1
|
Zeng J, Zhang T, Tang B, Li S, Yao L, Bishop JR, Sweeney JA, Li Z, Qiu C, Gu S, Gong Q, Zhang W, Lui S. Choroid plexus volume enlargement in first-episode antipsychotic-naïve schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:1. [PMID: 38167423 PMCID: PMC10851692 DOI: 10.1038/s41537-023-00424-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
Investigation of the choroid plexus in schizophrenia has seen growing interest due to its role in the interaction between neuroinflammation and brain dysfunction. Most previous studies included treated and long-term ill patients, while antipsychotics and illness course might both affect the choroid plexus. Here, we recruited first-episode antipsychotic-naïve schizophrenia patients, performed high-resolution structural brain scan and manually extracted choroid plexus volume. Choroid plexus volume was compared between patients and healthy controls after controlling for age, sex and intracranial volume. Age and sex effects were examined on choroid plexus volume in patient and healthy control groups respectively. In patients, we also examined the correlation of choroid plexus volume with volume measures of cortical and subcortical gray matter, white matter, lateral ventricular as well as symptom severity and cognitive function. Schizophrenia patients showed significantly enlarged choroid plexus volume compared with healthy controls. Choroid plexus volume was positively correlated with age in only patient group and we found significantly larger choroid plexus volumes in males than females in both patient and healthy control groups, while the sex effects did not differ between groups. Choroid plexus volume was only found correlated with lateral ventricular volume among the brain volume measures. No significant correlation between choroid plexus volume and clinical ratings or cognitive performance was observed. Without potential confounding effects of pharmacotherapy or illness course, our findings indicated the enlargement of choroid plexus in schizophrenia might be an enduring trait for schizophrenia.
Collapse
Affiliation(s)
- Jiaxin Zeng
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Tianwei Zhang
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Biqiu Tang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Siyi Li
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Li Yao
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Zhenlin Li
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Changjian Qiu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Shi Gu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Qiyong Gong
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Wenjing Zhang
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| | - Su Lui
- Department of Radiology, and Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China.
- Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, China.
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.
| |
Collapse
|
2
|
Ping J, Wan J, Huang C, Yu J, Luo J, Xing Z, Luo X, Du B, Jiang T, Zhang J. DNMT1 SNPs (rs2114724 and rs2228611) associated with positive symptoms in Chinese patients with schizophrenia. Ann Gen Psychiatry 2023; 22:40. [PMID: 37833704 PMCID: PMC10576382 DOI: 10.1186/s12991-023-00466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
OBJECTIVE Schizophrenia is a serious mental disorder with complex clinical manifestations, while its pathophysiological mechanism is not fully understood. Accumulated evidence suggested the alteration in epigenetic pathway was associated with clinical features and brain dysfunctions in schizophrenia. DNA methyltransferases (DNMTs), a key enzyme for DNA methylation, are related to the development of schizophrenia, whereas the current research evidence is not sufficient. The aim of study was to explore the effects of gene polymorphisms of DNMTs on the susceptibility and symptoms of schizophrenia. METHODS The study was case-control study that designed and employed the Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) as the diagnostic standard. 134 hospitalized patients with schizophrenia in the Third People's Hospital of Zhongshan City from January 2018 to April 2020 (Case group) as well as 64 healthy controls (Control group) from the same region were involved. Single nucleotide polymorphisms (SNPs) of DNMT1 genes (r s2114724 and rs 2228611) and DNMT3B genes (rs 2424932, rs 1569686, rs 6119954 and rs 2424908) were determined with massARRAY. Linkage disequilibrium analysis and haplotype analysis were performed, and genotype and allele frequencies were compared. The Hardy-Weinberg equilibrium was tested by the Chi-square test in SPSS software (version 20.0, SPSS Inc., USA). The severity of clinical symptoms was assessed by the Positive and Negative Syndrome Scale (PANSS). The correlation between DNMT1 genes (rs 2114724 and rs 2228611) and DNMT3B genes (rs2424932, rs1569686, rs6119954 and rs2424908) and clinical features was analyzed. RESULTS There were no significant differences in genotype, allele frequency and haplotype of DNMT1 genes (rs 2114724 and rs 2228611) and DNMT3B genes (rs 2424932, rs 1569686, rs 6119954 and rs 2424908) between the case and healthy control group. There were significant differences in the PANSS total positive symptom scores, P3 (hallucinatory behavior), P6 (suspicious/persecution), G7 (motor retardation), and G15 (preoccupation) in patients with different DNMT1 gene rs 2114724 and rs 2228611 genotypes. The linkage disequilibrium analysis of gene polymorphic loci revealed that rs 2114724-rs 2228611 was complete linkage disequilibrium, and rs 1569686-rs 2424908, rs 2424932-rs 1569696 and rs 2424932-rs 2424908 were strongly linkage disequilibrium. CONCLUSION The polymorphisms alteration in genetic pathway may be associated with development of specific clinical features in schizophrenia.
Collapse
Affiliation(s)
- Junjiao Ping
- Department of Psychiatry, The Third People's Hospital, Zhongshan, 528451, Guangdong, People's Republic of China
- Joint Laboratory of Psychiatric Genetic Research, The Third People's Hospital, Zhongshan, 528451, Guangdong, People's Republic of China
| | - Jing Wan
- Department of Early Intervention, The Third People's Hospital, Zhongshan, 528451, Guangdong, People's Republic of China
| | - Caiying Huang
- Department of Early Intervention, The Third People's Hospital, Zhongshan, 528451, Guangdong, People's Republic of China
| | - Jinming Yu
- Department of Psychiatry, The Third People's Hospital, Zhongshan, 528451, Guangdong, People's Republic of China
| | - Jiali Luo
- Joint Laboratory of Psychiatric Genetic Research, The Third People's Hospital, Zhongshan, 528451, Guangdong, People's Republic of China
| | - Zhiqiang Xing
- Department of Psychiatry, The Third People's Hospital, Zhongshan, 528451, Guangdong, People's Republic of China
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Baoguo Du
- Department of Clinical Psychology, The Third People's Hospital, Zhongshan, 528451, Guangdong, People's Republic of China
| | - Tingyun Jiang
- Department of Psychiatry, The Third People's Hospital, Zhongshan, 528451, Guangdong, People's Republic of China.
| | - Jie Zhang
- Joint Laboratory of Psychiatric Genetic Research, The Third People's Hospital, Zhongshan, 528451, Guangdong, People's Republic of China.
- Department of Psychiatry, Gannan Medical University, Ganzhou, 341000, Jiangxi , People's Republic of China.
| |
Collapse
|
3
|
Ma XY, Yang TT, Liu L, Peng XC, Qian F, Tang FR. Ependyma in Neurodegenerative Diseases, Radiation-Induced Brain Injury and as a Therapeutic Target for Neurotrophic Factors. Biomolecules 2023; 13:754. [PMID: 37238624 PMCID: PMC10216700 DOI: 10.3390/biom13050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The neuron loss caused by the progressive damage to the nervous system is proposed to be the main pathogenesis of neurodegenerative diseases. Ependyma is a layer of ciliated ependymal cells that participates in the formation of the brain-cerebrospinal fluid barrier (BCB). It functions to promotes the circulation of cerebrospinal fluid (CSF) and the material exchange between CSF and brain interstitial fluid. Radiation-induced brain injury (RIBI) shows obvious impairments of the blood-brain barrier (BBB). In the neuroinflammatory processes after acute brain injury, a large amount of complement proteins and infiltrated immune cells are circulated in the CSF to resist brain damage and promote substance exchange through the BCB. However, as the protective barrier lining the brain ventricles, the ependyma is extremely vulnerable to cytotoxic and cytolytic immune responses. When the ependyma is damaged, the integrity of BCB is destroyed, and the CSF flow and material exchange is affected, leading to brain microenvironment imbalance, which plays a vital role in the pathogenesis of neurodegenerative diseases. Epidermal growth factor (EGF) and other neurotrophic factors promote the differentiation and maturation of ependymal cells to maintain the integrity of the ependyma and the activity of ependymal cilia, and may have therapeutic potential in restoring the homeostasis of the brain microenvironment after RIBI or during the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xin-Yu Ma
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Ting-Ting Yang
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Lian Liu
- Department of Pharmacology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Feng Qian
- Department of Physiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, China
| | - Feng-Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
4
|
Dawes W. Secondary Brain Injury Following Neonatal Intraventricular Hemorrhage: The Role of the Ciliated Ependyma. Front Pediatr 2022; 10:887606. [PMID: 35844746 PMCID: PMC9280684 DOI: 10.3389/fped.2022.887606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/07/2022] [Indexed: 11/15/2022] Open
Abstract
Intraventricular hemorrhage is recognized as a leading cause of hydrocephalus in the developed world and a key determinant of neurodevelopmental outcome following premature birth. Even in the absence of haemorrhagic infarction or posthaemorrhagic hydrocephalus, there is increasing evidence of neuropsychiatric and neurodevelopmental sequelae. The pathophysiology underlying this injury is thought to be due to a primary destructive and secondary developmental insult, but the exact mechanisms remain elusive and this has resulted in a paucity of therapeutic interventions. The presence of blood within the cerebrospinal fluid results in the loss of the delicate neurohumoral gradient within the developing brain, adversely impacting on the tightly regulated temporal and spatial control of cell proliferation and migration of the neural stem progenitor cells within the subventricular zone. In addition, haemolysis of the erythrocytes, associated with the release of clotting factors and leucocytes into the cerebrospinal (CSF), results in a toxic and inflammatory CSF microenvironment which is harmful to the periventricular tissues, resulting in damage and denudation of the multiciliated ependymal cells which line the choroid plexus and ventricular system. The ependyma plays a critical role in the developing brain and beyond, acting as both a protector and gatekeeper to the underlying parenchyma, controlling influx and efflux across the CSF to brain interstitial fluid interface. In this review I explore the hypothesis that damage and denudation of the ependymal layer at this critical juncture in the developing brain, seen following IVH, may adversely impact on the brain microenvironment, exposing the underlying periventricular tissues to toxic and inflammatory CSF, further exacerbating disordered activity within the subventricular zone (SVZ). By understanding the impact that intraventricular hemorrhage has on the microenvironment within the CSF, and the consequences that this has on the multiciliated ependymal cells which line the neuraxis, we can begin to develop and test novel therapeutic interventions to mitigate damage and reduce the associated morbidity.
Collapse
Affiliation(s)
- William Dawes
- Alder Hey Children's Hospital, Liverpool, United Kingdom.,NIHR Great Ormond Street Hospital BRC, London, United Kingdom
| |
Collapse
|
5
|
N-methyl-D-aspartate receptor antibody and the choroid plexus in schizophrenia patients with tardive dyskinesia. J Psychiatr Res 2021; 142:290-298. [PMID: 34411812 DOI: 10.1016/j.jpsychires.2021.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Immune disturbance has been postulated to be one of the mechanisms underlying the pathogenesis of tardive dyskinesia (TD). Recently, the role of autoimmune abnormality in TD has been increasingly recognized. Autoantibodies against neuronal N-methyl-D-aspartate receptor (NMDAR) may be cross-reactive in the brain in neuropsychiatric disorders, and the choroid plexus (CP) is a crucial immune barrier in the central nervous system (CNS). We supposed that NMDAR antibodies might underlie the pathophysiological process of TD through the mediation of CP. METHODS Serum NMDAR antibody levels were assessed by enzyme-linked immunosorbent assay, CP and ventricle volumes were assessed by magnetic resonance imaging in schizophrenia patients with TD (n = 61), without TD (NTD, n = 61), and in healthy controls (n = 74). Psychopathology and TD severity were assessed by the Positive and Negative Syndrome Scale and Abnormal Involuntary Movement Scale (AIMS). RESULTS NMDAR antibody levels were significantly higher, CP volumes were larger in the TD group than in the NTD group (p = 0.022; p = 0.019, respectively). In the TD group, higher NMDAR antibody level was correlated with larger CP volume (β = 0.406, p = 0.002). An elevated NMDAR antibody level and enlarged CP volume were correlated with orofacial AIMS score (β = 0.331, p = 0.011; β = 0.459, p = 3.34 × 10-4, respectively). In a mediation model, the effect of NMDAR antibody level on the orofacial AIMS score was mediated by the CP volume (indirect effect: β = 0.08, 95% confidence interval = 0.002-0.225; direct effect: β = 0.14, p = 0.154). CONCLUSIONS Our findings highlight a potential NMDAR antibody-associated mechanism in orofacial TD, which may be mediated by increased CP volume.
Collapse
|
6
|
Ho KH, Patrizi A. Assessment of common housekeeping genes as reference for gene expression studies using RT-qPCR in mouse choroid plexus. Sci Rep 2021; 11:3278. [PMID: 33558629 PMCID: PMC7870894 DOI: 10.1038/s41598-021-82800-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023] Open
Abstract
Choroid plexus (ChP), a vascularized secretory epithelium located in all brain ventricles, plays critical roles in development, homeostasis and brain repair. Reverse transcription quantitative real-time PCR (RT-qPCR) is a popular and useful technique for measuring gene expression changes and also widely used in ChP studies. However, the reliability of RT-qPCR data is strongly dependent on the choice of reference genes, which are supposed to be stable across all samples. In this study, we validated the expression of 12 well established housekeeping genes in ChP in 2 independent experimental paradigms by using popular stability testing algorithms: BestKeeper, DeltaCq, geNorm and NormFinder. Rer1 and Rpl13a were identified as the most stable genes throughout mouse ChP development, while Hprt1 and Rpl27 were the most stable genes across conditions in a mouse sensory deprivation experiment. In addition, Rpl13a, Rpl27 and Tbp were mutually among the top five most stable genes in both experiments. Normalisation of Ttr and Otx2 expression levels using different housekeeping gene combinations demonstrated the profound effect of reference gene choice on target gene expression. Our study emphasized the importance of validating and selecting stable housekeeping genes under specific experimental conditions.
Collapse
Affiliation(s)
- Kim Hoa Ho
- Schaller Research Group, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Annarita Patrizi
- Schaller Research Group, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
7
|
Monroe TO, Garrett ME, Kousi M, Rodriguiz RM, Moon S, Bai Y, Brodar SC, Soldano KL, Savage J, Hansen TF, Muzny DM, Gibbs RA, Barak L, Sullivan PF, Ashley-Koch AE, Sawa A, Wetsel WC, Werge T, Katsanis N. PCM1 is necessary for focal ciliary integrity and is a candidate for severe schizophrenia. Nat Commun 2020; 11:5903. [PMID: 33214552 PMCID: PMC7677393 DOI: 10.1038/s41467-020-19637-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 10/13/2020] [Indexed: 12/30/2022] Open
Abstract
The neuronal primary cilium and centriolar satellites have functions in neurogenesis, but little is known about their roles in the postnatal brain. We show that ablation of pericentriolar material 1 in the mouse leads to progressive ciliary, anatomical, psychomotor, and cognitive abnormalities. RNAseq reveals changes in amine- and G-protein coupled receptor pathways. The physiological relevance of this phenotype is supported by decreased available dopamine D2 receptor (D2R) levels and the failure of antipsychotic drugs to rescue adult behavioral defects. Immunoprecipitations show an association with Pcm1 and D2Rs. Finally, we sequence PCM1 in two human cohorts with severe schizophrenia. Systematic modeling of all discovered rare alleles by zebrafish in vivo complementation reveals an enrichment for pathogenic alleles. Our data emphasize a role for the pericentriolar material in the postnatal brain, with progressive degenerative ciliary and behavioral phenotypes; and they support a contributory role for PCM1 in some individuals diagnosed with schizophrenia. The role of ciliary/centriolar components in the postnatal brain is unclear. Here, the authors show via ablation of Pcm1 in mice that degenerative ciliary/centriolar phenotypes induce neuroanatomical and behavioral changes. Sequencing of PCM1 in human cohorts and zebrafish in vivo complementation suggests PCM1 mutations can contribute to schizophrenia.
Collapse
Affiliation(s)
- Tanner O Monroe
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Melanie E Garrett
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Maria Kousi
- MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA
| | - Ramona M Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, 27710, USA.,Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sungjin Moon
- Department of Biological Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Yushi Bai
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Steven C Brodar
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Karen L Soldano
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Jeremiah Savage
- Center for Translational Data Science, The University of Chicago, Chicago, IL, 60615, USA
| | - Thomas F Hansen
- Department of Clinical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute of Biological Psychiatry, MHC Sct. Hans, Mental Health Services, Copenhagen, Denmark
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, 77030, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, 77030, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lawrence Barak
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Patrick F Sullivan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Allison E Ashley-Koch
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.,Department of Mental Health, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - William C Wetsel
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, 27710, USA.,Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA.,Department of Neurobiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Thomas Werge
- Department of Clinical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute of Biological Psychiatry, MHC Sct. Hans, Mental Health Services, Copenhagen, Denmark.,iPSYCH - The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Copenhagen, Denmark.,Center for GeoGenetics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas Katsanis
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA.
| |
Collapse
|
8
|
Zhou YF, Huang JC, Zhang P, Fan FM, Chen S, Fan HZ, Cui YM, Luo XG, Tan SP, Wang ZR, Feng W, Yuan Y, Yang FD, Savransky A, Ryan M, Goldwaser E, Chiappelli J, Rowland LM, Kochunov P, Tan YL, Hong LE. Choroid Plexus Enlargement and Allostatic Load in Schizophrenia. Schizophr Bull 2020; 46:722-731. [PMID: 31603232 PMCID: PMC7147577 DOI: 10.1093/schbul/sbz100] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although schizophrenia is a brain disorder, increasing evidence suggests that there may be body-wide involvement in this illness. However, direct evidence of brain structures involved in the presumed peripheral-central interaction in schizophrenia is still unclear. Seventy-nine previously treatment-naïve first-episode schizophrenia patients who were within 2-week antipsychotics initial stabilization, and 41 age- and sex-matched healthy controls were enrolled in the study. Group differences in subcortical brain regional structures measured by MRI and the subclinical cardiovascular, metabolic, immune, and neuroendocrine biomarkers as indexed by allostatic load, and their associations were explored. Compared with controls, patients with schizophrenia had significantly higher allostatic load (P = .001). Lateral ventricle (P < .001), choroid plexus (P < .001), and thalamus volumes (P < .001) were significantly larger, whereas amygdala volume (P = .001) was significantly smaller in patients. The choroid plexus alone was significantly correlated with higher allostatic load after age, sex, education level, and the total intracranial volume were taken into account (t = 3.60, P < .001). Allostatic load was also significantly correlated with PANSS positive (r = 0.28, P = .016) and negative (r = -0.31, P = .008) symptoms, but in opposite directions. The peripheral multisystemic and central nervous system abnormalities in schizophrenia may interact through the choroid plexus during the early stage of the illness. The choroid plexus might provide a sensitive structural biomarker to study the treatment and prevention of brain-periphery interaction abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Yan-Fang Zhou
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Jun-Chao Huang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Ping Zhang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Feng-Mei Fan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Hong-Zhen Fan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Yi-Min Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, P. R. China
| | - Xing-Guang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Shu-Ping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Zhi-Ren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Wei Feng
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Ying Yuan
- School of Foreign Languages and Literature, Tianjin University, Tianjin, P. R. China
| | - Fu-De Yang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China
| | - Anya Savransky
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Meghann Ryan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Eric Goldwaser
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Yun-Long Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China,To whom correspondence should be addressed; Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, P. R. China; tel: +86-(10)-83024319, fax: +86-(10)-62710156, e-mail:
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
9
|
Monaco S, Baur K, Hellwig A, Hölzl-Wenig G, Mandl C, Ciccolini F. A Flow Cytometry-Based Approach for the Isolation and Characterization of Neural Stem Cell Primary Cilia. Front Cell Neurosci 2019; 12:519. [PMID: 30692915 PMCID: PMC6339872 DOI: 10.3389/fncel.2018.00519] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/12/2018] [Indexed: 01/15/2023] Open
Abstract
In the adult mammalian brain, the apical surface of the subependymal zone (SEZ) is covered by many motile ependymal cilia and a few primary cilia originating from rare intermingled neural stem cells (NSCs). In NSCs the primary cilia are key for the transduction of essential extracellular signals such as Sonic hedgehog (SHH) and platelet-derived growth factor (PDGF). Despite their importance, the analysis of NSC primary cilia is greatly hampered by the fact that they are overwhelmingly outnumbered by the motile cilia. We here take advantage of flow cytometry to purify the two cilia types and allow their molecular characterization. Primary cilia were identified based on immunoreactivity to the marker adenylate cyclase type III (AC3) and differential levels of prominin-1 whereas motile cilia displayed immunoreactivity only to the latter. Consistent with the morphological differences between the two classes of cilia, enrichment of motile cilia positively correlated with size. Moreover, we observed age-dependent variations in the abundance of the two groups of ciliary organelles reflecting the changes associated with their development. The two cilia groups also differed with respect to the expression of signaling molecules, since PDGF receptor (PDGFR)α, smoothened (Smo) and CXC chemokine receptor (CXCR)4 were only detected in isolated primary but not motile cilia. Thus, our novel method of cilia isolation and characterization by flow cytometry has the potential to be extended to the study of cilia from different tissues and organs, providing a powerful tool for the investigation of primary cilia in physiological and pathological conditions.
Collapse
Affiliation(s)
- Sara Monaco
- Interdisciplinary Center for Neurosciences (IZN), Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - Katja Baur
- Interdisciplinary Center for Neurosciences (IZN), Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - Andrea Hellwig
- Interdisciplinary Center for Neurosciences (IZN), Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - Gabriele Hölzl-Wenig
- Interdisciplinary Center for Neurosciences (IZN), Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - Claudia Mandl
- Interdisciplinary Center for Neurosciences (IZN), Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - Francesca Ciccolini
- Interdisciplinary Center for Neurosciences (IZN), Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Morin V, Bonafos A, Masson M, Vederine FE. Symptomatologie psychotique et hydrocéphalie : à propos d’un cas. ANNALES MEDICO-PSYCHOLOGIQUES 2017. [DOI: 10.1016/j.amp.2017.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Filice F, Celio MR, Babalian A, Blum W, Szabolcsi V. Parvalbumin-expressing ependymal cells in rostral lateral ventricle wall adhesions contribute to aging-related ventricle stenosis in mice. J Comp Neurol 2017; 525:3266-3285. [DOI: 10.1002/cne.24276] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Federica Filice
- Anatomy and Program in Neuroscience; Department of Medicine, University of Fribourg; Fribourg Switzerland
| | - Marco R. Celio
- Anatomy and Program in Neuroscience; Department of Medicine, University of Fribourg; Fribourg Switzerland
| | - Alexandre Babalian
- Anatomy and Program in Neuroscience; Department of Medicine, University of Fribourg; Fribourg Switzerland
| | - Walter Blum
- Anatomy and Program in Neuroscience; Department of Medicine, University of Fribourg; Fribourg Switzerland
- INSERM UMR-1162, Génomique Fonctionelle des Tumeurs Solides; Paris France
| | - Viktoria Szabolcsi
- Anatomy and Program in Neuroscience; Department of Medicine, University of Fribourg; Fribourg Switzerland
| |
Collapse
|
12
|
Kaleli S, Kotan D, Akdogan M, Ceylan M, Yalcin A. Serum Prolidase Activity as a Biomarker for Choroid Plexus Calcification. TOHOKU J EXP MED 2017; 238:255-9. [PMID: 27000973 DOI: 10.1620/tjem.238.255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The choroid plexus (CP) performs multiple functions such as secretion and reabsorption. CP also acts as the blood-cerebrospinal fluid barrier. Prolidase plays an important role in collagen metabolism by degrading imidodipeptides, in which proline or hydroxyproline residue is located at the C-terminal end. Serum prolidase activity (SPA) may reflect the degree of fibrosis and inflammation. Choroid plexus calcification (CPC) is considered as the physiological calcification of the brain, and CPC is diagnosed by the presence of calcification in the anatomical region on computed tomography (CT). Here, CPC and non-calcified CP were defined by Hounsfield Units (HU) values of > 150 and < 50, respectively. We aimed to measure SPA in subjects with CPC and those with non-calcified CP. This study included 89 subjects who were admitted to the neurology clinic and underwent CT: 44 subjects with CPC and 45 subjects with non-calcified CP. The neurological examination of all subjects was normal; namely, the subjects with CPC were asymptomatic. The SPA level was significantly higher in the CPC group than that in the non-calcified CP group (p < 0.002), and there was a significant positive correlation between vitamin D and SPA levels in the CPC group. In contrast, the vitamin D and parathyroid hormone levels were higher in the CPC group, but the difference was not statically significant (p > 0.05). These findings indicate that SPA is a biomarker for CPC that may be predictive of future brain disease.
Collapse
Affiliation(s)
- Suleyman Kaleli
- Department of Medical Biology, Medicine Faculty, Sakarya University
| | | | | | | | | |
Collapse
|
13
|
Yeo HG, Lee Y, Jeon CY, Jeong KJ, Jin YB, Kang P, Kim SU, Kim JS, Huh JW, Kim YH, Sim BW, Song BS, Park YH, Hong Y, Lee SR, Chang KT. Characterization of Cerebral Damage in a Monkey Model of Alzheimer's Disease Induced by Intracerebroventricular Injection of Streptozotocin. J Alzheimers Dis 2016; 46:989-1005. [PMID: 25881906 DOI: 10.3233/jad-143222] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In line with recent findings showing Alzheimer's disease (AD) as an insulin-resistant brain state, a non-transgenic animal model with intracerebroventricular streptozotocin (icv-STZ) administration has been proposed as a representative experimental model of AD. Although icv-STZ rodent models of AD have been increasingly researched, studies in non-human primate models are very limited. In this study, we aimed to characterize the cerebral damage caused by icv-STZ in non-human primates; to achieve this, three cynomolgus monkeys (Macaca fascicularis) were administered four dosages of STZ (2 mg/kg) dissolved in artificial cerebrospinal fluid and another three controls were injected with only artificial cerebrospinal fluid at the cerebellomedullary cistern. In vivo neuroimaging was performed with clinical 3.0 T MRI, followed by quantitative analysis with FSL for evaluation of structural changes of the brain. Immunohistochemistry was performed to evaluate cerebral histopathology. We showed that icv-STZ caused severe ventricular enlargement and parenchymal atrophy, accompanying amyloid-β deposition, hippocampal cell loss, tauopathy, ependymal cell loss, astrogliosis, and microglial activation, which are observed in human aged or AD brain. The findings suggest that the icv-STZ monkey model would be a valuable resource to study the mechanisms and consequences of a variety of cerebral pathologies including major pathological hallmarks of AD. Furthermore, the study of icv-STZ monkeys could contribute to the development of treatments for age- or AD-associated cerebral changes.
Collapse
Affiliation(s)
- Hyeon-Gu Yeo
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Youngjeon Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Chang-Yeop Jeon
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea.,Department of Biomedical Engineering, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Kang-Jin Jeong
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Yeung Bae Jin
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Philyong Kang
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Sun-Uk Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Ji-Su Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Young-Hyun Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Bo-Woong Sim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Bong-Seok Song
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Young-Ho Park
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Yonggeun Hong
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Kyu-Tae Chang
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
14
|
Demeestere D, Libert C, Vandenbroucke RE. Therapeutic implications of the choroid plexus-cerebrospinal fluid interface in neuropsychiatric disorders. Brain Behav Immun 2015; 50:1-13. [PMID: 26116435 DOI: 10.1016/j.bbi.2015.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/29/2015] [Accepted: 06/13/2015] [Indexed: 12/31/2022] Open
Abstract
The choroid plexus (CP) comprises an epithelial monolayer that forms an important physical, enzymatic and immunologic barrier, called the blood-cerebrospinal fluid barrier (BCSFB). It is a highly vascularized organ located in the brain ventricles that is key in maintaining brain homeostasis as it produces cerebrospinal fluid (CSF) and has other important secretory functions. Furthermore, the CP-CSF interface plays a putative role in neurogenesis and has been implicated in neuropsychiatric diseases such as the neurodevelopmental disorders schizophrenia and autism. A role for this CNS border was also implicated in sleep disturbances and chronic and/or severe stress, which are risk factors for the development of neuropsychiatric conditions. Understanding the mechanisms by which disturbance of the homeostasis at the CP-CSF interface is involved in these different chronic low-grade inflammatory diseases can give new insights into therapeutic strategies. Hence, this review discusses the different roles that have been suggested so far for the CP in these neuropsychiatric disorders, with special attention to potential therapeutic applications.
Collapse
Affiliation(s)
- Delphine Demeestere
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium
| | - Roosmarijn E Vandenbroucke
- Inflammation Research Center, VIB, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, B-9052 Zwijnaarde, Ghent, Belgium.
| |
Collapse
|
15
|
Muthusamy N, Sommerville LJ, Moeser AJ, Stumpo DJ, Sannes P, Adler K, Blackshear PJ, Weimer JM, Ghashghaei HT. MARCKS-dependent mucin clearance and lipid metabolism in ependymal cells are required for maintenance of forebrain homeostasis during aging. Aging Cell 2015; 14:764-73. [PMID: 26010231 PMCID: PMC4568964 DOI: 10.1111/acel.12354] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2015] [Indexed: 12/28/2022] Open
Abstract
Ependymal cells (ECs) form a barrier responsible for selective movement of fluids and molecules between the cerebrospinal fluid and the central nervous system. Here, we demonstrate that metabolic and barrier functions in ECs decline significantly during aging in mice. The longevity of these functions in part requires the expression of the myristoylated alanine-rich protein kinase C substrate (MARCKS). Both the expression levels and subcellular localization of MARCKS in ECs are markedly transformed during aging. Conditional deletion of MARCKS in ECs induces intracellular accumulation of mucins, elevated oxidative stress, and lipid droplet buildup. These alterations are concomitant with precocious disruption of ependymal barrier function, which results in the elevation of reactive astrocytes, microglia, and macrophages in the interstitial brain tissue of young mutant mice. Interestingly, similar alterations are observed during normal aging in ECs and the forebrain interstitium. Our findings constitute a conceptually new paradigm in the potential role of ECs in the initiation of various conditions and diseases in the aging brain.
Collapse
Affiliation(s)
- Nagendran Muthusamy
- Department of Molecular Biomedical Sciences College of Veterinary Medicine North Carolina State University Raleigh NC 27607 USA
| | - Laura J. Sommerville
- Department of Molecular Biomedical Sciences College of Veterinary Medicine North Carolina State University Raleigh NC 27607 USA
| | - Adam J. Moeser
- Department of Population Health and Pathobiology College of Veterinary Medicine North Carolina State University Raleigh NC 27607 USA
- Center for Comparative Medicine and Translational Research College of Veterinary Medicine North Carolina State University Raleigh NC 27607 USA
| | - Deborah J. Stumpo
- Laboratory of Signal Transduction National Institute of Environmental Health Sciences Durham NC 27709 USA
| | - Philip Sannes
- Department of Molecular Biomedical Sciences College of Veterinary Medicine North Carolina State University Raleigh NC 27607 USA
- Center for Comparative Medicine and Translational Research College of Veterinary Medicine North Carolina State University Raleigh NC 27607 USA
| | - Kenneth Adler
- Department of Molecular Biomedical Sciences College of Veterinary Medicine North Carolina State University Raleigh NC 27607 USA
| | - Perry J. Blackshear
- Laboratory of Signal Transduction National Institute of Environmental Health Sciences Durham NC 27709 USA
| | - Jill M. Weimer
- Sanford Research Children's Health Research and Department of Pediatric University of South Dakota Sanford School of Medicine Sioux Falls SD 57104 USA
| | - H. Troy Ghashghaei
- Department of Molecular Biomedical Sciences College of Veterinary Medicine North Carolina State University Raleigh NC 27607 USA
- Center for Comparative Medicine and Translational Research College of Veterinary Medicine North Carolina State University Raleigh NC 27607 USA
- Program in Genetics North Carolina State University Raleigh NC 27607 USA
| |
Collapse
|
16
|
Shook BA, Lennington JB, Acabchuk RL, Halling M, Sun Y, Peters J, Wu Q, Mahajan A, Fellows DW, Conover JC. Ventriculomegaly associated with ependymal gliosis and declines in barrier integrity in the aging human and mouse brain. Aging Cell 2014; 13:340-50. [PMID: 24341850 PMCID: PMC3954884 DOI: 10.1111/acel.12184] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2013] [Indexed: 01/19/2023] Open
Abstract
Age-associated ventriculomegaly is typically attributed to neurodegeneration; however, additional factors might initiate or contribute to progressive ventricular expansion. By directly linking postmortem human MRI sequences with histological features of periventricular tissue, we show that substantial lateral ventricle surface gliosis is associated with ventriculomegaly. To examine whether loss of ependymal cell coverage resulting in ventricle surface glial scarring can lead directly to ventricle enlargement independent of any other injury or degenerative loss, we modeled in mice the glial scarring found along the lateral ventricle surface in aged humans. Neuraminidase, which cleaves glycosidic linkages of apical adherens junction proteins, was administered intracerebroventricularly to denude areas of ependymal cells. Substantial ependymal cell loss resulted in reactive gliosis rather than stem cell-mediated regenerative repair of the ventricle lining, and the gliotic regions showed morphologic and phenotypic characteristics similar to those found in aged humans. Increased levels of aquaporin-4, indicative of edema, observed in regions of periventricular gliosis in human tissue were also replicated in our mouse model. 3D modeling together with volume measurements revealed that mice with ventricle surface scarring developed expanded ventricles, independent of neurodegeneration. Through a comprehensive, comparative analysis of the lateral ventricles and associated periventricular tissue in aged humans and mouse, followed by modeling of surface gliosis in mice, we have demonstrated a direct link between lateral ventricle surface gliosis and ventricle enlargement. These studies highlight the importance of maintaining an intact ependymal cell lining throughout aging.
Collapse
Affiliation(s)
- Brett A. Shook
- Department of Physiology and Neurobiology University of Connecticut Storrs CT 06269‐3156 USA
- Stem Cell Institute University of Connecticut Storrs CT 06269‐3156 USA
| | - Jessica B. Lennington
- Department of Physiology and Neurobiology University of Connecticut Storrs CT 06269‐3156 USA
- Stem Cell Institute University of Connecticut Storrs CT 06269‐3156 USA
| | - Rebecca L. Acabchuk
- Department of Physiology and Neurobiology University of Connecticut Storrs CT 06269‐3156 USA
- Stem Cell Institute University of Connecticut Storrs CT 06269‐3156 USA
| | - Meredith Halling
- Department of Physiology and Neurobiology University of Connecticut Storrs CT 06269‐3156 USA
- Stem Cell Institute University of Connecticut Storrs CT 06269‐3156 USA
| | - Ye Sun
- Department of Physiology and Neurobiology University of Connecticut Storrs CT 06269‐3156 USA
| | - John Peters
- Department of Physiology and Neurobiology University of Connecticut Storrs CT 06269‐3156 USA
| | - Qian Wu
- Department of Anatomic Pathology and Laboratory Medicine University of Connecticut Health Center 400 Farmington Avenue FarmingtonCT 06030 USA
| | - Amit Mahajan
- Department of Diagnostic Radiology Yale School of Medicine New Haven CT 06520‐8042 USA
| | - Douglas W. Fellows
- Department of Diagnostic Imaging and Therapeutics University of Connecticut Health Center 400 Farmington Avenue FarmingtonCT 06030 USA
| | - Joanne C. Conover
- Department of Physiology and Neurobiology University of Connecticut Storrs CT 06269‐3156 USA
- Stem Cell Institute University of Connecticut Storrs CT 06269‐3156 USA
| |
Collapse
|