1
|
Kyriatzis G, Khrestchatisky M, Ferhat L, Chatzaki EA. Neurotensin and Neurotensin Receptors in Stress-related Disorders: Pathophysiology & Novel Drug Targets. Curr Neuropharmacol 2024; 22:916-934. [PMID: 37534788 PMCID: PMC10845085 DOI: 10.2174/1570159x21666230803101629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Accepted: 02/10/2023] [Indexed: 08/04/2023] Open
Abstract
Neurotensin (NT) is a 13-amino acid neuropeptide widely distributed in the CNS that has been involved in the pathophysiology of many neural and psychiatric disorders. There are three known neurotensin receptors (NTSRs), which mediate multiple actions, and form the neurotensinergic system in conjunction with NT. NTSR1 is the main mediator of NT, displaying effects in both the CNS and the periphery, while NTSR2 is mainly expressed in the brain and NTSR3 has a broader expression pattern. In this review, we bring together up-to-date studies showing an involvement of the neurotensinergic system in different aspects of the stress response and the main stress-related disorders, such as depression and anxiety, post-traumatic stress disorder (PTSD) and its associated symptoms, such as fear memory and maternal separation, ethanol addiction, and substance abuse. Emphasis is put on gene, mRNA, and protein alterations of NT and NTSRs, as well as behavioral and pharmacological studies, leading to evidence-based suggestions on the implicated regulating mechanisms as well as their therapeutic exploitation. Stress responses and anxiety involve mainly NTSR1, but also NTSR2 and NTSR3. NTSR1 and NTSR3 are primarily implicated in depression, while NTSR2 and secondarily NTSR1 in PTSD. NTSR1 is interrelated with substance and drug abuse and NTSR2 with fear memory, while all NTSRs seem to be implicated in ethanol consumption. Some of the actions of NT and NTSRs in these pathological settings may be driven through interactions between NT and corticotrophin releasing factor (CRF) in their regulatory contribution, as well as by NT's pro-inflammatory mediating actions.
Collapse
Affiliation(s)
- Grigorios Kyriatzis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Neurophysiopathology, INP, CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Michel Khrestchatisky
- Institute of Neurophysiopathology, INP, CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Lotfi Ferhat
- Institute of Neurophysiopathology, INP, CNRS, Aix-Marseille University, 13005 Marseille, France
| | - Ekaterini Alexiou Chatzaki
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, University Research Centre, Hellenic Mediterranean University, 71410 Heraklion, Greece
| |
Collapse
|
2
|
Vyas N, Wimberly CE, Beaman MM, Kaplan SJ, Rasmussen LJH, Wertz J, Gifford EJ, Walsh KM. Systematic review and meta-analysis of the effect of adverse childhood experiences (ACEs) on brain-derived neurotrophic factor (BDNF) levels. Psychoneuroendocrinology 2023; 151:106071. [PMID: 36857833 PMCID: PMC10073327 DOI: 10.1016/j.psyneuen.2023.106071] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
There is continued interest in identifying dysregulated biomarkers that mediate associations between adverse childhood experiences (ACEs) and negative long-term health outcomes. However, little is known regarding how ACE exposure modulates neural biomarkers to influence poorer health outcomes in ACE-exposed children. To address this, we performed a systematic review and meta-analysis of the impact of ACE exposure on Brain Derived Neurotrophic Factor (BDNF) levels - a neural biomarker involved in childhood and adult neurogenesis and long-term memory formation. Twenty-two studies were selected for inclusion within the systematic review, ten of which were included in meta-analysis. Most included studies retrospectively assessed impacts of childhood maltreatment in clinical populations. Sample size, BDNF protein levels in ACE-exposed and unexposed subjects, and standard deviations were extracted from ten publications to estimate the BDNF ratio of means (ROM) across exposure categories. Overall, no significant difference was found in BDNF protein levels between ACE-exposed and unexposed groups (ROM: 1.08; 95 % CI: 0.93-1.26). Age at sampling, analyte type (e.g., sera, plasma, blood), and categories of ACE exposure contributed to high between-study heterogeneity, some of which was minimized in subset-based analyses. These results support continued investigation into the impact of ACE exposure on neural biomarkers and highlight the potential importance of analyte type and timing of sample collection on study results.
Collapse
Affiliation(s)
- Neha Vyas
- Duke University, Trinity College of Arts and Sciences, Durham, NC, USA
| | - Courtney E Wimberly
- Duke University School of Medicine, Durham, NC, USA; Duke University Department of Neurosurgery, Durham, NC, USA
| | - M Makenzie Beaman
- Duke University School of Medicine, Durham, NC, USA; Duke Children's Health and Discovery Initiative, Durham, NC, USA
| | | | - Line J H Rasmussen
- Duke University Department of Psychology and Neuroscience, Durham, NC, USA; Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Jasmin Wertz
- Duke University Department of Psychology and Neuroscience, Durham, NC, USA; University of Edinburgh, Department of Psychology, Edinburgh, UK
| | - Elizabeth J Gifford
- Duke Children's Health and Discovery Initiative, Durham, NC, USA; Duke University Sanford School of Public Policy, Center for Child and Family Policy, Durham, NC, USA
| | - Kyle M Walsh
- Duke University School of Medicine, Durham, NC, USA; Duke University Department of Neurosurgery, Durham, NC, USA; Duke Children's Health and Discovery Initiative, Durham, NC, USA.
| |
Collapse
|
3
|
Borges JV, Pires VN, de Freitas BS, Rübensam G, Vieira VC, de Souza Dos Santos C, Schröder N, Bromberg E. Behavior, BDNF and epigenetic mechanisms in response to social isolation and social support in middle aged rats exposed to chronic stress. Behav Brain Res 2023; 441:114303. [PMID: 36657665 DOI: 10.1016/j.bbr.2023.114303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
Social deprivation can be stressful for group-living mammals. On the other hand, an amazing response of these animals to stress is seeking social contact to give and receive joint protection in threatening situations. We explored the effects of social isolation and social support on epigenetic and behavioral responses to chronic stress. More specifically, we investigated the behavioral responses, corticosterone levels, BDNF gene expression, and markers of hippocampal epigenetic alterations (levels of H3K9 acetylation and methylation, H3K27 methylation, HDAC5, DNMT1, and DNMT3a gene expressions) in middle-aged adult rats maintained in different housing conditions (isolation or accompanied housing) and exposed to the chronic unpredictable stress protocol (CUS). Isolation was associated with decreased basal levels of corticosterone, impaired long-term memory, and decreased expression of the BDNF gene, besides altering the balance of H3K9 from acetylation to methylation and increasing the DNMT1 gene expression. The CUS protocol decreased H3K9 acetylation, besides increasing H3K27 methylation and DNMT1 gene expression, but had no significant effects on memory and BDNF gene expression. Interestingly, the effects of CUS on corticosterone and HDAC5 gene expression were seen only in isolated animals, whereas the effects of CUS on DNMT1 gene expression were more pronounced in isolated than accompanied animals. In conclusion, social isolation in middle age showed broader effects than chronic unpredictable stress on behavioral and epigenetic alterations potentially associated with decreased BDNF expression. Moreover, social support prevented the adverse effects of CUS on HPA axis functioning, HDAC5, and DNMT1 gene expressions.
Collapse
Affiliation(s)
- Juliano Viana Borges
- Laboratory of Biology and Development of the Nervous System, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900 Porto Alegre, Brazil
| | - Vivian Naziaseno Pires
- Laboratory of Biology and Development of the Nervous System, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900 Porto Alegre, Brazil; Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6690, 90610-000 Porto Alegre, Brazil
| | - Betânia Souza de Freitas
- Laboratory of Biology and Development of the Nervous System, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900 Porto Alegre, Brazil
| | - Gabriel Rübensam
- Center of Toxicology and Pharmacology Research, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Brazil
| | - Vitória Corrêa Vieira
- Laboratory of Biology and Development of the Nervous System, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900 Porto Alegre, Brazil
| | - Cristophod de Souza Dos Santos
- Laboratory of Biology and Development of the Nervous System, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900 Porto Alegre, Brazil
| | - Nadja Schröder
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil; Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Elke Bromberg
- Laboratory of Biology and Development of the Nervous System, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6681, 90619-900 Porto Alegre, Brazil; Institute of Geriatrics and Gerontology, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Av. 6690, 90610-000 Porto Alegre, Brazil; National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, Brazil.
| |
Collapse
|
4
|
Martins-Macedo J, Mateus-Pinheiro A, Alves C, Veloso F, Gomes ED, Ribeiro I, Correia JS, Silveira-Rosa T, Alves ND, Rodrigues AJ, Bessa JM, Sousa N, Oliveira JF, Patrício P, Pinto L. StressMatic: A Novel Automated System to Induce Depressive- and Anxiety-like Phenotype in Rats. Cells 2023; 12:cells12030381. [PMID: 36766724 PMCID: PMC9913774 DOI: 10.3390/cells12030381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
Major depressive disorder (MDD) is a multidimensional psychiatric disorder that is estimated to affect around 350 million people worldwide. Generating valid and effective animal models of depression is critical and has been challenging for neuroscience researchers. For preclinical studies, models based on stress exposure, such as unpredictable chronic mild stress (uCMS), are amongst the most reliable and used, despite presenting concerns related to the standardization of protocols and time consumption for operators. To overcome these issues, we developed an automated system to expose rodents to a standard uCMS protocol. Here, we compared manual (uCMS) and automated (auCMS) stress-exposure protocols. The data shows that the impact of the uCMS exposure by both methods was similar in terms of behavioral (cognition, mood, and anxiety) and physiological (cell proliferation and endocrine variations) measurements. Given the advantages of time and standardization, this automated method represents a step forward in this field of preclinical research.
Collapse
Affiliation(s)
- Joana Martins-Macedo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Bn’ML—Behavioral & Molecular Lab, University of Minho, 4710-057 Braga, Portugal
| | - António Mateus-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Bn’ML—Behavioral & Molecular Lab, University of Minho, 4710-057 Braga, Portugal
| | - Cátia Alves
- Bn’ML—Behavioral & Molecular Lab, University of Minho, 4710-057 Braga, Portugal
- Department of Marketing and International Business, University of Vienna, Oskar Morgenstern-Platz 1, 1090 Vienna, Austria
| | - Fernando Veloso
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- 2Ai—School of Technology, IPCA, 4750-810 Barcelos, Portugal
- LASI—Associate Laboratory of Intelligent Systems, 4800-058 Guimarães, Portugal
- Department of Mechanical Engineering, School of Engineering, University of Minho, 4800-058 Guimarães, Portugal
| | - Eduardo D. Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Inês Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Joana S. Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Bn’ML—Behavioral & Molecular Lab, University of Minho, 4710-057 Braga, Portugal
| | - Tiago Silveira-Rosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Nuno D. Alves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Ana J. Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - João M. Bessa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Bn’ML—Behavioral & Molecular Lab, University of Minho, 4710-057 Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Bn’ML—Behavioral & Molecular Lab, University of Minho, 4710-057 Braga, Portugal
| | - João F. Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- 2Ai—School of Technology, IPCA, 4750-810 Barcelos, Portugal
| | - Patrícia Patrício
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Bn’ML—Behavioral & Molecular Lab, University of Minho, 4710-057 Braga, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
- Bn’ML—Behavioral & Molecular Lab, University of Minho, 4710-057 Braga, Portugal
- Correspondence: ; Tel.: +351-253-604-929
| |
Collapse
|
5
|
Birch JN, Vanderheyden WM. The Molecular Relationship between Stress and Insomnia. Adv Biol (Weinh) 2022; 6:e2101203. [PMID: 35822937 DOI: 10.1002/adbi.202101203] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/15/2022] [Indexed: 01/28/2023]
Abstract
The bi-directional relationship between sleep and stress has been actively researched as sleep disturbances and stress have become increasingly common in society. Interestingly, the brain and underlying neural circuits important for sleep regulation may respond uniquely to stress that leads to post-traumatic stress disorder (PTSD) and stress that does not. In stress that does not lead to PTSD, the hypothalamic-pituitary-adrenal axis (HPA) pathway is activated normally that results in sympathetic nervous system activation that allows the brain and body to return to baseline functioning. However, exposure to stress that leads to PTSD, causes enhanced negative feedback of this same pathway and results in long-term physiological and psychological changes. In this review, how stress regulates glucocorticoid signaling pathways in brain glial cells called astrocytes, and then mediates stress-induced insomnia are examined. Astrocytes are critical sleep regulatory cells and their connections to sleep and stress due to disturbed glucocorticoid signaling provide a novel mechanism to explain how stress leads to insomnia. This review will examine the interactions of stress neurobiology, astrocytes, sleep, and glucocorticoid signaling pathways and will examine the how stress that leads to PTSD and stress that does not impacts sleep-regulatory processes.
Collapse
Affiliation(s)
- Jasmine N Birch
- WSU Health Sciences Spokane, Elson S. Floyd College of Medicine, Department of Translational Medicine and Physiology, 412 E. Spokane Falls Blvd, Spokane, WA, 99 202, USA
| | - William M Vanderheyden
- WSU Health Sciences Spokane, Elson S. Floyd College of Medicine, Department of Translational Medicine and Physiology, Pharmaceutical and Biomedical Sciences Building, Room 213/Lab 230, 412 E. Spokane Falls Blvd, (Lab) 509-368-6809, Spokane, WA, 99 202, USA
| |
Collapse
|
6
|
Kulhanek D, Abrahante Llorens JE, Buckley L, Tkac I, Rao R, Paulsen ME. Female and male C57BL/6J offspring exposed to maternal obesogenic diet develop altered hypothalamic energy metabolism in adulthood. Am J Physiol Endocrinol Metab 2022; 323:E448-E466. [PMID: 36342228 PMCID: PMC9639756 DOI: 10.1152/ajpendo.00100.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 11/22/2022]
Abstract
Maternal obesity is exceedingly common and strongly linked to offspring obesity and metabolic disease. Hypothalamic function is critical to obesity development. Hypothalamic mechanisms causing obesity following exposure to maternal obesity have not been elucidated. Therefore, we studied a cohort of C57BL/6J dams, treated with a control or high-fat-high-sugar diet, and their adult offspring to explore potential hypothalamic mechanisms to explain the link between maternal and offspring obesity. Dams treated with obesogenic diet were heavier with mild insulin resistance, which is reflective of the most common metabolic disease in pregnancy. Adult offspring exposed to maternal obesogenic diet had no change in body weight but significant increase in fat mass, decreased glucose tolerance, decreased insulin sensitivity, elevated plasma leptin, and elevated plasma thyroid-stimulating hormone. In addition, offspring exposed to maternal obesity had decreased energy intake and activity without change in basal metabolic rate. Hypothalamic neurochemical profile and transcriptome demonstrated decreased neuronal activity and inhibition of oxidative phosphorylation. Collectively, these results indicate that maternal obesity without diabetes is associated with adiposity and decreased hypothalamic energy production in offspring. We hypothesize that altered hypothalamic function significantly contributes to obesity development. Future studies focused on neuroprotective strategies aimed to improve hypothalamic function may decrease obesity development.NEW & NOTEWORTHY Offspring exposed to maternal diet-induced obesity demonstrate a phenotype consistent with energy excess. Contrary to previous studies, the observed energy phenotype was not associated with hyperphagia or decreased basal metabolic rate but rather decreased hypothalamic neuronal activity and energy production. This was supported by neurochemical changes in the hypothalamus as well as inhibition of hypothalamic oxidative phosphorylation pathway. These results highlight the potential for neuroprotective interventions in the prevention of obesity with fetal origins.
Collapse
Affiliation(s)
- Debra Kulhanek
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | | | - Lauren Buckley
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Ivan Tkac
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Raghavendra Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Megan E Paulsen
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
- Minnesota Institute for the Developing Brain, Minneapolis, Minnesota
| |
Collapse
|
7
|
Manohar S, Chen GD, Ding D, Liu L, Wang J, Chen YC, Chen L, Salvi R. Unexpected Consequences of Noise-Induced Hearing Loss: Impaired Hippocampal Neurogenesis, Memory, and Stress. Front Integr Neurosci 2022; 16:871223. [PMID: 35619926 PMCID: PMC9127992 DOI: 10.3389/fnint.2022.871223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Noise-induced hearing loss (NIHL), caused by direct damage to the cochlea, reduces the flow of auditory information to the central nervous system, depriving higher order structures, such as the hippocampus with vital sensory information needed to carry out complex, higher order functions. Although the hippocampus lies outside the classical auditory pathway, it nevertheless receives acoustic information that influence its activity. Here we review recent results that illustrate how NIHL and other types of cochlear hearing loss disrupt hippocampal function. The hippocampus, which continues to generate new neurons (neurogenesis) in adulthood, plays an important role in spatial navigation, memory, and emotion. The hippocampus, which contains place cells that respond when a subject enters a specific location in the environment, integrates information from multiple sensory systems, including the auditory system, to develop cognitive spatial maps to aid in navigation. Acute exposure to intense noise disrupts the place-specific firing patterns of hippocampal neurons, "spatially disorienting" the cells for days. More traumatic sound exposures that result in permanent NIHL chronically suppresses cell proliferation and neurogenesis in the hippocampus; these structural changes are associated with long-term spatial memory deficits. Hippocampal neurons, which contain numerous glucocorticoid hormone receptors, are part of a complex feedback network connected to the hypothalamic-pituitary (HPA) axis. Chronic exposure to intense intermittent noise results in prolonged stress which can cause a persistent increase in corticosterone, a rodent stress hormone known to suppress neurogenesis. In contrast, a single intense noise exposure sufficient to cause permanent hearing loss produces only a transient increase in corticosterone hormone. Although basal corticosterone levels return to normal after the noise exposure, glucocorticoid receptors (GRs) in the hippocampus remain chronically elevated. Thus, NIHL disrupts negative feedback from the hippocampus to the HPA axis which regulates the release of corticosterone. Preclinical studies suggest that the noise-induced changes in hippocampal place cells, neurogenesis, spatial memory, and glucocorticoid receptors may be ameliorated by therapeutic interventions that reduce oxidative stress and inflammation. These experimental results may provide new insights on why hearing loss is a risk factor for cognitive decline and suggest methods for preventing this decline.
Collapse
Affiliation(s)
- Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Guang-Di Chen
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Lijie Liu
- Department of Physiology, Medical College, Southeast University, Nanjing, China
| | - Jian Wang
- School of Communication Science and Disorders, Dalhousie University, Halifax, NS, Canada
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lin Chen
- Auditory Research Laboratory, University of Science and Technology of China, Hefei, China
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
8
|
Basso L, Boecking B, Neff P, Brueggemann P, Peters EMJ, Mazurek B. Hair-cortisol and hair-BDNF as biomarkers of tinnitus loudness and distress in chronic tinnitus. Sci Rep 2022; 12:1934. [PMID: 35121746 PMCID: PMC8817043 DOI: 10.1038/s41598-022-04811-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/21/2021] [Indexed: 12/23/2022] Open
Abstract
The role of stress and its neuroendocrine mediators in tinnitus is unclear. In this study, we measure cortisol as an indicator of hypothalamus–pituitary–adrenal (HPA) axis alterations and brain-derived neurotrophic factor (BDNF) as a marker of adaptive neuroplasticity in hair of chronic tinnitus patients to investigate relationships with tinnitus-related and psychological factors. Cross-sectional data from chronic tinnitus inpatients were analyzed. Data collection included hair sampling, pure tone audiometry, tinnitus pitch and loudness matching, and psychometric questionnaires. Elastic net regressions with n-fold cross-validation were performed for cortisol (N = 91) and BDNF (N = 87). For hair-cortisol (R2 = 0.10), the strongest effects were sampling in autumn and body-mass index (BMI) (positive), followed by tinnitus loudness (positive) and smoking (negative). For hair-BDNF (R2 = 0.28), the strongest effects were hearing aid use, shift work (positive), and tinnitus loudness (negative), followed by smoking, tinnitus-related distress (Tinnitus Questionnaire), number of experienced traumatic events (negative), and physical health-related quality of life (Short Form-12 Health Survey) (positive). These findings suggest that in chronic tinnitus patients, higher perceived tinnitus loudness is associated with higher hair-cortisol and lower hair-BDNF, and higher tinnitus-related distress with lower hair-BDNF. Regarding hair-BDNF, traumatic experiences appear to have additional stress-related effects, whereas hearing aid use and high physical health-related quality of life appear beneficial. Implications include the potential use of hair-cortisol and hair-BDNF as biomarkers of tinnitus loudness or distress and the need for intensive future research into chronic stress-related HPA axis and neuroplasticity alterations in chronic tinnitus.
Collapse
Affiliation(s)
- Laura Basso
- Tinnitus Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Benjamin Boecking
- Tinnitus Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Patrick Neff
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.,University Research Priority Program 'Dynamics of Healthy Aging', University of Zurich, Zurich, Switzerland.,Department of Psychology, Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Petra Brueggemann
- Tinnitus Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eva M J Peters
- Psychoneuroimmunology Laboratory, Department of Psychosomatic Medicine and Psychotherapy, Justus-Liebig University Giessen, Giessen, Germany.,Psychosomatics and Psychotherapy, Charité Center 12 Internal Medicine and Dermatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Birgit Mazurek
- Tinnitus Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
9
|
Taylor-Cavelier SJ, Micol VJ, Roberts AG, Geiss EG, Lopez-Duran N. DHEA Moderates the Impact of Childhood Trauma on the HPA Axis in Adolescence. Neuropsychobiology 2022; 80:299-312. [PMID: 33472214 DOI: 10.1159/000511629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 09/10/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Trauma can lead to long-term downregulation of the hypothalamic pituitary adrenal (HPA) axis. However, dehydroepiandrosterone (DHEA) has neuroprotective effects that may reduce the need for downregulation of the axis in response to stress. Furthermore, high DHEA/cortisol ratios are often conceptualized as better markers of DHEA's availability than DHEA alone, as ratios account for the coupling of DHEA and cortisol in response to stress. OBJECTIVES In this study, we explored if DHEA and DHEA/cortisol ratios moderated the association between childhood maltreatment and the HPA axis stress response. METHODS The sample consisted of 101 adolescents (ages 12-16) who completed the Child Trauma Questionnaire (CTQ) and the Trier Social Stress Test (TSST). Cortisol was modeled using saliva samples at 8 time points throughout the TSST. Cortisol and DHEA ratios were examined at baseline and 35 min after stress initiation. RESULTS Childhood maltreatment was associated with less steep cortisol activation slope and peak cortisol levels, but DHEA and DHEA/cortisol ratios moderated this effect. At high levels of DHEA, the impact of childhood maltreatment on cortisol peak levels was no longer significant. In contrast, high DHEA/cortisol ratios were associated with an intensification of the impact of childhood maltreatment on peak levels. CONCLUSIONS Results suggest that DHEA can limit the blunting of the HPA axis in response to childhood maltreatment. However, this protective effect was not reflected in high DHEA/cortisol ratios as predicted. Therefore, high DHEA and high DHEA/cortisol ratios may reflect different, and potentially opposite, processes.
Collapse
Affiliation(s)
| | - Valerie J Micol
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrea G Roberts
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Elisa G Geiss
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nestor Lopez-Duran
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
10
|
Activation of 5-HT 1A receptor reduces abnormal emotionality in stress-maladaptive mice by alleviating decreased myelin protein in the ventral hippocampus. Neurochem Int 2021; 151:105213. [PMID: 34673172 DOI: 10.1016/j.neuint.2021.105213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/03/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022]
Abstract
We previously reported that abnormal emotionality in stress-maladaptive mice was ameliorated by chronic treatment with flesinoxan, a 5-HT1A receptor agonist. Furthermore, the maintenance of hippocampal myelination appeared to contribute to the development of stress adaptation in mice. However, the effects of 5-HT1A receptor activation on myelination under the stress-maladaptive situations and the underlying mechanisms remain unknown. In the present study, we examined using flesinoxan whether activation of 5-HT1A receptor can reduce an abnormal emotional response by acting on oligodendrocytes to preserve myelin proteins in stress-maladaptive mice. Mice were exposed to repeated restraint stress for 4 h/day for 14 days as a stress-maladaptive model. Flesinoxan was given intraperitoneally immediately after the daily exposure to restraint stress. After the final exposure to restraint stress, the emotionality of mice was evaluated by the hole-board test. The expression levels of brain-derived neurotrophic factor (BDNF), phosphorylated-extracellular signal-regulated kinase (p-ERK), phosphorylated-cAMP response element-binding protein (p-CREB), myelin-associated glycoprotein (MAG), myelin basic protein (MBP) and oligodendrocyte transcription factor 2 (olig2) in the hippocampus was assessed by western blotting. Hippocampal oligodendrogenesis were examined by immunohistochemistry. Chronic treatment with flesinoxan suppressed the decrease in head-dipping behaviors in stress-maladaptive mice in the hole-board test. Under this condition, the decreases in MAG and MBP in the hippocampus recovered with increase in BDNF, p-ERK, p-CREB, and olig2. Furthermore, hippocampal oligodendrogenesis in stress-maladaptive mice was promoted by chronic treatment with flesinoxan. These findings suggest that 5-HT1A receptor activation may promote oligodendrogenesis and myelination via an ERK/CREB/BDNF signaling pathway in the hippocampus and reduces abnormal emotionality due to maladaptation to excessive stress.
Collapse
|
11
|
Abstract
Chronic stress evokes wide-ranging behavioral alterations, including risk avoidance, increased motoric output, and reduced consummatory behaviors. These are often interpreted as dysfunctions, but they may subserve adaptations for coping with existential threats. We tested this in a cohort of rats previously exposed to mild unpredictable stress for 5 weeks. Previously stressed rats exhibited the typically increased avoidance of open field and altered responses to predator odor, suggesting enhanced sensitivity to threatening contexts and cues. Interestingly, these animals collected rewards at a higher rate than controls, because they locomoted faster, spent less time in off-task (exploratory) behavior, and committed fewer licks at feeders. Further, they were not impaired in flexibly shifting choice as reward probabilities changed among feeders, suggesting that behavioral adaptations are not simply of transference to behavioral control to neural systems insensitive to reward (e.g. habits). These data add to a small but growing body of evidence indicating that stress shifts responses away from exploration and toward exploitation of resources, possibly to reduce threat exposure.HighlightsRats with a history of stress collected reward at a higher rate than controls on an operant task, owing to increase locomotion speed, reduced off-task behavior, and reduced time licking at feeders.Previously stressed rats exhibited increased win-stay responses than controls, suggesting the involvement of neural circuits related to goal-directed responding.Previously stressed rats performed equally to controls on a task requiring a shift of preferences based on reward probability, suggesting that they are not simply relying more on habit-based neural systems.
Collapse
Affiliation(s)
- C E Matisz
- Department of Neuroscience, Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - C A Badenhorst
- Department of Neuroscience, Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| | - A J Gruber
- Department of Neuroscience, Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Canada
| |
Collapse
|
12
|
Shields GS, Hostinar CE, Vilgis V, Forbes EE, Hipwell AE, Keenan K, Guyer AE. Hypothalamic-Pituitary-Adrenal Axis Activity in Childhood Predicts Emotional Memory Effects and Related Neural Circuitry in Adolescent Girls. J Cogn Neurosci 2021; 33:872-886. [PMID: 34449842 PMCID: PMC8764738 DOI: 10.1162/jocn_a_01687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Negative emotional experiences can be more difficult to forget than neutral ones, a phenomenon termed the "emotional memory effect." Individual differences in the strength of the emotional memory effect are associated with emotional health. Thus, understanding the neurobiological underpinnings of the emotional memory effect has important implications, especially for individuals at risk for emotional health problems. Although the neural basis of emotional memory effects has been relatively well defined, less is known about how hormonal factors that can modulate emotional memory, such as glucocorticoids, relate to that neural basis. Importantly, probing the role of glucocorticoids in the stress- and emotion-sensitive period of late childhood to adolescence could provide actionable points of intervention. We addressed this gap by testing whether hypothalamic-pituitary-adrenal (HPA) axis activity during a parent-child conflict task at 11 years of age predicted emotional memory and its primary neural circuitry (i.e., amygdala-hippocampus functional connectivity) at 16 years of age in a longitudinal study of 147 girls (104 with complete data). Results showed that lower HPA axis activity predicted stronger emotional memory effects, r(124) = -.236, p < .01, and higher emotional memory-related functional connectivity between the right hippocampus and the right amygdala, β = -.385, p < .001. These findings suggest that late childhood HPA axis activity may modulate the neural circuitry of emotional memory effects in adolescence, which may confer a potential risk trajectory for emotional health among girls.
Collapse
|
13
|
Algamal M, Pearson AJ, Hahn-Townsend C, Burca I, Mullan M, Crawford F, Ojo JO. Repeated unpredictable stress and social isolation induce chronic HPA axis dysfunction and persistent abnormal fear memory. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110035. [PMID: 32682873 DOI: 10.1016/j.pnpbp.2020.110035] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 12/19/2022]
Abstract
The lack of progress in the psychopharmacological treatment of stress-related disorders such as PTSD is an ongoing crisis due to its negative socioeconomic implications. Current PTSD pharmacotherapy relies on a few FDA approved medications used primarily for depression which offer only symptomatic relief and show limited efficacy. As the population of PTSD patients is growing, the identification of effective etiology-based treatments for the condition is a high priority. This requires an in-depth understanding of the neurobiological and behavioral outcomes of stress in translationally relevant animal models. In this study, we use neuroendocrine, biochemical and behavioral measures to assess the HPA axis function and fear-memory deficits in a mouse model of chronic stress. The chronic stress procedures involved exposure to 21 days of repeated unpredictable stress (RUS), including predator stress, restraint and foot shock, followed by chronic social isolation. We show that mice exposed to our stress paradigm demonstrate exaggerated fear memory recall and blunted HPA axis functionality at one month after RUS. Our neuroendocrinal testing suggests that the attenuated stress response in our model may be related to an alteration in the adrenal MC2 receptor reactivity. While there was no noticeable change in pituitary negative feedback regulation mechanisms, CRH and phosphorylated Glucocorticoid receptors levels were altered in the hypothalamus. We also show that chronic supplementation with a peripheral glucocorticoid receptor agonist (low-dose dexamethasone) after RUS partially restores a number of stress-related behavioral deficits in the RUS model. This suggests a direct relationship between HPA axis function and behavior in our model. Our findings emphasize the importance of the adrenal receptors as a target for HPA axis dysfunction in stress and fear-related disorders.
Collapse
Affiliation(s)
- Moustafa Algamal
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL 34243, USA; The Open University, Milton Keynes, United Kingdom; James A. Haley Veterans' Hospital, Tampa, FL, United States.
| | - Andrew J Pearson
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL 34243, USA; The Open University, Milton Keynes, United Kingdom; James A. Haley Veterans' Hospital, Tampa, FL, United States.
| | | | - Ioana Burca
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL 34243, USA.
| | - Michael Mullan
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL 34243, USA; The Open University, Milton Keynes, United Kingdom.
| | - Fiona Crawford
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL 34243, USA; The Open University, Milton Keynes, United Kingdom; James A. Haley Veterans' Hospital, Tampa, FL, United States.
| | - Joseph O Ojo
- Roskamp Institute, 2040 Whitfield Ave, Sarasota, FL 34243, USA; The Open University, Milton Keynes, United Kingdom; James A. Haley Veterans' Hospital, Tampa, FL, United States.
| |
Collapse
|
14
|
Lee CW, Wu HF, Chu MC, Chung YJ, Mao WC, Li CT, Lin HC. Mechanism of Intermittent Theta-Burst Stimulation in Synaptic Pathology in the Prefrontal Cortex in an Antidepressant-Resistant Depression Rat Model. Cereb Cortex 2021; 31:575-590. [PMID: 32901273 DOI: 10.1093/cercor/bhaa244] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Intermittent theta-burst stimulation (iTBS), a form of repetitive transcranial magnetic stimulation, is considered a potential therapy for treatment-resistant depression. The synaptic mechanism of iTBS has long been known to be an effective method to induce long-term potentiation (LTP)-like plasticity in humans. However, there is limited evidence as to whether the antidepressant effect of iTBS is associated with change in synaptic function in the prefrontal cortex (PFC) in preclinical study. Hence, we applied an antidepressant (i.e., fluoxetine)-resistant depression rat model induced by severe foot-shocks to investigate the antidepressant efficacy of iTBS in the synaptic pathology. The results showed that iTBS treatment improved not only the impaired LTP, but also the aberrant long-term depression in the PFC of antidepressant-resistant depression model rats. Moreover, the mechanism of LTP improvement by iTBS involved downstream molecules of brain-derived neurotrophic factor, while the mechanism of long-term depression improvement by iTBS involved downstream molecules of proBDNF. The aberrant spine morphology was also improved by iTBS treatment. This study demonstrated that the mechanism of the iTBS paradigm is complex and may regulate not only excitatory but also inhibitory synaptic effects in the PFC.
Collapse
Affiliation(s)
- Chi-Wei Lee
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan
| | - Han-Fang Wu
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Department of Opteometry, Hsin-Sheng College of Medical Care and Management, Taoyuan 325, Taiwan
| | - Ming-Chia Chu
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Yueh-Jung Chung
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Wei-Chang Mao
- Department of Psychiatry, Cheng-Hsin General Hospital, Taipei 112, Taiwan
| | - Cheng-Ta Li
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei 112, Taiwan
- Institute of Brain Science, National Yang-Ming University, Taipei 112, Taiwan
- Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Hui-Ching Lin
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei 110, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
15
|
Orso R, Creutzberg KC, Kestering-Ferreira E, Wearick-Silva LE, Tractenberg SG, Grassi-Oliveira R. Maternal Separation Combined With Limited Bedding Increases Anxiety-Like Behavior and Alters Hypothalamic-Pituitary-Adrenal Axis Function of Male BALB/cJ Mice. Front Behav Neurosci 2020; 14:600766. [PMID: 33304248 PMCID: PMC7693708 DOI: 10.3389/fnbeh.2020.600766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/15/2020] [Indexed: 11/13/2022] Open
Abstract
Early life stress (ELS) is considered a risk factor for the development of psychiatric conditions, including depression and anxiety disorder. Individuals that live in adverse environments are usually exposed to multiple stressors simultaneously, such as maternal neglect, maltreatment, and limited resources. Nevertheless, most pre-clinical ELS models are designed to explore the impact of these events separately. For this reason, this study aims to investigate the effects of a combined model of ELS on anxiety-like behavior and hypothalamic-pituitary-adrenal (HPA) axis related targets. From PND 2 to PND 15 BALB/cJ mice were exposed simultaneously to maternal separation (MS; 3 h per day) and limited bedding (LB; ELS group) or left undisturbed (CT group). Maternal behavior was recorded in intercalated days, from PND 1 to PND 9. Male offspring were tested for anxiety-like behavior from PND 53 to PND 55 in the open field test (OF), elevated plus-maze (EPM), and light/dark test (LD). After behavioral testing, animals were euthanized, and glucocorticoid receptor (Nr3c1), corticotrophin-releasing hormone (Crh), and its receptor type 1 (Crhr1) gene expression in the hypothalamus were measured. Moreover, plasma corticosterone levels were analyzed. We observed that ELS dams presented altered quality of maternal care, characterized by a decrease in arched-back nursing, and an increase in passive nursing. Stressed dams also showed an increase in the number of exits from the nest when compared to CT dams. Furthermore, ELS animals showed increased anxiety-like behavior in the OF, EPM, and LD. Regarding gene expression, we identified an increase in hypothalamus Crh levels of ELS group when compared to CT animals, while no differences in Nr3c1 and Crhr1 expression were observed. Finally, stressed animals showed decreased levels of plasma corticosterone when compared to the CT group. In conclusion, we observed an alteration in maternal behavior in ELS dams. Later in life, animals exposed to the combined model of ELS showed increased levels of anxiety-like behavior. Moreover, the central and peripheral HPA measures observed could indicate a dysregulation in HPA function provoked by ELS exposure.
Collapse
Affiliation(s)
- Rodrigo Orso
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | | | - Erika Kestering-Ferreira
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Luis Eduardo Wearick-Silva
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Saulo Gantes Tractenberg
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Brain Institute (InsCer), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
16
|
Zanette LY, Clinchy M. Ecology and Neurobiology of Fear in Free-Living Wildlife. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-124613] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ecology of fear concerns the population-, community-, and ecosystem-level consequences of the behavioral interactions between predators and prey, i.e., the aggregate impacts of individual responses to life-threatening events. We review new experiments demonstrating that fear itself is powerful enough to affect the population growth rate in free-living wild birds and mammals, and fear of large carnivores—or the human super predator—can cause trophic cascades affecting plant and invertebrate abundance. Life-threatening events like escaping a predator can have enduring, even lifelong, effects on the brain, and new interdisciplinary research on the neurobiology of fear in wild animals is both providing insights into post-traumatic stress (PTSD) and reinforcing the likely commonality of population- and community-level effects of fear in nature. Failing to consider fear thus risks dramatically underestimating the total impact predators can have on prey populations and the critical role predator-prey interactions can play in shaping ecosystems.
Collapse
Affiliation(s)
- Liana Y. Zanette
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada;,
| | - Michael Clinchy
- Department of Biology, Western University, London, Ontario N6A 5B7, Canada;,
| |
Collapse
|
17
|
Lycopene ameliorates PTSD-like behaviors in mice and rebalances the neuroinflammatory response and oxidative stress in the brain. Physiol Behav 2020; 224:113026. [DOI: 10.1016/j.physbeh.2020.113026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
|
18
|
Neurotrophin signalling in amygdala-dependent cued fear learning. Cell Tissue Res 2020; 382:161-172. [PMID: 32845430 PMCID: PMC7529623 DOI: 10.1007/s00441-020-03260-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022]
Abstract
The amygdala is a central hub for fear learning assessed by Pavlovian fear conditioning. Indeed, the prevailing hypothesis that learning and memory are mediated by changes in synaptic strength was shown most convincingly at thalamic and cortical afferents to the lateral amygdala. The neurotrophin brain-derived neurotrophic factor (BDNF) is known to regulate synaptic plasticity and memory formation in many areas of the mammalian brain including the amygdala, where BDNF signalling via tropomyosin-related kinase B (TrkB) receptors is prominently involved in fear learning. This review updates the current understanding of BDNF/TrkB signalling in the amygdala related to fear learning and extinction. In addition, actions of proBDNF/p75NTR and NGF/TrkA as well as NT-3/TrkC signalling in the amygdala are introduced.
Collapse
|
19
|
Neurobiological Trajectories Involving Social Isolation in PTSD: A Systematic Review. Brain Sci 2020; 10:brainsci10030173. [PMID: 32197333 PMCID: PMC7139956 DOI: 10.3390/brainsci10030173] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
Social isolation (SI) stress has been recognized as a major risk factor of morbidity in humans and animals, exerting damaging effects at the physical and mental health levels. Posttraumatic stress disorder (PTSD), on the other hand, occurs as a result of experiencing serious, life-threatening, traumatic events and involves involuntary re-experiencing trauma (intrusion), avoidance symptoms, and distortions of cognition and emotional arousal. The literature shows that PTSD is affected by genetic predisposition and triggers a large neurocircuitry involving the amygdala, insula, hippocampus, anterior cingulate- and prefrontal-cortex, and affects the function of the neuroendocrine and immune systems. Social isolation seems to influence the predisposition, onset and outcome of PTSD in humans, whereas it constitutes a valid model of the disorder in animals. According to the PRISMA (preferred reporting items for systematic reviews and meta-analyses) protocol, we systematically reviewed all original studies involving the neurobiological trajectories between SI and PTSD published till July 2019 (database: PubMed/Medline). Out of 274 studies, 10 met the inclusion criteria. We present the results of the retrieved studies in terms of hypothalamic-pituitary-adrenal (HPA)-axis and endocannabinoid system function, immune reactions, neuroplasticity, novel pharmacological targets, and shortening of telomere length, which confirm a synergistic effect on a neurobiological level between the two entities.
Collapse
|
20
|
Rosinger ZJ, De Guzman RM, Jacobskind JS, Saglimbeni B, Malone M, Fico D, Justice NJ, Forni PE, Zuloaga DG. Sex-dependent effects of chronic variable stress on discrete corticotropin-releasing factor receptor 1 cell populations. Physiol Behav 2020; 219:112847. [PMID: 32081812 DOI: 10.1016/j.physbeh.2020.112847] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/25/2020] [Accepted: 02/13/2020] [Indexed: 12/19/2022]
Abstract
Anxiety and depression are strikingly more prevalent in women compared with men. Dysregulation of corticotropin-releasing factor (CRF) binding to its cognate receptor (CRFR1) is thought to play a critical role in the etiology of these disorders. In the present study, we investigated whether there were sex differences in the effects of chronic variable stress (CVS) on CRFR1 cells using CRFR1-GFP reporter mice experiencing a 9-day CVS paradigm. Brains were collected from CVS and stress naïve female and male mice following exposure to the open field test. This CVS paradigm effectively increased anxiety-like behavior in female and male mice. In addition, we assessed changes in activation of CRFR1 cells (co-localization with c-Fos and phosphorylated CREB (pCREB)) in stress associated brain structures, including two sexually dimorphic CRFR1 cell groups in the anteroventral periventricular nucleus (AVPV/PeN; F>M) and paraventricular hypothalamus (PVN; M>F). CVS increased CRFR1-GFP cell number as well as the number of CRFR1/pCREB co-expressing cells in the female but not male AVPV/PeN. In the PVN, the number of CRFR1/pCREB co-expressing cells was overall greater in males regardless of treatment and CVS resulted in a male-specific reduction of CRFR1/c-Fos cells. In addition, CVS induced a female-specific reduction in CRFR1/c-Fos cells within the anteroventral bed nucleus of the stria terminalis and both sexes exhibited a reduction in CRFR1/c-Fos co-expressing cells following CVS within the ventral basolateral amygdala. Overall, these sex-specific effects of CVS on CRFR1 populations may have implications for sex differences in stress-induction of mood disorders.
Collapse
Affiliation(s)
- Zachary J Rosinger
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Rose M De Guzman
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Jason S Jacobskind
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Brianna Saglimbeni
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Margaret Malone
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Danielle Fico
- Department of Psychology, University at Albany, Albany, NY 12222, United States
| | - Nicholas J Justice
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Sciences Center, Houston, TX, United States
| | - Paolo E Forni
- Department of Biological Sciences, The RNA Institute, and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, United States
| | - Damian G Zuloaga
- Department of Psychology, University at Albany, Albany, NY 12222, United States.
| |
Collapse
|
21
|
Abstract
Understanding the neurobiological basis of post-traumatic stress disorder (PTSD) is fundamental to accurately diagnose this neuropathology and offer appropriate treatment options to patients. The lack of pharmacological effects, too often observed with the most currently used drugs, the selective serotonin reuptake inhibitors (SSRIs), makes even more urgent the discovery of new pharmacological approaches. Reliable animal models of PTSD are difficult to establish because of the present limited understanding of the PTSD heterogeneity and of the influence of various environmental factors that trigger the disorder in humans. We summarize knowledge on the most frequently investigated animal models of PTSD, focusing on both their behavioral and neurobiological features. Most of them can reproduce not only behavioral endophenotypes, including anxiety-like behaviors or fear-related avoidance, but also neurobiological alterations, such as glucocorticoid receptor hypersensitivity or amygdala hyperactivity. Among the various models analyzed, we focus on the social isolation mouse model, which reproduces some deficits observed in humans with PTSD, such as abnormal neurosteroid biosynthesis, changes in GABAA receptor subunit expression and lack of pharmacological response to benzodiazepines. Neurosteroid biosynthesis and its interaction with the endocannabinoid system are altered in PTSD and are promising neuronal targets to discover novel PTSD agents. In this regard, we discuss pharmacological interventions and we highlight exciting new developments in the fields of research for novel reliable PTSD biomarkers that may enable precise diagnosis of the disorder and more successful pharmacological treatments for PTSD patients.
Collapse
|
22
|
Impaired memory and marble burying activity in deformed epidermal autoregulatory factor 1 (Deaf1) conditional knockout mice. Behav Brain Res 2019; 380:112383. [PMID: 31783086 DOI: 10.1016/j.bbr.2019.112383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/05/2019] [Accepted: 11/23/2019] [Indexed: 11/24/2022]
Abstract
Deleterious mutations within the DNA binding domain of the transcription factor deformed epidermal autoregulatory factor 1 (DEAF1) result in a phenotypic spectrum of neurodevelopmental disorders including intellectual disabilities and autism spectrum disorders. While whole animal deletion of Deaf1 in mice is lethal, mice with conditional disruption of the gene in neuronal precursor cells can display memory deficits and increased anxiety-like behavior. This study aimed to further characterize learning and memory alterations and assess changes in marble burying activity and hippocampal size in mice with conditional deletion of Deaf1. Mice lacking DEAF1 in the CNS (NKO) displayed reduced memory in both contextual fear conditioning and a 3-day massed trials Morris water maze paradigm. NKO mice had reduced marble burying activity in full cage marble burying tests. Using a half-cage marble test, NKO mice again buried fewer marbles and spent significantly more time on the side of the cage away from the marbles compared to control animals. The area of the dorsal hippocampus of NKO mice was decreased compared to control and animals with a single Deaf1 allele. These results continue to establish the importance of DEAF1 in cognitive behavior and provide new evidence that DEAF1 regulates hippocampal morphology.
Collapse
|
23
|
Algamal M, Saltiel N, Pearson AJ, Ager B, Burca I, Mouzon B, Diamond DM, Mullan M, Ojo JO, Crawford F. Impact of Repetitive Mild Traumatic Brain Injury on Behavioral and Hippocampal Deficits in a Mouse Model of Chronic Stress. J Neurotrauma 2019; 36:2590-2607. [PMID: 30963958 PMCID: PMC7366273 DOI: 10.1089/neu.2018.6314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Clinical studies examining the interaction between traumatic brain injury (TBI) and stress-related disorders (e.g., post-traumatic stress disorder) are often complicated by methodological constraints, such as heterogeneity in injury type and severity, time post-trauma, and predisposing risk factors. Developing relevant animal models whereby many variables can be efficiently controlled is thus essential to understanding this elusive relationship. Here, we use our repeated unpredictable stress (RUS) paradigm, in combination with our established mouse model of repetitive mild TBI (r-mTBI), to assess the impact of repeated exposures to these paradigms on behavioral and neurobiological measures. C57BL/6J male mice were exposed to RUS and r-mTBI at 3 and 6 months of age followed by batteries of behavioral testing. Mice were euthanized 10 days and 3 months post-exposure, with brain and plasma samples collected for molecular profiling. The RUS paradigm involved exposure to a predator odor (trimethylthiazoline; TMT) while under restraint, daily unstable social housing, five inescapable footshocks on separate days, and chronic social isolation. Animals receiving r-mTBI ( × 5) and stress were exposed to a single closed-head injury 1 h after each footshock. Stress-alone mice showed significant weight loss, recall of traumatic memories, and anxiety-like and passive stress-coping behavior when compared with control mice. However, in stress+r-mTBI animals, the changes in cued fear memory, anxiety, and stress-coping tests were diminished, possibly due to TBI-induced hyperactivity. We also report complex brain molecular and neuropathological findings. Stress and r-mTBI, either individually or comorbidly, were associated with a chronic reduction in dendritic spine GluN2A/GluN2B ratio in the hippocampus. While stress augmented the r-mTBI-dependent astrogliosis in the corpus callosum, it mitigated r-mTBI-induced increases in hippocampal pro-brain-derived neurotrophic factor. We anticipate that our model will be a good platform to untangle the complex comorbid pathophysiology in stress disorders and r-mTBI.
Collapse
Affiliation(s)
- Moustafa Algamal
- Roskamp Institute, Sarasota, Florida
- The Open University, Milton Keynes, United Kingdom
| | - Nicole Saltiel
- Roskamp Institute, Sarasota, Florida
- James A. Haley Veterans' Hospital, Tampa, Florida
| | - Andrew J. Pearson
- Roskamp Institute, Sarasota, Florida
- The Open University, Milton Keynes, United Kingdom
| | | | | | - Benoit Mouzon
- Roskamp Institute, Sarasota, Florida
- James A. Haley Veterans' Hospital, Tampa, Florida
| | - David M. Diamond
- Department of Psychology, Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida
| | - Michael Mullan
- Roskamp Institute, Sarasota, Florida
- The Open University, Milton Keynes, United Kingdom
| | - Joseph O. Ojo
- Roskamp Institute, Sarasota, Florida
- The Open University, Milton Keynes, United Kingdom
- James A. Haley Veterans' Hospital, Tampa, Florida
| | - Fiona Crawford
- Roskamp Institute, Sarasota, Florida
- The Open University, Milton Keynes, United Kingdom
- James A. Haley Veterans' Hospital, Tampa, Florida
| |
Collapse
|
24
|
Vargas T, Zou DS, Conley RE, Mittal VA. Assessing Developmental Environmental Risk Factor Exposure in Clinical High Risk for Psychosis Individuals: Preliminary Results Using the Individual and Structural Exposure to Stress in Psychosis-Risk States Scale. J Clin Med 2019; 8:jcm8070994. [PMID: 31323940 PMCID: PMC6678455 DOI: 10.3390/jcm8070994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Exposure to cumulative environmental risk factors across development has been linked to a host of adverse health/functional outcomes. This perspective incorporating information regarding exposure at differing developmental periods is lacking in research surrounding individuals at Clinical High Risk (CHR) for developing a psychotic disorder. METHODS CHR individuals (n = 35) and healthy volunteers (n = 28) completed structured clinical interviews as well as our group's newly developed Individual and Structural Exposure to Stress in Psychosis-risk-states (ISESP) interview. Lifetime cumulative scores were calculated, and severity of stress was reported for multiple developmental periods/ages. Group differences were tested, and associations with current symptom domains were examined. RESULTS Significant group differences were not observed for lifetime cumulative events, though CHR trended toward endorsing more events and greater stress severity. For stress severity across development, there were trending group differences for the 11-13 age range, and significant group differences for the 14-18 age range; notably, comparisons for earlier time points did not approach statistical significance. Associations between negative symptoms and cumulative severity of exposure were observed. DISCUSSION Results suggest exploring exposure to cumulative environmental risk factors/stressors and stress severity across developmental periods is generally informative and possibly specifically so for predictive models and diathesis-stress psychosis risk conceptualizations.
Collapse
Affiliation(s)
- Teresa Vargas
- Department of Psychology, Northwestern University, Evanston, IL 60208, USA.
| | - Denise S Zou
- Department of Psychology, Northwestern University, Evanston, IL 60208, USA
| | - Rachel E Conley
- Department of Psychology, Northwestern University, Evanston, IL 60208, USA
| | - Vijay A Mittal
- Department of Psychology, Department of Psychiatry, Department of Medical Social Sciences, Institute for Innovations in Developmental Sciences, Institute for Policy Research, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
25
|
Shah J, Deas SB, Ren C, Jilling T, Brawner KM, Martin CA. The Effects of Gestational Psychological Stress on Neonatal Mouse Intestinal Development. J Surg Res 2018; 235:621-628. [PMID: 30691851 DOI: 10.1016/j.jss.2018.10.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/03/2018] [Accepted: 10/30/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Psychological stress during pregnancy has been shown to cause subsequent harm to the fetus and newborn. Many studies focus on neurodevelopmental outcomes, but little is known about the effect of gestational stress on intestinal immunity and development. The purpose of this study was to determine the effect of psychological stress during pregnancy on intestinal architecture and growth in newborns. METHODS Eight-week-old C57BL6 littermates underwent timed breeding. Pregnant dams were subjected to 1 h of daily psychological stress by using a well-established restraint model during days E7-E14. The distal ileum of 2-wk-old offspring of stressed mothers and nonstressed controls was harvested for histologic analysis. Slides were blinded to measure villus height and crypt depth and surface area. Serum was obtained to measure serum corticosterone levels. An explant model was used to measure corticosterone on the intestinal stem cell marker Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) and growth factors epidermal growth factor receptor and insulin-like growth factor-1. RESULTS The villus height, crypt depth, and surface area were significantly decreased in newborn exposed to stress during gestation. In addition, corticosterone levels were elevated in 2-wk-old mice exposed to stress. Real-time polymerase chain reaction revealed that explants exposed to corticosterone had a decrease in LGR5 compared with controls and an increase in epidermal growth factor receptor. CONCLUSIONS Here, we establish that neonatal mice from mothers that were subjected to psychological stress during pregnancy have significantly shorter villi and crypts compared with controls. In addition, pups from stressed mothers have decreased expression levels of the intestinal stem cell marker LGR5. These findings will aid in determining the effect of gestational psychological stress on intestinal development and stem cell plasticity.
Collapse
Affiliation(s)
- Juhi Shah
- Division of Pediatric Surgery, Department of Pediatric Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sara Beth Deas
- Division of Pediatric Surgery, Department of Pediatric Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Changchun Ren
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tamas Jilling
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kyle M Brawner
- Division of Pediatric Surgery, Department of Pediatric Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | - Colin A Martin
- Division of Pediatric Surgery, Department of Pediatric Surgery, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|