1
|
Weiermair T, Svehlikova E, Boulgaropoulos B, Magnes C, Eberl A. Investigating Runner's High: Changes in Mood and Endocannabinoid Concentrations after a 60 min Outdoor Run Considering Sex, Running Frequency, and Age. Sports (Basel) 2024; 12:232. [PMID: 39330709 PMCID: PMC11435531 DOI: 10.3390/sports12090232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
Runner's high is a euphoric emotional state occurring during and post-physical exercise. Although previous data indicate endocannabinoids' involvement in animal runner's high, their role in human runner's high remains to be established. We investigated runner's high in healthy humans assessing mood and plasma endocannabinoid concentration changes pre- and post a 60 min outdoor run, considering sex (8 females/8 males), running frequency (4 occasional/12 regular runners) and age (median split 36 years). Mood, AEA, and 2-AG concentrations were significantly increased post-run considering all participants (p < 0.0001, p < 0.0001, p < 0.01, respectively), with 2-AG varying more than AEA concentrations. Concentrations of both endocannabinoids increased pre- to post-run in women (p < 0.01) but the AEA concentration increase was higher in females than in males (p < 0.05). Post-run concentration increase appeared to be more pronounced in occasional than in regular runners for 2-AG but not for AEA. However, regular runners experienced stronger mood increases and better post-run mood than occasional runners. Post-run endocannabinoid concentrations were increased regardless of age. AEA concentrations and their post-run changes were less affected by running frequency and age than those of 2-AG. These findings provide insights into the interplay of physical exercise, physiological/psychological factors and demographics, laying a valuable foundation for future research.
Collapse
Affiliation(s)
- Theresia Weiermair
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Eva Svehlikova
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Beate Boulgaropoulos
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Christoph Magnes
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| | - Anita Eberl
- Institute for Biomedical Research and Technologies (HEALTH), Joanneum Research Forschungsgesellschaft m.b.H, Neue Stiftingtalstrasse 2, 8010 Graz, Austria
| |
Collapse
|
2
|
Pentikäinen E, Kimppa L, Pitkäniemi A, Lahti O, Särkämö T. Longitudinal effects of choir singing on aging cognition and wellbeing: a two-year follow-up study. Front Hum Neurosci 2023; 17:1174574. [PMID: 37545597 PMCID: PMC10398963 DOI: 10.3389/fnhum.2023.1174574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction While increasing evidence points toward the benefits of musical activities in promoting cognitive and emotional well-being in older adults, more longitudinal studies are needed to establish their long-term effects and uncover the mechanisms through which musical activities affect well-being. Most previous research has focused on instrumental musical activities, but little is currently known about the long-term effects of singing, even though neuroimaging evidence suggests that it is a versatile activity for the brain, involving a multitude of neural processes that are potentially beneficial for well-being. Methods We conducted a 2-year follow-up study to assess aging-related changes in cognitive functioning and emotional and social well-being with self-report questionnaires and standardized tests in 107 older adult choir singers and 62 demographically matched non-singers. Data were collected at baseline (T1), and at 1-year (T2) and 2-year (T3) follow-ups using questionnaires on subjective cognitive functioning, depression, social engagement, and quality of life (QOL) in all participants and neuropsychological tests in a subgroup of participants (45 choir singers and 41 non-singers). Results The results of linear mixed model analysis showed that in verbal flexibility (phonemic fluency task), the choir singers had higher scores already at T1 and showed no change over time, whereas the non-singers showed enhancement from T1 to T3. Furthermore, active retrieval of word knowledge (WAIS-IV Vocabulary task) showed significantly different changes from T1 to T2 between the groups (enhancement in choir singers and decline in non-singers), however lacking significant change within groups. Similar opposite trajectories of QOL related to social inclusion and safety of the environment (WHOQOL-Bref Environmental subscale) were significant from T1 to T3, but these changes were not significant within groups or at each timepoint. Within the choir singers, shorter experience in choir singing was associated with greater improvement in the vocabulary task over the follow-up period, suggesting that initiation of choir singing at older age induces some verbal benefits. There were no group differences in any other questionnaire or neuropsychological measure over time. Discussion In conclusion, our results suggest that choir singing at older age is associated with a sustained enhancement of phonemic fluency, while the effects on other verbal skills and quality of life are less clear.
Collapse
Affiliation(s)
- Emmi Pentikäinen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Centre of Excellence in Music, Mind, Body, and Brain, University of Helsinki, Helsinki, Finland
| | - Lilli Kimppa
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anni Pitkäniemi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Centre of Excellence in Music, Mind, Body, and Brain, University of Helsinki, Helsinki, Finland
| | - Outi Lahti
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Seinäjoki Central Hospital, Geriatric Outpatient Clinic, Rehabilitation Analysis Clinic, Seinäjoki, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Centre of Excellence in Music, Mind, Body, and Brain, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Anajirih N, O'Sullivan SE, Alexander SP. Endocannabinoid hydrolases differentially distribute in platelets and red blood cells and are differentially released by thrombin. Prostaglandins Other Lipid Mediat 2023; 164:106692. [PMID: 36372184 DOI: 10.1016/j.prostaglandins.2022.106692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Plasma levels of the major endocannabinoids 2-arachidonoylgycerol (2AG) and anandamide (N-arachidonoylethanolamine, AEA) have been identified to vary independently with particular pathological conditions. The levels of these endocannabinoids are tightly regulated by two hydrolytic enzymes, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), respectively. OBJECTIVES In this study, we have quantified these enzyme activities in the major blood fractions. PATIENTS/METHODS In blood fractions from human volunteers, radiometric assays were used to quantify monoacylglycerol lipase and fatty acid amide hydrolase. Tagging with fluorophosphonate-rhodamine allowed quantification of platelet serine hydrolase activities. RESULTS Fatty acid amide hydrolase activity was highest in platelets, while MAGL activity was most abundant in erythrocytes. Sampling the blood of donors on two further occasions 15 days apart showed no significant change in platelet FAAH or erythrocyte MAGL activities. Activities were not different when comparing female donors with males. Storage of these blood fractions at - 80 °C was associated with a rapid loss in enzyme activities, which could largely by avoided by storage in liquid nitrogen. Incubation of platelets and erythrocytes in the presence of thrombin lead to release of measurable FAAH, but not MAGL, activity. Tagging of serine hydrolase activities with fluorophosphonate-rhodamine allowed confirmation of MAGL activity in platelet preparations, as well as multiple other enzymes. CONCLUSIONS These investigations suggest a potential role for FAAH in regulation of coagulation, while the role of MAGL in blood requires further investigation.
Collapse
Affiliation(s)
- Nuha Anajirih
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, UK.
| | - Saoirse E O'Sullivan
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, Royal Derby Hospital, University of Nottingham, Nottingham, UK.
| | - Stephen Ph Alexander
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham Medical School, Nottingham NG7 2UH, UK.
| |
Collapse
|
4
|
The Endocannabinoid System and Physical Exercise. Int J Mol Sci 2023; 24:ijms24031989. [PMID: 36768332 PMCID: PMC9916354 DOI: 10.3390/ijms24031989] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
The endocannabinoid system (ECS) is involved in various processes, including brain plasticity, learning and memory, neuronal development, nociception, inflammation, appetite regulation, digestion, metabolism, energy balance, motility, and regulation of stress and emotions. Physical exercise (PE) is considered a valuable non-pharmacological therapy that is an immediately available and cost-effective method with a lot of health benefits, one of them being the activation of the endogenous cannabinoids. Endocannabinoids (eCBs) are generated as a response to high-intensity activities and can act as short-term circuit breakers, generating antinociceptive responses for a short and variable period of time. A runner's high is an ephemeral feeling some sport practitioners experience during endurance activities, such as running. The release of eCBs during sustained physical exercise appears to be involved in triggering this phenomenon. The last decades have been characterized by an increased interest in this emotional state induced by exercise, as it is believed to alleviate pain, induce mild sedation, increase euphoric levels, and have anxiolytic effects. This review provides information about the current state of knowledge about endocannabinoids and physical effort and also an overview of the studies published in the specialized literature about this subject.
Collapse
|
5
|
Plasma and interstitial levels of endocannabinoids and N-acylethanolamines in patients with chronic widespread pain and fibromyalgia: a systematic review and meta-analysis. Pain Rep 2022; 7:e1045. [PMID: 36381652 PMCID: PMC9646668 DOI: 10.1097/pr9.0000000000001045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 07/31/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
The endocannabinoid system (ECS) is an essential endogenous signaling system that may be involved in the pathophysiology of chronic widespread pain (CWP) and fibromyalgia syndrome (FMS). Further research is required to understand the role of ECS in the development and maintenance of CWP and FMS. We provided the first systematic review and meta-analysis exploring the clinical relevance of ECS alterations in patients with CWP and FMS by comparing plasma and interstitial levels of endocannabinoids and N-acylethanolamines in patients and healthy controls. A systematic search was conducted to identify studies that measured plasma and/or interstitial levels of endocannabinoids and N-acylethanolamines in patients with CWP or FMS and healthy controls. A total of 8 studies were included for qualitative review, and 7 studies were included for meta-analysis. The findings identified increased plasma levels of oleoylethanolamide and stearoylethanolamide in patients with FMS compared with those in controls (P = 0.005 and P < 0.0001, respectively) and increased plasma levels of palmitoylethanolamide and interstitial levels of stearoylethanolamide in patients with CWP compared with those in controls (P = 0.05 and P = 0.001, respectively). There were no significant differences in other ECS parameters. Most studies did not account for variables that may influence ECS function, including cannabis use, concomitant medication, comorbidities, physical activity, stress levels, circadian rhythm, sleep quality, and dietary factors, suggesting that future studies should explore the correlation between these variables and endocannabinoid activity. We highlight the importance of investigating endocannabinoid activity in CWP and FMS because it will underpin future translational research in the area.
Collapse
|
6
|
Bellomo TR, Tsao NL, Johnston-Cox H, Borkowski K, Shakt G, Judy R, Moore J, Ractcliffe SJ, Fiehn O, Floyd TF, Wehrli FW, Mohler E, Newman JW, Damrauer SM. Metabolite patterns associated with individual response to supervised exercise therapy in patients with intermittent claudication. JVS Vasc Sci 2022; 3:379-388. [PMID: 36568282 PMCID: PMC9772856 DOI: 10.1016/j.jvssci.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
Objective Supervised exercise therapy (SET) is the first line treatment for intermittent claudication owing to peripheral arterial disease. Despite multiple randomized controlled trials proving the efficacy of SET, there are large differences in individual patient's responses. We used plasma metabolomics to identify potential metabolic influences on the individual response to SET. Methods Primary metabolites, complex lipids, and lipid mediators were measured on plasma samples taken at before and after Gardner graded treadmill walking tests that were administered before and after 12 weeks of SET. We used an ensemble modeling approach to identify metabolites or changes in metabolites at specific time points that associated with interindividual variability in the functional response to SET. Specific time points analyzed included baseline metabolite levels before SET, dynamic metabolomics changes before SET, the difference in pre- and post-SET baseline metabolomics, and the difference (pre- and post-SET) of the dynamic (pre- and post-treadmill). Results High levels of baseline anandamide levels pre- and post-SET were associated with a worse response to SET. Increased arachidonic acid (AA) and decreased levels of the AA precursor dihomo-γ-linolenic acid across SET were associated with a worse response to SET. Participants who were able to tolerate large increases in AA during acute exercise had longer, or better, walking times both before and after SET. Conclusions We identified two pathways of relevance to individual response to SET that warrant further study: anandamide synthesis may activate endocannabinoid receptors, resulting in worse treadmill test performance. SET may train patients to withstand higher levels of AA, and inflammatory signaling, resulting in longer walking times. Clinical Relevance This manuscript describes the use of metabolomic techniques to measure the interindividual effects of SET in patients with peripheral artery disease (PAD). We identified high levels of AEA are linked to CB1 signaling and activation of inflammatory pathways. This alters energy expenditure in myoblasts by decreasing glucose uptake and may induce an acquired skeletal muscle myopathy. SET may also help participants tolerate increased levels of AA and inflammation produced during exercise, resulting in longer walking times. This data will enhance understanding of the pathophysiology of PAD and the mechanism by which SET improves walking intolerance.
Collapse
Affiliation(s)
- Tiffany R. Bellomo
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Noah L. Tsao
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Hillary Johnston-Cox
- Division of Cardiovascular Medicine, Department of Medicine, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kamil Borkowski
- West Coast Metabolomics Center, University of California Davis, Davis, CA
| | - Gabrielle Shakt
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Renae Judy
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA
| | - Jonni Moore
- Department of Pathology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, CA
| | - Thomas F. Floyd
- Departments of Anesthesiology and Pain Management, Cardiovascular Surgery, and Radiology, University of Texas Southwestern, Dallas, TX
| | - Felix W. Wehrli
- Department of Radiology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Emile Mohler
- Division of Cardiovascular Medicine, Department of Medicine, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John W. Newman
- West Coast Metabolomics Center, University of California Davis, Davis, CA,Department of Nutrition, University of California, Davis, CA,Obesity and Metabolism Research Unit, USDA-ARS-Western Human Nutrition Research Center, Davis, CA
| | - Scott M. Damrauer
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA,Correspondence: Scott M. Damrauer, MD, Division of Vascular Surgery, Hospital of the University of Pennsylvania, 3400 Spruce St, 4 Silverstein, Philadelphia, PA 19104
| |
Collapse
|
7
|
Desai S, Borg B, Cuttler C, Crombie KM, Rabinak CA, Hill MN, Marusak HA. A Systematic Review and Meta-Analysis on the Effects of Exercise on the Endocannabinoid System. Cannabis Cannabinoid Res 2022; 7:388-408. [PMID: 34870469 PMCID: PMC9418357 DOI: 10.1089/can.2021.0113] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction: The endocannabinoid (eCB) system plays a key role in maintaining homeostasis, including the regulation of metabolism and stress responses. Chronic stress may blunt eCB signaling, and disruptions in eCB signaling have been linked to stress-related psychiatric disorders and physical health conditions, including anxiety, depression, post-traumatic stress disorder (PTSD), diabetes, and obesity. Pharmacological and nonpharmacological behavioral interventions (e.g., exercise) that target the eCB system may be promising therapeutic approaches for the prevention and treatment of stress-related diseases. In this study, we perform a systematic review and the first meta-analysis to examine the impact of exercise on circulating eCB concentrations. Materials and Methods: We performed a review of the MEDLINE (PubMed) database for original articles examining the impact of exercise on eCBs in humans and animal models. A total of 262 articles were screened for initial inclusion. Results: Thirty-three articles (reporting on 57 samples) were included in the systematic review and 10 were included in the meta-analysis. The majority of samples that measured anandamide (AEA) showed a significant increase in AEA concentrations following acute exercise (74.4%), whereas effects on 2-arachidonoylglycerol (2-AG) were inconsistent. The meta-analysis, however, revealed a consistent increase in both AEA and 2-AG following acute exercise across modalities (e.g., running, cycling), species (e.g., humans, mice), and in those with and without pre-existing health conditions (e.g., PTSD, depression). There was substantial heterogeneity in the magnitude of the effect across studies, which may relate to exercise intensity, physical fitness, timing of measurement, and/or fasted state. Effects of chronic exercise were inconsistent. Conclusions: Potential interpretations and implications of exercise-induced mobilization of eCBs are discussed, including refilling of energy stores and mediating analgesic and mood elevating effects of exercise. We also offer recommendations for future work and discuss therapeutic implications for exercise in the prevention and treatment of stress-related psychopathology.
Collapse
Affiliation(s)
- Shreya Desai
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Breanna Borg
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Carrie Cuttler
- Department of Psychology, Washington State University, Pullman, Washington, USA
| | - Kevin M. Crombie
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin, Austin, Texas, USA
| | - Christine A. Rabinak
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA
- Department of Pharmacy Practice and Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan, USA
- Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, Michigan, USA
| | - Matthew N. Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Hilary A. Marusak
- Department of Psychiatry and Behavioral Neurosciences, School of Medicine, Wayne State University, Detroit, Michigan, USA
- Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
8
|
Park Y, Watkins BA. Dietary PUFAs and Exercise Dynamic Actions on Endocannabinoids in Brain: Consequences for Neural Plasticity and Neuroinflammation. Adv Nutr 2022; 13:1989-2001. [PMID: 35675221 PMCID: PMC9526838 DOI: 10.1093/advances/nmac064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 10/15/2021] [Accepted: 06/02/2022] [Indexed: 01/28/2023] Open
Abstract
The brain and peripheral nervous system provide oversight to muscle physiology and metabolism. Muscle is the largest organ in the body and critical for glucose sensitivity, prevention of diabetes, and control of obesity. The central nervous system produces endocannabinoids (eCBs) that play a role in brain neurobiology, such as inflammation and pain. Interestingly, studies in humans and rodents show that a moderate duration of exercise increases eCBs in the brain and blood and influences cannabinoid receptors. Cannabinoid actions in the nervous system have advanced our understanding of pain, well-being, and disease. Nutrition is an important aspect of brain and eCB physiology because eCBs are biosynthesized from PUFAs. The primary eCB metabolites are derived from arachidonic acid, a 20:4n-6 (ω-6) PUFA, and the n-3 (ω-3) PUFAs, EPA and DHA. The eCBs bind to cannabinoid receptors CB1 and CB2 to exert a wide range of activities, such as stimulating appetite, influencing energy metabolism, supporting the immune system, and facilitating neuroplasticity. A diet containing different essential n-6 and n-3 PUFAs will dominate the formation of specific eCBs, and subsequently their actions as ligands for CB1 and CB2. The eCBs also function as substrates for cyclooxygenase enzymes, including potential substrates for the oxylipins (OxLs), which can be proinflammatory. Together, the eCBs and OxLs act as modulators of neuroinflammation. Thus, dietary PUFAs have implications for exercise responses via synthesis of eCBs and their effects on neuroinflammation. Neurotrophins also participate in interactions between diet and the eCBs, specifically brain-derived neurotrophic factor (BDNF). BDNF supports neuroplasticity in cooperation with the endocannabinoid system (ECS). This review will describe the role of PUFAs in eCB biosynthesis, discuss the ECS and OxLs in neuroinflammation, highlight the evidence for exercise effects on eCBs, and describe eCB and BDNF actions on neuroplasticity.
Collapse
|
9
|
Babaei P, Azari HB. Exercise Training Improves Memory Performance in Older Adults: A Narrative Review of Evidence and Possible Mechanisms. Front Hum Neurosci 2022; 15:771553. [PMID: 35153701 PMCID: PMC8829997 DOI: 10.3389/fnhum.2021.771553] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
Abstract
As human life expectancy increases, cognitive decline and memory impairment threaten independence and quality of life. Therefore, finding prevention and treatment strategies for memory impairment is an important health concern. Moreover, a better understanding of the mechanisms involved underlying memory preservation will enable the development of appropriate pharmaceuticals drugs for those who are activity limited. Exercise training as a non-pharmacological tool, has been known to increase the mean lifespan by maintaining general body health and improving the cardiovascular and nervous systems function. Among different exercise training protocols, aerobic exercise has been reported to prevent the progression of memory decline, provided adequate exertion level, duration, and frequency. Mechanisms underlying exercise training effects on memory performance have not been understood yet. Convergent evidence suggest several direct and indirect mechanisms at molecular and supramolecular levels. The supramolecular level includes improvement in blood circulation, synaptic plasticity and neurogenesis which are under controls of complex molecular signaling of neurotransmitters, neurotrophic factors, exerkines, and epigenetics factors. Among these various factors, irisin/BDNF signaling seems to be one of the important mediators of crosstalk between contracted skeletal muscles and the brain during exercise training. This review provides an affordable and effective method to improve cognitive function in old ages, particularly those who are most vulnerable to neurodegenerative disorders.
Collapse
Affiliation(s)
- Parvin Babaei
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Helya Bolouki Azari
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Department of Physiology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Siebers M, Biedermann SV, Fuss J. Do Endocannabinoids Cause the Runner’s High? Evidence and Open Questions. Neuroscientist 2022; 29:352-369. [PMID: 35081831 PMCID: PMC10159215 DOI: 10.1177/10738584211069981] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The runner’s high is an ephemeral feeling some humans experience during and after endurance exercise. Recent evidence in mice suggests that a runner’s high depends on the release of endocannabinoids (eCBs) during exercise. However, little is known under what circumstances eCBs are released during exercise in humans. This systematic review sampled all data from clinical trials in humans on eCB levels following exercise from the discovery of eCBs until April 20, 2021. PubMed/NCBI, Ovid MEDLINE, and Cochrane library were searched systematically and reviewed following the PRISMA guidelines. From 278 records, 21 met the inclusion criteria. After acute exercise, 14 of 17 studies detected an increase in eCBs. In contrast, after a period of long-term endurance exercise, four articles described a decrease in eCBs. Even though several studies demonstrated an association between eCB levels and features of the runner’s high, reliable proof of the involvement of eCBs in the runner’s high in humans has not yet been achieved due to methodological hurdles. In this review, we suggest how to advance the study of the influence of eCBs on the beneficial effects of exercise and provide recommendations on how endocannabinoid release is most likely to occur under laboratory conditions.
Collapse
Affiliation(s)
- Michael Siebers
- Institute of Forensic Psychiatry and Sex Research, University of Duisburg-Essen, Essen, Germany
- Human Behavior Laboratory, Institute for Sex Research, Sexual Medicine and Forensic Psychiatry, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah V. Biedermann
- Department of Psychiatry and Psychotherapy, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Fuss
- Institute of Forensic Psychiatry and Sex Research, University of Duisburg-Essen, Essen, Germany
- Human Behavior Laboratory, Institute for Sex Research, Sexual Medicine and Forensic Psychiatry, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
Neurobiological Processes Induced by Aerobic Exercise through the Endocannabinoidome. Cells 2021; 10:cells10040938. [PMID: 33920695 PMCID: PMC8072750 DOI: 10.3390/cells10040938] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
Evidence suggesting the triangulation of the endocannabinoid system, exercise, and neurological health is emerging. In addition to the endocannabinoids N-arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG), the expanded endocannabinoid system, known as the endocannabinoidome (eCBome), appears to be an important player in this relationship. The eCBome includes several endocannabinoid-like mediators such as N-acylethanolamines and 2-monoacylglycerols, the enzymes involved in their biosynthesis and degradation, and the receptors they affect. This review aims to relate the functional interactions between aerobic exercise, and the molecular and cellular pathways related to endocannabinoids, in the hypothalamus, hippocampus, and the periphery, with special attention given to associations with emotional state, cognition, and mental health. Given the well-documented roles of many eCBome members in regulating stress and neurological processes, we posit that the eCBome is an important effector of exercise-induced central and peripheral adaptive mechanisms that benefit mental health. Gut microbiota imbalance, affecting the gut-brain axis and metabolism, also influences certain eCBome-modulated inflammation pathways. The integrity of the gut microbiota could thus be crucial in the onset of neuroinflammation and mental conditions. Further studies on how the modulation by exercise of the peripheral eCBome affects brain functions could reveal to be key elements in the prevention and treatment of neuropsychological disorders.
Collapse
|
12
|
Siebers M, Biedermann SV, Bindila L, Lutz B, Fuss J. Exercise-induced euphoria and anxiolysis do not depend on endogenous opioids in humans. Psychoneuroendocrinology 2021; 126:105173. [PMID: 33582575 DOI: 10.1016/j.psyneuen.2021.105173] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
A runner's high describes a sense of well-being during endurance exercise characterized by euphoria and anxiolysis. It has been a widespread belief that the release of endogenous opioids, such as endorphins, underlie a runner's high. However, exercise leads to the release of two classes of rewarding molecules, endocannabinoids (eCBs) and opioids. In mice, we have shown that core features of a runner's high depend on cannabinoid receptors but not opioid receptors. In the present study, we aimed to corroborate in humans that endorphins do not play a significant role in the underlying mechanism of a runner's high. Thus, we investigated whether the development of two core features of a runner's high, euphoria and reduced anxiety levels, depend on opioid signaling by using the opioid receptor antagonist naltrexone (NAL) in a double-blind, randomized, placebo (PLA)-controlled experiment. Participants (N = 63) exhibited increased euphoria and decreased anxiety after 45 min of running (RUN) on a treadmill in a moderate-intensity range compared to walking (WALK). RUN led to higher plasma levels of the eCBs anandamide (AEA) and 2-arachidonoglycerol (2-AG). Opioid blockade did not prevent the development of euphoria and reduced anxiety as well as elevation of eCB levels following exercise. Moreover, the fraction of participants reporting a subjective runner's high was comparable in the NAL and PLA-treated group. Therefore, this study indicates that the development of a runner's high does not depend on opioid signaling in humans, but makes eCBs strong candidates in humans, as previously shown in mice.
Collapse
Affiliation(s)
- Michael Siebers
- Human Behavior Laboratory, Institute for Sex Research, Sexual Medicine and Forensic Psychiatry, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah V Biedermann
- Department of Psychiatry and Psychotherapy, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Johannes Fuss
- Human Behavior Laboratory, Institute for Sex Research, Sexual Medicine and Forensic Psychiatry, Center of Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
13
|
Pentikäinen E, Pitkäniemi A, Siponkoski ST, Jansson M, Louhivuori J, Johnson JK, Paajanen T, Särkämö T. Beneficial effects of choir singing on cognition and well-being of older adults: Evidence from a cross-sectional study. PLoS One 2021; 16:e0245666. [PMID: 33534842 PMCID: PMC7857631 DOI: 10.1371/journal.pone.0245666] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Background and objectives Choir singing has been associated with better mood and quality of life (QOL) in healthy older adults, but little is known about its potential cognitive benefits in aging. In this study, our aim was to compare the subjective (self-reported) and objective (test-based) cognitive functioning of senior choir singers and matched control subjects, coupled with assessment of mood, QOL, and social functioning. Research design and methods We performed a cross-sectional questionnaire study in 162 healthy older (age ≥ 60 years) adults (106 choir singers, 56 controls), including measures of cognition, mood, social engagement, QOL, and role of music in daily life. The choir singers were divided to low (1–10 years, N = 58) and high (>10 years, N = 48) activity groups based on years of choir singing experience throughout their life span. A subcohort of 74 participants (39 choir singers, 35 controls) were assessed also with a neuropsychological testing battery. Results In the neuropsychological testing, choir singers performed better than controls on the verbal flexibility domain of executive function, but not on other cognitive domains. In questionnaires, high activity choir singers showed better social integration than controls and low activity choir singers. In contrast, low activity choir singers had better general health than controls and high activity choir singers. Discussion and implications In healthy older adults, regular choir singing is associated with better verbal flexibility. Long-standing choir activity is linked to better social engagement and more recently commenced choir activity to better general health.
Collapse
Affiliation(s)
- Emmi Pentikäinen
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Anni Pitkäniemi
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sini-Tuuli Siponkoski
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maarit Jansson
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jukka Louhivuori
- Department of Music, Art and Culture Studies, University of Jyväskylä, Jyväskylä, Finland
| | - Julene K. Johnson
- Institute for Health & Aging, University of California San Francisco, San Francisco, California, United States of America
| | - Teemu Paajanen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Teppo Särkämö
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
Endocannabinoids and aging-Inflammation, neuroplasticity, mood and pain. VITAMINS AND HORMONES 2021; 115:129-172. [PMID: 33706946 DOI: 10.1016/bs.vh.2020.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aging is associated with changes in hormones, slowing of metabolism, diminished physiological processes, chronic inflammation and high exposure to oxidative stress factors, generally described as the biological cost of living. Lifestyle interventions of diet and exercise can improve the quality of life during aging and lower diet-related chronic disease. The endocannabinoid system (ECS) has important effects on systemic metabolism and physiological systems, including the central and peripheral nervous systems. Exercise can reduce the loss of muscle mass and improve strength, and increase the levels of endocannabinoids (eCB) in brain and blood. Although the ECS exerts controls on multiple systems throughout life it affords benefits to natural aging. The eCB are synthesized from polyunsaturated fatty acids (PUFA) and the primary ones are produced from arachidonic acid (n-6 PUFA) and others from the n-3 PUFA, namely eicosapentaenoic and docosahexaenoic acids. The eCB ligands bind to their receptors, CB1 and CB2, with effects on appetite stimulation, metabolism, immune functions, and brain physiology and neuroplasticity. Dietary families of PUFA are a primary factor that can influence the types and levels of eCB and as a consequence, the downstream actions when the ligands bind to their receptors. Furthermore, the association of eCB with the synthesis of oxylipins (OxL) is a connection between the physiological actions of eCB and the lipid derived immunological OxL mediators of inflammation. OxL are ubiquitous and influence neuroinflammation and inflammatory processes. The emerging actions of eCB on neuroplasticity, well-being and pain are important to aging. Herein, we present information about the ECS and its components, how exercise and diet affects specific eCB, their role in neuroplasticity, neuroinflammation, pain, mood, and relationship to OxL. Poor nutrition status and low nutrient intakes observed with many elderly are reasons to examine the role of dietary PUFA actions on the ECS to improve health.
Collapse
|
15
|
Thompson C, O’Brien KS. OUP accepted manuscript. Health Promot Int 2021; 37:i4-i17. [PMID: 35212364 PMCID: PMC8905961 DOI: 10.1093/heapro/daab198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This article explores the impact of online Irish traditional singing sessions on health and well-being during the COVID-19 pandemic. Singing sessions are unique facets of Ireland’s music tradition that saw dramatic closure, interruption and digital transition in response to COVID-19 social distancing measures. This study highlights a gap in health promotion literature with regard to traditional singing sessions as a group singing activity and examines the potential for online group singing activities to have positive impacts on the health and well-being of participants. While traditional singing sessions foreground solo performances, they are quintessentially group activities, and include community engagement and active participation from singers and listeners alike. Through an online survey (n = 108), and ethnographic interviews (n = 3), this study explores potential health and well-being implications of online traditional singing sessions, and reveals four main areas of impact: social connection, enjoyment, cognitive motivation and timekeeping. The study suggests that online traditional singing sessions can promote health and well-being in participants, particularly during times of isolation. This article explores the impact of online Irish traditional singing sessions on health and well-being during the COVID-19 pandemic. Singing sessions are unique facets of Ireland’s music tradition which were forced to move online due to COVID-19 restrictions. This study used an online survey (n = 108), and interviews (n = 3), to explore the impact of these online sessions on the well-being of their participants. Findings showed the impacts to be overwhelmingly positive, particularly in four main areas: social connection, enjoyment, cognitive motivation, and timekeeping. This study highlights the value of traditional singing sessions as group singing activities for the purposes of health and well-being promotion, and suggests that online group singing activities can be beneficial, particularly during times of isolation.
Collapse
Affiliation(s)
- Ciara Thompson
- Irish World Academy of Music and Dance, University of Limerick, Limerick, Ireland
- Corresponding author. E-mail:
| | - Kara Shea O’Brien
- Irish World Academy of Music and Dance, University of Limerick, Limerick, Ireland
| |
Collapse
|
16
|
Charytoniuk T, Zywno H, Konstantynowicz-Nowicka K, Berk K, Bzdega W, Chabowski A. Can Physical Activity Support the Endocannabinoid System in the Preventive and Therapeutic Approach to Neurological Disorders? Int J Mol Sci 2020; 21:E4221. [PMID: 32545780 PMCID: PMC7352563 DOI: 10.3390/ijms21124221] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
The worldwide prevalence of neurological and neurodegenerative disorders, such as depression or Alzheimer's disease, has spread extensively throughout the last decades, becoming an enormous health issue. Numerous data indicate a distinct correlation between the altered endocannabinoid signaling and different aspects of brain physiology, such as memory or neurogenesis. Moreover, the endocannabinoid system is widely regarded as a crucial factor in the development of neuropathologies. Thus, targeting those disorders via synthetic cannabinoids, as well as phytocannabinoids, becomes a widespread research issue. Over the last decade, the endocannabinoid system has been extensively studied for its correlation with physical activity. Recent data showed that physical activity correlates with elevated endocannabinoid serum concentrations and increased cannabinoid receptor type 1 (CB1R) expression in the brain, which results in positive neurological effects including antidepressant effect, ameliorated memory, neuroplasticity development, and reduced neuroinflammation. However, none of the prior reviews presented a comprehensive correlation between physical activity, the endocannabinoid system, and neuropathologies. Thus, our review provides a current state of knowledge of the endocannabinoid system, its action in physical activity, as well as neuropathologies and a possible correlation between all those fields. We believe that this might contribute to finding a new preventive and therapeutic approach to both neurological and neurodegenerative disorders.
Collapse
Affiliation(s)
- Tomasz Charytoniuk
- Department of Physiology, Medical University of Bialystok, 15-089 Białystok, Poland; (H.Z.); (K.K.-N.); (K.B.); (W.B.); (A.C.)
| | | | | | | | | | | |
Collapse
|
17
|
Inner Engineering Practices and Advanced 4-day Isha Yoga Retreat Are Associated with Cannabimimetic Effects with Increased Endocannabinoids and Short-Term and Sustained Improvement in Mental Health: A Prospective Observational Study of Meditators. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8438272. [PMID: 32595741 PMCID: PMC7293737 DOI: 10.1155/2020/8438272] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/08/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
Background Anxiety and depression are common in the modern world, and there is growing demand for alternative therapies such as meditation. Meditation can decrease perceived stress and increase general well-being, although the physiological mechanism is not well-characterized. Endocannabinoids (eCBs), lipid mediators associated with enhanced mood and reduced anxiety/depression, have not been previously studied as biomarkers of meditation effects. Our aim was to assess biomarkers (eCBs and brain-derived neurotrophic factor [BDNF]) and psychological parameters after a meditation retreat. Methods This was an observational pilot study of adults before and after the 4-day Isha Yoga Bhava Spandana Program retreat. Participants completed online surveys (before and after retreat, and 1 month later) to assess anxiety, depression, focus, well-being, and happiness through validated psychological scales. Voluntary blood sampling for biomarker studies was done before and within a day after the retreat. The biomarkers anandamide, 2-arachidonoylglycerol (2-AG), 1-arachidonoylglycerol (1-AG), docosatetraenoylethanolamide (DEA), oleoylethanolamide (OLA), and BDNF were evaluated. Primary outcomes were changes in psychological scales, as well as changes in eCBs and BDNF. Results Depression and anxiety scores decreased while focus, happiness, and positive well-being scores increased immediately after retreat from their baseline values (P < 0.001). All improvements were sustained 1 month after BSP. All major eCBs including anandamide, 2-AG, 1-AG, DEA, and BDNF increased after meditation by > 70% (P < 0.001). Increases of ≥20% in anandamide, 2-AG, 1-AG, and total AG levels after meditation from the baseline had weak correlations with changes in happiness and well-being. Conclusions A short meditation experience improved focus, happiness, and positive well-being and reduced depression and anxiety in participants for at least 1 month. Participants had increased blood eCBs and BDNF, suggesting a role for these biomarkers in the underlying mechanism of meditation. Meditation is a simple, organic, and effective way to improve well-being and reduce depression and anxiety.
Collapse
|
18
|
Kovalchuk I, Pellino M, Rigault P, van Velzen R, Ebersbach J, Ashnest JR, Mau M, Schranz ME, Alcorn J, Laprairie RB, McKay JK, Burbridge C, Schneider D, Vergara D, Kane NC, Sharbel TF. The Genomics of Cannabis and Its Close Relatives. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:713-739. [PMID: 32155342 DOI: 10.1146/annurev-arplant-081519-040203] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cannabis sativa L. is an important yet controversial plant with a long history of recreational, medicinal, industrial, and agricultural use, and together with its sister genus Humulus, it represents a group of plants with a myriad of academic, agricultural, pharmaceutical, industrial, and social interests. We have performed a meta-analysis of pooled published genomics data, andwe present a comprehensive literature review on the evolutionary history of Cannabis and Humulus, including medicinal and industrial applications. We demonstrate that current Cannabis genome assemblies are incomplete, with ∼10% missing, 10-25% unmapped, and 45S and 5S ribosomal DNA clusters as well as centromeres/satellite sequences not represented. These assemblies are also ordered at a low resolution, and their consensus quality clouds the accurate annotation of complete, partial, and pseudogenized gene copies. Considering the importance of genomics in the development of any crop, this analysis underlines the need for a coordinated effort to quantify the genetic and biochemical diversity of this species.
Collapse
Affiliation(s)
- I Kovalchuk
- Department of Biology, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - M Pellino
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada;
| | - P Rigault
- Gydle Inc., Québec, Québec G1S 1E7, Canada
- Center for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - R van Velzen
- Biosystematics Group, Wageningen University, 6703 BD Wageningen, The Netherlands
- Bedrocan International, 9640 CA Veendam, The Netherlands
| | - J Ebersbach
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan S7N 0X2, Canada
| | - J R Ashnest
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada;
| | - M Mau
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada;
| | - M E Schranz
- Biosystematics Group, Wageningen University, 6703 BD Wageningen, The Netherlands
| | - J Alcorn
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - R B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - J K McKay
- College of Agricultural Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | - C Burbridge
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - D Schneider
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - D Vergara
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - N C Kane
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309, USA
| | - T F Sharbel
- College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Saskatchewan S7N 4J8, Canada;
| |
Collapse
|
19
|
Stasiulewicz A, Znajdek K, Grudzień M, Pawiński T, Sulkowska JI. A Guide to Targeting the Endocannabinoid System in Drug Design. Int J Mol Sci 2020; 21:ijms21082778. [PMID: 32316328 PMCID: PMC7216112 DOI: 10.3390/ijms21082778] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
The endocannabinoid system (ECS) is one of the most crucial systems in the human organism, exhibiting multi-purpose regulatory character. It is engaged in a vast array of physiological processes, including nociception, mood regulation, cognitive functions, neurogenesis and neuroprotection, appetite, lipid metabolism, as well as cell growth and proliferation. Thus, ECS proteins, including cannabinoid receptors and their endogenous ligands’ synthesizing and degrading enzymes, are promising therapeutic targets. Their modulation has been employed in or extensively studied as a treatment of multiple diseases. However, due to a complex nature of ECS and its crosstalk with other biological systems, the development of novel drugs turned out to be a challenging task. In this review, we summarize potential therapeutic applications for ECS-targeting drugs, especially focusing on promising synthetic compounds and preclinical studies. We put emphasis on modulation of specific proteins of ECS in different pathophysiological areas. In addition, we stress possible difficulties and risks and highlight proposed solutions. By presenting this review, we point out information pivotal in the spotlight of ECS-targeting drug design, as well as provide an overview of the current state of knowledge on ECS-related pharmacodynamics and show possible directions for needed research.
Collapse
Affiliation(s)
- Adam Stasiulewicz
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Correspondence: (A.S.); (J.I.S.)
| | - Katarzyna Znajdek
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Monika Grudzień
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Tomasz Pawiński
- Department of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.G.); (T.P.)
| | - Joanna I. Sulkowska
- Interdisciplinary Laboratory of Biological Systems Modelling, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland;
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA
- Correspondence: (A.S.); (J.I.S.)
| |
Collapse
|
20
|
Abstract
AbstractKnowing the biological signals associated with appetite control is crucial for understanding the regulation of food intake. Biomarkers of appetite have been defined as physiological measures that relate to subjective appetite ratings, measured food intake, or both. Several metabolites including amino acids, lipids and glucose were proposed as key molecules associated with appetite control over 60 years ago, and along with bile acids are all among possible appetite biomarker candidates. Additional metabolites that have been associated with appetite include endocannabinoids, lactate, cortisol and β-hydroxybutyrate. However, although appetite is a complex integrative process, studies often investigated a limited number of markers in isolation. Metabolomics involves the study of small molecules or metabolites present in biological samples such as urine or blood, and may present a powerful approach to further the understanding of appetite control. Using multiple analytical techniques allows the characterisation of molecules, such as carbohydrates, lipids, amino acids, bile acids and fatty acids. Metabolomics has proven successful in identifying markers of consumption of certain foods and biomarkers implicated in several diseases. However, it has been underexploited in appetite control or obesity. The aim of the present narrative review is to: (1) provide an overview of existing metabolites that have been identified in human biofluids and associated with appetite control; and (2) discuss the potential of metabolomics to deepen understanding of appetite control in humans.
Collapse
|
21
|
Di Marzo V, Silvestri C. Lifestyle and Metabolic Syndrome: Contribution of the Endocannabinoidome. Nutrients 2019; 11:nu11081956. [PMID: 31434293 PMCID: PMC6722643 DOI: 10.3390/nu11081956] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Lifestyle is a well-known environmental factor that plays a major role in facilitating the development of metabolic syndrome or eventually exacerbating its consequences. Various lifestyle factors, especially changes in dietary habits, extreme temperatures, unusual light-dark cycles, substance abuse, and other stressful factors, are also established modifiers of the endocannabinoid system and its extended version, the endocannabinoidome. The endocannabinoidome is a complex lipid signaling system composed of a plethora (>100) of fatty acid-derived mediators and their receptors and anabolic and catabolic enzymes (>50 proteins) which are deeply involved in the control of energy metabolism and its pathological deviations. A strong link between the endocannabinoidome and another major player in metabolism and dysmetabolism, the gut microbiome, is also emerging. Here, we review several examples of how lifestyle modifications (westernized diets, lack or presence of certain nutritional factors, physical exercise, and the use of cannabis) can modulate the propensity to develop metabolic syndrome by modifying the crosstalk between the endocannabinoidome and the gut microbiome and, hence, how lifestyle interventions can provide new therapies against cardiometabolic risk by ensuring correct functioning of both these systems.
Collapse
Affiliation(s)
- Vincenzo Di Marzo
- École de nutrition, Université Laval, Québec, QC G1V 0A6, Canada
- Institut sur la nutrition et les aliments fonctionnels, Université Laval, Québec, QC G1V 0A6, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC G1V 0A6, Canada
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC G1V 4G5, Canada
- Department de médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy
| | - Cristoforo Silvestri
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Québec, QC G1V 0A6, Canada.
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC G1V 4G5, Canada.
- Department de médecine, Université Laval, Québec, QC G1V 0A6, Canada.
| |
Collapse
|