in two rodent genus (i.e., mouse and rat) and allow the quantification of the strength (i.e., persistence) of the preventive effect of DSI against the reacquisition/reexpression of cocaine CPP, arguably a model for cocaine relapse.
Collapse
Affiliation(s)
- Tanja Bregolin
- Experimental Psychiatry Unit, Department of Psychiatry 1, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Barbara S. Pinheiro
- Experimental Psychiatry Unit, Department of Psychiatry 1, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Rana El Rawas
- Experimental Psychiatry Unit, Department of Psychiatry 1, Medical University of Innsbruck (MUI), Innsbruck, Austria
| | - Gerald Zernig
- Experimental Psychiatry Unit, Department of Psychiatry 1, Medical University of Innsbruck (MUI), Innsbruck, Austria
| |
Collapse
|
37
|
Chadman KK. Animal models for autism in 2017 and the consequential implications to drug discovery. Expert Opin Drug Discov 2017; 12:1187-1194. [PMID: 28971687 DOI: 10.1080/17460441.2017.1383982] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Autism spectrum disorder (ASD) is characterized by deficits in social communication and restricted interests/repetitive behaviors, for which there are currently no approved drug treatments. The core symptoms of ASD vary widely in severity and are often accompanied by other neuropsychiatric disorders. Drug discovery has been challenging because of the lack of understanding of the underlying pathophysiology of ASD as well as the heterogeneity of symptoms and symptom severity. Areas covered: In this review, the author discusses animal models of ASD used as targets for drug discovery, focusing primarily on non-syndromic models, primarily rodents. They highlight the wide range of drug targets examined in animal models. While very little of this work has resulted in drug therapy for the behavioral symptoms of ASD yet, it has increased our knowledge of the biology of ASD that is critical for driving drug discovery and has already provided many new drug targets for investigation. Expert opinion: The information gathered from the animal models of ASD is increasing our understanding of the underlying pathophysiology for ASD and is leading to better therapeutic targets. However, the issue of small sample size, heterogeneity within clinical samples, and a lack of replicable outcome measures must be addressed to move forward.
Collapse
Affiliation(s)
- Kathryn K Chadman
- a Behavioral Pharmacology Laboratory , NYS Office for People with Developmental Disabilities, Institute for Basic Research in Developmental Disabilities , Staten Island , NY , USA
| |
Collapse
|
38
|
Kaufling J, Girard D, Maitre M, Leste-Lasserre T, Georges F. Species-specific diversity in the anatomical and physiological organisation of the BNST-VTA pathway. Eur J Neurosci 2017; 45:1230-1240. [DOI: 10.1111/ejn.13554] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Jennifer Kaufling
- UMR5297; Interdisciplinary Institute for Neuroscience; Université de Bordeaux; Bordeaux France
- UMR 5297; Interdisciplinary Institute for Neuroscience; Centre National de la Recherche Scientifique; Bordeaux France
| | - Delphine Girard
- UMR5297; Interdisciplinary Institute for Neuroscience; Université de Bordeaux; Bordeaux France
- UMR 5297; Interdisciplinary Institute for Neuroscience; Centre National de la Recherche Scientifique; Bordeaux France
| | | | | | - François Georges
- UMR 5293; Neurodegeneratives Diseases Institute; Université de Bordeaux; F-33076 Bordeaux France
- UMR 5293; Neurodegeneratives Diseases Institute; Centre National de la Recherche Scientifique; Bordeaux France
| |
Collapse
|
39
|
Dingess PM, Deters MJ, Darling RA, Yarborough EA, Brown TE. A method for evaluating cocaine-induced social preference in rats. J Biol Methods 2017; 4. [PMID: 29057277 PMCID: PMC5647838 DOI: 10.14440/jbm.2017.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Drug addicts are extremely sensitive to cues that predict drug availability and exposure to these cues can facilitate drug relapse. Cues vary in their nature but can include drug-associated paraphernalia, environmental contexts, and discrete conditioned stimuli (e.g., advertisements). One cue that has recently been heavily investigated is that of social interaction. To date, it has been demonstrated that when cocaine is conditioned with social interaction, place preference for cocaine significantly increases, suggesting that the presence of social interaction during a drug-associated “high” enhances the magnitude of drug reward. When social interaction is provided in a mutually exclusive, non-drug environment though, it can serve as a preventative stimulus towards cocaine seeking. What remains unknown is whether contact with rats associated with drug experience facilitates preferential social interactions for those rats. The first step in answering this question is to determine if rats can behaviorally discriminate between drug-associated and non-drug-associated conspecifics, much like humans can differentiate their “drug-friends” from their non-drug-using friends. Using a custom social interaction chamber, in which rats were able to interact with two distinct conspecifics via holes in a boundary wall, we demonstrate that rats exhibit more interactive and investigative behavior towards a partner that was consistently present during the drug-state, than a partner that was present when the rat was “sober”. It is our hope that this protocol will contribute to the development of models designed to study social cue-induced reinstatement, and related neural substrates, and will ultimately contribute to the treatment of substance use disorders.
Collapse
Affiliation(s)
- P M Dingess
- University of Wyoming, Neuroscience Program, Laramie, WY 82071, USA
| | - M J Deters
- University of Wyoming, Neuroscience Program, Laramie, WY 82071, USA
| | - R A Darling
- University of Wyoming, Neuroscience Program, Laramie, WY 82071, USA
| | - E A Yarborough
- University of Wyoming, School of Pharmacy, Laramie, WY 82071, USA
| | - T E Brown
- University of Wyoming, Neuroscience Program, Laramie, WY 82071, USA.,University of Wyoming, School of Pharmacy, Laramie, WY 82071, USA
| |
Collapse
|
40
|
Dyadic social interaction of C57BL/6 mice versus interaction with a toy mouse: conditioned place preference/aversion, substrain differences, and no development of a hierarchy. Behav Pharmacol 2016; 27:279-88. [PMID: 26905190 PMCID: PMC4780246 DOI: 10.1097/fbp.0000000000000223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Impaired social interaction is a hallmark symptom of many psychiatric diseases, including dependence syndromes (substance use disorders). Helping the addict reorient her/his behavior away from the drug of abuse toward social interaction would be of considerable therapeutic benefit. To study the neural basis of such a reorientation, we have developed several animal models in which the attractiveness of a dyadic (i.e. one-to-one) social interaction (DSI) can be compared directly with that of cocaine as a prototypical drug of abuse. Our models are based on the conditioned place preference (CPP) paradigm. In an ongoing effort to validate our experimental paradigms in C57BL/6 mice to make use of the plethora of transgenic models available in this genus, we found the following: (a) DSI with a live mouse produced CPP, whereas an interaction with an inanimate mouse-like object (i.e. a 'toy mouse'; toy mouse interaction) led to conditioned place aversion - but only in the Jackson substrain (C57BL/6J). (b) In the NIH substrain (C57BL/6N), both DSI and toy mouse interaction produced individual aversion in more than 50% of the tested mice. (c) Four 15 min DSI episodes did not result in the development of an observable hierarchy, that is, dominance/subordination behavior in the overwhelming majority (i.e. 30 of 32) of the tested Jackson mouse pairs. Therefore, dominance/subordination does not seem to be a confounding variable in our paradigm, at least not in C57BL/6J mice. Respective data for NIH mice were too limited to allow any conclusion. The present findings indicate that (a) DSI with a live mouse produces CPP to a greater degree than an interaction with an inanimate object resembling a mouse and that (b) certain substrain differences with respect to CPP/aversion to DSI do exist between the Jax and NIH substrain of C57BL/6 mice. These differences have to be considered when choosing a proper mouse substrain model for investigating the neural basis of DSI reward versus drug reward.
Collapse
|
41
|
Liu C, Wang J, Zhan B, Cheng G. Neuronal activity and the expression of hypothalamic oxytocin and vasopressin in social versus cocaine conditioning. Behav Brain Res 2016; 310:84-92. [DOI: 10.1016/j.bbr.2016.05.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/01/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022]
|
42
|
Thanos PK, Restif C, O'Rourke JR, Lam CY, Metaxas D. Mouse Social Interaction Test (MoST): a quantitative computer automated analysis of behavior. J Neural Transm (Vienna) 2015; 124:3-11. [PMID: 26704381 DOI: 10.1007/s00702-015-1487-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
Abstract
Rodents are the most commonly used preclinical model of human disease assessing the mechanism(s) involved as well as the role of genetics, epigenetics, and pharmacotherapy on this disease as well as identifying vulnerability factors and risk assessment for disease critical in the development of improved treatment strategies. Unfortunately, the majority of rodent preclinical studies utilize single housed approaches where animals are either entirely housed and tested in solitary environments or group housed but tested in solitary environments. This approach, however, ignores the important contribution of social interaction and social behavior. Social interaction in rodents is found to be a major criterion for the ethological validity of rodent species-specific behavioral characteristics (Zurn et al. 2007; Analysis 2011). It is also well established that there is significant and growing number of reports, which illustrates the important role of social environment and social interaction in all diseases, with particularly significance in all neuropsychiatric diseases. Thus, it is imperative that research studies be able to add large-scale evaluations of social interaction and behavior in mice and benefit from automated tracking of behaviors and measurements by removing user bias and by quantifying aspects of behaviors that cannot be assessed by a human observer. Single mouse setups have been used routinely, but cannot be easily extended to multiple-animal studies where social behavior is key, e.g., autism, depression, anxiety, substance and non-substance addictive disorders, aggression, sexual behavior, or parenting. While recent efforts are focusing on multiple-animal tracking alone, a significant limitation remains the lack of insightful measures of social interactions. We present a novel, non-invasive single camera-based automated tracking method described as Mouse Social Test (MoST) and set of measures designed for estimating the interactions of multiple mice at the same time in the same environment interacting freely. Our results show measurement of social interactions and designed to be adaptable and applicable to most existing home cage systems used in research, and provide a greater level of detailed analysis of social behavior than previously possible. The present study describes social behaviors assessed in a home cage environment setup containing six mice that interact freely over long periods of time, and we illustrate how these measures can be interpreted and combined to classify rodent social behaviors. In addition, we illustrate how these measures can be interpreted and combined to classify and analyze comprehensively rodent behaviors involved in several neuropsychiatric diseases as well as provide opportunity for the basic research of rodent behavior previously not possible.
Collapse
Affiliation(s)
- Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Lab, Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA.
| | - Christophe Restif
- Center for Computational Biomedicine Imaging and Computation, Rutgers University, New Brunswick, NJ, 08904, USA
| | - Joseph R O'Rourke
- Behavioral Neuropharmacology and Neuroimaging Lab, Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
| | - Chiu Yin Lam
- Behavioral Neuropharmacology and Neuroimaging Lab, Research Institute on Addictions, University at Buffalo, Buffalo, NY, 14203, USA
| | - Dimitris Metaxas
- Center for Computational Biomedicine Imaging and Computation, Rutgers University, New Brunswick, NJ, 08904, USA
| |
Collapse
|
43
|
Zernig G, Pinheiro BS. Dyadic social interaction inhibits cocaine-conditioned place preference and the associated activation of the accumbens corridor. Behav Pharmacol 2015; 26:580-94. [PMID: 26221832 PMCID: PMC4523229 DOI: 10.1097/fbp.0000000000000167] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/23/2015] [Indexed: 01/05/2023]
Abstract
Impaired social interaction is a hallmark symptom of many psychiatric disorders. In substance use disorders, impaired social interaction is triply harmful (a) because addicts increasingly prefer the drug of abuse to the natural reward of drug-free social interaction, thus worsening the progression of the disease by increasing their drug consumption, (b) because treatment adherence and, consequently, treatment success itself depends on the ability of the recovering addict to maintain social interaction and adhere to treatment, and (c) because socially interacting with an individual suffering from a substance use disorder may be harmful for others. Helping the addict reorient his/her behavior away from the drug of abuse toward social interaction would therefore be of considerable therapeutic benefit. This article reviews our work on the neural basis of such a reorientation from cocaine, as a prototypical drug of abuse, toward dyadic (i.e. one-to-one) social interaction and compares our findings with the effects of other potentially beneficial interventions, that is, environmental enrichment or paired housing, on the activation of the accumbens and other brain regions involved in behavior motivated by drugs of abuse or nondrug stimuli. Our experimental models are based on the conditioned place preference paradigm. As the therapeutically most promising finding, only four 15 min episodes of dyadic social interaction were able to inhibit both the subsequent reacquisition/re-expression of preference for cocaine and the neural activation associated with this behavior, that is, an increase in the expression of the immediate early gene Early Growth Response protein 1 (EGR1, Zif268) in the nucleus accumbens, basolateral and central amygdala, and the ventral tegmental area. The time spent in the cocaine-associated conditioning compartment was correlated with the density of EGR1-activated neurons not only in the medial core (AcbCm) and medial shell (AcbShm) of the nucleus accumbens, but was observed in all regions medial to the anterior commissure ('accumbens corridor'), including (from medial to lateral), the vertical limb of the diagonal band and the medial septum (VDB+MS), the major island of Calleja and the intermediate nucleus of the lateral septum (ICjM+LSI), the AcbShm, and the AcbCm. All effects were limited to GABAergic projection neurons (called 'medium spiny neurons', in the accumbens), encompassing both dopamine D1 receptor-expressing and D2 receptor-expressing medium spiny neuron subtypes. Our EGR1 expression findings were mirrored in multielectrode array recordings. Finally, we have validated our paradigm in C57BL/6 mice to make use of the plethora of transgenic models available in this genus.
Collapse
Affiliation(s)
- Gerald Zernig
- Experimental Psychiatry Unit, Department of General Psychiatry and Social Psychiatry, Medical University of Innsbruck
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Barbara S. Pinheiro
- Experimental Psychiatry Unit, Department of General Psychiatry and Social Psychiatry, Medical University of Innsbruck
| |
Collapse
|
44
|
Social interaction reward decreases p38 activation in the nucleus accumbens shell of rats. Neuropharmacology 2015; 99:510-6. [PMID: 26300300 PMCID: PMC5056637 DOI: 10.1016/j.neuropharm.2015.08.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 01/23/2023]
Abstract
We have previously shown that animals acquired robust conditioned place preference (CPP) to either social interaction alone or cocaine alone. Recently it has been reported that drugs of abuse abnormally activated p38, a member of mitogen-activated protein kinase family, in the nucleus accumbens. In this study, we aimed to investigate the expression of the activated form of p38 (pp38) in the nucleus accumbens shell and core of rats expressing either cocaine CPP or social interaction CPP 1 h, 2 h and 24 h after the CPP test. We hypothesized that cocaine CPP will increase pp38 in the nucleus accumbens shell/core as compared to social interaction CPP. Surprisingly, we found that 24 h after social interaction CPP, pp38 neuronal levels were decreased in the nucleus accumbens shell to the level of naïve rats. Control saline rats that received saline in both compartments of the CPP apparatus and cocaine CPP rats showed similar enhanced p38 activation as compared to naïve and social interaction CPP rats. We also found that the percentage of neurons expressing dopaminergic receptor D2R and pp38 was also decreased in the shell of the nucleus accumbens of social interaction CPP rats as compared to controls. Given the emerging role of p38 in stress/anxiety behaviors, these results suggest that (1) social interaction reward has anti-stress effects; (2) cocaine conditioning per se does not affect p38 activation and that (3) marginal stress is sufficient to induce p38 activation in the shell of the nucleus accumbens.
Collapse
|
45
|
El Rawas R, Saria A. The Two Faces of Social Interaction Reward in Animal Models of Drug Dependence. Neurochem Res 2015; 41:492-9. [PMID: 26088685 DOI: 10.1007/s11064-015-1637-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
Drug dependence is a serious health and social problem. Social factors can modify vulnerability to developing drug dependence, acting as risk factors or protective factors. Whereas stress and peer environment that encourage substance use may increase drug taking, strong attachments between family members and peer environment that do not experience drug use may protect against drug taking and, ultimately, drug dependence. The rewarding effects of drug abuse and social interaction can be evaluated using animal models. In this review we focus on evaluating social interaction reward in the conditioned place preference paradigm. We give an overview of how social interaction, if made available within the drug context, may facilitate, promote and interact with the drug's effects. However, social interaction, if offered alternatively outside the drug context, may have pronounced protective effects against drug abuse and relapse. We also address the importance of the weight difference parameter between the social partners in determining the positive or "agonistic" versus the hostile or "antagonistic" social interaction. We conclude that understanding social interaction reward and its subsequent effects on drug reward is sorely needed for therapeutic interventions against drug dependence.
Collapse
Affiliation(s)
- Rana El Rawas
- Experimental Psychiatry Unit, Department of General Psychiatry and Social Psychiatry, Center of Psychiatry and Psychotherapy, Medical University of Innsbruck, Innrain 66a, 6020, Innsbruck, Austria
| | - Alois Saria
- Experimental Psychiatry Unit, Department of General Psychiatry and Social Psychiatry, Center of Psychiatry and Psychotherapy, Medical University of Innsbruck, Innrain 66a, 6020, Innsbruck, Austria.
| |
Collapse
|
46
|
Kummer KK, El Rawas R, Kress M, Saria A, Zernig G. Social interaction and cocaine conditioning in mice increase spontaneous spike frequency in the nucleus accumbens or septal nuclei as revealed by multielectrode array recordings. Pharmacology 2015; 95:42-9. [PMID: 25592253 DOI: 10.1159/000370314] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/02/2014] [Indexed: 11/19/2022]
Abstract
Both cocaine and social interaction place preference conditioning lead to increased neuronal expression of the immediate early gene EGR1 in the nucleus accumbens, a central region of the reward pathway, suggesting that both drug and natural rewards may be processed in similar brain regions. In order to gain novel insights into the intrinsic in vitro electrical activity of the nucleus accumbens and adjacent brain regions and to explore the effects of reward conditioning on network activity, we performed multielectrode array recordings of spontaneous firing in acute brain slices of mice conditioned to either cocaine or social interaction place preference. Cocaine conditioning increased the spike frequency of neurons in the septal nuclei, whereas social interaction conditioning increased the spike frequency in the nucleus accumbens compared to saline control animals. In addition, social interaction conditioning decreased the amount of active neuron clusters in the nucleus accumbens. Our findings suggest that place preference conditioning for both drug and natural rewards may induce persistent changes in neuronal network activity in the nucleus accumbens and the septum that are still preserved in acute slice preparations.
Collapse
Affiliation(s)
- Kai K Kummer
- Experimental Psychiatry Unit, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
47
|
Prast JM, Schardl A, Sartori SB, Singewald N, Saria A, Zernig G. Increased conditioned place preference for cocaine in high anxiety related behavior (HAB) mice is associated with an increased activation in the accumbens corridor. Front Behav Neurosci 2014; 8:441. [PMID: 25566008 PMCID: PMC4273636 DOI: 10.3389/fnbeh.2014.00441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/04/2014] [Indexed: 01/21/2023] Open
Abstract
Anxiety disorders and substance use disorders are strongly associated in humans. Accordingly, a widely held but controversial concept in the addiction field, the so-called “self-medication hypothesis,” posits that anxious individuals are more vulnerable for drug dependence because they use drugs of abuse to alleviate their anxiety. We tested this hypothesis under controlled experimental conditions by quantifying the conditioned place preference (CPP) to 15 mg/kg i.p. cocaine given contingently (COCAINE) in CD1 mice selectively bred for high anxiety-related behavior (HAB) vs. normal anxiety-related behavior (NAB). Cocaine was conditioned to the initially non-preferred compartment in an alternate day design (cocaine vs. saline, four pairings each). HAB and NAB mice were also tested for the effects of non-contingent (NONCONT) cocaine administration. HAB mice showed a slightly higher bias for one of the conditioning compartments during the pretest than NAB mice that became statistically significant (p = 0.045) only after pooling COCAINE and NONCONT groups. Cocaine CPP was higher (p = 0.0035) in HAB compared to NAB mice. The increased cocaine CPP was associated with an increased expression of the immediate early genes (IEGs) c-Fos and Early Growth Related Protein 1 (EGR1) in the accumbens corridor, i.e., a region stretching from the anterior commissure to the interhemispheric border and comprising the medial nucleus accumbens core and shell, the major island of Calleja and intermediate part of the lateral septum, as well as the vertical limb of the diagonal band and medial septum. The cocaine CPP-induced EGR1 expression was only observed in D1- and D2-medium spiny neurons, whereas other types of neurons or glial cells were not involved. With respect to the activation by contingent vs. non-contingent cocaine EGR1 seemed to be a more sensitive marker than c-Fos. Our findings suggest that cocaine may be more rewarding in high anxiety individuals, plausibly due to an anxiolytic effect.
Collapse
Affiliation(s)
- Janine M Prast
- Department of General Psychiatry and Psychiatry, Experimental Psychiatry Unit, Medical University of Innsbruck Innsbruck, Austria
| | - Aurelia Schardl
- Department of General Psychiatry and Psychiatry, Experimental Psychiatry Unit, Medical University of Innsbruck Innsbruck, Austria
| | - Simone B Sartori
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck Innsbruck, Austria
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck Innsbruck, Austria
| | - Alois Saria
- Department of General Psychiatry and Psychiatry, Experimental Psychiatry Unit, Medical University of Innsbruck Innsbruck, Austria
| | - Gerald Zernig
- Department of General Psychiatry and Psychiatry, Experimental Psychiatry Unit, Medical University of Innsbruck Innsbruck, Austria ; Department of Psychology, University of Innsbruck Innsbruck, Austria
| |
Collapse
|