1
|
Hernández-Ortiz E, Luis-Islas J, Tecuapetla F, Gutierrez R, Bermúdez-Rattoni F. Top-down circuitry from the anterior insular cortex to VTA dopamine neurons modulates reward-related memory. Cell Rep 2023; 42:113365. [PMID: 37924513 DOI: 10.1016/j.celrep.2023.113365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 11/06/2023] Open
Abstract
The insular cortex (IC) has been linked to the processing of interoceptive and exteroceptive signals associated with addictive behavior. However, whether the IC modulates the acquisition of drug-related affective states by direct top-down connectivity with ventral tegmental area (VTA) dopamine neurons is unknown. We found that photostimulation of VTA terminals of the anterior insular cortex (aIC) induces rewarding contextual memory, modulates VTA activity, and triggers dopamine release within the VTA. Employing neuronal recordings and neurochemical and transsynaptic tagging techniques, we disclose the functional top-down organization tagging the aIC pre-synaptic neuronal bodies and identifying VTA recipient neurons. Furthermore, systemic administration of amphetamine altered the VTA excitability of neurons modulated by the aIC projection, where photoactivation enhances, whereas photoinhibition impairs, a contextual rewarding behavior. Our study reveals a key circuit involved in developing and retaining drug reward-related contextual memory, providing insight into the neurobiological basis of addictive behavior and helping develop therapeutic addiction strategies.
Collapse
Affiliation(s)
- Eduardo Hernández-Ortiz
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, México City 04510, México
| | - Jorge Luis-Islas
- Laboratory of Neurobiology of Appetitive, Department of Pharmacology, Center of Aging Research (CIE), Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | - Fatuel Tecuapetla
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, México City 04510, México
| | - Ranier Gutierrez
- Laboratory of Neurobiology of Appetitive, Department of Pharmacology, Center of Aging Research (CIE), Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | - Federico Bermúdez-Rattoni
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, México City 04510, México.
| |
Collapse
|
2
|
Zhao J, Song Q, Wu Y, Yang L. Advances in neural circuits of innate fear defense behavior. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:653-661. [PMID: 37899403 PMCID: PMC10630063 DOI: 10.3724/zdxbyxb-2023-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
Fear, a negative emotion triggered by dangerous stimuli, can lead to psychiatric disorders such as phobias, anxiety disorders, and depression. Investigating the neural circuitry underlying congenital fear can offer insights into the pathophysiological mechanisms of related psychiatric conditions. Research on innate fear primarily centers on the response mechanisms to various sensory signals, including olfactory, visual and auditory stimuli. Different types of fear signal inputs are regulated by distinct neural circuits. The neural circuits of the main and accessory olfactory systems receive and process olfactory stimuli, mediating defensive responses like freezing. Escape behaviors elicited by visual stimuli are primarily regulated through the superior colliculus and hypothalamic projection circuits. Auditory stimuli-induced responses, including escape, are mainly mediated through auditory cortex projection circuits. In this article, we review the research progress on neural circuits of innate fear defensive behaviors in animals. We further discuss the different sensory systems, especially the projection circuits of olfactory, visual and auditory systems, to provide references for the mechanistic study of related mental disorders.
Collapse
Affiliation(s)
- Jiajia Zhao
- Henan University of Chinese Medicine School of Medicine, Zhengzhou 450046, China.
| | - Qi Song
- Henan University of Chinese Medicine School of Medicine, Zhengzhou 450046, China
| | - Yongye Wu
- Henan University of Chinese Medicine School of Medicine, Zhengzhou 450046, China
| | - Liping Yang
- Henan University of Chinese Medicine School of Medicine, Zhengzhou 450046, China.
| |
Collapse
|
3
|
Joshi SA, Aupperle RL, Khalsa SS. Interoception in Fear Learning and Posttraumatic Stress Disorder. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2023; 21:266-277. [PMID: 37404967 PMCID: PMC10316209 DOI: 10.1176/appi.focus.20230007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a psychiatric condition characterized by sustained symptoms, including reexperiencing, hyperarousal, avoidance, and mood alterations, following exposure to a traumatic event. Although symptom presentations in PTSD are heterogeneous and incompletely understood, they likely involve interactions between neural circuits involved in memory and fear learning and multiple body systems involved in threat processing. PTSD differs from other psychiatric conditions in that it is a temporally specific disorder, triggered by a traumatic event that elicits heightened physiological arousal, and fear. Fear conditioning and fear extinction learning have been studied extensively in relation to PTSD, because of their central role in the development and maintenance of threat-related associations. Interoception, the process by which organisms sense, interpret, and integrate their internal body signals, may contribute to disrupted fear learning and to the varied symptom presentations of PTSD in humans. In this review, the authors discuss how interoceptive signals may serve as unconditioned responses to trauma that subsequently serve as conditioned stimuli, trigger avoidance and higher-order conditioning of other stimuli associated with these interoceptive signals, and constitute an important aspect of the fear learning context, thus influencing the specificity versus generalization of fear acquisition, consolidation, and extinction. The authors conclude by identifying avenues for future research to enhance understanding of PTSD and the role of interoceptive signals in fear learning and in the development, maintenance, and treatment of PTSD.
Collapse
Affiliation(s)
- Sonalee A Joshi
- Laureate Institute for Brain Research, Tulsa, Oklahoma (all authors); Department of Psychology, University of Michigan, Ann Arbor (Joshi); Oxley College of Health Sciences, School of Community Medicine, University of Tulsa, Tulsa (Aupperle, Khalsa)
| | - Robin L Aupperle
- Laureate Institute for Brain Research, Tulsa, Oklahoma (all authors); Department of Psychology, University of Michigan, Ann Arbor (Joshi); Oxley College of Health Sciences, School of Community Medicine, University of Tulsa, Tulsa (Aupperle, Khalsa)
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, Oklahoma (all authors); Department of Psychology, University of Michigan, Ann Arbor (Joshi); Oxley College of Health Sciences, School of Community Medicine, University of Tulsa, Tulsa (Aupperle, Khalsa)
| |
Collapse
|
4
|
Lavi A, Sehgal M, de Sousa AF, Ter-Mkrtchyan D, Sisan F, Luchetti A, Okabe A, Bear C, Silva AJ. Local memory allocation recruits memory ensembles across brain regions. Neuron 2023; 111:470-480.e5. [PMID: 36563678 PMCID: PMC10548338 DOI: 10.1016/j.neuron.2022.11.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/29/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022]
Abstract
Memories are thought to be stored in ensembles of neurons across multiple brain regions. However, whether and how these ensembles are coordinated at the time of learning remains largely unknown. Here, we combined CREB-mediated memory allocation with transsynaptic retrograde tracing to demonstrate that the allocation of aversive memories to a group of neurons in one brain region directly affects the allocation of interconnected neurons in upstream brain regions in a behavioral- and brain region-specific manner in mice. Our analysis suggests that this cross-regional recruitment of presynaptic neurons is initiated by downstream memory neurons through a retrograde mechanism. Together with statistical modeling, our results indicate that in addition to the anterograde flow of information between brain regions, the establishment of interconnected, brain-wide memory traces relies on a retrograde mechanism that coordinates memory ensembles at the time of learning.
Collapse
Affiliation(s)
- Ayal Lavi
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Megha Sehgal
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andre F de Sousa
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Donara Ter-Mkrtchyan
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fardad Sisan
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alessandro Luchetti
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna Okabe
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cameron Bear
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alcino J Silva
- Departments of Neurobiology, Psychology, Psychiatry, Integrative Center for Learning and Memory and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Djerdjaj A, Ng AJ, Rieger NS, Christianson JP. The basolateral amygdala to posterior insular cortex tract is necessary for social interaction with stressed juvenile rats. Behav Brain Res 2022; 435:114050. [PMID: 35973470 PMCID: PMC10440830 DOI: 10.1016/j.bbr.2022.114050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/26/2022] [Accepted: 08/07/2022] [Indexed: 11/26/2022]
Abstract
Vocalizations, chemosignals, and behaviors are influenced by one's internal affective state and are used by others to shape social behaviors. A network of interconnected brain structures, often called the social behavior network or social decision-making network, integrates these stimuli and coordinates social behaviors, and in-network connectivity deficits underlie several psychiatric disorders such as schizophrenia and autism spectrum disorders. Here, we investigated the role of the basolateral amygdala (BLA) and its projections to the posterior insular cortex, regions independently implicated in a range of sociocognitive processes, in a social affective preference (SAP) test. Viral vectors containing the gene coding for inhibitory chemogenetic receptors (AAV5-hSyn-hM4Di-mCherry) were injected into the BLA. SAP tests, which allow for the observation of unconditioned behavioral responses to the affective states of others, were conducted after inhibition of the BLA by systemic administration of the hM4Di agonist clozapine-n-oxide (CNO), or inhibition of BLA-insula terminals by direct infusion of CNO to the insula. After vehicle infusions, rats displayed preference for interactions with stressed juvenile conspecifics. However, CNO treatment eliminated preference behavior. The current results suggest that social decision making involves the transfer of emotional information from the BLA to the insula which represents a previously unrecognized anatomical substrate for social cognition.
Collapse
Affiliation(s)
- Anthony Djerdjaj
- Boston College, Department of Psychology & Neuroscience, Chestnut Hill, MA, USA.
| | - Alexandra J Ng
- Boston College, Department of Psychology & Neuroscience, Chestnut Hill, MA, USA
| | - Nathaniel S Rieger
- Boston College, Department of Psychology & Neuroscience, Chestnut Hill, MA, USA
| | - John P Christianson
- Boston College, Department of Psychology & Neuroscience, Chestnut Hill, MA, USA
| |
Collapse
|
6
|
Shi T, Feng S, Shi W, Fu Y, Zhou W. A modified mouse model for observational fear learning and the influence of social hierarchy. Front Behav Neurosci 2022; 16:941288. [PMID: 35957923 PMCID: PMC9359141 DOI: 10.3389/fnbeh.2022.941288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/24/2022] [Indexed: 11/20/2022] Open
Abstract
Background Indirectly experiencing traumatic events either by witnessing or learning of a loved one’s suffering is associated with the highest prevalence rates of epidemiological features of PTSD. Social species can develop fear by observing conspecifics in distress. Observational fear learning (OFL) is one of the most widely used paradigms for studying fear contagion in mice. However, the impact of empathic fear behavior and social hierarchy on fear transfer in mice is not well understood. Methods Fear emotions are best characterized in mice by using complementary tests, rather than only freezing behavior, and simultaneously avoiding behavioral variability in different tests across time. In this study, we modified the OFL model by implementing freezing (FZ), open field (OF), and social interaction (SI) tests in a newly designed experimental facility and applied Z-normalization to assess emotionality changes across different behaviors. Results The integrated emotionality scores revealed a robustly increased emotionality of observer mice and, more importantly, contributed to distinguishing susceptible individuals. Interestingly, fos-positive neurons were mainly found in the interoceptive network, and mice of a lower social rank showed more empathy-like behaviors. Conclusion Our findings highlight that combining this experimental model with the Z-scoring method yields robust emotionality measures of individual mice, thus making it easier to screen and differentiate between empathic fear-susceptible mice and resilient mice, and refining the translational applicability of these models.
Collapse
Affiliation(s)
- Tianyao Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Shufang Feng
- Department of Medical Psychology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wenlong Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuan Fu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Wenxia Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- *Correspondence: Wenxia Zhou,
| |
Collapse
|
7
|
Gentsch A, Kuehn E. Clinical Manifestations of Body Memories: The Impact of Past Bodily Experiences on Mental Health. Brain Sci 2022; 12:594. [PMID: 35624981 PMCID: PMC9138975 DOI: 10.3390/brainsci12050594] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 12/04/2022] Open
Abstract
Bodily experiences such as the feeling of touch, pain or inner signals of the body are deeply emotional and activate brain networks that mediate their perception and higher-order processing. While the ad hoc perception of bodily signals and their influence on behavior is empirically well studied, there is a knowledge gap on how we store and retrieve bodily experiences that we perceived in the past, and how this influences our everyday life. Here, we explore the hypothesis that negative body memories, that is, negative bodily experiences of the past that are stored in memory and influence behavior, contribute to the development of somatic manifestations of mental health problems including somatic symptoms, traumatic re-experiences or dissociative symptoms. By combining knowledge from the areas of cognitive neuroscience and clinical neuroscience with insights from psychotherapy, we identify Clinical Body Memory (CBM) mechanisms that specify how mental health problems could be driven by corporeal experiences stored in memory. The major argument is that the investigation of the neuronal mechanisms that underlie the storage and retrieval of body memories provides us with empirical access to reduce the negative impact of body memories on mental health.
Collapse
Affiliation(s)
- Antje Gentsch
- Department of Psychology, General and Experimental Psychology, LMU Munich, 80802 Munich, Germany;
- Institute for Psychoanalysis, Psychotherapy and Psychosomatics (IPB), 10557 Berlin, Germany
| | - Esther Kuehn
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
- Hertie Institute for Clinical Brain Research (HIH), 72076 Tübingen, Germany
| |
Collapse
|
8
|
Lalonde R, Strazielle C. Probiotic effects on anxiety-like behavior in animal models. Rev Neurosci 2022; 33:691-701. [PMID: 35381125 DOI: 10.1515/revneuro-2021-0173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/22/2022] [Indexed: 11/15/2022]
Abstract
Gut microbiota have been shown to be useful in treating gastrointestinal diseases, cancer, obesity, infections, and, more recently, neuropsychiatric conditions such as degenerative diseases and depression. There has also been recent expansion in testing probiotics and prebiotics on anxiety-like behaviors in animals. Current results indicate that probiotic substances of the Lactobacillus and Bifidobacterium type are effective in reducing anxiety-like behaviors in mice or rats evaluated in the elevated plus-maze, the open-field, the light-dark box, and conditioned defensive burying. Probiotics are also effective in reducing serum or plasma corticosterone levels after acute stress. It is hypothesized that probiotics cause anxiolytic-like effects via vagal influences on caudal solitary nucleus, periaqueductal gray, central nucleus of the amygdala, and bed nucleus of the stria terminalis. Further experimentation is needed to trace the neurochemical anatomy underlying anxiolytic-like behaviors of gut microbiata exerting effects via vagal or nonvagal pathways.
Collapse
Affiliation(s)
- Robert Lalonde
- University of Lorraine, Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, 54500 Vandœuvre-les-Nancy, France
| | - Catherine Strazielle
- University of Lorraine, Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, 54500 Vandœuvre-les-Nancy, France.,CHRU Nancy, 54500 Vandœuvre-les-Nancy, France
| |
Collapse
|
9
|
Tyler RE, Bluitt MN, Engers JL, Lindsley CW, Besheer J. The effects of predator odor (TMT) exposure and mGlu 3 NAM pretreatment on behavioral and NMDA receptor adaptations in the brain. Neuropharmacology 2022; 207:108943. [PMID: 35007623 PMCID: PMC8844221 DOI: 10.1016/j.neuropharm.2022.108943] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 12/09/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
Abstract
A stressor can trigger lasting adaptations that contribute to neuropsychiatric disorders. Predator odor (TMT) exposure is an innate stressor that may activate the metabotropic glutamate receptor 3 (mGlu3) to produce stress adaptations. To evaluate functional involvement, the mGlu3 negative allosteric modulator (NAM, VU6010572; 3 mg/kg, i.p.) was administered before TMT exposure in male, Long Evans rats. Two weeks after, rats underwent context re-exposure, elevated zero maze (ZM), and acoustic startle (ASR) behavioral tests, followed by RT-PCR gene expression in the insular cortex and bed nucleus of the stria terminalis (BNST) to evaluate lasting behavioral and molecular adaptations from the stressor. Rats displayed stress-reactive behaviors in response to TMT exposure that were not affected by VU6010572. Freezing and hyperactivity were observed during the context re-exposure, and mGlu3-NAM pretreatment during stressor prevented the context freezing response. TMT exposure did not affect ZM or ASR measures, but VU6010572 increased time spent in the open arms of the ZM and ASR habituation regardless of stressor treatment. In the insular cortex, TMT exposure increased expression of mGlu (Grm3, Grm5) and NMDA (GriN2A, GriN2B, GriN2C, GriN3A, GriN3B) receptor transcripts, and mGlu3-NAM pretreatment blocked GriN3B upregulation. In the BNST, TMT exposure increased expression of GriN2B and GriN3B in vehicle-treated rats, but decreased expression in the mGlu3-NAM group. Similar to the insular cortex, mGlu3-NAM reversed the stressor-induced upregulation of GriN3B in the BNST. mGlu3-NAM also upregulated GriN2A, GriN2B, GriN3B and Grm2 in the control group, but not the TMT group. Together, these data implicate mGlu3 receptor signaling in some lasting adaptations of predator odor stressor and anxiolytic-like effects.
Collapse
Affiliation(s)
- Ryan E Tyler
- Neuroscience Curriculum, School of Medicine, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Maya N Bluitt
- Neuroscience Curriculum, School of Medicine, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Julie L Engers
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Craig W Lindsley
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
| | - Joyce Besheer
- Neuroscience Curriculum, School of Medicine, University of North Carolina - Chapel Hill, Chapel Hill, NC, USA; Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina, Chapel Hill, NC, USA; Department of Psychiatry, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
10
|
Ge Y, Lin D, Cui B, Zhang L, Li S, Wang Z, Ma J. Effects of Long Noncoding RNA H19 on Isoflurane-Induced Cognitive Dysregulation by Promoting Neuroinflammation. Neuroimmunomodulation 2022; 29:117-127. [PMID: 34856557 DOI: 10.1159/000519124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/17/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Isoflurane (ISO) may cause neuronal apoptosis and synaptic disorder during development, and damage long-term learning and memory function. This observation aimed to study the function of H19 in vitro and in vivo tests and the further mechanism was identified. METHODS ISO cell models and rat models were established and reactive oxygen species (ROS) identified. The viability and apoptosis of HT22 cells were detected by the MTT and flow cytometer. Morris water maze test was conducted to analyze the neurotoxicity of ISO on spatial learning and memory ability. Quantitative PCR was the method to verify the expression of H19. The concentration of inflammatory indicators was identified by enzyme-linked immunosorbent assay. RESULTS 1.5% and 2% ISO led to the neurotoxicity of HT22 cells and increased expression of H19. Silenced H19 meliorated these adverse impacts of ISO. Interference of H19 exerted neuroprotective roles by repressing modified neurological severity score, inhibiting escape latency, elevating distance and time of target area, and controlling ROS and inflammation. MiR-17-5p might be a promising competing endogenous RNA of H19. The expression of miR-17-5p was reduced in the ISO group and reversed by the absence of H19. CONCLUSION Our results of in vitro and in vivo assay indicated that the absence of HT22 is a neuroprotective regulator of cognition and inflammation by accumulating miR-17-5p.
Collapse
Affiliation(s)
- Yanhu Ge
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Boqun Cui
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Liang Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Shurong Li
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Zhaoqi Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University-Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
11
|
de Paiva JPQ, Bueno APA, Dos Santos Corrêa M, Oliveira MGM, Ferreira TL, Fornari RV. The posterior insular cortex is necessary for the consolidation of tone fear conditioning. Neurobiol Learn Mem 2021; 179:107402. [PMID: 33581316 DOI: 10.1016/j.nlm.2021.107402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 12/23/2022]
Abstract
The insular cortex (IC) is notably implicated in emotional and cognitive processing; however, little is known regarding to what extent its two main subregions play functionally distinct roles on memory consolidation of conditioned fear tasks. Here we verified the effects of temporary functional inactivation of the anterior (aIC) and posterior IC (pIC) on contextual and tone fear memory. Rats received post-training bilateral infusions of the GABAA receptor agonist muscimol into either the aIC or pIC and were tested 48 and 72 h after the delay tone fear conditioning session to assess the background contextual (CFC) and tone (TFC) fear conditioning, respectively. Inactivation of the aIC during memory consolidation did not affect fear memory for CFC or TFC. On the other hand, post-training inactivation of the pIC impaired TFC but not CFC. Our findings indicate that the pIC is a necessary part of the neural circuitry related to the consolidation of cued-fear memories.
Collapse
Affiliation(s)
- Joselisa Peres Queiroz de Paiva
- Center for Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC, São Bernardo do Campo, Brazil; Imaging Research Center, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - A P A Bueno
- Center for Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - M Dos Santos Corrêa
- Center for Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - M G M Oliveira
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - T L Ferreira
- Center for Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - R V Fornari
- Center for Mathematics, Computing and Cognition (CMCC), Universidade Federal do ABC, São Bernardo do Campo, Brazil.
| |
Collapse
|
12
|
Arakawa H. Dynamic regulation of oxytocin neuronal circuits in the sequential processes of prosocial behavior in rodent models. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2:100011. [PMID: 36246512 PMCID: PMC9559098 DOI: 10.1016/j.crneur.2021.100011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/08/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
|