1
|
Khatoon S, Kalam N. Mechanistic insight of curcumin: a potential pharmacological candidate for epilepsy. Front Pharmacol 2025; 15:1531288. [PMID: 39845785 PMCID: PMC11752882 DOI: 10.3389/fphar.2024.1531288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/16/2024] [Indexed: 01/24/2025] Open
Abstract
Recurrent spontaneous seizures with an extended epileptic discharge are the hallmarks of epilepsy. At present, there are several available anti-epileptic drugs (AEDs) in the market. Still no adequate treatment for epilepsy treatment is available. The main disadvantages of AEDs are their associated adverse effects. It is a challenge to develop new therapies that can reduce seizures by modulating the underlying mechanisms with no adverse effects. In the last decade, the neuromodulatory potential of phytoconstituents has sparked their usage in the treatment of central nervous system disorders. Curcumin is an active polyphenolic component that interacts at cellular and molecular levels. Curcumin's neuroprotective properties have been discovered in recent preclinical and clinical studies due to its immunomodulatory effects. Curcumin has the propensity to modulate signaling pathways involved in cell survival and manage oxidative stress, apoptosis, and inflammatory mechanisms. Further, curcumin can persuade epigenetic alterations, including histone modifications (acetylation/deacetylation), which are the changes responsible for the altered expression of genes facilitating the process of epileptogenesis. The bioavailability of curcumin in the brain is a concern that needs to be tackled. Therefore, nanonization has emerged as a novel drug delivery system to enhance the pharmacokinetics of curcumin. In the present review, we reviewed curcumin's modulatory effects on potential biomarkers involved in epileptogenesis including dendritic cells, T cell subsets, cytokines, chemokines, apoptosis mediators, antioxidant mechanisms, and cognition impairment. Also, we have discussed the nanocarrier systems for encapsulating curcumin, offering a promising approach to enhance bioavailability of curcumin.
Collapse
Affiliation(s)
- Saima Khatoon
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Nida Kalam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, Malaysia
| |
Collapse
|
2
|
Liu T, Li J, Sun L, Zhu C, Wei J. The role of ACE2 in RAS axis on microglia activation in Parkinson's disease. Neuroscience 2024; 553:128-144. [PMID: 38986737 DOI: 10.1016/j.neuroscience.2024.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND The classic renin-angiotensin system (RAS) induces organ damage, while the ACE2/Ang-(1-7)/MasR axis opposes it. However, the role of ACE2 in the brain is unclear. We studied ACE2's role in the brain. METHOD We used male C57BL/6J (WT) mice, ACE2 knockout (KO) mice, and MPTP-induced mice. Behavioral tests confirmed successful modeling. We assessed the impact of ACE2 KO on the RAS axis and PD index, including ACE, ACE2, AT1, AT2, MasR, TH, α-syn, and Iba1. We investigated ACE2 and MasR's involvement in microglial activation via western blot and immunofluorescence. GSE10867 and GSE26532 datasets were used to analyze the effects of AT1 antagonists and in vitro PD models on microglia. RESULT Behavioral tests revealed that MPTP mice displayed motor deficits, depression, anxiety, and increased inflammatory markers in the SN and CPU, with reduced antioxidant capacity. ACE2 KO worsened these symptoms and exacerbated inflammation and oxidative stress. LPS-induced ACE2/MasR activation in BV2 cells demonstrated anti-inflammatory and neuroprotective effects by modulating microglial polarization. Antagonists inhibited microglial activation via inflammation and ROS processes. CONCLUSION The RAS axis regulates inflammation and oxidative stress to maintain CNS function, suggesting potential targets for neurologic disease treatment. Understanding microglial RAS activation can offer new therapeutic strategies.
Collapse
Affiliation(s)
- Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; Institute of Neurourology and Urodynamics, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Jingwen Li
- Institute of Neurourology and Urodynamics, Huaihe Hospital of Henan University, Kaifeng 475000, China
| | - Lin Sun
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475000, China.
| | - Chaoyang Zhu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; Institute of Neurourology and Urodynamics, Huaihe Hospital of Henan University, Kaifeng 475000, China.
| |
Collapse
|
3
|
Altyar AE, Afzal M, Ghaboura N, Alharbi KS, Alenezi SK, Sayyed N, Kazmi I. Barbaloin Protects Pentylenetetrazol-Induced Cognitive Deficits in Rodents via Modulation of Neurotransmitters and Inhibition of Oxidative-Free-Radicals-Led Inflammation. Pharmaceuticals (Basel) 2024; 17:699. [PMID: 38931365 PMCID: PMC11206990 DOI: 10.3390/ph17060699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Epilepsy is defined by an excessive level of activity in the neurons and coordinated bursts of electrical activity, resulting in the occurrence of seizure episodes. The precise cause of epileptogenesis remains uncertain; nevertheless, the etiology of epilepsy may involve neuroinflammation, oxidative stress, and malfunction of the neurotransmitter system. OBJECTIVE The goal of this investigation was to assess barbaloin's protective properties with respect to pentylenetetrazol (PTZ)-)-induced cognitive deficits in rats via antioxidative, anti-inflammatory, and neurotransmitter-modulating effects. METHODS Wistar rats were subjected to PTZ [40 mg/kg (i.p.)], which induced cognitive decline. Behavior assessment using a kindling score, open-field test (OFT), novel object recognition test (NORT), and assays for superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT), malondialdehyde (MDA), acetylcholinesterase (AChE), caspase-3, nitric oxide (NO), interleukins-1β (IL-1β), tumor necrosis factor-α (TNF-α), IL-6, nuclear factor kappa-B (NF-κB), Bcl-2 and Bax, and neurotransmitter levels [GABA, DA, NE, and serotonin (5-HT)] were performed. RESULTS The treatment of rats with barbaloin resulted in behavior improvement and significant changes in the levels of GSH, SOD, CAT, MDA, AChE, NO, IL-6, IL-1β, TNF-α, NF-κB, caspase-3, Bcl-2, and Bax compared to the PTZ control group. Barbaloin treatment resulted in notable changes in neurotransmitter levels (GABA, NE, 5-HT, DA) compared to the PTZ group. CONCLUSIONS The ongoing study has gathered evidence indicating that the injection of barbaloin has resulted in significant improvements in cognitive performance in rats. This is achieved by inhibiting oxidative stress, enhancing the activity of natural antioxidant enzymes, reducing cytokine levels, and increasing the levels of neurotransmitters in the brain. These results were detected in comparison to a PTZ control and can be attributed to the potent anti-inflammatory and antioxidant capabilities of barbaloin, which could be linked to its neuroprotective properties. Barbaloin may potentially increase cognitive decline and boost neuronal survival by altering the expression of Bax, caspase-3, Bcl-2.
Collapse
Affiliation(s)
- Ahmad Essam Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeedah 21442, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeedah 21442, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeedah 21442, Saudi Arabia;
| | - Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim 51452, Saudi Arabia; (K.S.A.); (S.K.A.)
| | - Sattam Khulaif Alenezi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah, Al Qassim 51452, Saudi Arabia; (K.S.A.); (S.K.A.)
| | - Nadeem Sayyed
- Glocal School of Pharmacy, Glocal University, Mirzapur-Pole, Saharanpur 247121, India;
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, P.O. Box. 80200, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
4
|
Liu T, Wu H, Sun L, Wei J. Role of Inflammation in the Development of COVID-19 to Parkinson's Disease. J Inflamm Res 2024; 17:3259-3282. [PMID: 38800597 PMCID: PMC11127656 DOI: 10.2147/jir.s460161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Background The coronavirus disease 2019 (COVID-19) can lead to neurological symptoms such as headaches, confusion, seizures, hearing loss, and loss of smell. The link between COVID-19 and Parkinson's disease (PD) is being investigated, but more research is needed for a definitive connection. Methods Datasets GSE22491 and GSE164805 were selected to screen differentially expressed gene (DEG), and immune infiltration and gene set enrichment analysis (GSEA) of the DEG were performed. WGCNA analyzed the DEG and selected the intersection genes. Potential biological functions and signaling pathways were determined, and diagnostic genes were further screened using gene expression and receiver operating characteristic (ROC) curves. Screening and molecular docking of ibuprofen as a therapeutic target. The effectiveness of ibuprofen was verified by constructing a PD model in vitro, and constructing "COVID19-PD" signaling pathway, and exploring the role of angiotensin-converting enzyme 2 (ACE2) in PD. Results A total of 13 DEG were screened from the GSE36980 and GSE5281 datasets. Kyoto encyclopedia of genes and genomes (KEGG) analysis showed that the DEG were mainly associated with the hypoxia-inducible factor (HIF-1), epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor resistance, etc. After analysis, it is found that ibuprofen alleviates PD symptoms by inhibiting the expression of nuclear factor kappa-B (NF-κB), interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α). Based on signal pathway construction, the importance of ACE2 in COVID-19-induced PD has been identified. ACE2 is found to have widespread distribution in the brain. In the 1-methyl-4-phenyl-1,2,3,6-te-trahydropyridine (MPTP)-induced ACE2-null PD mice model, more severe motor and non-motor symptoms, increased NF-κB p65 and α-synuclein (α-syn) expression with significant aggregation, decreased tyrosine hydroxylase (TH), severe neuronal loss, and neurodegenerative disorders. Conclusion Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection increases the risk of PD through an inflammatory environment and downregulation of ACE2, providing evidence for the molecular mechanism and targeted therapy associated with COVID-19 and PD.
Collapse
Affiliation(s)
- Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Institute of Neurourology and Urodynamics, Huaihe Hospital of Henan University, Kaifeng, 475004, People’s Republic of China
| | - Haojie Wu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Institute of Neurourology and Urodynamics, Huaihe Hospital of Henan University, Kaifeng, 475004, People’s Republic of China
| | - Lin Sun
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, People’s Republic of China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Institute of Neurourology and Urodynamics, Huaihe Hospital of Henan University, Kaifeng, 475004, People’s Republic of China
| |
Collapse
|
5
|
Doğanyiğit Z, Okan A, Akyüz E, Yılmaz S, Ateş Ş, Taheri S, Yılmaz Z, Shaikh MF. Can endoplasmic reticulum stress observed in the PTZ-kindling model seizures be prevented with TUDCA and 4-PBA? Eur J Pharmacol 2023; 960:176072. [PMID: 37852571 DOI: 10.1016/j.ejphar.2023.176072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023]
Abstract
Epilepsy is a chronic neurological disease with recurrent seizures. Increasing evidence suggests that endoplasmic reticulum (ER) stress may play a role in the pathogenesis of epilepsy. We aimed to investigate the effects of Tauroursodeoxycholic acid (TUDCA) and 4-phenyl-butyric acid (4-PBA), which are known to suppress ER stress, on developed seizures in terms of markers of ER stress, oxidative stress, and apoptosis. The pentylenetetrazole (PTZ) kindling model was induced in Wistar albino rats (n = 48) by administering 35 mg/kg PTZ intraperitoneally (I.P.) every other day for 1 month. TUDCA and 4-PBA were administered via I.P. at a dose of 500 mg/kg dose. ER stress, apoptosis, and oxidative stress were determined in the hippocampus tissues of animals in all groups. Immunohistochemistry, qRT-PCR, ELISA, and Western Blot analyzes were performed to determine the efficacy of treatments. Expressions of ATF4, ATF6, p-JNK1/2, Cleaved-Kaspase3, and Caspase12 significantly increased in PTZ-kindled seizures compared to the control group. Increased NOX2 and MDA activity in the seizures were measured. In addition, stereology analyzes showed an increased neuronal loss in the PTZ-kindled group. qRT-PCR examination showed relative mRNA levels of CHOP. Accordingly, TUDCA and 4-PBA treatment suppressed the expressions of ATF4, ATF6, Cleaved-Caspase3, Kaspase12, NOX2, MDA, and CHOP in TUDCA + PTZ and 4-PBA + PTZ groups. ER stress-induced oxidative stress and apoptosis by reducing neuronal loss and degeneration were also preserved in these groups. Our data show molecularly that TUDCA and 4-PBA treatment can suppress the ER stress process in epileptic seizures.
Collapse
Affiliation(s)
- Züleyha Doğanyiğit
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat, 66100, Turkey.
| | - Aslı Okan
- Department of Histology and Embryology, Faculty of Medicine, Yozgat Bozok University, Yozgat, 66100, Turkey
| | - Enes Akyüz
- Department of Biophysics, Faculty of International Medicine, University of Health Sciences, Istanbul, 34468, Turkey
| | - Seher Yılmaz
- Department of Anatomy, Faculty of Medicine, Yozgat Bozok University, Yozgat, 66100, Turkey
| | - Şükrü Ateş
- Department of Anatomy, Faculty of Medicine, Yozgat Bozok University, Yozgat, 66100, Turkey
| | - Serpil Taheri
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38030, Turkey
| | - Zeynep Yılmaz
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, 38030, Turkey
| | - Mohd Farooq Shaikh
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, NSW, Australia
| |
Collapse
|
6
|
Javaid S, Alqahtani F, Ashraf W, Anjum SMM, Rasool MF, Ahmad T, Alasmari F, Alasmari AF, Alqarni SA, Imran I. Tiagabine suppresses pentylenetetrazole-induced seizures in mice and improves behavioral and cognitive parameters by modulating BDNF/TrkB expression and neuroinflammatory markers. Biomed Pharmacother 2023; 160:114406. [PMID: 36791567 DOI: 10.1016/j.biopha.2023.114406] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Tiagabine (Tia), a new-generation antiseizure drug that mimics the GABAergic signaling by inhibiting GABA transporter type-1, is the least studied molecule in chronic epilepsy models with comorbid neurobehavioral and neuroinflammatory parameters. Therefore, the current study investigated the effects of Tia in a real-time manner on electroencephalographic (EEG) activity, behavioral manifestations and mRNA expression in pentylenetetrazole (PTZ)-kindled mice. Male BALB/c mice were treated with tiagabine (0.5, 1 and 2 mg/kg) for 21 days with simultaneous PTZ (40 mg/kg) injection every other day for a total of 11 injections and monitored for seizure progression with synchronized validation through EEG recordings from cortical electrodes. The post-kindling protection from anxiety and memory deficit was verified by a battery of behavioral experiments. Isolated brains were evaluated for oxidative alterations and real-time changes in mRNA expression for BDNF/TrkB, GAT-1 and GAT-3 as well as neuroinflammatory markers. Experimental results revealed that Tia at the dose of 2 mg/kg maximally inhibited the development of full bloom seizure and reduced epileptic spike discharges from the cortex. Furthermore, Tia dose-dependently exerted the anxiolytic effects and protected from PTZ-evoked cognitive impairment. Tia reduced lipid peroxidation and increased superoxide dismutase and glutathione levels in the brain via augmentation of GABAergic modulation. PTZ-induced upregulated BDNF/TrkB signaling and pro-inflammatory cytokines were mitigated by Tia with upregulation of GAT-1 and GAT-3 transporters in whole brains. In conclusion, the observed effects of Tia might have resulted from reduced oxidative stress, BDNF/TrkB modulation and mitigated neuroinflammatory markers expression leading to reduced epileptogenesis and improved epilepsy-related neuropsychiatric effects.
Collapse
Affiliation(s)
- Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan; Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Syed Muhammad Muneeb Anjum
- The Institute of Pharmaceutical Sciences, University of Veterinary & Animal Sciences, Lahore 75270, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Tanveer Ahmad
- Institut pour l'Avancée des Biosciences, Centre de Recherche UGA / INSERM U1209 / CNRS 5309, Université Grenoble Alpes, France
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh Abdullah Alqarni
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan.
| |
Collapse
|
7
|
Tallarico M, Leo A, Russo E, Citraro R, Palma E, De Sarro G. Seizure susceptibility to various convulsant stimuli in the BTBR mouse model of autism spectrum disorders. Front Pharmacol 2023; 14:1155729. [PMID: 37153775 PMCID: PMC10157402 DOI: 10.3389/fphar.2023.1155729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/07/2023] [Indexed: 05/10/2023] Open
Abstract
Background: Autism spectrum disorders (ASDs) are one of the most severe chronic childhood disorders in terms of prevalence, morbidity, and impact on society. Interestingly, several systematic reviews and meta-analyses documented a bidirectional link between epilepsy and ASD, supporting the hypothesis that both disorders may have common neurobiological pathways. According to this hypothesis, an imbalance of the excitatory/inhibitory (E/I) ratio in several brain regions may represent a causal mechanism underpinning the co-occurrence of these neurological diseases. Methods: To investigate this bidirectional link, we first tested the seizure susceptibility to chemoconvulsants acting on GABAergic and glutamatergic systems in the BTBR mice, in which an imbalance between E/I has been previously demonstrated. Subsequently, we performed the PTZ kindling protocol to study the impact of seizures on autistic-like behavior and other neurological deficits in BTBR mice. Results: We found that BTBR mice have an increased susceptibility to seizures induced by chemoconvulsants impairing GABAA neurotransmission in comparison to C57BL/6J control mice, whereas no significant difference in seizure susceptibility was observed after administration of AMPA, NMDA, and Kainate. This data suggests that deficits in GABAergic neurotransmission can increase seizure susceptibility in this strain of mice. Interestingly, BTBR mice showed a longer latency in the development of kindling compared to control mice. Furthermore, PTZ-kindling did not influence autistic-like behavior in BTBR mice, whereas it was able to significantly increase anxiety and worsen cognitive performance in this strain of mice. Interestingly, C57BL/6J displayed reduced sociability after PTZ injections, supporting the hypothesis that a tight connection exists between ASD and epilepsy. Conclusion: BTBR mice can be considered a good model to study epilepsy and ASD contemporarily. However, future studies should shed light on the mechanisms underpinning the co-occurrence of these neurological disorders in the BTBR model.
Collapse
Affiliation(s)
- Martina Tallarico
- Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Antonio Leo
- Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
- *Correspondence: Antonio Leo,
| | - Emilio Russo
- Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Rita Citraro
- Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Ernesto Palma
- Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Giovambattista De Sarro
- Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
- System and Applied Pharmacology@University Magna Grecia, Science of Health Department, School of Medicine and Surgery, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
8
|
Anogeissus leiocarpus (DC.) Guill and Perr ameliorates pentylenetetrazole-induced seizure/cognitive impairment in rats via inhibition of oxidative stress. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Yao Y, Hu Y, Yang J, Zhang C, He Y, Qi H, Zeng Y, Zhang A, Liu X, Zhu X. Inhibition of neuronal nitric oxide synthase protects against hippocampal neuronal injuries by increasing neuropeptide Y expression in temporal lobe epilepsy mice. Free Radic Biol Med 2022; 188:45-61. [PMID: 35714846 DOI: 10.1016/j.freeradbiomed.2022.06.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/23/2022] [Accepted: 06/11/2022] [Indexed: 10/18/2022]
Abstract
Neuronal nitric oxide synthase (nNOS) plays a pivotal role in the pathological process of neuronal injury in the development of epilepsy. Our previous study has demonstrated that nitric oxide (NO) derived from nNOS in the epileptic brain is neurotoxic due to its reaction with the superoxide radical with the formation of peroxynitrite. Neuropeptide Y (NPY) is widely expressed in the mammalian brain, which has been implicated in energy homeostasis and neuroprotection. Recent studies suggest that nNOS may act as a mediator of NPY signaling. Here in this study, we sought to determine whether NPY expression is regulated by nNOS, and if so, whether the regulation of NPY by nNOS is associated with the neuronal injuries in the hippocampus of epileptic brain. Our results showed that pilocarpine-induced temporal lobe epilepsy (TLE) mice exhibited an increased level of nNOS expression and a decreased level of NPY expression along with hippocampal neuronal injuries and cognition deficit. Genetic deletion of nNOS gene, however, significantly upregulated hippocampal NPY expression and reduced TLE-induced hippocampal neuronal injuries and cognition decline. Knockdown of NPY abolished nNOS depletion-induced neuroprotection and cognitive improvement in the TLE mice, suggesting that inhibition of nNOS protects against hippocampal neuronal injuries by increasing neuropeptide Y expression in TLE mice. Targeting nNOS-NPY signaling pathway in the epileptic brain might provide clinical benefit by attenuating neuronal injuries and preventing cognitive deficits in epilepsy patients.
Collapse
Affiliation(s)
- Yuanyuan Yao
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Yang Hu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Jiurong Yang
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Canyu Zhang
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Yuqi He
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Honggang Qi
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Yu Zeng
- National Residents Clinical Skills Training Center, Medical School of Southeast University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School of Southeast University, Nanjing, China
| | - Xiufang Liu
- Department of Pathogenic Biology and Immunology, Medical School of Southeast University, Nanjing, China
| | - Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
10
|
A Novel Pathway Phenotype of Temporal Lobe Epilepsy and Comorbid Psychiatric Disorders: Results of Precision Nomothetic Medicine. Antioxidants (Basel) 2022; 11:antiox11050803. [PMID: 35624666 PMCID: PMC9137678 DOI: 10.3390/antiox11050803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 02/01/2023] Open
Abstract
No precision medicine models of temporal lobe epilepsy (TLE) and associated mental comorbidities have been developed to date. This observational study aimed to develop a precision nomothetic, data-driven comorbid TLE model with endophenotype classes and pathway phenotypes that may have prognostic and therapeutical implications. We recruited forty healthy controls and 108 TLE patients for this research and assessed TLE and psychopathology (PP) features as well as oxidative stress (OSTOX, e.g., malondialdehyde or MDA, lipid hydroperoxides, and advanced oxidation protein products) and antioxidant (paraoxonase 1 or PON1 status, -SH groups, and total radical trapping potential or TRAP) biomarkers. A large part (57.2%) of the variance in a latent vector (LV) extracted from the above TLE and PP features was explained by these OSTOX and antioxidant biomarkers. The PON1 Q192R genetic variant showed indirect effects on this LV, which were completely mediated by PON1 activity and MDA. Factor analysis showed that a common core could be extracted from TLE, PP, OSTOX and antioxidant scores, indicating that these features are manifestations of a common underlying construct, i.e., a novel pathway phenotype of TLE. Based on the latter, we constructed a new phenotype class that is characterized by increased severity of TLE, PP and OSTOX features and lowered antioxidant defenses. A large part of the variance in episode frequency was explained by increased MDA, lowered antioxidant, and nitric oxide metabolite levels. In conclusion, (a) PP symptoms belong to the TLE phenome, and the signal increased severity; and (b) cumulative effects of aldehyde formation and lowered antioxidants determine epileptogenic kindling.
Collapse
|
11
|
Rehman Z, Farooq T, Javaid S, Ashraf W, Fawad Rasool M, Samad N, Tariq M, Muhammad Muneeb Anjum S, Sivandzade F, Alotaibi F, Alqahtani F, Imran I. Combination of levetiracetam with sodium selenite prevents pentylenetetrazole-induced kindling and behavioral comorbidities in rats. Saudi Pharm J 2022; 30:494-507. [PMID: 35693436 PMCID: PMC9177457 DOI: 10.1016/j.jsps.2022.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/05/2022] [Indexed: 02/06/2023] Open
Affiliation(s)
- Zohabia Rehman
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Talha Farooq
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Waseem Ashraf
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Noreen Samad
- Department of Biochemistry, Faculty of Sciences, Bahauddin Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Maryam Tariq
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | | | - Farzane Sivandzade
- Department of Foundation Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Faisal Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Corresponding authors at: Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. (F. Alqahtani). Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University 60800, Multan, Pakistan. (I. Imran)..
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- Corresponding authors at: Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia. (F. Alqahtani). Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University 60800, Multan, Pakistan. (I. Imran)..
| |
Collapse
|
12
|
Fokoua AR, Ajayi AM, Ben-Azu B, Chouna R, Folarin O, Olopade J, Nkeng-Efouet PA, Aderibigbe AO, Umukoro S, Nguelefack TB. The antioxidant and neuroprotective effects of the Psychotria camptopus Verd. Hook. (Rubiaceae) stem bark methanol extract contributes to its antiepileptogenic activity against pentylenetetrazol kindling in male Wistar rats. Metab Brain Dis 2021; 36:2015-2027. [PMID: 34460047 DOI: 10.1007/s11011-021-00825-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
A substantial number of epileptic patients are resistant to the current medication thus necessitating the search for alternative therapies for intractable forms of the disease. Previous studies demonstrated the acute anticonvulsant properties of the methanol extract of the stem bark of Psychotria camptopus (MEPC) in rats. This study investigated the effects of MEPC on pentylenetetrazole-kindled Wistar rats. Kindling was induced by intraperitoneal injection of pentylenetetrazole (37.5 mg/kg) on every alternate day, 1 h after each daily oral pretreatment of rats (8 ≤ n ≤ 10) with MEPC (40, 80 and 120 mg/kg), vehicle or diazepam (3 mg/kg) for 43 days. The kindling development was monitored based on seizure episodes and severity. Rats' brains were collected on day 43 for the determination of oxidative stress parameters. The histomorphological features and neuronal cell viability of the prefrontal cortex (PFC) and hippocampus were also assessed using H&E and Cresyl violet stains. Chronic administration of pentylenetetrazole time-dependently decreased the latency to myoclonic and generalized seizures, and increased seizure scores and the number of kindled rats. MEPC and diazepam significantly increased the latencies to myoclonic jerks and generalized tonic-clonic seizures. These substances also reduced seizure score and the number of rats with PTZ-kindling. MEPC improved glutathione status and decreased lipid peroxidation in the brains of kindled rats. MEPC also exhibited neuroprotection against pentylenetetrazole-induced hippocampal and PFC neuronal damages. These results suggest that P. camptopus has antiepileptogenic activity, which might be related to the augmentation of antioxidant and neuroprotective defense mechanisms, and further confirm its usefulness in the management of epilepsy.
Collapse
Affiliation(s)
- Aliance Romain Fokoua
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Sciences, University of Dschang, Dschang, Cameroon
- Fondation Alango-Reference Hospital of African medicine, Dschang, Cameroon
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Laboratory, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Benneth Ben-Azu
- Neuropharmacology Laboratory, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, Delta State University, Abraka, Nigeria
| | - Rodolphe Chouna
- Fondation Alango-Reference Hospital of African medicine, Dschang, Cameroon
- Laboratory of Applied and Environmental Chemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Oluwabusayo Folarin
- Neuroscience Unit, Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - James Olopade
- Neuroscience Unit, Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - Pepin Alango Nkeng-Efouet
- Fondation Alango-Reference Hospital of African medicine, Dschang, Cameroon
- Laboratory of Applied and Environmental Chemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Adegbuyi Oladele Aderibigbe
- Neuropharmacology Laboratory, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Solomon Umukoro
- Neuropharmacology Laboratory, Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Télesphore Benoît Nguelefack
- Laboratory of Animal Physiology and Phytopharmacology, Faculty of Sciences, University of Dschang, Dschang, Cameroon.
| |
Collapse
|
13
|
Succinate accumulation contributes to oxidative stress and iron accumulation in pentylenetetrazol-induced epileptogenesis and kainic acid-induced seizure. Neurochem Int 2021; 149:105123. [PMID: 34224804 DOI: 10.1016/j.neuint.2021.105123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 11/21/2022]
Abstract
This study explored the role of succinate accumulation in the oxidative stress and iron accumulation in both pentylenetetrazol (PTZ)-induced epileptogenesis and kainic acid (KA)-induced status epilepticus (SE). The levels of succinate, oxidative stress, iron content, iron-related protein expression, and the severity of neuronal injury and seizures were measured in both models. We found that increased concentrations of succinate were associated with increased levels of oxidative stress, iron content, iron regulator protein, and iron importer divalent metal transporter 1, as well as decreased levels of iron exporter ferropotin 1. Aggravated neuronal injury was observed in the hippocampi and cortices of both models. The cell-permeable molecule dimethyl malonate (DM), a competitive inhibitor of succinate dehydrogenase (SDH), significantly attenuated succinate accumulation, reduced the oxidative stress and iron levels, and mitigated the severity of the seizures and neuronal injury. Our results thus indicate that the accumulation of succinate due to the reverse catalysis of SDH may exacerbate oxidative stress and thus induce iron accumulation and neuronal injury in both models. Targeting succinate accumulation may achieve neuroprotective and anti-seizure effects.
Collapse
|
14
|
Okwuofu EO, Ogundepo GE, Akhigbemen AM, Abiola AL, Ozolua RI, Igbe I, Chinazamoku O. Creatine attenuates seizure severity, anxiety and depressive-like behaviors in pentylenetetrazole kindled mice. Metab Brain Dis 2021; 36:571-579. [PMID: 33559804 DOI: 10.1007/s11011-021-00684-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 01/31/2021] [Indexed: 01/24/2023]
Abstract
Epilepsy has been associated with several behavioral changes such as depression and anxiety while some antiepileptic drugs can precipitate psychiatric conditions in patients. This study evaluated the ameliorative effect of creatine on seizure severity and behavioral changes in pentylenetetrazole (PTZ) kindled mice. Mice were kindled by administering sub-convulsive doses of PTZ (35 mg/kg i.p.) at interval of 48 h. The naïve group (n = 7) constituted group 1, while successfully kindled mice were randomly assigned to five groups (n = 7). Group II served as vehicle treated group; groups III-V were treated with creatine 75, 150, and 300 mg/kg/day, p.o; Group V was given 25 mg/kg/day of phenytoin p.o. The treatment was for 15 consecutive days. The intensity of convulsion was scored according to a seven-point scale ranging from stage 0-7. Tail suspension test (TST) and Elevated plus maze (EPM) were utilized to assess depression and anxiety-like behavior respectively. After behavioral evaluation on day 15th, their brain was isolated and assayed for catalase, superoxide dismutase, reduced glutathione, and malondialdehyde. There was a significant (p < 0.05) reduction in the seizure scores, anxiety and depression-like behaviors in mice from the 5th day of treatment. The antioxidant assays revealed significant (p < 0.05) increase in catalase and reduced glutathione, and significant (p < 0.05) reduction in lipid peroxidation in treated mice. This study provides evidence for the seizure reducing property of creatine and its ameliorating potential on anxiety and depressive-like behaviors that follows seizure episodes.
Collapse
Affiliation(s)
- Emmanuel O Okwuofu
- Department of Pharmacology & Toxicology, Prof Dora Akunyili College of Pharmacy, Igbinedion University Okada, Benin City, Edo, Nigeria.
| | - Gbenga E Ogundepo
- Department of Biochemistry, Faculty of Science, Obafemi Awolowo University, Ile Ife, Osun, Nigeria
| | - Abigail M Akhigbemen
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Benin, 300001, Benin City, Nigeria
| | - Akinpelu L Abiola
- Department of Pharmacology & Toxicology, Prof Dora Akunyili College of Pharmacy, Igbinedion University Okada, Benin City, Edo, Nigeria
| | - Raymond I Ozolua
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Benin, 300001, Benin City, Nigeria
| | - Ighodaro Igbe
- Department of Pharmacology & Toxicology, Prof Dora Akunyili College of Pharmacy, Igbinedion University Okada, Benin City, Edo, Nigeria
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Benin, 300001, Benin City, Nigeria
| | - Ononiwu Chinazamoku
- Department of Pharmacology & Toxicology, Prof Dora Akunyili College of Pharmacy, Igbinedion University Okada, Benin City, Edo, Nigeria
| |
Collapse
|
15
|
Yan J, Huang J, Liu A, Wu J, Fan H, Shen M, Lai X, Ma H, Sun W, Yang J, Xu Y. Atorvastatin improves motor function, anxiety and depression by NOX2-mediated autophagy and oxidative stress in MPTP-lesioned mice. Aging (Albany NY) 2020; 13:831-845. [PMID: 33289703 PMCID: PMC7835000 DOI: 10.18632/aging.202189] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022]
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease caused by the loss of dopaminergic neurons. It is characterized by static tremors, stiffness, slow movements, and gait disturbances, but it is also accompanied by anxiety and depression. Our previous study showed that atorvastatin could reduce the risk of PD, but the mechanism is still unclear. In this paper, Our findings showed that atorvastatin increased muscle capacity and the coordination of movement and improved anxiety and depression. Atorvastatin could decrease the expression of α-synuclein Ser129 and NADPH oxidase 2 (NOX2), increase the protein expression of LC3II/I, and promote autophagy flow. To further confirm that atorvastatin protection was achieved by inhibiting NOX2, we injected at midbrain with NOX2 shRNA (M) lentivirus and found that silent NOX2 produced the same effect as atorvastatin. Further research found that atorvastatin could reduce MPTP-induced oxidative stress damage, while inhibiting NOX2 decreased the antioxidative stress effect of atorvastatin. Our results suggest that atorvastatin can improve muscle capacity, anxiety and depression by inhibiting NOX2, which may be related to NOX2-mediated oxidative stress and autophagy. Atorvastatin may be identified as a drug that can effectively improve behavioral disorders. NOX2 may be a potential gene target for new drug development in PD.
Collapse
Affiliation(s)
- Junqiang Yan
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, P.R. China.,Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, P.R. China
| | - Jiarui Huang
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, P.R. China
| | - Anran Liu
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, P.R. China
| | - Jiannan Wu
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, P.R. China
| | - Hua Fan
- Department of Pharmacy, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, P.R. China
| | - Mengmeng Shen
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, P.R. China
| | - Xiaoyi Lai
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, P.R. China
| | - Hongxia Ma
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, P.R. China
| | - Wenjie Sun
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, P.R. China
| | - Jianxue Yang
- School of Nursing of Henan University of Science and Technology, Luoyang 471003, P.R. China
| | - Yunqi Xu
- Department of Neurology, Nanfang Hospital of Southern Medical University, Guangzhou 510515, P.R. China
| |
Collapse
|
16
|
Zhang M, Cui Y, Zhu W, Yu J, Cheng Y, Wu X, Zhang J, Xin W, Yu Y, Sun H. Attenuation of the mutual elevation of iron accumulation and oxidative stress may contribute to the neuroprotective and anti-seizure effects of xenon in neonatal hypoxia-induced seizures. Free Radic Biol Med 2020; 161:212-223. [PMID: 33075502 DOI: 10.1016/j.freeradbiomed.2020.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022]
Abstract
Previous studies have suggested that xenon inhalation has neuroprotective and antiepileptic effects; however, the underlying mechanisms involved remain unclear. This study aimed to investigate the possible xenon inhalation mechanisms involved in the neuroprotection and antiepileptic effects. A neonatal hypoxic C57BL/6J mouse model was used for the experiments. Immediately after hypoxia treatment, the treatment group inhaled a xenon mixture (70% xenon/21% oxygen/9% nitrogen) for 60 min, while the hypoxia group inhaled a non-xenon mixture (21% oxygen/79% nitrogen) for 60 min. Seizure activity was recorded at designated time points using electroencephalography. Oxidative stress levels, iron levels, neuronal injury, and learning and memory functions were also studied. The results showed that hypoxia increased the levels of iron, oxidative stress, mitophagy, and neurodegeneration, which were accompanied by seizures and learning and memory disorders. In addition, our results confirmed that xenon treatment significantly attenuated the hypoxia-induced seizures and cognitive defects in neonatal C57 mice. Moreover, the increased levels of iron, oxidative stress, mitophagy, and neuronal injury were reduced in xenon-treated mice. This study confirms the significant protective effects of a xenon mixture on hypoxia-induced damage in neonatal mice. Furthermore, our results suggest that reducing oxidative stress levels and iron accumulation may be the underlying mechanisms of xenon activity. Studying the protective mechanisms of xenon will advance its applications in potential therapeutic strategies.
Collapse
Affiliation(s)
- Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wei Zhu
- Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan, 250062, China
| | - Jie Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiangdong Wu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Jinjin Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wenyu Xin
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yan Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
17
|
Revisiting the role of neurotransmitters in epilepsy: An updated review. Life Sci 2020; 265:118826. [PMID: 33259863 DOI: 10.1016/j.lfs.2020.118826] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Epilepsy is a neurologicaldisorder characterized by persistent predisposition to recurrent seizurescaused by abnormal neuronal activity in the brain. Epileptic seizures maydevelop due to a relative imbalance of excitatory and inhibitory neurotransmitters. Expressional alterations of receptors and ion channelsactivated by neurotransmitters can lead to epilepsy pathogenesis. AIMS In this updated comprehensive review, we discuss the emerging implication of mutations in neurotransmitter-mediated receptors and ion channels. We aim to provide critical findings of the current literature about the role of neurotransmitters in epilepsy. MATERIALS AND METHODS A comprehensive literature review was conducted to identify and critically evaluate studies analyzing the possible relationship between epilepsy and neurotransmitters. The PubMed database was searched for related research articles. KEY FINDINGS Glutamate and gamma-aminobutyric acid (GABA) are the main neurotransmitters playing a critical role in the pathophysiology of this balance, and irreversible neuronal damage may occur as a result of abnormal changes in these molecules. Acetylcholine (ACh), the main stimulant of the autonomic nervous system, mediates signal transmission through cholinergic and nicotinic receptors. Accumulating evidence indicates that dysfunction of nicotinic ACh receptors, which are widely expressed in hippocampal and cortical neurons, may be significantly implicated in the pathogenesis of epilepsy. The dopamine-norepinephrine-epinephrine cycle activates hormonal and neuronal pathways; serotonin, norepinephrine, histamine, and melatonin can act as both hormones and neurotransmitters. Recent reports have demonstrated that nitric oxide mediates cognitive and memory-related functions via stimulating neuronal transmission. SIGNIFICANCE The elucidation of the role of the main mediators and receptors in epilepsy is crucial for developing new diagnostic and therapeutic approaches.
Collapse
|
18
|
Zeraati M, Najdi N, Mosaferi B, Salari AA. Environmental enrichment alters neurobehavioral development following maternal immune activation in mice offspring with epilepsy. Behav Brain Res 2020; 399:112998. [PMID: 33197458 DOI: 10.1016/j.bbr.2020.112998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
Epilepsy is a chronic brain disease affecting millions of people worldwide. Anxiety-related disorders and cognitive deficits are common in patients with epilepsy. Previous studies have shown that maternal infection/immune activation renders children more vulnerable to neurological disorders later in life. Environmental enrichment has been suggested to improve seizures, anxiety, and cognitive impairment in animal models. The present study aimed to explore the effects of environmental enrichment on seizure scores, anxiety-like behavior, and cognitive deficits following maternal immune activation in offspring with epilepsy. Pregnant mice were treated with lipopolysaccharides-(LPS) or vehicle, and offspring were housed in normal or enriched environments during early adolescence to adulthood. To induce epilepsy, adult male and female offspring were treated with Pentylenetetrazol-(PTZ), and then anxiety-like behavior and cognitive functions were assessed. Tumor-necrosis-factor (TNF)-α and interleukin (IL) 10 were measured in the hippocampus of offspring. Maternal immune activation sex-dependently increased seizure scores in PTZ-treated offspring. Significant increases in anxiety-like behavior, cognitive impairment, and hippocampal TNF-α and IL-10 were also found following maternal immune activation in PTZ-treated offspring. However, there was no sex difference in these behavioral abnormalities in offspring. Environmental enrichment reversed the effects of maternal immune activation on behavioral and inflammatory parameters in PTZ-treated offspring. Overall, the present findings highlight the adverse effects of prenatal maternal immune activation on seizure susceptibility and psychiatric comorbidities in offspring. This study suggests that environmental enrichment may be used as a potential treatment approach for behavioral abnormalities following maternal immune activation in PTZ-treated offspring.
Collapse
Affiliation(s)
- Maryam Zeraati
- Physiology and Pharmacology Department, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Alborz, Iran
| | - Nazila Najdi
- Department of Obstetrics and Gynecology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Belal Mosaferi
- Department of Basic Sciences, School of Nursing and Midwifery, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Ali-Akbar Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran.
| |
Collapse
|
19
|
Zhu X, Yao Y, Yang J, Zhengxie J, Li X, Hu S, Zhang A, Dong J, Zhang C, Gan G. COX-2-PGE 2 signaling pathway contributes to hippocampal neuronal injury and cognitive impairment in PTZ-kindled epilepsy mice. Int Immunopharmacol 2020; 87:106801. [PMID: 32702600 DOI: 10.1016/j.intimp.2020.106801] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 10/23/2022]
Abstract
Epilepsy is one of the most common neurological diseases. It adversely affects cognitive function. Neuroinflammation has been widely recognized as an important factor involved in the pathophysiology of epilepsy. Cyclooxygenase (COX) is a type of oxidoreductase enzyme that acts in the metabolic pathway converting arachidonic acid to prostaglandins, which mediate inflammatory reactions. The activation of inducible cyclooxygenase-2 (COX-2) is considered to be a precipitating factor of neuroinflammation in the brain. Neuroinflammatory processes in the brain are known to contribute to the cascade of events leading to neuronal injury, which may consequently cause cognitive decline. Here in this study, we showed that pentylenetetrazole (PTZ)-kindled mice exhibited an increased level of COX-2 and its main product prostaglandin E2 (PGE2) along with neuroinflammation and neuronal injury in the hippocampus. Pharmacological inhibition of COX-2 by celecoxib, however, significantly reduced hippocampal neuroinflammation and neuronal injury. Furthermore, inhibition of COX-2 by celecoxib attenuated cognitive impairment in the PTZ-kindled mice, suggesting that COX-2-PGE2 signaling pathway mediated neuroinflammation and neuronal injury contributes to cognitive dysfunction in the PTZ-kindled epilepsy mice. Targeting COX-2-PGE2 signaling pathway in the epileptic brain appears to be a viable strategy for attenuating neuronal injury and preventing cognitive deficits in epilepsy patients.
Collapse
Affiliation(s)
- Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| | - Yuanyuan Yao
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Jiurong Yang
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Junhao Zhengxie
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Xinyan Li
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Sijin Hu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School of Southeast University, Nanjing, China
| | - Jingde Dong
- Department of Geriatric Neurology, Nanjing Brain Hospital Affiliated with Nanjing Medical University, Nanjing, China
| | - Chenchen Zhang
- Transmission Electron Microscopy Center, Medical School of Southeast University, Nanjing, China
| | - Guangming Gan
- Transmission Electron Microscopy Center, Medical School of Southeast University, Nanjing, China; Department of Genetics and Developmental Biology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
20
|
Yan J, Liu A, Fan H, Qiao L, Wu J, Shen M, Lai X, Huang J. Simvastatin Improves Behavioral Disorders and Hippocampal Inflammatory Reaction by NMDA-Mediated Anti-inflammatory Function in MPTP-Treated Mice. Cell Mol Neurobiol 2020; 40:1155-1164. [PMID: 32016638 DOI: 10.1007/s10571-020-00804-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/28/2020] [Indexed: 01/10/2023]
Abstract
The cognitive function impairment may be related to the inflammation of the hippocampus in Parkinson's disease. Simvastatin can play a positive role in Parkinson's disease. The purpose of this study was to investigate whether simvastatin could improve behavioral disorders, especially depression, anxiety and cognitive function in mouse PD models, and further explore the molecular mechanism. In the present study, C57BL-6 mice underwent intraperitoneal injection of MPTP (30 mg/kg) once a day for 5 consecutive days. At the same time, simvastatin (10 mg/kg) was pretreated for 2 days before the Parkinson's disease model was established, and then continued for 5 days, and the control group underwent intraperitoneal injection of MK801 (dizocilpine, 0.2 mg/kg) and saline solution. Depression status was tested by a tail suspension test and a sucrose splash test, followed by an open-field test and an elevated plus maze test to determine anxiety levels. Spatial behavior and muscle status were measured with a water maze and a rotarod test. The expression of RNA and protein of N-methyl-D-aspartate receptor subtype 2B (NMDAR2B), nerve growth factor IB (Nur77), cyclooxygenase-2 (COX-2), and tumor necrosis factor (TNF) α were assayed by real-time polymerase chain reaction and Western blot. Our results showed that simvastatin can improve the cognitive function, anxiety, and depression of PD mice with MPTP injury. Simvastatin reversed the NMDAR2B increase, restored Nur77 downward, and reduced the expression of COX-2 and TNF-α in MPTP-treated mice. This role of simvastatin was consistent with MK801 in increasing the expression of Nur77 and inhibiting NMDAR2B and cytokines in MPTP-lesioned PD mice. These findings suggest that reversed the NMDAR2B increase, restored Nur77 downward, and reduced the expression of COX-2 and TNF-α in MPTP-treated mice may be one of the mechanisms that simvastatin improves cognitive functions, depression, and anxiety in MPTP-lesioned mice.
Collapse
Affiliation(s)
- Junqiang Yan
- The First Affiliated Hospital, Neurological Diseases Institute, College of Clinical Medicine of Henan University of Science and Technology, Jinghua Road 24, Luoyang, 471003, Henan, People's Republic of China. .,Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, People's Republic of China.
| | - Anran Liu
- The First Affiliated Hospital, Neurological Diseases Institute, College of Clinical Medicine of Henan University of Science and Technology, Jinghua Road 24, Luoyang, 471003, Henan, People's Republic of China
| | - Hua Fan
- Department of Pharmacy, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| | - Liang Qiao
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| | - Jiannan Wu
- The First Affiliated Hospital, Neurological Diseases Institute, College of Clinical Medicine of Henan University of Science and Technology, Jinghua Road 24, Luoyang, 471003, Henan, People's Republic of China
| | - Mengmeng Shen
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| | - Xiaoyi Lai
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| | - Jiarui Huang
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, People's Republic of China
| |
Collapse
|
21
|
Sharma NK, Kaur S, Goel RK. Exploring the ameliorative role of α7 neuronal nicotinic acetylcholine receptor modulation in epilepsy and associated comorbidities in post-PTZ-kindled mice. Epilepsy Behav 2020; 103:106862. [PMID: 31917144 DOI: 10.1016/j.yebeh.2019.106862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/24/2019] [Accepted: 12/13/2019] [Indexed: 12/30/2022]
Abstract
AIM The present study aimed to explore the ameliorative role of alpha7 (α7) neuronal nicotinic acetylcholine receptor (nAChR) modulation in epilepsy and associated comorbidities in postpentylenetetrazole (PTZ)-kindled mice. MATERIAL AND METHODS The subconvulsive dose of PTZ (35 mg/kg, i.p.) was used to induce kindling-associated epileptogenesis in mice. After successful kindling, animals were treated intraperitoneally with saline, phenytoin (35 mg/kg), valproate (300 mg/kg), choline chloride (α7 agonist; 400 mg/kg and 800 mg/kg), and methyllycaconitine citrate (α7 antagonist; 3.5 mg/kg and 7.0 mg/kg) for 10 days. All the groups except naive were exposed to PTZ injections on day 3, 6, and 9 of treatment to assess seizure severity score. Epilepsy-associated comorbid depression was evaluated by tail suspension test, sucrose preference test, and plasma corticosterone levels, whereas epilepsy-associated memory deficit condition was assessed by step-through paradigm, Morris water maze, and nitrite levels. Neurochemical perturbations related to epilepsy and associated depression and memory deficit were measured by high-performance liquid chromatography (HPLC). RESULTS Post-PTZ-kindled mice displayed significant depressive behavior and memory impairment as compared with naive mice as evidenced by corresponding behavioral and biochemical observations. Methyllycaconitine citrate treatment was unable to produce any ameliorative effect in diseased condition. Choline administration dose dependently ameliorated depression, memory impairment, and seizure severity in post-PTZ-kindled mice. The behavioral findings of the study were concurred with neurochemical and biochemical findings. CONCLUSION In conclusion, the present study demonstrated the amelioration of epilepsy, comorbid depression, and memory deficit by α7 nAChR agonist choline chloride in PTZ-kindled mice model.
Collapse
Affiliation(s)
- Neeraj Kumar Sharma
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Sukhdeep Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India.
| |
Collapse
|
22
|
Kamiński K, Socała K, Zagaja M, Andres-Mach M, Abram M, Jakubiec M, Pieróg M, Nieoczym D, Rapacz A, Gawel K, Esguerra CV, Latacz G, Lubelska A, Szulczyk B, Szewczyk A, Łuszczki JJ, Wlaź P. N-Benzyl-(2,5-dioxopyrrolidin-1-yl)propanamide (AS-1) with Hybrid Structure as a Candidate for a Broad-Spectrum Antiepileptic Drug. Neurotherapeutics 2020; 17:309-328. [PMID: 31486023 PMCID: PMC7007424 DOI: 10.1007/s13311-019-00773-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In our recent studies, we identified compound N-benzyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide (AS-1) as a broad-spectrum hybrid anticonvulsant which showed potent protection across the most important animal acute seizure models such as the maximal electroshock (MES) test, the subcutaneous pentylenetetrazole (s.c. PTZ) test, and the 6-Hz (32 mA) test in mice. Therefore, AS-1 may be recognized as a candidate for new anticonvulsant effective in different types of human epilepsy with a favorable safety margin profile determined in the rotarod test in mice. In the aim of further pharmacological evaluation of AS-1, in the current study, we examined its activity in the 6-Hz (44 mA) test, which is known as the model of drug-resistant epilepsy. Furthermore, we determined also the antiseizure activity in the kindling model of epilepsy induced by repeated injection of pentylenetetrazole (PTZ) in mice. As a result, AS-1 revealed relatively potent protection in the 6-Hz (44 mA) test, as well as delayed the progression of kindling induced by repeated injection of PTZ in mice at doses of 15 mg/kg, 30 mg/kg, and 60 mg/kg. Importantly, the isobolographic analysis showed that a combination of AS-1 and valproic acid (VPA) at the fixed ratio of 1:1 displayed a supra-additive (synergistic) interaction against PTZ-induced seizures in mice. Thus, AS-1 may be potentially used in an add-on therapy with VPA. Moreover, incubation of zebrafish larvae with AS-1 substantially decreased the number, cumulative but not the mean duration of epileptiform-like events in electroencephalographic assay. Finally, the in vitro ADME-Tox studies revealed that AS-1 is characterized by a very good permeability in the parallel artificial membrane permeability assay test, excellent metabolic stability on human liver microsomes (HLMs), no significant influence on CYP3A4/CYP2D6 activity, and moderate inhibition of CYP2C9 in a concentration of 10 μM, as well as no hepatotoxic properties in HepG2 cells (concentration of 10 μM).
Collapse
Affiliation(s)
- Krzysztof Kamiński
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, Medyczna 9, 30-688, Cracow, Poland
| | - Katarzyna Socała
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Mirosław Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland
| | - Marta Andres-Mach
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland
| | - Michał Abram
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, Medyczna 9, 30-688, Cracow, Poland
| | - Marcin Jakubiec
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, Medyczna 9, 30-688, Cracow, Poland
| | - Mateusz Pieróg
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Dorota Nieoczym
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Anna Rapacz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacodynamics, Medyczna 9, 30-688, Cracow, Poland
| | - Kinga Gawel
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway
| | - Gniewomir Latacz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9, 30-688, Cracow, Poland
| | - Annamaria Lubelska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Technology and Biotechnology of Drugs, Medyczna 9, 30-688, Cracow, Poland
| | - Bartłomiej Szulczyk
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097, Warsaw, Poland
- Laboratory of Physiology and Pathophysiology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Banacha 1B, 02-097, Warsaw, Poland
| | - Aleksandra Szewczyk
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland
| | - Jarogniew Jacek Łuszczki
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
23
|
Zhang Y, Zhang M, Zhu W, Yu J, Wang Q, Zhang J, Cui Y, Pan X, Gao X, Sun H. Succinate accumulation induces mitochondrial reactive oxygen species generation and promotes status epilepticus in the kainic acid rat model. Redox Biol 2019; 28:101365. [PMID: 31707354 PMCID: PMC6854095 DOI: 10.1016/j.redox.2019.101365] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/15/2019] [Accepted: 10/28/2019] [Indexed: 11/29/2022] Open
Abstract
Though succinate accumulation is associated with reactive oxygen species (ROS) production and neuronal injury, which play critical roles in epilepsy, it is unclear whether succinate accumulation contributes to the onset of epilepsy or seizures. We sought to investigate changes in succinate, oxidative stress, and mito-SOX levels, as well as mitophagy and neuronal change, in different status epilepticus (SE) rat models. Our results demonstrate that KA-induced SE was accompanied by increased levels of succinate, oxidative stress, and mito-SOX, as well as mitophagy and neuronal degeneration. The similarly increased levels of succinate, oxidative stress, and mito-SOX were also found in pilocarpine-induced SE. Moreover, the reduction of succinate accumulation by the inhibition of succinate dehydrogenase (SDH), malate/aspartate shuttle (MAS), or purine nucleotide cycle (PNC) served to reduce succinate, oxidative stress, and mito-SOX levels, thereby preventing oxidative stress-related neuronal damage and lessening seizure severity. Interestingly, simulating succinate accumulation with succinic acid dimethyl ester may induce succinate accumulation and increased oxidative stress and mito-SOX levels, as well as behavior and seizures in electroencephalograms similar to those observed in rats exposed to KA. Our results indicate that succinate accumulation may contribute to the increased oxidative stress/mitochondrial ROS levels, neuronal degeneration, and SE induced by KA administration. Furthermore, we found that succinate accumulation was mainly due to the inverse catalysis of SDH from fumarate, which was supplemented by the MAS and PNC pathways. These results reveal new insights into the mechanisms underlying SE and that reducing succinate accumulation may be a clinically useful therapeutic target in SE. KA- or pilocarpine-induced SE was accompanied by succinate accumulation. Succinate accumulation caused elevated ROS/mito-ROS levels and neuronal injury. Inverse catalysis of SDH from fumarate mainly caused succinate accumulation. Inhibiting succinate accumulation relieved oxidative stress level, neuronal injury, and seizure. Simulating succinate accumulation induced elevated oxidative stress level and seizure.
Collapse
Affiliation(s)
- Yurong Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Mengdi Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Wei Zhu
- Institute of Radiation Medicine, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Jie Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Qiaoyun Wang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Jinjin Zhang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xiaohong Pan
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Xue Gao
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
24
|
Lorigooini Z, Salimi N, Soltani A, Amini-Khoei H. Implication of NMDA-NO pathway in the antidepressant-like effect of ellagic acid in male mice. Neuropeptides 2019; 76:101928. [PMID: 31078318 DOI: 10.1016/j.npep.2019.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 01/19/2023]
Abstract
Depression is one the common psychiatric disorders through the world. Nitric oxide (NO) and N-methyl-d-aspartate receptor (NMDA-R) are involved in the pathophysiology of depression. Previous studies have been reported various pharmacological properties for ellagic acid (EA). We aimed to evaluate possible involvement of NMDA-NO pathway in the antidepressant-like effect of EA. To do this, we used relevant behavioral tests to evaluate depressive-like behavior. In order to find effective and sub-effective doses of agents, mice treated with EA (6.25, 12.5, 25, 50 and 100 mg/kg), L-NAME (5 and 10 mg/kg), L-arg (25 and 50 mg/kg), NMDA (75 and 150 mg/kg) and ketamine (0.25 and 0.5 mg/kg). Furthermore, mice were treated with combination of sub-effective dose of EA plus sub-effective doses of L-NAME and/or ketamine as well as treated with effective dose of EA in combination of effective doses of L-arg and/or NMDA. Level of NO and gene expression of NR2A and NR2B subunits of NMDA-R were assessed in the hippocampus. Results showed that EA dose dependently provoked antidepressant-like effects and also decreased the hippocampal NO level as well as expression of NMDA-Rs. Co-administration of sub-effective doses of L-NAME or ketamine with sub-effective dose of EA potentiated the effect of EA on behaviors, NO level as well as NMDA-Rs gene expression in the hippocampus. However, co-treatment of effective dose of EA with effective doses of L-arg or NMDA mitigated effects of EA. In conclusion, our data suggested that NMDA-NO, partially at least, are involved in the antidepressant-like effect of EA.
Collapse
Affiliation(s)
- Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Negin Salimi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hossein Amini-Khoei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
25
|
Zhu X, Yao Y, Li X, Dong J, Zhang A. Alteration of GABAergic signaling is associated with anxiety-like behavior in temporal lobe epilepsy mice. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:141-148. [PMID: 30951784 DOI: 10.1016/j.pnpbp.2019.03.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 03/20/2019] [Accepted: 03/29/2019] [Indexed: 12/18/2022]
Abstract
Temporal lobe epilepsy (TLE), which is one of the most common neurological diseases, is accompanied by a high incidence of psychiatric disorders. Among these psychiatric disorders, anxiety is one of the major psychiatric comorbidities in epilepsy patients. However, anxiety in epilepsy patients often remains unrecognized and untreated. It is believed that the inhibitory networks of γ-aminobutyric acid (GABA) neurotransmission play pivotal roles in the modulation of emotion and mood responses in both physiological and pathological conditions. The impairment of neurotransmission mediated by GABAergic signaling is related to the pathophysiology of anxiety. However, it remains unclear whether and how GABAergic signaling modulates anxiety responses in the context of an epileptic brain. In the present study, we sought to determine the role of inhibitory networks of GABAergic signaling in the anxiety-like behavior of epileptic mice. Our results show epileptic mice exhibited increased anxiety-like behavior, and this increased anxiety-like behavior was accompanied by a decrease in GABAergic interneurons and an increase in GABA type A receptor (GABAAR) β3 subunit (GABRB3) expression in the hippocampus. Furthermore, the activation of GABAARs produced an anxiolytic-like effect, while the inhibition of GABAARs elicited an anxiogenic-like effect in the epileptic mice, suggesting that the alteration of GABAergic signaling is associated with anxiety-like behavior in epileptic mice. Thus, targeting GABAergic signaling in the epileptic brain may provide an effective anxiolytic treatment in epilepsy patients.
Collapse
Affiliation(s)
- Xinjian Zhu
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China.
| | - Yuanyuan Yao
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - Xiaolin Li
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingde Dong
- Department of Geriatric Neurology, Nanjing Brain Hospital Affiliated with Nanjing Medical University, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
26
|
Alipour V, Hoseinpour F, Vatanparast J. Persistent alterations in seizure susceptibility, drug responsiveness and comorbidities associated with chemical kindling after neonatal exposure to an organophosphate. Neurotoxicology 2019; 73:92-99. [DOI: 10.1016/j.neuro.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/19/2019] [Accepted: 03/07/2019] [Indexed: 12/20/2022]
|
27
|
Kazemi Roodsari S, Bahramnejad E, Rahimi N, Aghaei I, Dehpour AR. Methadone's effects on pentylenetetrazole-induced seizure threshold in mice: NMDA/opioid receptors and nitric oxide signaling. Ann N Y Acad Sci 2019; 1449:25-35. [PMID: 30957236 DOI: 10.1111/nyas.14043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/22/2019] [Accepted: 02/04/2019] [Indexed: 12/25/2022]
Abstract
Methadone is a synthetic opioid used to treat opiate withdrawal and addiction. Studies have demonstrated the impact of methadone on seizure susceptibility. This study investigated the modulatory impacts of acute and subchronic (three times daily for 5 days) intraperitoneal methadone treatment on pentylenetetrazole-induced clonic seizure threshold (CST) in mice, as well as the involvement of the nitric oxide, N-methyl-d-aspartate (NMDA), and µ-opioid pathways. Acute administration of different doses of methadone (0.1, 0.3, 1, and 3 mg/kg) 45 min before CST significantly decreased the seizure threshold. Additionally, pretreatment with noneffective doses of an opioid receptor antagonist (naltrexone) and NMDA receptor antagonists (ketamine and MK-801) inhibited methadone's proconvulsive activity in the acute phase, while l-NAME (a nonspecific nitric oxide synthase (NOS) inhibitor) did not affect that activity. In the subchronic phase, methadone (3 mg/kg) demonstrated an anticonvulsive effect. Although subchronic pretreatment with noneffective doses of l-NAME and 7-nitroindazole (a specific neuronal NOS inhibitor) reversed methadone's anticonvulsive activity, aminoguanidine (a specific inducible NOS inhibitor), naltrexone, MK-801, and ketamine did not change methadone's anticonvulsive characteristic. Our results suggest that NMDA and µ-opioid receptors may be involved in methadone's proconvulsive activity in the acute phase, while methadone's anticonvulsive activity may be modulated by neuronal NOS in the subchronic phase.
Collapse
Affiliation(s)
- Soheil Kazemi Roodsari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Erfan Bahramnejad
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Rahimi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Aghaei
- Department of Neuroscience, Neuroscience Research Center, Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|