1
|
Ohtake M, Abe K, Hasegawa M, Itokazu T, Selvakumar V, Matunis A, Stacy E, Froebrich E, Huynh N, Lee H, Kambe Y, Yamamoto T, Sato TK, Sato TR. Encoding of self-initiated actions in axon terminals of the mesocortical pathway. NEUROPHOTONICS 2024; 11:033408. [PMID: 38726349 PMCID: PMC11080647 DOI: 10.1117/1.nph.11.3.033408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 05/12/2024]
Abstract
Significance The initiation of goal-directed actions is a complex process involving the medial prefrontal cortex and dopaminergic inputs through the mesocortical pathway. However, it is unclear what information the mesocortical pathway conveys and how it impacts action initiation. In this study, we unveiled the indispensable role of mesocortical axon terminals in encoding the execution of movements in self-initiated actions. Aim To investigate the role of mesocortical axon terminals in encoding the execution of movements in self-initiated actions. Approach We designed a lever-press task in which mice internally determine the timing of the press, receiving a larger reward for longer waiting periods. Results Our study revealed that self-initiated actions depend on dopaminergic signaling mediated by D2 receptors, whereas sensory-triggered lever-press actions do not involve D2 signaling. Microprism-mediated two-photon calcium imaging further demonstrated ramping activity in mesocortical axon terminals approximately 0.5 s before the self-initiated lever press. Remarkably, the ramping patterns remained consistent whether the mice responded to cues immediately for a smaller reward or held their response for a larger reward. Conclusions We conclude that mesocortical dopamine axon terminals encode the timing of self-initiated actions, shedding light on a crucial aspect of the intricate neural mechanisms governing goal-directed behavior.
Collapse
Affiliation(s)
- Makoto Ohtake
- Medical University of South Carolina, Department of Neuroscience, Charleston, South Carolina, United States
- Yokohama City University, Department of Neurosurgery, Yokohama, Japan
| | - Kenta Abe
- Medical University of South Carolina, Department of Neuroscience, Charleston, South Carolina, United States
| | - Masashi Hasegawa
- Rutgers, The State University of New Jersey, Robert Wood Johnson Medical School, Center for Advanced Biotechnology and Medicine, Department of Neuroscience and Cell Biology, Piscataway, New Jersey, United States
| | - Takahide Itokazu
- Osaka University, Department of Neuro-Medical Science, Osaka, Japan
| | - Vihashini Selvakumar
- Medical University of South Carolina, Department of Neuroscience, Charleston, South Carolina, United States
| | - Ashley Matunis
- Medical University of South Carolina, Department of Neuroscience, Charleston, South Carolina, United States
- College of Charleston, Department of Biology, Charleston, South Carolina, United States
| | - Emma Stacy
- Medical University of South Carolina, Department of Neuroscience, Charleston, South Carolina, United States
- College of Charleston, Department of Biology, Charleston, South Carolina, United States
| | - Emily Froebrich
- Medical University of South Carolina, Department of Neuroscience, Charleston, South Carolina, United States
- College of Charleston, Department of Biology, Charleston, South Carolina, United States
| | - Nathan Huynh
- Kagoshima University, Department of Pharmacology, Kagoshima, Japan
| | - Haesuk Lee
- Kagoshima University, Department of Pharmacology, Kagoshima, Japan
| | - Yuki Kambe
- Kagoshima University, Department of Pharmacology, Kagoshima, Japan
| | - Tetsuya Yamamoto
- Yokohama City University, Department of Neurosurgery, Yokohama, Japan
| | - Tatsuo K. Sato
- Kagoshima University, Department of Pharmacology, Kagoshima, Japan
- FOREST, Japan Science and Technology Agency, Saitama, Japan
| | - Takashi R. Sato
- Medical University of South Carolina, Department of Neuroscience, Charleston, South Carolina, United States
| |
Collapse
|
2
|
Sena KD, Beierle JA, Richardson KT, Kantak KM, Bryant CD. Assessment of Binge-Like Eating of Unsweetened vs. Sweetened Chow Pellets in BALB/c Substrains. Front Behav Neurosci 2022; 16:944890. [PMID: 35910681 PMCID: PMC9337213 DOI: 10.3389/fnbeh.2022.944890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Binge eating disorder (BED) is defined as chronic episodes of consuming large amounts of food in less than 2 h. Binge eating disorder poses a serious public health problem, as it increases the risk of obesity, type II diabetes, and heart disease. Binge eating is a highly heritable trait; however, its genetic basis remains largely unexplored. We employed a mouse model for binge eating that focused on identifying heritable differences between inbred substrains in acute and escalated intake of sucrose-sweetened palatable food vs. unsweetened chow pellets in a limited, intermittent access paradigm. In the present study, we examined two genetically similar substrains of BALB/c mice for escalation in food consumption, incubation of craving after a no-food training period, and compulsive-like food consumption in an aversive context. BALB/cJ and BALB/cByJ mice showed comparable levels of acute and escalated consumption of palatable food across training trials. Surprisingly, BALB/cByJ mice also showed binge-like eating of the unsweetened chow pellets similar to the escalation in palatable food intake of both substrains. Finally, we replicated the well-documented decrease in anxiety-like behavior in BALB/cByJ mice in the light-dark conflict test that likely contributed to greater palatable food intake than BALB/cJ in the light arena. To summarize, BALB/cByJ mice show binge-like eating in the presence and absence of sucrose. Possible explanations for the lack of selectivity in binge-like eating across diets (e.g., novelty preference, taste) are discussed.
Collapse
Affiliation(s)
- Katherine D. Sena
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Jacob A. Beierle
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Kayla T. Richardson
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Kathleen M. Kantak
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
3
|
Comparative effects of cannabinoid CB1 receptor agonist and antagonist on timing impulsivity induced by d-amphetamine in a differential reinforcement of low-rate response task in male rats. Psychopharmacology (Berl) 2022; 239:1459-1473. [PMID: 34741633 DOI: 10.1007/s00213-021-06018-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
Abstract
RATIONALE In human beings and experimental animals, maladaptive impulsivity is manifested by the acute injection of psychostimulants, such as amphetamine. Cannabinoid CB1 receptors have been implicated in the regulation of stimulant-induced impulsive action, but the role of CB1 receptors in timing-related impulsive action by amphetamine remains unknown. METHODS Male rats were used in evaluating the effects of CB1 receptor antagonist and agonist (SR141716A and WIN55,212-2, respectively) systemically administered individually and combined with d-amphetamine on a differential reinforcement of low-rate response (DRL) task, an operant behavioral test of timing and behavioral inhibition characterized as a type of timing impulsive action. RESULTS A distinct pattern of DRL behavioral changes was produced by acute d-amphetamine (0, 0.5, 1.0, and 1.5 mg/kg) treatment in a dose-dependent fashion, whereas no significant dose effect was detected for acute SR141716A (0, 0.3, 1, and 3 mg/kg) or WIN55,212-2 (0, 0.5, 1, and 2 mg/kg) treatment. Furthermore, DRL behavior altered by 1.5 mg/kg d-amphetamine was reversed by a noneffective dose of SR141716A (3 mg/kg) pretreatment. The minimally influenced DRL behavior by 0.5 mg/kg d-amphetamine was affected by pretreatment with a noneffective dose of WIN55,212-2 (1 mg/kg). CONCLUSION These findings reveal that the activation and blockade of CB1 receptors can differentially modulate the timing impulsive action of DRL behavior induced by acute amphetamine treatment. Characterizing how CB1 receptors modulate impulsive behavior will deepen our understanding of the cannabinoid psychopharmacology of impulsivity and may be helpful in developing an optimal pharmacotherapy for reducing maladaptive impulsivity in patients with some psychiatric disorders.
Collapse
|
4
|
Blum K, McLaughlin T, Bowirrat A, Modestino EJ, Baron D, Gomez LL, Ceccanti M, Braverman ER, Thanos PK, Cadet JL, Elman I, Badgaiyan RD, Jalali R, Green R, Simpatico TA, Gupta A, Gold MS. Reward Deficiency Syndrome (RDS) Surprisingly Is Evolutionary and Found Everywhere: Is It "Blowin' in the Wind"? J Pers Med 2022; 12:jpm12020321. [PMID: 35207809 PMCID: PMC8875142 DOI: 10.3390/jpm12020321] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022] Open
Abstract
Reward Deficiency Syndrome (RDS) encompasses many mental health disorders, including a wide range of addictions and compulsive and impulsive behaviors. Described as an octopus of behavioral dysfunction, RDS refers to abnormal behavior caused by a breakdown of the cascade of reward in neurotransmission due to genetic and epigenetic influences. The resultant reward neurotransmission deficiencies interfere with the pleasure derived from satisfying powerful human physiological drives. Epigenetic repair may be possible with precision gene-guided therapy using formulations of KB220, a nutraceutical that has demonstrated pro-dopamine regulatory function in animal and human neuroimaging and clinical trials. Recently, large GWAS studies have revealed a significant dopaminergic gene risk polymorphic allele overlap between depressed and schizophrenic cohorts. A large volume of literature has also identified ADHD, PTSD, and spectrum disorders as having the known neurogenetic and psychological underpinnings of RDS. The hypothesis is that the true phenotype is RDS, and behavioral disorders are endophenotypes. Is it logical to wonder if RDS exists everywhere? Although complex, “the answer is blowin’ in the wind,” and rather than intangible, RDS may be foundational in species evolution and survival, with an array of many neurotransmitters and polymorphic loci influencing behavioral functionality.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, & Primary Care (Office of the Provost), Graduate College, Western University of Health Sciences, Pomona, CA 91766, USA;
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
- Department of Psychiatry, University of Vermont, Burlington, VT 05405, USA;
- Department of Psychiatry, Wright University Boonshoff School of Medicine, Dayton, OH 45324, USA
- Correspondence: ; Tel.: +1-619-890-2167
| | | | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | | | - David Baron
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, & Primary Care (Office of the Provost), Graduate College, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Luis Llanos Gomez
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | - Mauro Ceccanti
- Alcohol Addiction Program, Latium Region Referral Center, Sapienza University of Rome, 00185 Roma, Italy;
| | - Eric R. Braverman
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA;
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA;
| | - Igor Elman
- Center for Pain and the Brain (PAIN Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA;
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA 02139, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA;
- Department of Psychiatry, MT. Sinai School of Medicine, New York, NY 10003, USA
| | - Rehan Jalali
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | - Richard Green
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, (Ivitalize, Inc.), Austin, TX 78701, USA; (L.L.G.); (E.R.B.); (R.J.); (R.G.)
| | | | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA;
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
5
|
Iqbal M, Cox SML, Jaworska N, Tippler M, Castellanos-Ryan N, Parent S, Dagher A, Vitaro F, Brendgen MR, Boivin M, Pihl RO, Côté SM, Tremblay RE, Séguin JR, Leyton M. A three-factor model of common early onset psychiatric disorders: temperament, adversity, and dopamine. Neuropsychopharmacology 2022; 47:752-758. [PMID: 34625707 PMCID: PMC8783001 DOI: 10.1038/s41386-021-01187-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/03/2023]
Abstract
Commonly comorbid early onset psychiatric disorders might reflect the varying expression of overlapping risk factors. The mediating processes remain poorly understood, but three factors show some promise: adolescent externalizing traits, early life adversity, and midbrain dopamine autoreceptors. To investigate whether these features acquire greater predictive power when combined, a longitudinal study was conducted in youth who have been followed since birth. Cohort members were invited to participate based on externalizing scores between 11 to 16 years of age. At age 18 (age 18.5 ± 0.6 y.o.), 52 entry criteria meeting volunteers had a 90-min positron emission tomography scan with [18F]fallypride, completed the Childhood Trauma Questionnaire, and were assessed with the Structured Clinical Interview for DSM-5. The three-factor model identified those with a lifetime history of DSM-5 disorders with an overall accuracy of 90.4% (p = 2.4 × 10-5) and explained 91.5% of the area under the receiver operating characteristic curve [95% CI: .824, 1.000]. Targeting externalizing disorders specifically did not yield a more powerful model than targeting all disorders (p = 0.54). The model remained significant when including data from participants who developed their first disorders during a three-year follow-up period (p = 3.5 × 10-5). Together, these results raise the possibility that a combination of temperamental traits, childhood adversity, and poorly regulated dopamine transmission increases risk for diverse, commonly comorbid, early onset psychiatric problems, predicting this susceptibility prospectively.
Collapse
Affiliation(s)
- Maisha Iqbal
- grid.416102.00000 0004 0646 3639Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC Canada
| | | | - Natalia Jaworska
- grid.28046.380000 0001 2182 2255Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON Canada ,grid.28046.380000 0001 2182 2255University of Ottawa Institute of Mental Health Research, Ottawa, ON Canada
| | - Maria Tippler
- grid.416102.00000 0004 0646 3639Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC Canada
| | - Natalie Castellanos-Ryan
- grid.14848.310000 0001 2292 3357School of Psychoeducation, Université de Montréal, Montreal, QC Canada
| | - Sophie Parent
- grid.14848.310000 0001 2292 3357School of Psychoeducation, Université de Montréal, Montreal, QC Canada
| | - Alain Dagher
- grid.416102.00000 0004 0646 3639Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC Canada
| | - Frank Vitaro
- grid.14848.310000 0001 2292 3357School of Psychoeducation, Université de Montréal, Montreal, QC Canada ,grid.411418.90000 0001 2173 6322CHU Ste-Justine Research Center, Montreal, QC Canada
| | - Mara R. Brendgen
- grid.411418.90000 0001 2173 6322CHU Ste-Justine Research Center, Montreal, QC Canada ,grid.38678.320000 0001 2181 0211Department of Psychology, Université de Québec à Montréal, Montreal, QC Canada
| | - Michel Boivin
- grid.23856.3a0000 0004 1936 8390Department of Psychology, Université Laval, Quebec, ON Canada ,grid.77602.340000 0001 1088 3909Institute of Genetic, Neurobiological and Social Foundations of Child Development, Tomsk State University, Siberia, Russia
| | - Robert O. Pihl
- grid.77602.340000 0001 1088 3909Institute of Genetic, Neurobiological and Social Foundations of Child Development, Tomsk State University, Siberia, Russia
| | - Sylvana M. Côté
- grid.411418.90000 0001 2173 6322CHU Ste-Justine Research Center, Montreal, QC Canada ,grid.14848.310000 0001 2292 3357Department of Social & Preventative Medicine, Université de Montréal, Montreal, QC Canada
| | - Richard E. Tremblay
- grid.411418.90000 0001 2173 6322CHU Ste-Justine Research Center, Montreal, QC Canada ,grid.14848.310000 0001 2292 3357Departments of Pediatrics & Psychology, Université de Montréal, Montreal, QC Canada ,grid.7886.10000 0001 0768 2743School of Public Health and Sports Science, University College Dublin, Dublin, Ireland ,grid.7429.80000000121866389INSERM, U669 Paris, France
| | - Jean R. Séguin
- grid.411418.90000 0001 2173 6322CHU Ste-Justine Research Center, Montreal, QC Canada ,grid.14848.310000 0001 2292 3357Department of Psychiatry and Addictology, Université de Montréal, Montreal, QC Canada
| | - Marco Leyton
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada. .,Department of Psychiatry, McGill University, Montreal, QC, Canada. .,CHU Ste-Justine Research Center, Montreal, QC, Canada. .,Department of Psychology, McGill University, Montreal, QC, Canada. .,Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
6
|
Mikhael JG, Gershman SJ. Impulsivity and risk-seeking as Bayesian inference under dopaminergic control. Neuropsychopharmacology 2022; 47:465-476. [PMID: 34376813 PMCID: PMC8674258 DOI: 10.1038/s41386-021-01125-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023]
Abstract
Bayesian models successfully account for several of dopamine (DA)'s effects on contextual calibration in interval timing and reward estimation. In these models, tonic levels of DA control the precision of stimulus encoding, which is weighed against contextual information when making decisions. When DA levels are high, the animal relies more heavily on the (highly precise) stimulus encoding, whereas when DA levels are low, the context affects decisions more strongly. Here, we extend this idea to intertemporal choice and probability discounting tasks. In intertemporal choice tasks, agents must choose between a small reward delivered soon and a large reward delivered later, whereas in probability discounting tasks, agents must choose between a small reward that is always delivered and a large reward that may be omitted with some probability. Beginning with the principle that animals will seek to maximize their reward rates, we show that the Bayesian model predicts a number of curious empirical findings in both tasks. First, the model predicts that higher DA levels should normally promote selection of the larger/later option, which is often taken to imply that DA decreases 'impulsivity,' and promote selection of the large/risky option, often taken to imply that DA increases 'risk-seeking.' However, if the temporal precision is sufficiently decreased, higher DA levels should have the opposite effect-promoting selection of the smaller/sooner option (higher impulsivity) and the small/safe option (lower risk-seeking). Second, high enough levels of DA can result in preference reversals. Third, selectively decreasing the temporal precision, without manipulating DA, should promote selection of the larger/later and large/risky options. Fourth, when a different post-reward delay is associated with each option, animals will not learn the option-delay contingencies, but this learning can be salvaged when the post-reward delays are made more salient. Finally, the Bayesian model predicts correlations among behavioral phenotypes: Animals that are better timers will also appear less impulsive.
Collapse
Affiliation(s)
- John G. Mikhael
- grid.38142.3c000000041936754XProgram in Neuroscience, Harvard Medical School, Boston, MA USA ,grid.38142.3c000000041936754XMD-PhD Program, Harvard Medical School, Boston, MA USA
| | - Samuel J. Gershman
- grid.38142.3c000000041936754XDepartment of Psychology and Center for Brain Science, Harvard University, Cambridge, MA USA ,grid.116068.80000 0001 2341 2786Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, MA USA
| |
Collapse
|
7
|
Schüller CB, Wagner BJ, Schüller T, Baldermann JC, Huys D, Kerner auch Koerner J, Niessen E, Münchau A, Brandt V, Peters J, Kuhn J. Temporal discounting in adolescents and adults with Tourette syndrome. PLoS One 2021; 16:e0253620. [PMID: 34143854 PMCID: PMC8213148 DOI: 10.1371/journal.pone.0253620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/08/2021] [Indexed: 12/18/2022] Open
Abstract
Tourette syndrome is a neurodevelopmental disorder associated with hyperactivity in dopaminergic networks. Dopaminergic hyperactivity in the basal ganglia has previously been linked to increased sensitivity to positive reinforcement and increases in choice impulsivity. In this study, we examine whether this extends to changes in temporal discounting, where impulsivity is operationalized as an increased preference for smaller-but-sooner over larger-but-later rewards. We assessed intertemporal choice in two studies including nineteen adolescents (age: mean[sd] = 14.21[±2.37], 13 male subjects) and twenty-five adult patients (age: mean[sd] = 29.88 [±9.03]; 19 male subjects) with Tourette syndrome and healthy age- and education matched controls. Computational modeling using exponential and hyperbolic discounting models via hierarchical Bayesian parameter estimation revealed reduced temporal discounting in adolescent patients, and no evidence for differences in adult patients. Results are discussed with respect to neural models of temporal discounting, dopaminergic alterations in Tourette syndrome and the developmental trajectory of temporal discounting. Specifically, adolescents might show attenuated discounting due to improved inhibitory functions that also affect choice impulsivity and/or the developmental trajectory of executive control functions. Future studies would benefit from a longitudinal approach to further elucidate the developmental trajectory of these effects.
Collapse
Affiliation(s)
- Canan Beate Schüller
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Thomas Schüller
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Juan Carlos Baldermann
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Daniel Huys
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julia Kerner auch Koerner
- Educational Psychology, Helmut-Schmidt-University, Hamburg, Germany
- Center for Individual Development and Adaptive Education of Children at Risk, Frankfurt am Main, Germany
| | - Eva Niessen
- Department of Individual Differences and Psychological Assessment, University of Cologne, Cologne, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Valerie Brandt
- Center for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, Hampshire, United Kingdom
| | - Jan Peters
- Department of Biology Psychology, University of Cologne, Cologne, Germany
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatic, Johanniter Hospital Oberhausen, EVKLN, Oberhausen, Germany
| |
Collapse
|
8
|
Reliability assessment of temporal discounting measures in virtual reality environments. Sci Rep 2021; 11:7015. [PMID: 33782424 PMCID: PMC8007609 DOI: 10.1038/s41598-021-86388-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/15/2021] [Indexed: 02/01/2023] Open
Abstract
In recent years the emergence of high-performance virtual reality (VR) technology has opened up new possibilities for the examination of context effects in psychological studies. The opportunity to create ecologically valid stimulation in a highly controlled lab environment is especially relevant for studies of psychiatric disorders, where it can be problematic to confront participants with certain stimuli in real life. However, before VR can be confidently applied widely it is important to establish that commonly used behavioral tasks generate reliable data within a VR surrounding. One field of research that could benefit greatly from VR-applications are studies assessing the reactivity to addiction related cues (cue-reactivity) in participants suffering from gambling disorder. Here we tested the reliability of a commonly used temporal discounting task in a novel VR set-up designed for the concurrent assessment of behavioral and psychophysiological cue-reactivity in gambling disorder. On 2 days, thirty-four healthy non-gambling participants explored two rich and navigable VR-environments (neutral: café vs. gambling-related: casino and sports-betting facility), while their electrodermal activity was measured using remote sensors. In addition, participants completed the temporal discounting task implemented in each VR environment. On a third day, participants performed the task in a standard lab testing context. We then used comprehensive computational modeling using both standard softmax and drift diffusion model (DDM) choice rules to assess the reliability of discounting model parameters assessed in VR. Test-retest reliability estimates were good to excellent for the discount rate log(k), whereas they were poor to moderate for additional DDM parameters. Differences in model parameters between standard lab testing and VR, reflecting reactivity to the different environments, were mostly numerically small and of inconclusive directionality. Finally, while exposure to VR generally increased tonic skin conductance, this effect was not modulated by the neutral versus gambling-related VR-environment. Taken together this proof-of-concept study in non-gambling participants demonstrates that temporal discounting measures obtained in VR are reliable, suggesting that VR is a promising tool for applications in computational psychiatry, including studies on cue-reactivity in addiction.
Collapse
|
9
|
Dopaminergic Modulation of Human Intertemporal Choice: A Diffusion Model Analysis Using the D2-Receptor Antagonist Haloperidol. J Neurosci 2020; 40:7936-7948. [PMID: 32948675 DOI: 10.1523/jneurosci.0592-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
The neurotransmitter dopamine is implicated in diverse functions, including reward processing, reinforcement learning, and cognitive control. The tendency to discount future rewards over time has long been discussed in the context of potential dopaminergic modulation. Here we examined the effect of a single dose of the D2 receptor antagonist haloperidol (2 mg) on temporal discounting in healthy female and male human participants. Our approach extends previous pharmacological studies in two ways. First, we applied combined temporal discounting drift diffusion models to examine choice dynamics. Second, we examined dopaminergic modulation of reward magnitude effects on temporal discounting. Hierarchical Bayesian parameter estimation revealed that the data were best accounted for by a temporal discounting drift diffusion model with nonlinear trialwise drift rate scaling. This model showed good parameter recovery, and posterior predictive checks revealed that it accurately reproduced the relationship between decision conflict and response times in individual participants. We observed reduced temporal discounting and substantially faster nondecision times under haloperidol compared with placebo. Discounting was steeper for low versus high reward magnitudes, but this effect was largely unaffected by haloperidol. Results were corroborated by model-free analyses and modeling via more standard approaches. We previously reported elevated caudate activation under haloperidol in this sample of participants, supporting the idea that haloperidol elevated dopamine neurotransmission (e.g., by blocking inhibitory feedback via presynaptic D2 auto-receptors). The present results reveal that this is associated with an augmentation of both lower-level (nondecision time) and higher-level (temporal discounting) components of the decision process.SIGNIFICANCE STATEMENT Dopamine is implicated in reward processing, reinforcement learning, and cognitive control. Here we examined the effects of a single dose of the D2 receptor antagonist haloperidol on temporal discounting and choice dynamics during the decision process. We extend previous studies by applying computational modeling using the drift diffusion model, which revealed that haloperidol reduced the nondecision time and reduced impulsive choice compared with placebo. These findings are compatible with a haloperidol-induced increase in striatal dopamine (e.g., because of a presynaptic mechanism). Our data provide novel insights into the contributions of dopamine to value-based decision-making and highlight how comprehensive model-based analyses using sequential sampling models can inform the effects of pharmacological modulation on choice processes.
Collapse
|
10
|
Peters J, Vega T, Weinstein D, Mitchell J, Kayser A. Dopamine and Risky Decision-Making in Gambling Disorder. eNeuro 2020; 7:ENEURO.0461-19.2020. [PMID: 32341121 PMCID: PMC7294471 DOI: 10.1523/eneuro.0461-19.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/03/2022] Open
Abstract
Gambling disorder is a behavioral addiction associated with impairments in value-based decision-making and cognitive control. These functions are thought to be regulated by dopamine within fronto-striatal circuits, but the role of altered dopamine neurotransmission in the etiology of gambling disorder remains controversial. Preliminary evidence suggests that increasing frontal dopamine tone might improve cognitive functioning in gambling disorder. We therefore examined whether increasing frontal dopamine tone via a single dose of the catechol-O-methyltransferase (COMT) inhibitor tolcapone would reduce risky choice in human gamblers (n = 14) in a randomized double-blind placebo-controlled crossover study. Data were analyzed using hierarchical Bayesian parameter estimation and a combined risky choice drift diffusion model (DDM). Model comparison revealed a nonlinear mapping from value differences to trial-wise drift rates, confirming recent findings. An increase in risk-taking under tolcapone versus placebo was about five times more likely, given the data, than a decrease [Bayes factor (BF) = 0.2]. Examination of drug effects on diffusion model parameters revealed that an increase in the value dependency of the drift rate under tolcapone was about thirteen times more likely than a decrease (BF = 0.073). In contrast, a reduction in the maximum drift rate under tolcapone was about seven times more likely than an increase (BF = 7.51). Results add to previous work on COMT inhibitors in behavioral addictions and to mounting evidence for the applicability of diffusion models in value-based decision-making. Future work should focus on individual genetic, clinical and cognitive factors that might account for heterogeneity in the effects of COMT inhibition.
Collapse
Affiliation(s)
- Jan Peters
- Department of Psychology, Biological Psychology, University of Cologne, Cologne 50923, Germany
| | - Taylor Vega
- Department of Neurology, VA Northern California Healthcare System, San Francisco, CA 94121
| | | | - Jennifer Mitchell
- Department of Psychiatry
- Department of Neurology, University of California, San Francisco, CA 94143
| | - Andrew Kayser
- Department of Neurology, VA Northern California Healthcare System, San Francisco, CA 94121
- Department of Neurology, University of California, San Francisco, CA 94143
| |
Collapse
|
11
|
Ventral striatum supports Methylphenidate therapeutic effects on impulsive choices expressed in temporal discounting task. Sci Rep 2020; 10:716. [PMID: 31959838 PMCID: PMC6971276 DOI: 10.1038/s41598-020-57595-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/03/2020] [Indexed: 12/04/2022] Open
Abstract
Methylphenidate (MPH) is a dopamine transporter (DAT) inhibitor used to treat attention-deficit/hyperactivity-disorder (ADHD). ADHD patients make impulsive choices in delay discounting tasks (DDT) and MPH reduces such impulsivity, but its therapeutic site of action remains unknown. Based on the high density of DAT in the striatum, we hypothesized that the striatum, especially the ventral striatum (VS) and caudate nucleus which both encode temporal discounting, can be preferential MPH action sites. To determine whether one of these striatal territories is predominantly involved in the effect of MPH, we trained monkeys to make choices during DDT. First, consistent with clinical observations, we found an overall reduction of impulsive choices with a low dose of MPH administered via intramuscular injections, whereas we reported sedative-like effects with a higher dose. Then, using PET-imaging, we found that the therapeutic reduction of impulsive choices was associated with selective DAT occupancy of MPH in the VS. Finally, we confirmed the selective involvement of the VS in the effect of MPH by testing the animals’ impulsivity with microinjections of the drug in distinct striatal territories. Together, these results show that the therapeutic effect of MPH on impulsive decisions is mainly restricted to its action in the VS.
Collapse
|
12
|
Presynaptic dopamine function measured with [ 18F]fluorodopa and L-DOPA effects on impulsive choice. Sci Rep 2019; 9:17927. [PMID: 31784559 PMCID: PMC6884626 DOI: 10.1038/s41598-019-54329-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/11/2019] [Indexed: 01/10/2023] Open
Abstract
We previously reported that L-DOPA effects on reward-based decision-making in a randomized, placebo-controlled, double-blind, crossover study were consistent with an inverted U-shaped function whereby both low and high extremes of dopamine signaling are associated with high-impulsive choice. To test this hypothesis, we performed [18F]DOPA positron emission tomography in 60 of the 87 participants in that study, and measured the effective distribution volume ratio (EDVR) of [18F]DOPA influx rate to [18F]dopamine washout rate, an index of presynaptic dopaminergic function. Participants with higher baseline EDVR self-reported lower impulsivity, and discounted rewards as a function of delay more strongly after receiving L-DOPA, whereas the opposite was detected for those with lower baseline EDVR. Our findings support a relationship of striatal dopaminergic activity to trait impulsivity, and the view that there is a non-linear, possibly inverted U-shaped relationship of striatal dopaminergic function with delay discounting. Individuals with optimal dopamine signaling would become more impulsive when receiving dopamine-enhancing drugs, whereas those with suboptimal dopaminergic signaling would benefit and exhibit less impulsive choice. Consideration of differences in endogenous dopamine signaling and possibly also other neurotransmitter activity may be crucial to advance understanding of the neurobiochemical mechanisms of impulsive decision-making and related mental disorders.
Collapse
|
13
|
Perez-Fernandez C, Flores P, Sánchez-Santed F. A Systematic Review on the Influences of Neurotoxicological Xenobiotic Compounds on Inhibitory Control. Front Behav Neurosci 2019; 13:139. [PMID: 31333425 PMCID: PMC6620897 DOI: 10.3389/fnbeh.2019.00139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/06/2019] [Indexed: 01/24/2023] Open
Abstract
Background: Impulsive and compulsive traits represent a variety of maladaptive behaviors defined by the difficulties to stop an improper response and the control of a repeated behavioral pattern without sensitivity to changing contingencies, respectively. Otherwise, human beings are continuously exposed to plenty neurotoxicological agents which have been systematically linked to attentional, learning, and memory dysfunctions, both preclinical and clinical studies. Interestingly, the link between both impulsive and compulsive behaviors and the exposure to the most important xenobiotic compounds have been extensively developed; although the information has been rarely summarized. For this, the present systematic review schedule and analyze in depth the most important works relating different subtypes of the above-mentioned behaviors with 4 of the most important xenobiotic compounds: Lead (Pb), Methylmercury (MeHg), Polychlorinated biphenyls (PCB), and Organophosphates (OP) in both preclinical and clinical models. Methods: Systematic search strategy on PubMed databases was developed, and the most important information was structured both in text and in separate tables based on rigorous methodological quality assessment. Results: For Lead, Methylmercury, Polychlorinated biphenyls and organophosphates, a total of 44 (31 preclinical), 34 (21), 38 (23), and 30 (17) studies were accepted for systematic synthesis, respectively. All the compounds showed an important empirical support on their role in the modulation of impulsive and, in lesser degree, compulsive traits, stronger and more solid in animal models with inconclusive results in humans in some cases (i.e., MeHg). However, preclinical and clinical studies have systematically focused on different subtypes of the above-mentioned behaviors, as well as impulsive choice or habit conformations have been rarely studied. Discussion: The strong empirical support in preclinical studies contrasts with the lack of connection between preclinical and clinical models, as well as the different methodologies used. Further research should be focused on dissipate these differences as well as deeply study impulsive choice, decision making, risk taking, and cognitive flexibility, both in experimental animals and humans.
Collapse
Affiliation(s)
| | - Pilar Flores
- Department of Psychology and Health Research Center, University of Almería, Almería, Spain
| | | |
Collapse
|
14
|
Petzold J, Kienast A, Lee Y, Pooseh S, London ED, Goschke T, Smolka MN. Baseline impulsivity may moderate L-DOPA effects on value-based decision-making. Sci Rep 2019; 9:5652. [PMID: 30948756 PMCID: PMC6449394 DOI: 10.1038/s41598-019-42124-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/13/2019] [Indexed: 12/16/2022] Open
Abstract
Research has indicated a major role of dopamine in decision-making processes, but the underlying mechanisms remain largely unknown due to inconsistency in effects of dopaminergic drugs. To clarify the impact of dopamine on impulsive choice, we administered 150 mg L-DOPA to 87 healthy adults in a randomized, placebo-controlled, double-blind, crossover study, evaluating performance in four value-based decision-making tasks. We predicted that baseline impulsivity would moderate L-DOPA effects. In support of our hypothesis, L-DOPA had no main effect on impulsive choice, but reduced risk-seeking for gains in more-impulsive subjects. Because L-DOPA effects may be influenced by body weight, we repeated our analyses on data from half of the sample (n = 44) with lower weight, anticipating a stronger effect. In addition to the effect on risk-seeking for gains, low-weight participants also exhibited baseline-dependent effects of L-DOPA on loss aversion and delay discounting. Our results are consistent with the hypothesis of an inverted U-shaped dopamine function in which both low and high extremes of dopamine signaling are associated with high-impulsive choice. Consideration of differential baseline impulsivity and body weight may resolve previous seemingly paradoxical pharmacological results and might deepen our understanding of dopaminergic mechanisms underlying impulsivity.
Collapse
Affiliation(s)
- Johannes Petzold
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Annika Kienast
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany.,Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Ying Lee
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Shakoor Pooseh
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany.,Freiburg Center for Data Analysis and Modeling, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Edythe D London
- Department of Psychiatry and Biobehavioral Sciences, Department of Molecular and Medical Pharmacology and the Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - Thomas Goschke
- Department of Psychology and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
15
|
Let's call the whole thing off: evaluating gender and sex differences in executive function. Neuropsychopharmacology 2019; 44:86-96. [PMID: 30143781 PMCID: PMC6235899 DOI: 10.1038/s41386-018-0179-5] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
The executive functions allow for purposeful, deliberate, and intentional interactions with the world-attention and focus, impulse control, decision making, and working memory. These measures have been correlated with academic outcomes and quality of life, and are impacted by deleterious environmental events throughout the life span, including gestational and early life insults. This review will address the topic of sex differences in executive function including a discussion of differences arising in response to developmental programming. Work on gender differences in human studies and sex differences in animal research will be reviewed. Overall, we find little support for significant gender or sex differences in executive function. An important variable that factors into the interpretation of potential sex differences include differing developmental trajectories. We conclude by discussing future directions for the field and a brief discussion of biological mechanisms.
Collapse
|
16
|
Kuypers KPC, de Sousa Fernandes Perna EB, Dolder PC, Toennes SW, Theunissen EL, Mason NL, Hutten NRPW, Ramaekers JG. Drug liking and wanting, not impulsive action or reflection is increased by 4-fluoroamphetamine. Psychopharmacology (Berl) 2018; 235:2349-2356. [PMID: 29855660 PMCID: PMC6061712 DOI: 10.1007/s00213-018-4931-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/22/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND New psychoactive substances (NPS) are chemical analogues designed to mimic the effects of various classic recreational drugs of abuse including MDMA, LSD, and cannabis. NPS use is associated with concern about the acute and longer-term effects particular substances might have, with abuse and addiction as potential consequences. Impulsivity and sensitivity to the rewarding effects of drugs have been considered as risk factors for drug abuse. In light of the popularity of 4-fluoroamphetamine (4-FA), it is important to assess whether 4-FA can lead to subjective drug liking and wanting, and impulsive behavior, all factors contributing to the abuse likelihood of a substance. METHODS A placebo-controlled 2-way crossover study in 12 healthy poly-drug using participants was conducted to test subjective and behavioral effects of 4-FA (100 mg). 4-FA concentrations were determined in serum up to 12 h after administration and two impulsivity tasks and two drug experience questionnaires assessing drug liking and wanting, and good and bad drug effect, were administered between 1 and 11 h post-administration. RESULTS Findings showed that 4-FA did not affect impulsive behavior. Self-ratings of drug liking and wanting and good drug effect were increased 1 h after administration; this effect was absent 11 h after drug intake. DISCUSSION AND CONCLUSION To conclude, 4-FA (single dose) increased self-rated liking and wanting, which is known to contribute to the abuse likelihood of a substance; however, it left another factor impulsive behavior unaffected. It has to be noted that the current picture is limited and might change with increased sample size, and/or different 4-FA doses. CLINICAL TRIAL REGISTRATION Trial acronym: 4-FA. URL: http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=6164 . Registration number: NTR6164 (Dutch clinical trial registry number).
Collapse
Affiliation(s)
- K P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P. O. Box 616, 6200 MD, Maastricht, the Netherlands.
| | - E B de Sousa Fernandes Perna
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P. O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - P C Dolder
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P. O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - S W Toennes
- Department of Forensic Toxicology, Institute of Legal Medicine, Goethe University of Frankfurt, Frankfurt, Germany
| | - E L Theunissen
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P. O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - N L Mason
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P. O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - N R P W Hutten
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P. O. Box 616, 6200 MD, Maastricht, the Netherlands
| | - J G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, P. O. Box 616, 6200 MD, Maastricht, the Netherlands
| |
Collapse
|
17
|
Blum K, Gondré-Lewis M, Steinberg B, Elman I, Baron D, Modestino EJ, Badgaiyan RD, Gold MS. Our evolved unique pleasure circuit makes humans different from apes: Reconsideration of data derived from animal studies. ACTA ACUST UNITED AC 2018; 4. [PMID: 30956812 PMCID: PMC6446569 DOI: 10.15761/jsin.1000191] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The brain regions tied to pleasure can be triggered by engaging in sex, eating tasty food, watching a movie, accomplishments at school and athletics, consuming drugs, and noble efforts to help the community, the country, and the world. It is noteworthy that research suggests that the latter type of satisfaction, supporting the community, may result in the most substantial positive effects on our immune system. However, these pathways for these effects are not understood. Berridge and Kringelbach have suggested that pleasure is mediated by well-developed mesocorticolimbic circuitry and serves adaptive functions. In affective disorders, anhedonia (lack of pleasure) or dysphoria (negative affect) can result from a breakdown of that hedonic system. Most importantly, human neuroimaging investigations indicate that surprisingly similar circuitry is activated by quite diverse pleasures, suggesting a common neural pathway shared by all rewarding stimuli and behaviors. Over many years the controversy of dopamine involvement in pleasure/reward has led to confusion in terms, such as trying to separate motivation from pure pleasure (i.e., wanting versus liking). We take the position that animal studies cannot provide real clinical information that is described by self-reports in humans. On November 23rd, 2017, evidence for our concerns was revealed. A brain system involved in everything from addiction to autism appears to have evolved differently in humans than in apes, as reported by a large research team in the journal Science. To reiterate, the new findings by Sousa et al., also suggest the importance of not over-relying on rodent and even non-human primate studies. Extrapolations, when it comes to the concept of pleasure, dopamine, and reinforcement, are not supported by these data. Human experience and study are now much more critical and important. Extrapolations from non-humans to humans may be more fiction than fact. While this statement is bold it should not at all suggest that animal date is unimportant, that is not the case. It is extremely valuable in many aspects and we must encourage the development of animal models for disease. However, we must be cautious in our interpretation of results without leaping to conclusions that may be explained by follow-up human experiments and subsequent data. We are further proposing that in terms of overcoming a never –ending battle related to the current drug epidemic, the scientific community should realize that disturbing dopamine homeostasis by taking drugs or having a system compromised by genes or other epigenetic experiences, should be treated by alternative therapeutic modalities, expressed in this article as a realistic key goal. Application of genetic addiction risk (GARS™) testing and pro-dopamine regulation (KB220) should be considered along with other promising technologies including cognitive behavioral therapy, mind fullness, brain spotting and trauma therapy. Basic scientists have worked very hard to dis-entangle pleasure from incentive salience and learning signals in brain reward circuitry, but this work may be limited to animal models and rodents. A different consideration regarding the human reward systems is required.
Collapse
Affiliation(s)
- Kenneth Blum
- Department of Psychiatry, Boonshoft School of Medicine, Dayton VA Medical Center, Wright State University, Dayton, OH, USA.,Department of Psychiatry, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Psychiatry and Behavioral Sciences, Keck Medicine University of Southern California, Los Angeles, CA, USA.,Division of Applied Clinical Research & Education, Dominion Diagnostics, LLC, North Kingstown, RI, USA.,Department of Precision Medicine, Geneus Health LLC, San Antonio, TX, USA.,Department of Addiction Research & Therapy, Nupathways Inc., Innsbrook, MO, USA.,Department of Clinical Neurology, Path Foundation, New York, NY, USA.,Division of Neuroscience-Based Addiction Therapy, The Shores Treatment & Recovery Center, Port Saint Lucie, FL, USA.,Institute of Psychology, Eötvös Loránd University, Budapest, Hungary.,Division of Addiction Research, Dominion Diagnostics, LLC. North Kingston, RI, USA.,Victory Nutrition International, Lederach, PA., USA.,National Human Genome Center at Howard University, Washington, DC., USA
| | - Marjorie Gondré-Lewis
- National Human Genome Center at Howard University, Washington, DC., USA.,Departments of Anatomy and Psychiatry, Howard University College of Medicine, Washington, DC USA
| | - Bruce Steinberg
- Division of Applied Clinical Research & Education, Dominion Diagnostics, LLC, North Kingstown, RI, USA
| | - Igor Elman
- Department Psychiatry, Cooper University School of Medicine, Camden, NJ, USA
| | - David Baron
- Department of Psychiatry and Behavioral Sciences, Keck Medicine University of Southern California, Los Angeles, CA, USA
| | | | | | - Mark S Gold
- Department of Psychiatry, Washington University, St. Louis, MO, USA
| |
Collapse
|
18
|
Cunha AM, Esteves M, das Neves SP, Borges S, Guimarães MR, Sousa N, Almeida A, Leite-Almeida H. Pawedness Trait Test (PaTRaT)-A New Paradigm to Evaluate Paw Preference and Dexterity in Rats. Front Behav Neurosci 2017; 11:192. [PMID: 29089877 PMCID: PMC5651527 DOI: 10.3389/fnbeh.2017.00192] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/30/2017] [Indexed: 01/05/2023] Open
Abstract
In rodents, dexterity is commonly analyzed in preference paradigms in which animals are given the chance to use either the left or the right front paws to manipulate food. However, paw preference and dexterity at population and individual levels are controversial as results are incongruent across paradigms. We have therefore developed a semi-quantitative method—the pawdeness trait test (PaTRaT)—to evaluate paw preference degree in rats. The PaTRaT consists in a classification system, ranging from +4 to −4 where increasingly positive and negative values reflect the bias for left or right paw use, respectively. Sprague-Dawley male rats were confined into a metal rectangular mesh cylinder, from which they can see, smell and reach sugared rewards with their paws. Due to its size, the reward could only cross the mesh if aligned with its diagonal, imposing additional coordination. Animals were allowed to retrieve 10 rewards per session in a total of four sessions while their behavior was recorded. PaTRaT was repeated 4 and 8 weeks after the first evaluation. To exclude potential bias, rats were also tested for paw fine movement and general locomotion in other behavioral paradigms as well as impulsivity (variable delay-to-signal, VDS), memory and cognitive flexibility (water maze). At the population level 54% of the animals presented a rightward bias. Individually, all animals presented marked side-preferences, >2 and <−2 for left- and right-sided bias, respectively, and this preference was stable across the three evaluations. Inter-rater consistency was very high between two experienced raters and substantial when two additional inexperienced raters were included. Left- and right-biased animals presented no differences in the ability to perform fine movements with any of the forelimbs (staircase) and general locomotor performance. Additionally, these groups performed similarly in executive function and memory tasks. In conclusion, PaTRaT is able to reliably classify rats’ pawedness direction and degree.
Collapse
Affiliation(s)
- Ana M Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Madalena Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Sofia P das Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Sónia Borges
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Marco R Guimarães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Hugo Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
19
|
Cannabis and cocaine decrease cognitive impulse control and functional corticostriatal connectivity in drug users with low activity DBH genotypes. Brain Imaging Behav 2017; 10:1254-1263. [PMID: 26667034 PMCID: PMC5167221 DOI: 10.1007/s11682-015-9488-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The dopamine β-hydroxylase (DβH) enzyme transforms dopamine into noradrenaline. We hypothesized that individuals with low activity DBH genotypes (rs1611115 CT/TT) are more sensitive to the influence of cannabis and cocaine on cognitive impulse control and functional connectivity in the limbic ‘reward’ circuit because they experience a drug induced hyperdopaminergic state compared to individuals with high activity DBH genotypes (rs1611115 CC). Regular drug users (N = 122) received acute doses of cannabis (450 μg/kg THC), cocaine HCl 300 mg and placebo. Cognitive impulse control was assessed by means of the Matching Familiar Figures Test (MFFT). Resting state fMRI was measured in a subset of participants to determine functional connectivity between the nucleus accumbens (NAc) and (sub)cortical areas. The influence of cannabis and cocaine on impulsivity and functional connectivity significantly interacted with DBH genotype. Both drugs increased cognitive impulsivity in participants with CT/TT genotypes but not in CC participants. Both drugs also reduced functional connectivity between the NAc and the limbic lobe, prefrontal cortex, striatum and thalamus and primarily in individuals with CT/TT genotypes. Correlational analysis indicated a significant negative association between cognitive impulsivity and functional connectivity in subcortical areas of the brain. It is concluded that interference of cannabis and cocaine with cognitive impulse control and functional corticostriatal connectivity depends on DBH genotype. The present data provide a neural substrate and behavioral mechanism by which drug users can progress to drug seeking and may also offer a rationale for targeted pharmacotherapy in chronic drug users with high risk DBH genotypes.
Collapse
|
20
|
Beaudin SA, Strupp BJ, Uribe W, Ysais L, Strawderman M, Smith DR. Methylphenidate alleviates manganese-induced impulsivity but not distractibility. Neurotoxicol Teratol 2017; 61:17-28. [PMID: 28363668 PMCID: PMC5862713 DOI: 10.1016/j.ntt.2017.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 12/23/2022]
Abstract
Recent studies from our lab have demonstrated that postnatal manganese (Mn) exposure in a rodent model can cause lasting impairments in fine motor control and attention, and that oral methylphenidate (MPH) treatment can effectively treat the dysfunction in fine motor control. However, it is unknown whether MPH treatment can alleviate the impairments in attention produced by Mn exposure. Here we used a rodent model of postnatal Mn exposure to determine whether (1) oral MPH alleviates attention and impulse control deficits caused by postnatal Mn exposure, using attention tasks that are variants of the 5-choice serial reaction time task, and (2) whether these treatments affected neuronal dendritic spine density in the medial prefrontal cortex (mPFC) and dorsal striatum. Male Long-Evans rats were exposed orally to 0 or 50Mn/kg/d throughout life starting on PND 1, and tested as young adults (PND 107-115) on an attention task that specifically tapped selective attention and impulse control. Animals were treated with oral MPH (2.5mg/kg/d) throughout testing on the attention task. Our findings show that lifelong postnatal Mn exposure impaired impulse control and selective attention in young adulthood, and that a therapeutically relevant oral MPH regimen alleviated the Mn-induced dysfunction in impulse control, but not selective attention, and actually impaired focused attention in the Mn group. In addition, the effect of MPH was qualitatively different for the Mn-exposed versus control animals across a range of behavioral measures of inhibitory control and attention, as well as dendritic spine density in the mPFC, suggesting that postnatal Mn exposure alters catecholaminergic systems modulating these behaviors. Collectively these findings suggest that MPH may hold promise for treating the behavioral dysfunction caused by developmental Mn exposure, although further research is needed with multiple MPH doses to determine whether a dose can be identified that ameliorates the dysfunction in both impulse control and selective attention, without impairing focused attention.
Collapse
Affiliation(s)
- Stephane A Beaudin
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA
| | - Barbara J Strupp
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA; Department of Psychology, Cornell University, Ithaca, NY 14853, USA
| | - Walter Uribe
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA
| | - Lauren Ysais
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA
| | - Myla Strawderman
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA 95064, USA.
| |
Collapse
|
21
|
Jaworska N, Cox SM, Casey KF, Boileau I, Cherkasova M, Larcher K, Dagher A, Benkelfat C, Leyton M. Is there a relation between novelty seeking, striatal dopamine release and frontal cortical thickness? PLoS One 2017; 12:e0174219. [PMID: 28346539 PMCID: PMC5367687 DOI: 10.1371/journal.pone.0174219] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/05/2017] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Novelty-seeking (NS) and impulsive personality traits have been proposed to reflect an interplay between fronto-cortical and limbic systems, including the limbic striatum (LS). Although neuroimaging studies have provided some evidence for this, most are comprised of small samples and many report surprisingly large effects given the challenges of trying to relate a snapshot of brain function or structure to an entity as complex as personality. The current work tested a priori hypotheses about associations between striatal dopamine (DA) release, cortical thickness (CT), and NS in a large sample of healthy adults. METHODS Fifty-two healthy adults (45M/7F; age: 23.8±4.93) underwent two positron emission tomography scans with [11C]raclopride (specific for striatal DA D2/3 receptors) with or without amphetamine (0.3 mg/kg, p.o.). Structural magnetic resonance image scans were acquired, as were Tridimensional Personality Questionnaire data. Amphetamine-induced changes in [11C]raclopride binding potential values (ΔBPND) were examined in the limbic, sensorimotor (SMS) and associative (AST) striatum. CT measures, adjusted for whole brain volume, were extracted from the dorsolateral sensorimotor and ventromedial/limbic cortices. RESULTS BPND values were lower in the amphetamine vs. no-drug sessions, with the largest effect in the LS. When comparing low vs. high LS ΔBPND groups (median split), higher NS2 (impulsiveness) scores were found in the high ΔBPND group. Partial correlations (age and gender as covariates) yielded a negative relation between ASTS ΔBPND and sensorimotor CT; trends for inverse associations existed between ΔBPND values in other striatal regions and frontal CT. In other words, the greater the amphetamine-induced striatal DA response, the thinner the frontal cortex. CONCLUSIONS These data expand upon previously reported associations between striatal DA release in the LS and both NS related impulsiveness and CT in the largest sample reported to date. The findings add to the plausibility of these associations while suggesting that the effects are likely weaker than has been previously proposed.
Collapse
Affiliation(s)
- Natalia Jaworska
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Institue of Mental Health Research, Ottawa, Ontario, Canada
| | - Sylvia M. Cox
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Kevin F. Casey
- Le Centre Hospitalier Universitaire (CHU) Sainte-Justine, Montreal, Quebec, Canada
| | - Isabelle Boileau
- Centre for Addiction & Mental Health (CAMH), Toronto, Ontario, Canada
| | - Mariya Cherkasova
- University of British Columbia, Division of Neurology, Vancouver, British Columbia, Canada
| | - Kevin Larcher
- Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
| | - Alain Dagher
- Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada
| | - Chawki Benkelfat
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Marco Leyton
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
22
|
|
23
|
Multi-facetted impulsivity following nigral degeneration and dopamine replacement therapy. Neuropharmacology 2016; 109:69-77. [PMID: 27216859 PMCID: PMC5405054 DOI: 10.1016/j.neuropharm.2016.05.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 11/24/2022]
Abstract
Impulse control disorders (ICDs) are debilitating side effects of dopamine replacement therapy (DRT) in Parkinson’s disease (PD) that severely affect the quality of life of patients. While DRT, the pattern and extent of neurodegeneration, and prodromic factors of vulnerability (e.g. impulsivity) have all been hypothesized to play a role in the development of ICDs, their respective, and potentially interacting, contributions remain to be established. High impulsive (HI), Intermediate (Int) or low impulsive (LI) rats were identified based on their performance in both a differential reinforcement of low rate of responding (DRL) and a fixed consecutive number (FCN) schedules, that operationalize two independent facets of impulsivity, waiting and action inhibition (motor impulsivity). We investigated whether high impulsivity trait influenced the progressive development of a parkinsonian state induced by viral-mediated overexpression of α-synuclein, and whether impulsivity trait and nigrostriatal neurodegeneration independently or jointly influenced the effects of DRT on impulse control. α-synuclein-induced nigrostriatal neurodegeneration increased both waiting and motor impulsivity. The D2/D3 dopamine receptor agonist pramipexole exacerbated motor impulsivity more than waiting. However, the pramipexole-induced increase in waiting impulsivity observed in both sham and lesioned rats, was more pronounced in HI lesioned rats, which displayed a restricted α-synuclein-induced dopaminergic neurodegeneration. Thus, a PD-like nigrostriatal lesion increases both motor and waiting impulsivity, but its interaction with a pre-existing impulsivity trait, which, at the cellular level, confers resilience to dopaminergic neurodegeneration, worsens the detrimental effects of D2/D3 dopamine receptor agonists on inhibitory control. Degeneration of the substantia nigra increases both waiting and action impulsivity. Reduced alpha-synuclein-induced degeneration in high impulsive rats. Pramipexole increases waiting and action impulsivity in sham and lesioned rats. Exacerbated effect of pramipexole in high impulsive vs. low impulsive lesioned rats.
Collapse
|