1
|
Chesters RA, Zhu J, Coull BM, Baidoe-Ansah D, Baumer L, Palm L, Klinghammer N, Chen S, Hahm A, Yagoub S, Cantacorps L, Bernardi D, Ritter K, Lippert RN. Fasting-induced activity changes in MC3R neurons of the paraventricular nucleus of the thalamus. Life Sci Alliance 2024; 7:e202402754. [PMID: 39107065 PMCID: PMC11303869 DOI: 10.26508/lsa.202402754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/09/2024] Open
Abstract
The brain controls energy homeostasis by regulating food intake through signaling within the melanocortin system. Whilst we understand the role of the hypothalamus within this system, how extra-hypothalamic brain regions are involved in controlling energy balance remains unclear. Here we show that the melanocortin 3 receptor (MC3R) is expressed in the paraventricular nucleus of the thalamus (PVT). We tested whether fasting would change the activity of MC3R neurons in this region by assessing the levels of c-Fos and pCREB as neuronal activity markers. We determined that overnight fasting causes a significant reduction in pCREB levels within PVT-MC3R neurons. We then questioned whether perturbation of MC3R signaling, during fasting, would result in altered refeeding. Using chemogenetic approaches, we show that modulation of MC3R activity, during the fasting period, does not impact body weight regain or total food intake in the refeeding period. However, we did observe significant differences in the pattern of feeding-related behavior. These findings suggest that the PVT is a region where MC3R neurons respond to energy deprivation and modulate refeeding behavior.
Collapse
Affiliation(s)
- Robert A Chesters
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Jiajie Zhu
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| | - Bethany M Coull
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| | - David Baidoe-Ansah
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| | - Lea Baumer
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Lydia Palm
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Niklas Klinghammer
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Seve Chen
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Anneke Hahm
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Selma Yagoub
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Lídia Cantacorps
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Daniel Bernardi
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Katrin Ritter
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
| | - Rachel N Lippert
- Department of Neurocircuit Development and Function, German Institute of Human Nutrition https://ror.org/05xdczy51, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
2
|
Illenberger JM, Flores-Ramirez FJ, Pascasio G, Franco M, Mendonsa B, Martin-Fardon R. Pivotal role of orexin signaling in the posterior paraventricular nucleus of the thalamus during the stress-induced reinstatement of oxycodone-seeking behavior. J Psychopharmacol 2024; 38:647-660. [PMID: 38888086 PMCID: PMC11407285 DOI: 10.1177/02698811241260989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
BACKGROUND The orexin (OX) system has received increasing interest as a potential target for treating substance use disorder. OX transmission in the posterior paraventricular nucleus of the thalamus (pPVT), an area activated by highly salient stimuli that are both reinforcing and aversive, mediates cue- and stress-induced reinstatement of reward-seeking behavior. Oral administration of suvorexant (SUV), a dual OX receptor (OXR) antagonist (DORA), selectively reduced conditioned reinstatement of oxycodone-seeking behavior and stress-induced reinstatement of alcohol-seeking behavior in dependent rats. AIMS This study tested whether OXR blockade in the pPVT with SUV reduces oxycodone or sweetened condensed milk (SCM) seeking elicited by conditioned cues or stress. METHODS Male Wistar rats were trained to self-administer oxycodone (0.15 mg/kg, i.v., 8 h/day) or SCM (0.1 ml, 2:1 dilution [v/v], 30 min/day). After extinction, we tested the ability of intra-pPVT SUV (15 µg/0.5 µl) to prevent reinstatement of oxycodone or SCM seeking elicited by conditioned cues or footshock stress. RESULTS The rats acquired oxycodone and SCM self-administration, and oxycodone intake correlated with signs of physical opioid withdrawal, confirming dependence. Following extinction, the presentation of conditioned cues or footshock elicited reinstatement of oxycodone- and SCM-seeking behavior. Intra-pPVT SUV blocked stress-induced reinstatement of oxycodone seeking but not conditioned reinstatement of oxycodone or SCM seeking or stress-induced reinstatement of SCM seeking. CONCLUSIONS The results indicate that OXR signaling in the pPVT is critical for stress-induced reinstatement of oxycodone seeking, further corroborating OXRs as treatment targets for opioid use disorder.
Collapse
|
3
|
Grodin EN, Kirsch D, Belnap M, Ray LA. Sex differences in neural response to an acute stressor in individuals with an alcohol use disorder. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:843-854. [PMID: 38652235 DOI: 10.1111/acer.15301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Alcohol use disorder (AUD) and stress influence overlapping neural circuits in the brain. The literature is mixed regarding the presence of sex differences in the neural response to acute stressors, and this issue has not been examined in individuals with AUD. We validated a stress functional magnetic resonance imaging (fMRI) paradigm in individuals with AUD and tested for sex differences. METHODS Twenty-five treatment-seeking individuals with AUD (15M/10F) were recruited to participate in the neuroimaging study linked to a clinical trial of ibudilast (NCT03594435). To assess social-evaluative stress, participants completed the Montreal Imaging Stress Task (MIST). Whole brain and amygdala region-of-interest analyses were conducted. Subjective ratings of anxiety and distress were collected. Repeated measures ANCOVAs were performed to evaluate the effect of stress on anxiety and distress and to evaluate sex differences. RESULTS There were trend-level effects of stress on anxiety ratings and amygdala activation (p's = 0.06). There was a significant effect of stress in the bilateral thalamus, ventral tegmental area, and paracingulate (Z's > 4.09, p's < 0.03). There was a trend-level effect of sex on subjective ratings of stress (p's = 0.07). Females had higher amygdala activation in response to stress (p = 0.02). Females also had greater activation than males in the precuneus, posterior cingulate cortex, and right inferior frontal gyrus during acute stress (Z's > 3.56, p's < 0.03). CONCLUSIONS This study provides an initial validation of the MIST in a sample of individuals with AUD. It also provides preliminary evidence of sex differences in the response to social-evaluative stress, which is important, given the relevance of stress and negative emotionality as motivators for alcohol use in females.
Collapse
Affiliation(s)
- Erica N Grodin
- Department of Psychology, University of California at Los Angeles, Los Angeles, California, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
- Brain Research Institute, University of California at Los Angeles, Los Angeles, California, USA
| | - Dylan Kirsch
- Department of Psychology, University of California at Los Angeles, Los Angeles, California, USA
| | - Malia Belnap
- Neuroscience Interdepartmental Program, University of California at Los Angeles, Los Angeles, California, USA
| | - Lara A Ray
- Department of Psychology, University of California at Los Angeles, Los Angeles, California, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
- Brain Research Institute, University of California at Los Angeles, Los Angeles, California, USA
| |
Collapse
|
4
|
Rakotobe M, Fjerdingstad N, Ruiz-Reig N, Lamonerie T, D'Autréaux F. Central role of the habenulo-interpeduncular system in the neurodevelopmental basis of susceptibility and resilience to anxiety in mice. Neurobiol Dis 2024; 191:106392. [PMID: 38145853 DOI: 10.1016/j.nbd.2023.106392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023] Open
Abstract
Having experienced stress during sensitive periods of brain development strongly influences how individuals cope with later stress. Some are prone to develop anxiety or depression, while others appear resilient. The as-yet-unknown mechanisms underlying these differences may lie in how genes and environmental stress interact to shape the circuits that control emotions. Here, we investigated the role of the habenulo-interpeduncular system (HIPS), a critical node in reward circuits, in early stress-induced anxiety in mice. We found that habenular and IPN components characterized by the expression of Otx2 are synaptically connected and particularly sensitive to chronic stress (CS) during the peripubertal period. Stress-induced peripubertal activation of this HIPS subcircuit elicits both HIPS hypersensitivity to later stress and susceptibility to develop anxiety. We also show that HIPS silencing through conditional Otx2 knockout counteracts these effects of stress. Together, these results demonstrate that a genetic factor, Otx2, and stress interact during the peripubertal period to shape the stress sensitivity of the HIPS, which is shown to be a key modulator of susceptibility or resilience to develop anxiety.
Collapse
Affiliation(s)
- Malalaniaina Rakotobe
- Université Côte d'Azur, CNRS, Inserm, iBV, Institut de Biologie Valrose, 06108 Nice, France
| | - Niels Fjerdingstad
- Université Côte d'Azur, CNRS, Inserm, iBV, Institut de Biologie Valrose, 06108 Nice, France
| | - Nuria Ruiz-Reig
- Université Côte d'Azur, CNRS, Inserm, iBV, Institut de Biologie Valrose, 06108 Nice, France
| | - Thomas Lamonerie
- Université Côte d'Azur, CNRS, Inserm, iBV, Institut de Biologie Valrose, 06108 Nice, France.
| | - Fabien D'Autréaux
- Université Côte d'Azur, CNRS, Inserm, iBV, Institut de Biologie Valrose, 06108 Nice, France. Fabien.D'
| |
Collapse
|
5
|
G Anversa R, Campbell EJ, Walker LC, S Ch'ng S, Muthmainah M, S Kremer F, M Guimarães A, O'Shea MJ, He S, Dayas CV, Andrews ZB, Lawrence AJ, Brown RM. A paraventricular thalamus to insular cortex glutamatergic projection gates "emotional" stress-induced binge eating in females. Neuropsychopharmacology 2023; 48:1931-1940. [PMID: 37474763 PMCID: PMC10584903 DOI: 10.1038/s41386-023-01665-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/14/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
It is well-established that stress and negative affect trigger eating disorder symptoms and that the brains of men and women respond to stress in different ways. Indeed, women suffer disproportionately from emotional or stress-related eating, as well as associated eating disorders such as binge eating disorder. Nevertheless, our understanding of the precise neural circuits driving this maladaptive eating behavior, particularly in women, remains limited. We recently established a clinically relevant model of 'emotional' stress-induced binge eating whereby only female mice display binge eating in response to an acute "emotional" stressor. Here, we combined neuroanatomic, transgenic, immunohistochemical and pathway-specific chemogenetic approaches to investigate whole brain functional architecture associated with stress-induced binge eating in females, focusing on the role of Vglut2 projections from the paraventricular thalamus (PVTVglut2+) to the medial insular cortex in this behavior. Whole brain activation mapping and hierarchical clustering of Euclidean distances revealed distinct patterns of coactivation unique to stress-induced binge eating. At a pathway-specific level, PVTVglut2+ cells projecting to the medial insular cortex were specifically activated in response to stress-induced binge eating. Subsequent chemogenetic inhibition of this pathway suppressed stress-induced binge eating. We have identified a distinct PVTVglut2+ to insular cortex projection as a key driver of "emotional" stress-induced binge eating in female mice, highlighting a novel circuit underpinning this sex-specific behavior.
Collapse
Affiliation(s)
- Roberta G Anversa
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Erin J Campbell
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
- School of Biochemical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Leigh C Walker
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Sarah S Ch'ng
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
| | - Muthmainah Muthmainah
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
- Department of Anatomy, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Frederico S Kremer
- Laboratório de Bioinformática, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Federal University of Pelotas, Pelotas, Brazil
| | - Amanda M Guimarães
- Laboratório de Bioinformática, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Federal University of Pelotas, Pelotas, Brazil
| | - Mia J O'Shea
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
| | - Suheng He
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
| | - Christopher V Dayas
- School of Biochemical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| | - Zane B Andrews
- Biomedicine Discovery Institute and department of Physiology, Monash University, Clayton, Australia
| | - Andrew J Lawrence
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia
| | - Robyn M Brown
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Australia.
- The Florey Institute of Neuroscience and Mental Health, Mental Health Division, Parkville, Melbourne, Australia.
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia.
| |
Collapse
|
6
|
Shima Y, Skibbe H, Sasagawa Y, Fujimori N, Iwayama Y, Isomura-Matoba A, Yano M, Ichikawa T, Nikaido I, Hattori N, Kato T. Distinctiveness and continuity in transcriptome and connectivity in the anterior-posterior axis of the paraventricular nucleus of the thalamus. Cell Rep 2023; 42:113309. [PMID: 37862168 DOI: 10.1016/j.celrep.2023.113309] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/22/2023] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) projects axons to multiple areas, mediates a wide range of behaviors, and exhibits regional heterogeneity in both functions and axonal projections. Still, questions regarding the cell types present in the PVT and the extent of their differences remain inadequately addressed. We applied single-cell RNA sequencing to depict the transcriptomic characteristics of mouse PVT neurons. We found that one of the most significant variances in the PVT transcriptome corresponded to the anterior-posterior axis. While the single-cell transcriptome classified PVT neurons into five types, our transcriptomic and histological analyses showed continuity among the cell types. We discovered that anterior and posterior subpopulations had nearly non-overlapping projection patterns, while another population showed intermediate patterns. In addition, these subpopulations responded differently to appetite-related neuropeptides, with their activation showing opposing effects on food consumption. Our studies unveiled the contrasts and the continuity of PVT neurons that underpin their function.
Collapse
Affiliation(s)
- Yasuyuki Shima
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Laboratory of Molecular Dynamics of Mental Disorders, RIKEN, Wako, Saitama 351-0198, Japan.
| | - Henrik Skibbe
- Brain Image Analysis Unit, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yohei Sasagawa
- Laboratory for Bioinformatics Research, Center for Biosystems Dynamics Research, RIKEN, Wako, Saitama 351-0198, Japan; Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Hongo, Bunkyo City, Tokyo 113-8519, Japan
| | - Noriko Fujimori
- Laboratory of Molecular Dynamics of Mental Disorders, RIKEN, Wako, Saitama 351-0198, Japan; Support Unit for Bio-Material Analysis, Research Resource Division, Center for Brain Science, RIKEN, Wako, Saitama 351-0198, Japan
| | - Yoshimi Iwayama
- Laboratory for Bioinformatics Research, Center for Biosystems Dynamics Research, RIKEN, Wako, Saitama 351-0198, Japan; Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Hongo, Bunkyo City, Tokyo 113-8519, Japan
| | - Ayako Isomura-Matoba
- Laboratory for Bioinformatics Research, Center for Biosystems Dynamics Research, RIKEN, Wako, Saitama 351-0198, Japan
| | - Minoru Yano
- Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Hongo, Bunkyo City, Tokyo 113-8519, Japan
| | - Takumi Ichikawa
- Laboratory for Bioinformatics Research, Center for Biosystems Dynamics Research, RIKEN, Wako, Saitama 351-0198, Japan; Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Hongo, Bunkyo City, Tokyo 113-8519, Japan
| | - Itoshi Nikaido
- Laboratory for Bioinformatics Research, Center for Biosystems Dynamics Research, RIKEN, Wako, Saitama 351-0198, Japan; Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Hongo, Bunkyo City, Tokyo 113-8519, Japan
| | - Nobutaka Hattori
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN, Wako, Saitama 351-0198, Japan; Department of Neurology, Juntendo University, Hongo, Bunkyo City, Tokyo 113-8421, Japan
| | - Tadafumi Kato
- Laboratory of Molecular Dynamics of Mental Disorders, RIKEN, Wako, Saitama 351-0198, Japan; Department of Psychiatry, Juntendo University, Hongo, Bunkyo City, Tokyo 113-8421, Japan; Department of Molecular Pathology of Mood Disorders, Juntendo University, Hongo, Bunkyo City, Tokyo 113-8421, Japan.
| |
Collapse
|
7
|
Rivera-Irizarry JK, Hámor PU, Rowson SA, Asfouri J, Liu D, Zallar LJ, Garcia AF, Skelly MJ, Pleil KE. Valence and salience encoding by parallel circuits from the paraventricular thalamus to the nucleus accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547570. [PMID: 37461604 PMCID: PMC10349961 DOI: 10.1101/2023.07.03.547570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The anterior and posterior subregions of the paraventricular thalamus (aPVT and pPVT, respectively) play unique roles in learned behaviors, from fear conditioning to alcohol/drug intake, potentially through differentially organized projections to limbic brain regions including the nucleus accumbens medial shell (mNAcSh). Here, we found that the aPVT projects broadly to the mNAcSh and that the aPVT-mNAcSh circuit encodes positive valence, such that in vivo manipulations of the circuit modulated both innately programmed and learned behavioral responses to positively and negatively valenced stimuli, particularly in females. Further, the endogenous activity of aPVT presynaptic terminals in the mNAcSh was greater in response to positively than negatively valenced stimuli, and the probability of synaptic glutamate release from aPVT neurons in the mNAcSh was higher in females than males. In contrast, we found that the pPVT-mNAcSh circuit encodes stimulus salience regardless of valence. While pPVT-mNAcSh circuit inhibition suppressed behavioral responses in both sexes, circuit activation increased behavioral responses to stimuli only in males. Our results point to circuit-specific stimulus feature encoding by parallel PVT-mNAcSh circuits that have sex-dependent biases in organization and function.
Collapse
|
8
|
Yuan F, Zhou Z, Wu S, Jiao F, Chen L, Fang L, Yin H, Hu X, Jiang X, Liu K, Xiao F, Jiang H, Chen S, Liu Z, Shu Y, Guo F. Intestinal activating transcription factor 4 regulates stress-related behavioral alterations via paraventricular thalamus in male mice. Proc Natl Acad Sci U S A 2023; 120:e2215590120. [PMID: 37126693 PMCID: PMC10175747 DOI: 10.1073/pnas.2215590120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/31/2023] [Indexed: 05/03/2023] Open
Abstract
Chronic stress induces depression- and anxiety-related behaviors, which are common mental disorders accompanied not only by dysfunction of the brain but also of the intestine. Activating transcription factor 4 (ATF4) is a stress-induced gene, and we previously show that it is important for gut functions; however, the contribution of the intestinal ATF4 to stress-related behaviors is not known. Here, we show that chronic stress inhibits the expression of ATF4 in gut epithelial cells. ATF4 overexpression in the colon relieves stress-related behavioral alterations in male mice, as measured by open-field test, elevated plus-maze test, and tail suspension test, whereas intestine-specific ATF4 knockout induces stress-related behavioral alterations in male mice. Furthermore, glutamatergic neurons are inhibited in the paraventricular thalamus (PVT) of two strains of intestinal ATF4-deficient mice, and selective activation of these neurons alleviates stress-related behavioral alterations in intestinal ATF4-deficient mice. The highly expressed gut-secreted peptide trefoil factor 3 (TFF3) is chosen from RNA-Seq data from ATF4 deletion mice and demonstrated decreased in gut epithelial cells, which is directly regulated by ATF4. Injection of TFF3 reverses stress-related behaviors in ATF4 knockout mice, and the beneficial effects of TFF3 are blocked by inhibiting PVT glutamatergic neurons using DREADDs. In summary, this study demonstrates the function of ATF4 in the gut-brain regulation of stress-related behavioral alterations, via TFF3 modulating PVT neural activity. This research provides evidence of gut signals regulating stress-related behavioral alterations and identifies possible drug targets for the treatment of stress-related behavioral disorders.
Collapse
Affiliation(s)
- Feixiang Yuan
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, Minister of Education Frontiers Center for Brain Science, Fudan University, Shanghai200032, China
| | - Ziheng Zhou
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Shangming Wu
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Fuxin Jiao
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Liang Chen
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai200072, China
| | - Leilei Fang
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai200072, China
| | - Hanrui Yin
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Xiaoming Hu
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, Minister of Education Frontiers Center for Brain Science, Fudan University, Shanghai200032, China
| | - Xiaoxue Jiang
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, Minister of Education Frontiers Center for Brain Science, Fudan University, Shanghai200032, China
| | - Kan Liu
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Fei Xiao
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, Minister of Education Frontiers Center for Brain Science, Fudan University, Shanghai200032, China
| | - Haizhou Jiang
- Chinese Academy of Sciences Key Laboratory of Nutrition, Metabolism and Food Safety, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai200031, China
| | - Shanghai Chen
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, Minister of Education Frontiers Center for Brain Science, Fudan University, Shanghai200032, China
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai200072, China
| | - Yousheng Shu
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, Minister of Education Frontiers Center for Brain Science, Fudan University, Shanghai200032, China
| | - Feifan Guo
- Zhongshan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, Minister of Education Frontiers Center for Brain Science, Fudan University, Shanghai200032, China
| |
Collapse
|
9
|
Chronic oral ketamine prevents anhedonia and alters neuronal activation in the lateral habenula and nucleus accumbens in rats under chronic unpredictable mild stress. Neuropharmacology 2023; 228:109468. [PMID: 36813161 DOI: 10.1016/j.neuropharm.2023.109468] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
Acute injections of ketamine lead to rapid but transient antidepressant effects. Chronic oral treatment at low doses, a promising non-invasive alternative, may prolong this therapeutic effect. Here, we examine the antidepressant effects of chronic oral ketamine in rats under chronic unpredictable mild stress (CUMS), and reveal their neuronal correlates. Male Wistar rats were divided into control, ketamine, CUMS, and CUMS-ketamine groups. The CUMS protocol was applied to the latter two groups for 9 weeks, and ketamine (0.013 mg/ml) was provided ad libitum to the ketamine and CUMS-ketamine groups for 5 weeks. The sucrose consumption test, forced swim test, open field test, elevated plus maze, and Morris water maze were respectively used to assess anhedonia, behavioral despair, general locomotor activity, anxiety-like behavior and spatial reference memory. CUMS caused a reduction of sucrose consumption and impaired spatial memory, accompanied by increased neuronal activation in the lateral habenula (LHb) and paraventricular thalamic nucleus (PVT). Oral ketamine prevented behavioral despair and CUMS-induced anhedonia. Reward-triggered c-Fos immunoreactivity was decreased in the LHb and increased in the nucleus accumbens shell (NAcSh) in the CUMS-ketamine group compared to the CUMS group. Ketamine did not produce a differential effect in the OFT, EPM and MWM. These results show that chronic oral ketamine at low doses prevents anhedonia without impairing spatial reference memory. The observed neuronal activation changes in the LHb and NAcSh may be involved in the preventive effects of ketamine on anhedonia. This article is part of the Special Issue on "Ketamine and its Metabolites".
Collapse
|
10
|
Kubo S, Hirano T, Miyata Y, Ohno S, Onaru K, Ikenaka Y, Nakayama SM, Ishizuka M, Mantani Y, Yokoyama T, Hoshi N. Sex-specific behavioral effects of acute exposure to the neonicotinoid clothianidin in mice. Toxicol Appl Pharmacol 2022; 456:116283. [DOI: 10.1016/j.taap.2022.116283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/18/2022]
|
11
|
McNamara EH, Tucker LB, Liu J, Fu AH, Kim Y, Vu PA, McCabe JT. Limbic Responses Following Shock Wave Exposure in Male and Female Mice. Front Behav Neurosci 2022; 16:863195. [PMID: 35747840 PMCID: PMC9210954 DOI: 10.3389/fnbeh.2022.863195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/04/2022] [Indexed: 01/26/2023] Open
Abstract
Blast traumatic brain injury (bTBI) presents a serious threat to military personnel and often results in psychiatric conditions related to limbic system dysfunction. In this study, the functional outcomes for anxiety- and depressive-like behaviors and neuronal activation were evaluated in male and female mice after exposure to an Advanced Blast Simulator (ABS) shock wave. Mice were placed in a ventrally exposed orientation inside of the ABS test section and received primary and tertiary shock wave insults of approximately 15 psi peak pressure. Evans blue staining indicated cases of blood-brain barrier breach in the superficial cerebral cortex four, but not 24 h after blast, but the severity was variable. Behavioral testing with the elevated plus maze (EPM) or elevated zero maze (EZM), sucrose preference test (SPT), and tail suspension test (TST) or forced swim test (FST) were conducted 8 days–3.5 weeks after shock wave exposure. There was a sex difference, but no injury effect, for distance travelled in the EZM where female mice travelled significantly farther than males. The SPT and FST did not indicate group differences; however, injured mice were less immobile than sham mice during the TST; possibly indicating more agitated behavior. In a separate cohort of animals, the expression of the immediate early gene, c-Fos, was detected 4 h after undergoing bTBI or sham procedures. No differences in c-Fos expression were found in the cerebral cortex, but female mice in general displayed enhanced c-Fos activation in the paraventricular nucleus of the thalamus (PVT) compared to male mice. In the amygdala, more c-Fos-positive cells were observed in injured animals compared to sham mice. The observed sex differences in the PVT and c-Fos activation in the amygdala may correlate with the reported hyperactivity of females post-injury. This study demonstrates, albeit with mild effects, behavioral and neuronal activation correlates in female rodents after blast injury that could be relevant to the incidence of increased post-traumatic stress disorder in women.
Collapse
Affiliation(s)
- Eileen H. McNamara
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Laura B. Tucker
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, Bethesda, MD, United States
| | - Jiong Liu
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Amanda H. Fu
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, Bethesda, MD, United States
| | - Yeonho Kim
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, Bethesda, MD, United States
| | - Patricia A. Vu
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Joseph T. McCabe
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Pre-Clinical Studies Core, Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation, Bethesda, MD, United States
- *Correspondence: Joseph T. McCabe,
| |
Collapse
|
12
|
Newman EL, Covington HE, Leonard MZ, Burk K, Miczek KA. Hypoactive Thalamic Crh+ Cells in a Female Mouse Model of Alcohol Drinking After Social Trauma. Biol Psychiatry 2021; 90:563-574. [PMID: 34281710 PMCID: PMC8463500 DOI: 10.1016/j.biopsych.2021.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/04/2021] [Accepted: 05/20/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Comorbid stress-induced mood and alcohol use disorders are increasingly prevalent among female patients. Stress exposure can disrupt salience processing and goal-directed decision making, contributing to persistent maladaptive behavioral patterns; these and other stress-sensitive cognitive and behavioral processes rely on dynamic and coordinated signaling by midline and intralaminar thalamic nuclei. Considering the role of social trauma in the trajectory of these debilitating psychopathologies, identifying vulnerable thalamic cells may provide guidance for targeting persistent stress-induced symptoms. METHODS A novel behavioral protocol traced the progression from social trauma to the development of social defensiveness and chronically escalated alcohol consumption in female mice. Recent cell activation-measured as cFos-was quantified in thalamic cells after safe social interactions, revealing stress-sensitive corticotropin-releasing hormone-expressing (Crh+) anterior central medial thalamic (aCMT) cells. These cells were optogenetically stimulated during stress-induced social defensiveness and abstinence-escalated binge drinking. RESULTS Crh+ aCMT neurons exhibited substantial activation after social interactions in stress-naïve but not in stressed female mice. Photoactivating Crh+ aCMT cells dampened stress-induced social deficits, whereas inhibiting these cells increased social defensiveness in stress-naïve mice. Optogenetically activating Crh+ aCMT cells diminished abstinence-escalated binge alcohol drinking in female mice, regardless of stress history. CONCLUSIONS This work uncovers a role for Crh+ aCMT neurons in maladaptive stress-induced social interactions and in binge drinking after forced abstinence in female mice. This molecularly defined thalamic cell population may serve as a critical stress-sensitive hub for social deficits caused by exposure to social trauma and for patterns of excessive alcohol drinking in female populations.
Collapse
Affiliation(s)
- Emily L Newman
- Department of Psychology, Tufts University, Medford, Massachusetts; Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts
| | | | | | - Kelly Burk
- Department of Psychology, Tufts University, Medford, Massachusetts
| | - Klaus A Miczek
- Department of Psychology, Tufts University, Medford, Massachusetts; Department of Neuroscience, Tufts University, Boston, Massachusetts.
| |
Collapse
|
13
|
Hartmann MC, Pleil KE. Circuit and neuropeptide mechanisms of the paraventricular thalamus across stages of alcohol and drug use. Neuropharmacology 2021; 198:108748. [PMID: 34389397 DOI: 10.1016/j.neuropharm.2021.108748] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/26/2021] [Accepted: 07/31/2021] [Indexed: 12/23/2022]
Abstract
The paraventricular nucleus of the thalamus (PVT) is a midline thalamic brain region that has emerged as a critical circuit node in the regulation of behaviors across domains of affect and motivation, stress responses, and alcohol- and drug-related behaviors. The influence of the PVT in this diverse array of behaviors is a function of its ability to integrate and convey information about salience and valence through its connections with cortical, hypothalamic, hindbrain, and limbic brain regions. While understudied to date, recent studies suggest that several PVT efferents play critical and complex roles in drug and alcohol-related phenotypes. The PVT is also the site of signaling for many neuropeptides released from the synaptic terminals of distal inputs and local neuropeptidergic neurons within. While there is some evidence that neuropeptides including orexin, neurotensin, substance P, and cocaine and amphetamine-related transcript (CART) signal in the PVT to regulate alcohol/drug intake and reinstatement, there remains an overall lack of understanding of the roles of neuropeptides in the PVT in addiction-related behaviors, especially in a circuit-specific context. In this review, we present the current status of preclinical research regarding PVT circuits and neuropeptide modulation of the PVT in three aspects of the addiction cycle: reward/acquisition, withdrawal, and relapse, with a focus on alcohol, opioids (particularly morphine), and psychostimulants (particularly cocaine). Given the PVT's unique position within the broader neural landscape, we further discuss the potential ways in which neuropeptides may regulate these behaviors through their actions upon PVT circuits.
Collapse
Affiliation(s)
- Matthew C Hartmann
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
| | - Kristen E Pleil
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA; Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA.
| |
Collapse
|