1
|
Werle I, Bertoglio LJ. Psychedelics: A review of their effects on recalled aversive memories and fear/anxiety expression in rodents. Neurosci Biobehav Rev 2024; 167:105899. [PMID: 39305969 DOI: 10.1016/j.neubiorev.2024.105899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/02/2024] [Accepted: 09/16/2024] [Indexed: 09/27/2024]
Abstract
Threatening events and stressful experiences can lead to maladaptive memories and related behaviors. Existing treatments often fail to address these issues linked to anxiety/stress-related disorders effectively. This review identifies dose ranges associated with specific actions across various psychedelics. We examined psilocybin/psilocin, lysergic acid diethylamide (LSD), N,N-dimethyltryptamine (DMT), mescaline, 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), serotonin 2 A/2 C agonists (e.g., DOI) and 3,4-methylenedioxymethamphetamine (MDMA) on aversive memory extinction and reconsolidation, learned fear, anxiety, and locomotion in rodents. Nearly 400 studies published since 1957 were reviewed. Psychedelics often show biphasic effects on locomotion at doses that enhance extinction learning/retention, impair memory reconsolidation, or reduce learned fear and anxiety. Emerging evidence suggests a dissociation between their prospective benefits and locomotor effects. Under-explored aspects include sex differences, susceptibility to interference as memories age and generalize, repeated treatments, and immediate vs. delayed changes. Validating findings in traumatic-like memory and maladaptive fear/anxiety models is essential. Understanding how psychedelics modulate threat responses and post-retrieval memory processes in rodents may inform drug development and human studies, improving therapeutic approaches for related psychiatric conditions.
Collapse
Affiliation(s)
- Isabel Werle
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Leandro J Bertoglio
- Department of Pharmacology, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
2
|
Dong X, Wang Y, Liu Y, Li Y. Fear generalization modulated by shock intensity and protein synthesis inhibitor. Psychopharmacology (Berl) 2024:10.1007/s00213-024-06662-1. [PMID: 39105767 DOI: 10.1007/s00213-024-06662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
RATIONALE Maladaptive fear responses, including sensitized threat reactions and overgeneralization, contribute to anxiety disorders such as generalized anxiety disorder and post-traumatic stress disorder. Although stress intensity influences the generation and extent of these maladaptive fears, the underlying mechanisms remain unclear. OBJECTIVES The present study examined whether varying footshock stress intensity and inhibition of protein synthesis have differential effect on fear sensitization and generalization in mice. METHODS Mice were subjected to a classic fear conditioning protocol involving five different levels of footshock intensities. Prior to fear acquisition, the protein synthesis inhibitor cycloheximide (CHX) was administered intraperitoneally. Fear sensitization to white noise and fear generalization to tones with frequencies differing from the conditioned tone were assessed at either 2 or 4 days after fear acquisition. RESULTS The results showed that, although varying shock intensities (except the lowest) led to a similar pattern of increased freezing during auditory cues in fear acquisition, the extent of both fear sensitization and generalization increased with the intensity of the footshock in the following days. As shock intensities increased, there was a proportional rise in sensitized fear to white noise and generalized freezing to tones with frequencies progressively closer to the conditioned stimulus. Mildest shocks did not induce discriminative conditioned fear memory, whereas the most intense shocks led to pronounced fear generalization. Administration of CHX before fear acquisition did not affect sensitized fear but reduced generalization of freezing to tones dissimilar from the conditioned stimulus in the group exposed to the most intense shock. CONCLUSIONS Our results suggest that maladaptive fear responses elicited by varying stress intensities exhibit distinct characteristics. The effect of CHX to prevent overgeneralization without affecting discriminative fear memory points to potential therapeutic approaches for fear-related disorders, suggesting the possibility of mitigating overgeneralization while preserving necessary fear discrimination.
Collapse
Affiliation(s)
- Xinwen Dong
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
| | - Yunyun Wang
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Yudan Liu
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Yonghui Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Buján GE, D'Alessio L, Serra HA, Guelman LR, Molina SJ. Assessment of Hippocampal-Related Behavioral Changes in Adolescent Rats of both Sexes Following Voluntary Intermittent Ethanol Intake and Noise Exposure: A Putative Underlying Mechanism and Implementation of a Non-pharmacological Preventive Strategy. Neurotox Res 2024; 42:29. [PMID: 38856796 DOI: 10.1007/s12640-024-00707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/16/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
Ethanol (EtOH) intake and noise exposure are particularly concerning among human adolescents because the potential to harm brain. Unfortunately, putative underlying mechanisms remain to be elucidated. Moreover, implementing non-pharmacological strategies, such as enriched environments (EE), would be pertinent in the field of neuroprotection. This study aims to explore possible underlying triggering mechanism of hippocampus-dependent behaviors in adolescent animals of both sexes following ethanol intake, noise exposure, or a combination of both, as well as the impact of EE. Adolescent Wistar rats of both sexes were subjected to an intermittent voluntary EtOH intake paradigm for one week. A subgroup of animals was exposed to white noise for two hours after the last session of EtOH intake. Some animals of both groups were housed in EE cages. Hippocampal-dependent behavioral assessment and hippocampal oxidative state evaluation were performed. Results show that different hippocampal-dependent behavioral alterations might be induced in animals of both sexes after EtOH intake and sequential noise exposure, that in some cases are sex-specific. Moreover, hippocampal oxidative imbalance seems to be one of the potential underlying mechanisms. Additionally, most behavioral and oxidative alterations were prevented by EE. These findings suggest that two frequently found environmental agents may impact behavior and oxidative pathways in both sexes in an animal model. In addition, EE resulted a partially effective neuroprotective strategy. Therefore, it could be suggested that the implementation of a non-pharmacological approach might also potentially provide neuroprotective advantages against other challenges. Finally, considering its potential for translational human benefit might be worth.
Collapse
Affiliation(s)
- G E Buján
- Facultad de Medicina, Departamento de Toxicología y Farmacología, 1ª Cátedra de Farmacología, Buenos Aires, Universidad de Buenos Aires (UBA), Paraguay 2155, piso 15, 1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - L D'Alessio
- Facultad de Medicina, Departamento de Toxicología y Farmacología, 1ª Cátedra de Farmacología, Buenos Aires, Universidad de Buenos Aires (UBA), Paraguay 2155, piso 15, 1121, Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Biología Celular y Neurociencias (IBCN), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - H A Serra
- Facultad de Medicina, Departamento de Toxicología y Farmacología, 1ª Cátedra de Farmacología, Buenos Aires, Universidad de Buenos Aires (UBA), Paraguay 2155, piso 15, 1121, Ciudad Autónoma de Buenos Aires, Argentina
| | - L R Guelman
- Facultad de Medicina, Departamento de Toxicología y Farmacología, 1ª Cátedra de Farmacología, Buenos Aires, Universidad de Buenos Aires (UBA), Paraguay 2155, piso 15, 1121, Ciudad Autónoma de Buenos Aires, Argentina.
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - S J Molina
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO), Universidad de Buenos Aires (UBA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
4
|
Yang J, Ding J, Lu Z, Zhu B, Lin S. Digestive and Absorptive Properties of the Antarctic Krill Tripeptide Phe-Pro-Phe (FPF) and Its Auxiliary Memory-Enhancing Effect. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8491-8505. [PMID: 38587859 DOI: 10.1021/acs.jafc.3c08158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Aging and stress have contributed to the development of memory disorders. Phe-Pro-Phe (FPF) was identified with high stability by mass spectrometry from simulated gastrointestinal digestion and everted gut sac products of the Antarctic krill peptide Ser-Ser-Asp-Ala-Phe-Phe-Pro-Phe-Arg (SSDAFFPFR) which was found to have a positive impact on memory enhancement. This study investigated the digestive stability, absorption, and memory-enhancing effects of FPF using nuclear magnetic resonance spectroscopy, simulated gastrointestinal digestion, in vivo fluorescence distribution analysis, mouse behavioral experiments, acetylcholine function, Nissl staining, immunofluorescence, and immunohistochemistry. FPF crossed the blood-brain barrier into the brain after digestion, significantly reduced shock time, working memory errors, and reference memory errors, and increased the recognition index. Additionally, FPF elevated ACh content; Nissl body counts; and CREB, SYN, and PSD-95 expression levels, while reducing AChE activity (P < 0.05). This implies that FPF prevents scopolamine-induced memory impairment and provides a basis for future research on memory disorders.
Collapse
Affiliation(s)
- Jingqi Yang
- SKL of Marine Food Processing & Safety Control, School of Food Sci. Technol., Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Jie Ding
- SKL of Marine Food Processing & Safety Control, School of Food Sci. Technol., Dalian Polytechnic University, Dalian 116034, P. R. China
- The Education Department of Liaoning Province, Engineering Research Center of Special Dietary Food, Dalian 116034, P. R. China
| | - Zhiqiang Lu
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- The Education Department of Liaoning Province, Engineering Research Center of Special Dietary Food, Dalian 116034, P. R. China
| | - Beiwei Zhu
- SKL of Marine Food Processing & Safety Control, School of Food Sci. Technol., Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
| | - Songyi Lin
- SKL of Marine Food Processing & Safety Control, School of Food Sci. Technol., Dalian Polytechnic University, Dalian 116034, P. R. China
- National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, P. R. China
- Engineering Research Center of Food, Dalian Polytechnic University, Dalian 116034, P. R. China
- The Education Department of Liaoning Province, Engineering Research Center of Special Dietary Food, Dalian 116034, P. R. China
| |
Collapse
|
5
|
Souza-Pereira A, Hernandez MDS, Guerra JMDS, Nieswald BH, Bianchini MC, Godinho DB, Nascimento AS, Puntel RL, Royes LFF, Rambo LM. Swimming training and caffeine supplementation protects against metabolic syndrome-induced nuclear factor-κB activation and cognitive deficits in rats. Nutr Res 2024; 122:19-32. [PMID: 38070463 DOI: 10.1016/j.nutres.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/04/2023] [Accepted: 11/05/2023] [Indexed: 03/08/2024]
Abstract
Metabolic syndrome (MS) is a disorder that increasingly affects the world population, mainly because of changes in lifestyle and dietary habits. In this regard, both physical exercise and caffeine are low-cost and easily accessible therapies that separately have shown positive effects against metabolic disorders. Therefore, we hypothesized that physical exercise combined with caffeine could have a synergistic effect in the treatment of MS, risk factors, and cognitive deficits. Animals were divided into 8 groups and received fructose (15% w/v) or vehicle for 10 weeks. Swimming training and caffeine (6 mg/kg) started 4 weeks after fructose administration. Trained animals presented decreased body weight and visceral fat mass and increased soleus weight compared with untrained fructose-treated animals. Caffeine supplementation also prevented the gain of visceral fat mass induced by fructose. Furthermore, both treatments reversed fructose-induced decrease in glucose clearance over time and fructose-induced increase in 4-hydroxynonenal and nuclear factor-κB immunoreactivity. Physical training also improved the lipidic profile in fructose-treated animals (high-density lipoprotein, low-density lipoprotein, and triglycerides), improved short-term, long-term, and localization memory, and reversed the fructose-induced deficit in short-term memory. Physical training also increased nuclear factor erythroid 2-related factor 2 immunoreactivity per se. Considering that physical training and caffeine reversed some of the damages induced by fructose it is plausible to consider these treatments as alternative, nonpharmacological, and low-cost therapies to help reduce MS-associated risk factors; however, combined treatments did not show additive effects as hypothesized.
Collapse
Affiliation(s)
- Adson Souza-Pereira
- Biochemistry Graduate Program, Federal University of Pampa, Uruguaiana, RS, Brazil
| | | | | | | | | | - Douglas Buchmann Godinho
- Department of Methods and Sportive Techniques, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Robson Luiz Puntel
- Biochemistry Graduate Program, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Luiz Fernando Freire Royes
- Department of Methods and Sportive Techniques, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Leonardo Magno Rambo
- Biochemistry Graduate Program, Federal University of Pampa, Uruguaiana, RS, Brazil.
| |
Collapse
|
6
|
Oresanya IO, Orhan IE. Deciphering Neuroprotective Effect of Rosmarinus officinalis L. (syn. Salvia rosmarinus Spenn.) through Preclinical and Clinical Studies. Curr Drug Targets 2024; 25:330-352. [PMID: 38258779 DOI: 10.2174/0113894501255093240117092328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/25/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Rosmarinus officinalis L. (RO, rosemary) is a well-known medicinal, aromatic, and culinary herb with traditional use in European folk medicine against memory deficits and neurodegenerative disorders. This review highlights the different neuroprotective activities of RO investigated in both preclinical and clinical studies, as well as in silico molecular docking of bioactive compounds found in RO. The neuroprotective effect of RO was searched through databases including PubMed, Web of Science (WoS), Scopus, and Clinical Trials using the keywords "Rosmarinus officinalis, rosemary, neuroprotective effect, memory, cognitive dysfunction, Alzheimer's disease." RO, which is rich in secondary metabolites that have memory-enhancing potential, has displayed neuroprotection through different molecular mechanisms such as inhibition of cholinesterase, modulation of dopaminergic and oxytocinergic systems, mediation of oxidative and inflammatory proteins, involved in neuropathic pain, among others. RO extracts exhibited antidepressant and anxiolytic activities. Also, the plant has shown efficacy in scopolamine-, lipopolysaccharide-, AlCl3-, and H2O2-induced amnesia as well as amyloid-beta- and ibotenic acid-induced neurotoxicity and chronic constriction injury-related oxidative stress memory and cognitive impairments in animal models. A few clinical studies available supported the neuroprotective effects of RO and its constituents. However, more clinical studies are needed to confirm results from preclinical studies further and should include not only placebo-controlled studies but also studies including positive controls using approved drugs. Many studies underlined that constituents of RO may have the potential for developing drug candidates against Alzheimer's disease that possess high bioavailability, low toxicity, and enhanced penetration to CNS, as revealed from the experimental and molecular docking analysis.
Collapse
Affiliation(s)
- Ibukun O Oresanya
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
| | - Ilkay E Orhan
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Türkiye
- Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No. 112, 06670 Ankara, Türkiye
| |
Collapse
|
7
|
Gallas-Lopes M, Benvenutti R, Donzelli NIZ, Marcon M. A systematic review of the impact of environmental enrichment in zebrafish. Lab Anim (NY) 2023; 52:332-343. [PMID: 38017181 DOI: 10.1038/s41684-023-01288-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/12/2023] [Indexed: 11/30/2023]
Abstract
Environmental enrichment (EE) consists of a series of interventions carried out in the home environment to promote greater exposure to sensory stimuli and mimic the natural habitat of laboratory-housed animals, providing environments closer to those found in nature. Some studies have shown the positive effects of EE in zebrafish housed in a laboratory environment. However, this evidence is still recent and accompanied by contradictory results. Furthermore, there is great variability in the protocols applied and in the conditions of the tests, tanks and materials used to generate an enriched environment. This substantial variability can bring many uncertainties to the development of future studies and hinder the reproducibility and replicability of research. Here, in this context, we carried out a systematic review of the literature, aiming to provide an overview of the EE protocols used in zebrafish research. The literature search was performed in PubMed, Scopus and Web of Science and the studies were selected on the basis of predefined inclusion/exclusion criteria. A total of 901 articles were identified in the databases, and 27 of those studies were included in this review. We conducted data extraction and risk-of-bias analysis in the included studies. Among these studies, the effect of EE was evaluated in two different ways: (1) for animal welfare and (2) as an intervention to prevent behavioral, biochemical, molecular, developmental and breeding dysfunctions. Although the EE protocols in zebrafish presented a series of experimental differences, the results showed that the benefits of the EE for zebrafish were consistent. According to the results described here, the use of EE in the zebrafish home tank improves welfare and may reduce sources of bias in scientific research. However, it is still necessary to develop standardized protocols to improve the application of EE in scientific studies using zebrafish.
Collapse
Affiliation(s)
- Matheus Gallas-Lopes
- Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Radharani Benvenutti
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Nayne I Z Donzelli
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
- Laboratório de Zebrafish (ZebLab), Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil
| | - Matheus Marcon
- Departamento de Bioquímica, Farmacologia e Fisiologia, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil.
- Laboratório de Zebrafish (ZebLab), Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil.
- Programa de Pós-graduação em Ciências da Saúde, Instituto de Ciências da Saúde, Universidade Federal do Triângulo Mineiro, Uberaba, Brazil.
| |
Collapse
|
8
|
Atucha E, Ku SP, Lippert MT, Sauvage MM. Recalling gist memory depends on CA1 hippocampal neurons for lifetime retention and CA3 neurons for memory precision. Cell Rep 2023; 42:113317. [PMID: 37897725 DOI: 10.1016/j.celrep.2023.113317] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/05/2023] [Accepted: 10/05/2023] [Indexed: 10/30/2023] Open
Abstract
Why some of us remember events more clearly than others and why memory loses precision over time is a major focus in memory research. Here, we show that the recruitment of specific neuroanatomical pathways within the medial temporal lobe (MTL) of the brain defines the precision of the memory recalled over the lifespan. Using optogenetics, neuronal activity mapping, and studying recent to very remote memories, we report that the hippocampal subfield CA1 is necessary for retrieving the gist of events and receives maximal support from MTL cortical areas (MEC, LEC, PER, and POR) for recalling the most remote memories. In contrast, reduction of CA3's activity alone coincides with the loss of memory precision over time. We propose that a shift between specific MTL subnetworks over time might be a fundamental mechanism of memory consolidation.
Collapse
Affiliation(s)
- Erika Atucha
- Functional Architecture of Memory Department, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Shih-Pi Ku
- Functional Architecture of Memory Department, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Michael T Lippert
- Systems Physiology of Learning Department, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Magdalena M Sauvage
- Functional Architecture of Memory Department, Leibniz Institute for Neurobiology, Magdeburg, Germany; Otto von Guericke University, Medical Faculty, Functional Neuroplasticity Department, Magdeburg, Germany; Otto von Guericke University, Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
9
|
Mottolese N, Uguagliati B, Tassinari M, Cerchier CB, Loi M, Candini G, Rimondini R, Medici G, Trazzi S, Ciani E. Voluntary Running Improves Behavioral and Structural Abnormalities in a Mouse Model of CDKL5 Deficiency Disorder. Biomolecules 2023; 13:1396. [PMID: 37759796 PMCID: PMC10527551 DOI: 10.3390/biom13091396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is a rare neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene. CDD is characterized by a broad spectrum of clinical manifestations, including early-onset refractory epileptic seizures, intellectual disability, hypotonia, visual disturbances, and autism-like features. The Cdkl5 knockout (KO) mouse recapitulates several features of CDD, including autistic-like behavior, impaired learning and memory, and motor stereotypies. These behavioral alterations are accompanied by diminished neuronal maturation and survival, reduced dendritic branching and spine maturation, and marked microglia activation. There is currently no cure or effective treatment to ameliorate the symptoms of the disease. Aerobic exercise is known to exert multiple beneficial effects in the brain, not only by increasing neurogenesis, but also by improving motor and cognitive tasks. To date, no studies have analyzed the effect of physical exercise on the phenotype of a CDD mouse model. In view of the positive effects of voluntary running on the brain of mouse models of various human neurodevelopmental disorders, we sought to determine whether voluntary daily running, sustained over a month, could improve brain development and behavioral defects in Cdkl5 KO mice. Our study showed that long-term voluntary running improved the hyperlocomotion and impulsivity behaviors and memory performance of Cdkl5 KO mice. This is correlated with increased hippocampal neurogenesis, neuronal survival, spine maturation, and inhibition of microglia activation. These behavioral and structural improvements were associated with increased BDNF levels. Given the positive effects of BDNF on brain development and function, the present findings support the positive benefits of exercise as an adjuvant therapy for CDD.
Collapse
Affiliation(s)
- Nicola Mottolese
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Beatrice Uguagliati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Marianna Tassinari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Camilla Bruna Cerchier
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Manuela Loi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giulia Candini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Roberto Rimondini
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giorgio Medici
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
10
|
On making (and turning adaptive to) maladaptive aversive memories in laboratory rodents. Neurosci Biobehav Rev 2023; 147:105101. [PMID: 36804263 DOI: 10.1016/j.neubiorev.2023.105101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Fear conditioning and avoidance tasks usually elicit adaptive aversive memories. Traumatic memories are more intense, generalized, inflexible, and resistant to attenuation via extinction- and reconsolidation-based strategies. Inducing and assessing these dysfunctional, maladaptive features in the laboratory are crucial to interrogating posttraumatic stress disorder's neurobiology and exploring innovative treatments. Here we analyze over 350 studies addressing this question in adult rats and mice. There is a growing interest in modeling several qualitative and quantitative memory changes by exposing already stressed animals to freezing- and avoidance-related tests or using a relatively high aversive training magnitude. Other options combine aversive/fearful tasks with post-acquisition or post-retrieval administration of one or more drugs provoking neurochemical or epigenetic alterations reported in the trauma aftermath. It is potentially instructive to integrate these procedures and incorporate the measurement of autonomic and endocrine parameters. Factors to consider when defining the organismic and procedural variables, partially neglected aspects (sex-dependent differences and recent vs. remote data comparison) and suggestions for future research (identifying reliable individual risk and treatment-response predictors) are discussed.
Collapse
|
11
|
Shirbandi K, Rikhtegar R, Khalafi M, Mirza Aghazadeh Attari M, Rahmani F, Javanmardi P, Iraji S, Babaei Aghdam Z, Rezaei Rashnoudi AM. Functional Magnetic Resonance Spectroscopy of Lactate in Alzheimer Disease: A Comprehensive Review of Alzheimer Disease Pathology and the Role of Lactate. Top Magn Reson Imaging 2023; 32:15-26. [PMID: 37093700 PMCID: PMC10121369 DOI: 10.1097/rmr.0000000000000303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/27/2023] [Accepted: 02/17/2023] [Indexed: 04/13/2023]
Abstract
ABSTRACT Functional 1H magnetic resonance spectroscopy (fMRS) is a derivative of dynamic MRS imaging. This modality links physiologic metabolic responses with available activity and measures absolute or relative concentrations of various metabolites. According to clinical evidence, the mitochondrial glycolysis pathway is disrupted in many nervous system disorders, especially Alzheimer disease, resulting in the activation of anaerobic glycolysis and an increased rate of lactate production. Our study evaluates fMRS with J-editing as a cutting-edge technique to detect lactate in Alzheimer disease. In this modality, functional activation is highlighted by signal subtractions of lipids and macromolecules, which yields a much higher signal-to-noise ratio and enables better detection of trace levels of lactate compared with other modalities. However, until now, clinical evidence is not conclusive regarding the widespread use of this diagnostic method. The complex machinery of cellular and noncellular modulators in lactate metabolism has obscured the potential roles fMRS imaging can have in dementia diagnosis. Recent developments in MRI imaging such as the advent of 7 Tesla machines and new image reconstruction methods, coupled with a renewed interest in the molecular and cellular basis of Alzheimer disease, have reinvigorated the drive to establish new clinical options for the early detection of Alzheimer disease. Based on the latter, lactate has the potential to be investigated as a novel diagnostic and prognostic marker for Alzheimer disease.
Collapse
Affiliation(s)
- Kiarash Shirbandi
- Neuroimaging and Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Rikhtegar
- Department of Intracranial Endovascular Therapy, Alfried Krupp Krankenhaus Essen, Essen, Germany
| | - Mohammad Khalafi
- Medical Imaging Sciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farzaneh Rahmani
- Department of Radiology, Washington University in St. Louis, St. Louis, MO
| | - Pouya Javanmardi
- Radiologic Technology Department, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajjad Iraji
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Babaei Aghdam
- Medical Imaging Sciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
12
|
Rosa J, de Carvalho Myskiw J, Fiorenza NG, Furini CRG, Sapiras GG, Izquierdo I. Hippocampal cholinergic receptors and the mTOR participation in fear-motivated inhibitory avoidance extinction memory. Behav Brain Res 2023; 437:114129. [PMID: 36179804 DOI: 10.1016/j.bbr.2022.114129] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/07/2022] [Accepted: 09/24/2022] [Indexed: 10/14/2022]
Abstract
Evidence has demonstrated the hippocampal cholinergic system and the mammalian target of rapamycin (mTOR) participation during the memory formation of aversive events. This study assessed the role of these systems in the hippocampus for the extinction memory process by submitting male Wistar rats to fear-motivated step-down inhibitory avoidance (IA). The post-extinction session administration of the nicotinic and muscarinic cholinergic receptor antagonists, mecamylamine and scopolamine, respectively, both at doses of 2 µg/µl/side, and rapamycin, an mTOR inhibitor (0.02 µg/µl/side), into the CA1 region of the dorsal hippocampus, impaired the IA extinction memory. Furthermore, the nicotinic and muscarinic cholinergic receptor agonists, nicotine and muscarine, respectively, had a dose-dependent effect on the IA extinction memory when administered intra-CA1, immediately after the extinction session. Nicotine (0.6 µg/µl/side) and muscarine (0.02 µg/µl/side), respectively, had no effect, while the higher doses (6 and 2 µg/µl/side, respectively) impaired the IA extinction memory. Interestingly, the co-administration of muscarine at the lower dose blocked the impairment that was induced by rapamycin. This effect was not observed when nicotine at the lower dose was co-administered. These results have demonstrated the participation of the cholinergic receptors and mTOR in the hippocampus for IA extinction, and that the cholinergic agonists had a dose-dependent effect on the IA extinction memory. This study provides insights related to the behavioural aspects and the neurobiological properties underlying the early stage of fear-motivated IA extinction memory consolidation and suggests that there is hippocampal muscarinic receptor participation independent of mTOR in this memory process.
Collapse
Affiliation(s)
- Jessica Rosa
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo (USP), Bandeirantes 3900, 14049-900 Ribeirao Preto, SP, Brazil.
| | - Jociane de Carvalho Myskiw
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Department of Biophysics, Institute of Biosciences, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves 9500, Building 43422, Room 208 A, 91501-970 Porto Alegre, RS, Brazil
| | - Natalia Gindri Fiorenza
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Oswaldo Cruz Foundation (FIOCRUZ), Branch Ceara, 60760-000 Eusebio, CE, Brazil
| | - Cristiane Regina Guerino Furini
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil; Laboratory of Cognition and Memory Neurobiology, Brain Institute, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, 3rd Floor, 90610-000 Porto Alegre, RS, Brazil
| | - Gerson Guilherme Sapiras
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; Clinical Hospital of Passo Fundo (HCPF), Tiradentes 295, 99010-260 Passo Fundo, RS, Brazil
| | - Ivan Izquierdo
- Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Ipiranga 6690, Floor 2, 90610-600 Porto Alegre, RS, Brazil; National Institute of Translational Neuroscience (INNT), National Research Council of Brazil, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
13
|
Edwards CM, Guerrero IE, Zheng H, Dolezel T, Rinaman L. Blockade of Ghrelin Receptor Signaling Enhances Conditioned Passive Avoidance and Context-Associated cFos Activation in Fasted Male Rats. Neuroendocrinology 2022; 113:535-548. [PMID: 36566746 PMCID: PMC10133005 DOI: 10.1159/000528828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Interoceptive feedback to the brain regarding the body's physiological state plays an important role in guiding motivated behaviors. For example, a state of negative energy balance tends to increase exploratory/food-seeking behaviors while reducing avoidance behaviors. We recently reported that overnight food deprivation reduces conditioned passive avoidance behavior in male (but not female) rats. Since fasting increases circulating levels of ghrelin, we hypothesized that ghrelin signaling contributes to the ability of fasting to reduce conditioned avoidance. METHODS Ad libitum-fed male rats were trained in a passive avoidance procedure using mild footshock. Later, following overnight food deprivation, the same rats were pretreated with ghrelin receptor antagonist (GRA) or saline vehicle 30 min before avoidance testing. RESULTS GRA restored passive avoidance in fasted rats as measured by both latency to enter and time spent in the shock-paired context. In addition, compared to vehicle-injected fasted rats, fasted rats that received GRA before reexposure to the shock-paired context displayed more cFos activation of prolactin-releasing peptide (PrRP)-positive noradrenergic (NA) neurons in the caudal nucleus of the solitary tract, accompanied by more cFos activation in downstream target sites of PrRP neurons (i.e., bed nucleus of the stria terminalis and paraventricular nucleus of the hypothalamus). DISCUSSION These results support the view that ghrelin signaling contributes to the inhibitory effect of fasting on learned passive avoidance behavior, perhaps by suppressing recruitment of PrRP-positive NA neurons and their downstream hypothalamic and limbic forebrain targets.
Collapse
Affiliation(s)
- Caitlyn M Edwards
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | | | - Huiyuan Zheng
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Tyla Dolezel
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| | - Linda Rinaman
- Department of Psychology, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
14
|
Alhusaini M, Eissa N, Saad AK, Beiram R, Sadek B. Revisiting Preclinical Observations of Several Histamine H3 Receptor Antagonists/Inverse Agonists in Cognitive Impairment, Anxiety, Depression, and Sleep-Wake Cycle Disorder. Front Pharmacol 2022; 13:861094. [PMID: 35721194 PMCID: PMC9198498 DOI: 10.3389/fphar.2022.861094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/22/2022] [Indexed: 12/25/2022] Open
Abstract
A relationship appears to exist between dysfunction of brain histamine (HA) and various neuropsychiatric brain disorders. The possible involvement of brain HA in neuropathology has gained attention recently, and its role in many (patho)physiological brain functions including memory, cognition, and sleep-wake cycle paved the way for further research on the etiology of several brain disorders. Histamine H3 receptor (H3R) evidenced in the brains of rodents and humans remains of special interest, given its unique position as a pre- and postsynaptic receptor, controlling the synthesis and release of HA as well as different other neurotransmitters in different brain regions, respectively. Despite several disappointing outcomes for several H3R antagonists/inverse agonists in clinical studies addressing their effectiveness in Alzheimer's disease (AD), Parkinson's disease (PD), and schizophrenia (SCH), numerous H3R antagonists/inverse agonists showed great potentials in modulating memory and cognition, mood, and sleep-wake cycle, thus suggesting its potential role in neurocognitive and neurodegenerative diseases such as AD, PD, SCH, narcolepsy, and major depression in preclinical rodent models. In this review, we present preclinical applications of selected H3R antagonists/inverse agonists and their pharmacological effects on cognitive impairment, anxiety, depression, and sleep-wake cycle disorders. Collectively, the current review highlights the behavioral impact of developments of H3R antagonists/inverse agonists, aiming to further encourage researchers in the preclinical drug development field to profile the potential therapeutic role of novel antagonists/inverse agonists targeting histamine H3Rs.
Collapse
Affiliation(s)
- Mera Alhusaini
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nermin Eissa
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Ali K Saad
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.,Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
15
|
Velloso FJ, Wadhwa A, Kumari E, Carcea I, Gunal O, Levison SW. Modestly increasing systemic interleukin-6 perinatally disturbs secondary germinal zone neurogenesis and gliogenesis and produces sociability deficits. Brain Behav Immun 2022; 101:23-36. [PMID: 34954074 PMCID: PMC8885860 DOI: 10.1016/j.bbi.2021.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/07/2021] [Accepted: 12/18/2021] [Indexed: 12/14/2022] Open
Abstract
Epidemiologic studies have demonstrated that infections during pregnancy increase the risk of offspring developing Schizophrenia, Autism, Depression and Bipolar Disorder and have implicated interleukin-6 (IL-6) as a causal agent. However, other cytokines have been associated with the developmental origins of psychiatric disorders; therefore, it remains to be established whether elevating IL-6 is sufficient to alter the trajectory of neural development. Furthermore, most rodent studies have manipulated the maternal immune system at mid-gestation, which affects the stem cells and progenitors in both the primary and secondary germinal matrices. Therefore, a question that remains to be addressed is whether elevating IL-6 when the secondary germinal matrices are most active will affect brain development. Here, we have increased IL-6 from postnatal days 3-6 when the secondary germinal matrices are rapidly expanding. Using Nestin-CreERT2 fate mapping we show that this transient increase in IL-6 decreased neurogenesis in the dentate gyrus of the dorsal hippocampus, reduced astrogliogenesis in the amygdala and decreased oligodendrogenesis in the body and splenium of the corpus callosum all by ∼ 50%. Moreover, the IL-6 treatment elicited behavioral changes classically associated with neurodevelopmental disorders. As adults, IL-6 injected male mice lost social preference in the social approach test, spent ∼ 30% less time socially engaging with sexually receptive females and produced ∼ 50% fewer ultrasonic vocalizations during mating. They also engaged ∼ 50% more time in self-grooming behavior and had an increase in inhibitory avoidance. Altogether, these data provide new insights into the biological mechanisms linking perinatal immune activation to complex neurodevelopmental brain disorders.
Collapse
Affiliation(s)
- Fernando Janczur Velloso
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| | - Anna Wadhwa
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA 07103
| | - Ekta Kumari
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA 07103
| | - Ioana Carcea
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| | - Ozlem Gunal
- Department of Psychiatry, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
| | - Steven W. Levison
- Department of Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA 07103,Correspondence should be addressed to: Steven W. Levison, PhD, Department Pharmacology, Physiology & Neuroscience, New Jersey Medical School, Rutgers University, 205 S. Orange Ave, Newark, NJ 07103, Phone: 973-972-5162;
| |
Collapse
|
16
|
Tomar A, McHugh TJ. The impact of stress on the hippocampal spatial code. Trends Neurosci 2021; 45:120-132. [PMID: 34916083 DOI: 10.1016/j.tins.2021.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Hippocampal function is severely compromised by prolonged, uncontrollable stress. However, how stress alters neural representations of our surroundings and events that occur within them remains less clear. We review hippocampal place cell studies that examine how spatial coding is affected by acute and chronic stress, as well as by stress accompanying fear conditioning. Emerging data suggest that chronic stress disrupts the acuity and specificity of CA1 spatial coding, both in familiar and novel contexts, and alters hippocampal oscillations. By contrast, acute stress may have a facilitatory impact on spatial representations. These findings encourage a fresh look at the documented stress-induced changes in hippocampal anatomy and in vitro excitability, and offer a new perspective on the links between stress and memory.
Collapse
Affiliation(s)
- Anupratap Tomar
- Center for Synaptic Plasticity, School of Physiology, Pharmacology, and Neuroscience, University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, Japan.
| |
Collapse
|
17
|
Molina SJ, Lietti ÁE, Carreira Caro CS, Buján GE, Guelman LR. Effects of early noise exposure on hippocampal-dependent behaviors during adolescence in male rats: influence of different housing conditions. Anim Cogn 2021; 25:103-120. [PMID: 34322771 DOI: 10.1007/s10071-021-01540-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
Central nervous system (CNS) development is a very complex process that can be altered by environmental stimuli such as noise, which can generate long-term auditory and/or extra-auditory impairments. We have previously reported that early noise exposure can induce hippocampus-related behavioral alterations in postnatal day (PND) 28 adolescent rats. Furthermore, we recently found biochemical modifications in the hippocampus (HC) of these animals that seemed to endure even in more mature animals (i.e. PND35) and that have not been studied along with behavioral correlates. Thus, the aim of this work was to reveal novel data about the effects of early noise exposure on hippocampal-dependent behaviors in more mature animals. Additionally, extended enriched environment (EE) housing was evaluated to determine its capacity to induce behavioral modifications, either by its neuroprotective ability or the greater stimulation that it generates. Male Wistar rats were exposed to different noise schemes at PND7 or PND15. Upon weaning, some animals were transferred to EE whereas others were kept in standard cages. At PND35, different hippocampal-dependent behavioral assessments were performed. Results showed noise-induced behavioral changes that differed according to the scheme and age of exposure used. In addition, housing in an EE was effective either in preventing some of these changes or in inducing the appearance of new behavioral modifications. These findings suggest that CNS development would be sensitive to the effects of different type of environmental stimuli such as noise or enriched housing, leading to maladaptive behavioral changes that last even until adolescence.
Collapse
Affiliation(s)
- Sonia Jazmín Molina
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Paraguay 2155, Piso 15, 1121, Buenos Aires, Argentina.
| | - Ángel Emanuel Lietti
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Paraguay 2155, Piso 15, 1121, Buenos Aires, Argentina
| | - Candela Sofía Carreira Caro
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Paraguay 2155, Piso 15, 1121, Buenos Aires, Argentina
| | - Gustavo Ezequiel Buján
- Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| | - Laura Ruth Guelman
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Paraguay 2155, Piso 15, 1121, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Medicina, 1ª Cátedra de Farmacología, Buenos Aires, Argentina
| |
Collapse
|
18
|
Dos Santos Corrêa M, Vaz BDS, Menezes BS, Ferreira TL, Tiba PA, Fornari RV. Corticosterone differentially modulates time-dependent fear generalization following mild or moderate fear conditioning training in rats. Neurobiol Learn Mem 2021; 184:107487. [PMID: 34242811 DOI: 10.1016/j.nlm.2021.107487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/06/2021] [Accepted: 07/03/2021] [Indexed: 11/24/2022]
Abstract
Stressful and emotionally arousing experiences create strong memories that seem to lose specificity over time. It is uncertain, however, how the stress system contributes to the phenomenon of time-dependent fear generalization. Here, we investigated whether post-training corticosterone (CORT-HBC) injections, given after different training intensities, affect contextual fear memory specificity at several time points. We trained male Wistar rats on the contextual fear conditioning (CFC) task using two footshock intensities (mild CFC, 3 footshocks of 0.3 mA, or moderate CFC, 3x 0.6 mA) and immediately after the training session we administered CORT-HBC systemically. We first tested the animals in a novel context and then in the training context at different intervals following training (2, 14, 28 or 42 days). By measuring freezing in the novel context and then contrasting freezing times shown in both contexts, we inferred contextual fear generalization for each rat, classifying them into Generalizers or Discriminators. Following mild CFC training, the glucocorticoid injection promoted an accurate contextual memory at the recent time point (2 days), and increase the contextual memory accuracy 28 days after training. In contrast, after the moderate CFC training, CORT-HBC facilitated contextual generalization at 14 days, compared to the control group that maintained contextual discrimination at this timepoint. For this training intensity, however, CORT-HBC did not have any effect on recent memory specificity. These findings indicate that treatment with CORT-HBC immediately after the encoding of mild or moderately arousing experiences may differentially modulate memory consolidation and time-dependent fear generalization.
Collapse
Affiliation(s)
- Moisés Dos Santos Corrêa
- Center for Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), São Bernardo do Campo, SP, Brazil.
| | - Barbara Dos Santos Vaz
- Center for Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), São Bernardo do Campo, SP, Brazil.
| | - Beatriz Scazufca Menezes
- Center for Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), São Bernardo do Campo, SP, Brazil.
| | - Tatiana Lima Ferreira
- Center for Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), São Bernardo do Campo, SP, Brazil.
| | - Paula Ayako Tiba
- Center for Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), São Bernardo do Campo, SP, Brazil.
| | - Raquel Vecchio Fornari
- Center for Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC (UFABC), São Bernardo do Campo, SP, Brazil.
| |
Collapse
|
19
|
Sanguino‐Gómez J, Buurstede JC, Abiega O, Fitzsimons CP, Lucassen PJ, Eggen BJL, Lesuis SL, Meijer OC, Krugers HJ. An emerging role for microglia in stress‐effects on memory. Eur J Neurosci 2021; 55:2491-2518. [PMID: 33724565 PMCID: PMC9373920 DOI: 10.1111/ejn.15188] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/13/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Stressful experiences evoke, among others, a rapid increase in brain (nor)epinephrine (NE) levels and a slower increase in glucocorticoid hormones (GCs) in the brain. Microglia are key regulators of neuronal function and contain receptors for NE and GCs. These brain cells may therefore potentially be involved in modulating stress effects on neuronal function and learning and memory. In this review, we discuss that stress induces (1) an increase in microglial numbers as well as (2) a shift toward a pro‐inflammatory profile. These microglia have (3) impaired crosstalk with neurons and (4) disrupted glutamate signaling. Moreover, microglial immune responses after stress (5) alter the kynurenine pathway through metabolites that impair glutamatergic transmission. All these effects could be involved in the impairments in memory and in synaptic plasticity caused by (prolonged) stress, implicating microglia as a potential novel target in stress‐related memory impairments.
Collapse
Affiliation(s)
| | - Jacobus C. Buurstede
- Department of Medicine Division of Endocrinology Leiden University Medical Center Leiden The Netherlands
| | - Oihane Abiega
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Carlos P. Fitzsimons
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Paul J. Lucassen
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| | - Bart J. L. Eggen
- Department of Biomedical Sciences of Cells & Systems Section Molecular Neurobiology University of Groningen University Medical Center Groningen Groningen The Netherlands
| | - Sylvie L. Lesuis
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
- Program in Neurosciences and Mental Health Hospital for Sick Children Toronto ON Canada
| | - Onno C. Meijer
- Department of Medicine Division of Endocrinology Leiden University Medical Center Leiden The Netherlands
| | - Harm J. Krugers
- Brain Plasticity Group SILS‐CNS University of Amsterdam Amsterdam The Netherlands
| |
Collapse
|
20
|
Androgen Affects the Inhibitory Avoidance Memory by Primarily Acting on Androgen Receptor in the Brain in Adolescent Male Rats. Brain Sci 2021; 11:brainsci11020239. [PMID: 33672867 PMCID: PMC7918178 DOI: 10.3390/brainsci11020239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 11/17/2022] Open
Abstract
Adolescence is the critical postnatal stage for the action of androgen in multiple brain regions. Androgens can regulate the learning/memory functions in the brain. It is known that the inhibitory avoidance test can evaluate emotional memory and is believed to be dependent largely on the amygdala and hippocampus. However, the effects of androgen on inhibitory avoidance memory have never been reported in adolescent male rats. In the present study, the effects of androgen on inhibitory avoidance memory and on androgen receptor (AR)-immunoreactivity in the amygdala and hippocampus were studied using behavioral analysis, Western blotting and immunohistochemistry in sham-operated, orchiectomized, orchiectomized + testosterone or orchiectomized + dihydrotestosterone-administered male adolescent rats. Orchiectomized rats showed significantly reduced time spent in the illuminated box after 30 min (test 1) or 24 h (test 2) of electrical foot-shock (training) and reduced AR-immunoreactivity in amygdala/hippocampal cornu Ammonis (CA1) in comparison to those in sham-operated rats. Treatment of orchiectomized rats with either non-aromatizable dihydrotestosterone or aromatizable testosterone were successfully reinstated these effects. Application of flutamide (AR-antagonist) in intact adolescent rats exhibited identical changes to those in orchiectomized rats. These suggest that androgens enhance the inhibitory avoidance memory plausibly by binding with AR in the amygdala and hippocampus.
Collapse
|
21
|
Norepinephrine and glucocorticoid effects on the brain mechanisms underlying memory accuracy and generalization. Mol Cell Neurosci 2020; 108:103537. [DOI: 10.1016/j.mcn.2020.103537] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
|
22
|
Roozendaal B, Mirone G. Opposite effects of noradrenergic and glucocorticoid activation on accuracy of an episodic-like memory. Psychoneuroendocrinology 2020; 114:104588. [PMID: 32085987 DOI: 10.1016/j.psyneuen.2020.104588] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/05/2019] [Accepted: 01/20/2020] [Indexed: 10/25/2022]
Abstract
Stressful and emotionally arousing experiences activate hormonal systems that create strong memories. It remains unclear, however, how this strengthening affects the quality of such memories. In the present study, we examined whether the noradrenergic and glucocorticoid hormonal systems affect accuracy of episodic-like memory. We trained male Sprague-Dawley rats on an episodic-like association task, termed inhibitory avoidance discrimination task, in which they explored two different contexts, but shock was given only in the latter context. Forty-eight hours later, retention latencies were tested in the two training contexts as well as in a novel context. The noradrenergic stimulant yohimbine, administered systemically immediately after the training session, enhanced both accuracy and strength of the memory, as shown by long latencies specific to the shock context. By contrast, the glucocorticoid corticosterone induced a generalized strengthening of memory and enhanced latencies in both the shock and non-shock training contexts. Retention latencies in the novel context were not significantly affected. These findings indicate that the noradrenergic and glucocorticoid systems, while both strengthening memory of the shock experience per se, produce opposite effects on accuracy of the shock-context association.
Collapse
Affiliation(s)
- Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud university medical center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, the Netherlands.
| | - Gabriele Mirone
- Department of Cognitive Neuroscience, Radboud university medical center, 6500 HB Nijmegen, the Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, the Netherlands
| |
Collapse
|
23
|
Colucci P, Mancini GF, Santori A, Zwergel C, Mai A, Trezza V, Roozendaal B, Campolongo P. Amphetamine and the Smart Drug 3,4-Methylenedioxypyrovalerone (MDPV) Induce Generalization of Fear Memory in Rats. Front Mol Neurosci 2019; 12:292. [PMID: 31849606 PMCID: PMC6895769 DOI: 10.3389/fnmol.2019.00292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/14/2019] [Indexed: 11/13/2022] Open
Abstract
Human studies have consistently shown that drugs of abuse affect memory function. The psychostimulants amphetamine and the "bath salt" 3,4-methylenedioxypyrovalerone (MDPV) increase brain monoamine levels through a similar, yet not identical, mechanism of action. Findings indicate that amphetamine enhances the consolidation of memory for emotional experiences, but still MDPV effects on memory function are underinvestigated. Here, we tested the effects induced by these two drugs on generalization of fear memory and their relative neurobiological underpinnings. To this aim, we used a modified version of the classical inhibitory avoidance task, termed inhibitory avoidance discrimination task. According to such procedure, adult male Sprague-Dawley rats were first exposed to one inhibitory avoidance apparatus and, with a 1-min delay, to a second apparatus where they received an inescapable footshock. Forty-eight hours later, retention latencies were tested, in a randomized order, in the two training apparatuses as well as in a novel contextually modified apparatus to assess both strength and generalization of memory. Our results indicated that both amphetamine and MDPV induced generalization of fear memory, whereas only amphetamine enhanced memory strength. Co-administration of the β-adrenoceptor antagonist propranolol prevented the effects of both amphetamine and MDPV on the strength and generalization of memory. The dopaminergic receptor blocker cis-flupenthixol selectively reversed the amphetamine effect on memory generalization. These findings indicate that amphetamine and MDPV induce generalization of fear memory through different modulations of noradrenergic and dopaminergic neurotransmission.
Collapse
Affiliation(s)
- Paola Colucci
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Neurobiology of Behavior Laboratory, Santa Lucia Foundation, Rome, Italy
| | - Giulia Federica Mancini
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Neurobiology of Behavior Laboratory, Santa Lucia Foundation, Rome, Italy
| | - Alessia Santori
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Neurobiology of Behavior Laboratory, Santa Lucia Foundation, Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy.,Department of Medicine of Precision, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Antonello Mai
- Department of Drug Chemistry & Technologies, Sapienza University of Rome, Rome, Italy
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, University Roma Tre, Rome, Italy
| | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands.,Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Neurobiology of Behavior Laboratory, Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
24
|
Molina SJ, Buján GE, Rodriguez Gonzalez M, Capani F, Gómez-Casati ME, Guelman LR. Exposure of Developing Male Rats to One or Multiple Noise Sessions and Different Housing Conditions: Hippocampal Thioredoxin Changes and Behavioral Alterations. Front Behav Neurosci 2019; 13:182. [PMID: 31456671 PMCID: PMC6700388 DOI: 10.3389/fnbeh.2019.00182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/23/2019] [Indexed: 01/21/2023] Open
Abstract
Exposure of developing rats to noise has shown to induce hippocampal-related behavioral alterations that were prevented after a week of housing in an enriched environment. However, neither the effect of repeated exposures nor its impact on key endogenous antioxidants had been studied yet. Thus, the aim of the present work was to reveal novel data about hippocampal oxidative state through the measurement of possible age-related differences in the levels of hippocampal thioredoxins in rats exposed to noise at different developmental ages and subjected to different schemes and housing conditions. In addition, the possibility that oxidative changes could underlie hippocampal-related behavioral changes was also analyzed. Developing male Wistar rats were exposed to noise for 2 h, either once or for 5 days. Upon weaning, some animals were transferred to an enriched cage for 1 week, whereas others were kept in standard cages. One week later, auditory and behavioral assessments, as well as measurement of hippocampal thioredoxin, were performed. Whereas no changes in the auditory function were observed, significant behavioral differences were found, that varied according to the age, scheme of exposure and housing condition. In addition, a significant increase in Trx-1 levels was found in all noise-exposed groups housed in standard cages. Housing animals in an enriched environment for 1 week was effective in preventing most of these changes. These findings suggest that animals become less susceptible to undergo behavioral alterations after repeated exposure to an environmental challenge, probably due to the ability of adaptation to an unfavorable condition. Moreover, it could be hypothesized that damage to younger individuals could be more easily prevented by a housing manipulation.
Collapse
Affiliation(s)
- Sonia Jazmín Molina
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo Ezequiel Buján
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Medicina, Cátedra de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Francisco Capani
- Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Cardiológicas (ININCA, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago de Chile, Chile
| | | | - Laura Ruth Guelman
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO, UBA-CONICET), Facultad de Medicina, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Facultad de Medicina, Cátedra de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
25
|
Viho EMG, Buurstede JC, Mahfouz A, Koorneef LL, van Weert LTCM, Houtman R, Hunt HJ, Kroon J, Meijer OC. Corticosteroid Action in the Brain: The Potential of Selective Receptor Modulation. Neuroendocrinology 2019; 109:266-276. [PMID: 30884490 PMCID: PMC6878852 DOI: 10.1159/000499659] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/17/2019] [Indexed: 12/15/2022]
Abstract
Glucocorticoid hormones have important effects on brain function in the context of acute and chronic stress. Many of these are mediated by the glucocorticoid receptor (GR). GR has transcriptional activity which is highly context-specific and differs between tissues and even between cell types. The outcome of GR-mediated transcription depends on the interactome of associated coregulators. Selective GR modulators (SGRMs) are a class of GR ligands that can be used to activate only a subset of GR-coregulator interactions, thereby giving the possibility to induce a unique combination of agonistic and antagonistic GR properties. We describe SGRM action in animal models of brain function and pathology, and argue for their utility as molecular filters, to characterize context-specific GR interactome and transcriptional activity that are responsible for particular glucocorticoid-driven effects in cognitive processes such as memory consolidation. The ultimate objective of this approach is to identify molecular processes that are responsible for adaptive and maladaptive effects of glucocorticoids in the brain.
Collapse
Affiliation(s)
- Eva M G Viho
- Division of Endocrinology, Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacobus C Buurstede
- Division of Endocrinology, Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ahmed Mahfouz
- Delft Bioinformatics Laboratory, Delft University of Technology, Delft, The Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa L Koorneef
- Division of Endocrinology, Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa T C M van Weert
- Division of Endocrinology, Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Hazel J Hunt
- Corcept Therapeutics, Menlo Park, California, USA
| | - Jan Kroon
- Division of Endocrinology, Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Onno C Meijer
- Division of Endocrinology, Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands,
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands,
| |
Collapse
|
26
|
Hippocampal Dysfunction Provoked by Mercury Chloride Exposure: Evaluation of Cognitive Impairment, Oxidative Stress, Tissue Injury and Nature of Cell Death. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7878050. [PMID: 29849915 PMCID: PMC5914100 DOI: 10.1155/2018/7878050] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/31/2018] [Accepted: 02/21/2018] [Indexed: 01/03/2023]
Abstract
Mercury (Hg) is a highly toxic metal, which can be found in its inorganic form in the environment. This form presents lower liposolubility and lower absorption in the body. In order to elucidate the possible toxicity of inorganic Hg in the hippocampus, we investigated the potential of low doses of mercury chloride (HgCl2) to promote hippocampal dysfunction by employing a chronic exposure model. For this, 56 rats were exposed to HgCl2 (0.375 mg/kg/day) via the oral route for 45 days. After the exposure period, the animals were submitted to the cognitive test of fear memory. The hippocampus was collected for the measurement of total Hg levels, analysis of oxidative stress, and evaluation of cytotoxicity, apoptosis, and tissue injury. It was observed that chronic exposure to inorganic Hg promotes an increase in mercury levels in this region and damage to short- and long-term memory. Furthermore, we found that this exposure model provoked oxidative stress, which led to cytotoxicity and cell death by apoptosis, affecting astrocytes and neurons in the hippocampus. Our study demonstrated that inorganic Hg, even with its low liposolubility, is able to produce deleterious effects in the central nervous system, resulting in cognitive impairment and hippocampal damage when administered for a long time at low doses in rats.
Collapse
|
27
|
Wong-Kee-You AMB, Adler SA. Anticipatory eye movements and long-term memory in early infancy. Dev Psychobiol 2017; 58:841-851. [PMID: 27753458 DOI: 10.1002/dev.21472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/16/2016] [Indexed: 11/09/2022]
Abstract
Advances in our understanding of long-term memory in early infancy have been made possible by studies that have used the Rovee-Collier's mobile conjugate reinforcement paradigm and its variants. One function that has been attributed to long-term memory is the formation of expectations (Rovee-Collier & Hayne, 1987); consequently, a long-term memory representation should be established during expectation formation. To examine this prediction and potentially open the door on a new paradigm for exploring infants' long-term memory, using the Visual Expectation Paradigm (Haith, Hazan, & Goodman, 1988), 3-month-old infants were trained to form an expectation for predictable color and spatial information of picture events and emit anticipatory eye movements to those events. One day later, infants' anticipatory eye movements decreased in number relative to the end of training when the predictable colors were changed but not when the spatial location of the predictable color events was changed. These findings confirm that information encoded during expectation formation are stored in long-term memory, as hypothesized by Rovee-Collier and colleagues. Further, this research suggests that eye movements are potentially viable measures of long-term memory in infancy, providing confirmatory evidence for early mnemonic processes.
Collapse
Affiliation(s)
- Audrey M B Wong-Kee-You
- Department of Psychology and Center for Vision Research, York University, Toronto, Ontario, Canada
| | - Scott A Adler
- Department of Psychology and Center for Vision Research, York University, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Noradrenergic activation of the basolateral amygdala maintains hippocampus-dependent accuracy of remote memory. Proc Natl Acad Sci U S A 2017; 114:9176-9181. [PMID: 28790188 DOI: 10.1073/pnas.1710819114] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Emotional enhancement of memory by noradrenergic mechanisms is well-described, but the long-term consequences of such enhancement are poorly understood. Over time, memory traces are thought to undergo a neural reorganization, that is, a systems consolidation, during which they are, at least partly, transferred from the hippocampus to neocortical networks. This transfer is accompanied by a decrease in episodic detailedness. Here we investigated whether norepinephrine (NE) administration into the basolateral amygdala after training on an inhibitory avoidance discrimination task, comprising two distinct training contexts, alters systems consolidation dynamics to maintain episodic-like accuracy and hippocampus dependency of remote memory. At a 2-d retention test, both saline- and NE-treated rats accurately discriminated the training context in which they had received footshock. Hippocampal inactivation with muscimol before retention testing disrupted discrimination of the shock context in both treatment groups. At 28 d, saline-treated rats showed hippocampus-independent retrieval and lack of discrimination. In contrast, NE-treated rats continued to display accurate memory of the shock-context association. Hippocampal inactivation at this remote retention test blocked episodic-like accuracy and induced a general memory impairment. These findings suggest that the NE treatment altered systems consolidation dynamics by maintaining hippocampal involvement in the memory. This shift in systems consolidation was paralleled by time-regulated DNA methylation and transcriptional changes of memory-related genes, namely Reln and Pkmζ, in the hippocampus and neocortex. The findings provide evidence suggesting that consolidation of emotional memories by noradrenergic mechanisms alters systems consolidation dynamics and, as a consequence, influences the maintenance of long-term episodic-like accuracy of memory.
Collapse
|
29
|
Giustino TF, Fitzgerald PJ, Maren S. Revisiting propranolol and PTSD: Memory erasure or extinction enhancement? Neurobiol Learn Mem 2016; 130:26-33. [PMID: 26808441 PMCID: PMC4818733 DOI: 10.1016/j.nlm.2016.01.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 12/15/2022]
Abstract
Posttraumatic stress disorder (PTSD) has been described as the only neuropsychiatric disorder with a known cause, yet effective behavioral and pharmacotherapies remain elusive for many afflicted individuals. PTSD is characterized by heightened noradrenergic signaling, as well as a resistance to extinction learning. Research aimed at promoting more effective treatment of PTSD has focused on memory erasure (disrupting reconsolidation) and/or enhancing extinction retention through pharmacological manipulations. Propranolol, a β-adrenoceptor antagonist, has received considerable attention for its therapeutic potential in PTSD, although its impact on patients is not always effective. In this review, we briefly examine the consequences of β-noradrenergic manipulations on both reconsolidation and extinction learning in rodents and in humans. We suggest that propranolol is effective as a fear-reducing agent when paired with behavioral therapy soon after trauma when psychological stress is high, possibly preventing or dampening the later development of PTSD. In individuals who have already suffered from PTSD for a significant period of time, propranolol may be less effective at disrupting reconsolidation of strong fear memories. Also, when PTSD has already developed, chronic treatment with propranolol may be more effective than acute intervention, given that individuals with PTSD tend to experience long-term, elevated noradrenergic hyperarousal.
Collapse
Affiliation(s)
- Thomas F Giustino
- Department of Psychology, Texas A&M University, College Station, TX 77843-3474, United States; Institute for Neuroscience, Texas A&M University, College Station, TX 77843-3474, United States
| | - Paul J Fitzgerald
- Department of Psychology, Texas A&M University, College Station, TX 77843-3474, United States
| | - Stephen Maren
- Department of Psychology, Texas A&M University, College Station, TX 77843-3474, United States; Institute for Neuroscience, Texas A&M University, College Station, TX 77843-3474, United States
| |
Collapse
|
30
|
Kruk-Slomka M, Biala G. CB1 receptors in the formation of the different phases of memory-related processes in the inhibitory avoidance test in mice. Behav Brain Res 2016; 301:84-95. [DOI: 10.1016/j.bbr.2015.12.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
|
31
|
Neurocognitive Aging and the Hippocampus across Species. Trends Neurosci 2015; 38:800-812. [PMID: 26607684 DOI: 10.1016/j.tins.2015.10.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 09/27/2015] [Accepted: 10/18/2015] [Indexed: 11/23/2022]
Abstract
There is extensive evidence that aging is associated with impairments in episodic memory. Many of these changes have been ascribed to neurobiological alterations to the hippocampal network and its input pathways. A cross-species consensus is beginning to emerge suggesting that subtle synaptic and functional changes within this network may underlie the majority of age-related memory impairments. In this review we survey convergent data from animal and human studies that have contributed significantly to our understanding of the brain-behavior relationships in this network, particularly in the aging brain. We utilize a cognitive as well as a neurobiological perspective and synthesize data across approaches and species to reach a more detailed understanding of age-related alterations in hippocampal memory function.
Collapse
|