1
|
Kiuchi M, Uno T, Hasegawa T, Koyama K, Horiuchi M. Influence of short-term hypoxic exposure on spatial learning and memory function and brain-derived neurotrophic factor in rats-A practical implication to human's lost way. Front Behav Neurosci 2024; 18:1330596. [PMID: 38380151 PMCID: PMC10876868 DOI: 10.3389/fnbeh.2024.1330596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
The present study aimed to investigate the effects of a short period of normobaric hypoxic exposure on spatial learning and memory, and brain-derived neurotrophic factor (BDNF) levels in the rat hippocampus. Hypoxic conditions were set at 12.5% O2. We compared all variables between normoxic trials (Norm), after 24 h (Hypo-24 h), and after 72 h of hypoxic exposure (Hypo-72 h). Spatial learning and memory were evaluated by using a water-finding task in an open field. Time to find water drinking fountains was significantly extended in Hypo 24 h (36.2 ± 21.9 s) compared to those in Norm (17.9 ± 12.8 s; P < 0.05), whereas no statistical differences between Norm and Hypo-72 h (22.7 ± 12.3 s). Moreover, hippocampal BDNF level in Hypo-24 h was significantly lower compared to Norm (189.4 ± 28.4 vs. 224.9 ± 47.7 ng/g wet tissue, P < 0.05), whereas no statistically differences in those between Norm and Hypo-72 h (228.1 ± 39.8 ng/g wet tissue). No significant differences in the changes in corticosterone and adrenocorticotropic hormone levels were observed across the three conditions. When data from Hypo-24 h and Hypo-72 h of hypoxia were pooled, there was a marginal negative relationship between the time to find drinking fountains and BDNF (P < 0.1), and was a significant negative relationship between the locomotor activities and BDNF (P < 0.05). These results suggest that acute hypoxic exposure (24 h) may impair spatial learning and memory; however, it recovered after 72 h of hypoxic exposure. These changes in spatial learning and memory may be associated with changes in the hippocampal BDNF levels in rats.
Collapse
Affiliation(s)
- Masataka Kiuchi
- Graduate School Department of Interdisciplinary Research, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Tadashi Uno
- Division of Human Environmental Science, Mount Fuji Research Institute, Fujiyoshida, Yamanashi, Japan
| | - Tatsuya Hasegawa
- Division of Human Environmental Science, Mount Fuji Research Institute, Fujiyoshida, Yamanashi, Japan
| | - Katsuhiro Koyama
- Faculty of Sport Science, Yamanashi Gakuin University, Kofu, Yamanashi, Japan
| | - Masahiro Horiuchi
- Division of Human Environmental Science, Mount Fuji Research Institute, Fujiyoshida, Yamanashi, Japan
- Faculty of Sports and Life Science, National Institute of Fitness and Sports in Kanoya, Kanoya, Kagoshima, Japan
| |
Collapse
|
2
|
Park PJ, Mondal H, Pi BS, Kim ST, Jee JP. The effect of oxygen supply using perfluorocarbon-based nanoemulsions on human hair growth. J Mater Chem B 2024; 12:991-1000. [PMID: 38193597 DOI: 10.1039/d3tb02237d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Hair dermal papilla cells (hDPCs) play a crucial role in hair growth and regeneration, and their function is influenced by nutrient and oxygen supply. A microenvironment with significantly low oxygen (O2) levels, known as anoxic conditions (<0.2%) due to oxygen deficiency, hinders hDPC promotion and retards hair regrowth. Here, a nanoemulsion (NE) based on perfluorooctyl bromide (PFOB), a member of the perfluorocarbon family, is presented to provide a sustainable O2 supply and maintain physical stability in vitro. The PFOB-NE has been shown to continuously release oxygen for 36 h, increasing and maintaining the O2 concentration in the anoxic microenvironment of up to 0.8%. This sustainable O2 supply using PFOB-NE has promoted hDPC growth and also induced a complex cascade of effects. These effects encompass regulation via inhibiting lactate accumulation caused via oxygen deficiency, increasing lactate dehydrogenase activity, and promoting the expression of genes, such as the hypoxia-inducible factor 1 family and NADPH oxidase 4 under anoxic conditions. Sustained O2 supply is shown to enhance human hair organ elongation approximately four times compared to the control under anoxic conditions. In conclusion, the perfluorocarbon-based NE containing oxygen proves to be an important strategic tool for improving hair growth and alleviating hair loss.
Collapse
Affiliation(s)
- Phil June Park
- Basic Research & Innovation Division, AMOREPACIFIC R&I Center, Gyeonggi-do, 17074, Republic of Korea
| | - Himangsu Mondal
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Bong Soo Pi
- Basic Research & Innovation Division, AMOREPACIFIC R&I Center, Gyeonggi-do, 17074, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sung Tae Kim
- Department of Pharmaceutical Engineering/Department of Nanoscience and Engineering, Inje University, Gyeongsangnam-do, 50834, Republic of Korea
| | - Jun-Pil Jee
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| |
Collapse
|
3
|
Dey D, Shrivastava V, Joshi D, Singal CMS, Tyagi S, Bhat MA, Jaiswal P, Sharma JB, Palanichamy JK, Sinha S, Seth P, Sen S. Hypoxia Induces Early Neurogenesis in Human Fetal Neural Stem Cells by Activating the WNT Pathway. Mol Neurobiol 2023; 60:2910-2921. [PMID: 36749560 DOI: 10.1007/s12035-023-03248-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023]
Abstract
Fetal neural stem cells (FNSCs) present in the human fetal brain differentiate into cells of neuronal and glial lineages. The developing fetus is exposed to lower oxygen concentrations than adults, and this physiological hypoxia may influence the growth and differentiation of the FNSCs. This study aimed to evaluate the effect of hypoxia on the differentiation potential of human FNSCs isolated from the subventricular zone of aborted fetal brains (n = 5). FNSCs were isolated, expanded, and characterized by Nestin and Sox2 expression using immunocytochemistry and flow cytometry, respectively. These FNSCs were exposed to 20% oxygen (normoxia) and 0.2% oxygen (hypoxia) concentrations for 48 h, and hypoxia exposure (n = 5) was validated. Whole transcriptome analyses (Genespring GX13) of FNSCs exposed to hypoxia (Agilent 4 × 44 K human array slides) highlighted that genes associated with neurogenesis were enriched upon exposure to hypoxia. The pathway analysis of these enriched genes (using Metacore) showed the involvement of the WNT signaling pathway. Microarray analyses were validated using neuronal and glial lineage commitment markers, namely, NEUROG1, NEUROG2, ASCL1, DCX, GFAP, OLIG2, and NKX2.2, using qPCR (n = 9). DCX, ASCL1, NGN1, and GFAP protein expression was analyzed by Western blotting (n = 3). This demonstrated upregulation of the neuronal commitment markers upon hypoxia exposure, while no change was observed in astrocytic and oligodendrocyte lineage commitment markers. Increased expression of downstream targets of the WNT signaling pathway, TCF4 and ID2, by qPCR (n = 9) and increased protein expression of CTNNB1 (β-catenin) and ID2 by Western blot (n = 3) indicated its involvement in mediating neuronal differentiation upon exposure to hypoxia.
Collapse
Affiliation(s)
- Devanjan Dey
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Vadanya Shrivastava
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Diksha Joshi
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Sagar Tyagi
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Muzaffer Ahmed Bhat
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Paritosh Jaiswal
- Department of Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Jai Bhagwan Sharma
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Pankaj Seth
- Department of Molecular and Cellular Neuroscience, National Brain Research Centre, Manesar, Haryana, India
| | - Sudip Sen
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
4
|
In vitro effects of H2O2 on neural stem cell differentiation. In Vitro Cell Dev Biol Anim 2022; 58:810-816. [DOI: 10.1007/s11626-022-00723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022]
|
5
|
Xu Y, Fan Q. Relationship between chronic hypoxia and seizure susceptibility. CNS Neurosci Ther 2022; 28:1689-1705. [PMID: 35983626 PMCID: PMC9532927 DOI: 10.1111/cns.13942] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 01/16/2023] Open
Abstract
Chronic hypobaric hypoxia in high‐altitude areas is closely related to the occurrence of many neurological diseases. Among these diseases, epilepsy is a common disease of the nervous system that is difficult to diagnose and treat, with a long treatment cycle. As of 2019, there were more than 70 million epilepsy patients worldwide, including 10 million in China. Studies have shown that chronic hypoxia promotes the occurrence and development of epilepsy, and elucidation of the relationship between chronic hypoxia and epilepsy is important for studying the pathogenesis of epilepsy and exploring the potential characteristics of epilepsy and new drug targets for epilepsy. In this article, we review the factors that may cause increased seizure susceptibility in chronic hypoxia and consider the potential relationship between chronic hypobaric hypoxia and seizure susceptibility in high‐altitude areas and prospects surrounding related research in the future.
Collapse
Affiliation(s)
- YuanHang Xu
- Qinghai University Graduate School, Xining, China.,Department of Neurology, Qinghai Provincial People's Hospital Xining, Xining, China
| | - QingLi Fan
- Department of Neurology, Qinghai Provincial People's Hospital Xining, Xining, China
| |
Collapse
|
6
|
Hypoxia increases expression of selected blood-brain barrier transporters GLUT-1, P-gp, SLC7A5 and TFRC, while maintaining barrier integrity, in brain capillary endothelial monolayers. Fluids Barriers CNS 2022; 19:1. [PMID: 34983574 PMCID: PMC8725498 DOI: 10.1186/s12987-021-00297-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/15/2021] [Indexed: 01/01/2023] Open
Abstract
Background Brain capillary endothelial cells (BCECs) experience hypoxic conditions during early brain development. The newly formed capillaries are tight and functional before astrocytes and pericytes join the capillaries and establish the neurovascular unit. Brain endothelial cell phenotype markers P-gp (ABCB1), LAT-1(SLC7A5), GLUT-1(SLC2A1), and TFR(TFRC) have all been described to be hypoxia sensitive. Therefore, we hypothesized that monolayers of BCECs, cultured under hypoxic conditions, would show an increase in LAT-1, GLUT-1 and TFR expression and display tight endothelial barriers. Methods and results Primary bovine BCECs were cultured under normoxic and hypoxic conditions. Chronic hypoxia induced HIF-1α stabilization and translocation to the nucleus, as judged by immunocytochemistry and confocal laser scanning imaging. Endothelial cell morphology, claudin-5 and ZO-1 localization and barrier integrity were unaffected by hypoxia, indicating that the tight junctions in the BBB model were not compromised. SLC7A5, SLC2A1, and TFRC-mRNA levels were increased in hypoxic cultures, while ABCB1 remained unchanged as shown by real-time qPCR. P-gp, TfR and GLUT-1 were found to be significantly increased at protein levels. An increase in uptake of [3H]-glucose was demonstrated, while a non-significant increase in the efflux ratio of the P-gp substrate [3H]-digoxin was observed in hypoxic cells. No changes were observed in functional LAT-1 as judged by uptake studies of [3H]-leucine. Stabilization of HIF-1α under normoxic conditions with desferrioxamine (DFO) mimicked the effects of hypoxia on endothelial cells. Furthermore, low concentrations of DFO caused an increase in transendothelial electrical resistance (TEER), suggesting that a slight activation of the HIF-1α system may actually increase brain endothelial monolayer tightness. Moreover, exposure of confluent monolayers to hypoxia resulted in markedly increase in TEER after 24 and 48 h, which corresponded to a higher transcript level of CLDN5. Conclusions Our findings collectively suggest that hypoxic conditions increase some BBB transporters' expression via HIF-1α stabilization, without compromising monolayer integrity. This may in part explain why brain capillaries show early maturation, in terms of barrier tightness and protein expression, during embryogenesis, and provides a novel methodological tool for optimal brain endothelial culture. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00297-6.
Collapse
|
7
|
Li G, Liu J, Guan Y, Ji X. The role of hypoxia in stem cell regulation of the central nervous system: From embryonic development to adult proliferation. CNS Neurosci Ther 2021; 27:1446-1457. [PMID: 34817133 PMCID: PMC8611781 DOI: 10.1111/cns.13754] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is involved in the regulation of various cell functions in the body, including the regulation of stem cells. The hypoxic microenvironment is indispensable from embryonic development to the regeneration and repair of adult cells. In addition to embryonic stem cells, which need to maintain their self-renewal properties and pluripotency in a hypoxic environment, adult stem cells, including neural stem cells (NSCs), also exist in a hypoxic microenvironment. The subventricular zone (SVZ) and hippocampal dentate gyrus (DG) are the main sites of adult neurogenesis in the brain. Hypoxia can promote the proliferation, migration, and maturation of NSCs in these regions. Also, because most neurons in the brain are non-regenerative, stem cell transplantation is considered as a promising strategy for treating central nervous system (CNS) diseases. Hypoxic treatment also increases the effectiveness of stem cell therapy. In this review, we firstly describe the role of hypoxia in different stem cells, such as embryonic stem cells, NSCs, and induced pluripotent stem cells, and discuss the role of hypoxia-treated stem cells in CNS diseases treatment. Furthermore, we highlight the role and mechanisms of hypoxia in regulating adult neurogenesis in the SVZ and DG and adult proliferation of other cells in the CNS.
Collapse
Affiliation(s)
- Gaifen Li
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Jia Liu
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
| | - Yuying Guan
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xunming Ji
- Laboratory of Brain DisordersMinistry of Science and TechnologyCollaborative Innovation Center for Brain DisordersBeijing Institute of Brain DisordersCapital Medical UniversityBeijingChina
- Department of NeurosurgeryXuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
8
|
Andrographolide promotes hippocampal neurogenesis and spatial memory in the APPswe/PS1ΔE9 mouse model of Alzheimer's disease. Sci Rep 2021; 11:22904. [PMID: 34824314 PMCID: PMC8616902 DOI: 10.1038/s41598-021-01977-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023] Open
Abstract
In Alzheimer´s disease (AD) there is a reduction in hippocampal neurogenesis that has been associated to cognitive deficits. Previously we showed that Andrographolide (ANDRO), the main bioactive component of Andrographis paniculate, induces proliferation in the hippocampus of the APPswe/PSEN1ΔE9 (APP/PS1) mouse model of AD as assessed by staining with the mitotic marker Ki67. Here, we further characterized the effect of ANDRO on hippocampal neurogenesis in APP/PS1 mice and evaluated the contribution of this process to the cognitive effect of ANDRO. Treatment of 8-month-old APP/PS1 mice with ANDRO for 4 weeks increased proliferation in the dentate gyrus as evaluated by BrdU incorporation. Although ANDRO had no effect on neuronal differentiation of newborn cells, it strongly increased neural progenitors, neuroblasts and newborn immature neurons, cell populations that were decreased in APP/PS1 mice compared to age-matched wild-type mice. ANDRO had no effect on migration or in total dendritic length, arborization and orientation of immature neurons, suggesting no effects on early morphological development of newborn neurons. Finally, ANDRO treatment improved the performance of APP/PS1 mice in the object location memory task. This effect was not completely prevented by co-treatment with the anti-mitotic drug TMZ, suggesting that other effects of ANDRO in addition to the increase in neurogenesis might underlie the observed cognitive improvement. Altogether, our data indicate that in APP/PS1 mice ANDRO stimulates neurogenesis in the hippocampus by inducing proliferation of neural precursor cells and improves spatial memory performance.
Collapse
|
9
|
On the Common Journey of Neural Cells through Ischemic Brain Injury and Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22189689. [PMID: 34575845 PMCID: PMC8472292 DOI: 10.3390/ijms22189689] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 01/09/2023] Open
Abstract
Ischemic brain injury and Alzheimer's disease (AD) both lead to cell death in the central nervous system (CNS) and thus negatively affect particularly the elderly population. Due to the lack of a definitive cure for brain ischemia and AD, it is advisable to carefully study, compare, and contrast the mechanisms that trigger, and are involved in, both neuropathologies. A deeper understanding of these mechanisms may help ameliorate, or even prevent, the destructive effects of neurodegenerative disorders. In this review, we deal with ischemic damage and AD, with the main emphasis on the common properties of these CNS disorders. Importantly, we discuss the Wnt signaling pathway as a significant factor in the cell fate determination and cell survival in the diseased adult CNS. Finally, we summarize the interesting findings that may improve or complement the current sparse and insufficient treatments for brain ischemia and AD, and we delineate prospective directions in regenerative medicine.
Collapse
|
10
|
Rodriguez D, Watts D, Gaete D, Sormendi S, Wielockx B. Hypoxia Pathway Proteins and Their Impact on the Blood Vasculature. Int J Mol Sci 2021; 22:ijms22179191. [PMID: 34502102 PMCID: PMC8431527 DOI: 10.3390/ijms22179191] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/12/2022] Open
Abstract
Every cell in the body requires oxygen for its functioning, in virtually every animal, and a tightly regulated system that balances oxygen supply and demand is therefore fundamental. The vascular network is one of the first systems to sense oxygen, and deprived oxygen (hypoxia) conditions automatically lead to a cascade of cellular signals that serve to circumvent the negative effects of hypoxia, such as angiogenesis associated with inflammation, tumor development, or vascular disorders. This vascular signaling is driven by central transcription factors, namely the hypoxia inducible factors (HIFs), which determine the expression of a growing number of genes in endothelial cells and pericytes. HIF functions are tightly regulated by oxygen sensors known as the HIF-prolyl hydroxylase domain proteins (PHDs), which are enzymes that hydroxylate HIFs for eventual proteasomal degradation. HIFs, as well as PHDs, represent attractive therapeutic targets under various pathological settings, including those involving vascular (dys)function. We focus on the characteristics and mechanisms by which vascular cells respond to hypoxia under a variety of conditions.
Collapse
|
11
|
Scheffer S, Hermkens DMA, van der Weerd L, de Vries HE, Daemen MJAP. Vascular Hypothesis of Alzheimer Disease: Topical Review of Mouse Models. Arterioscler Thromb Vasc Biol 2021; 41:1265-1283. [PMID: 33626911 DOI: 10.1161/atvbaha.120.311911] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Sanny Scheffer
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands (S.S., D.M.A.H., M.J.A.P.D.)
| | - Dorien M A Hermkens
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands (S.S., D.M.A.H., M.J.A.P.D.)
| | - Louise van der Weerd
- Departments of Radiology & Human Genetics, Leiden University Medical Center, the Netherlands (L.v.d.W.)
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Vrije University of Amsterdam, the Netherlands (H.E.d.V.)
| | - Mat J A P Daemen
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, the Netherlands (S.S., D.M.A.H., M.J.A.P.D.)
| |
Collapse
|
12
|
Sun C, Fu J, Qu Z, Jia L, Li D, Zhen J, Wang W. Chronic Intermittent Hypobaric Hypoxia Restores Hippocampus Function and Rescues Cognitive Impairments in Chronic Epileptic Rats via Wnt/β-catenin Signaling. Front Mol Neurosci 2021; 13:617143. [PMID: 33584201 PMCID: PMC7874094 DOI: 10.3389/fnmol.2020.617143] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/22/2020] [Indexed: 01/05/2023] Open
Abstract
Epilepsy is a complex neurological disorder with frequent psychiatric, cognitive, and social comorbidities in addition to recurrent seizures. Cognitive impairment, one of the most common comorbidities, has severe adverse effects on quality of life. Chronic intermittent hypobaric hypoxia (CIHH) has demonstrated neuroprotective efficacy in several neurological disease models. In the present study, we examined the effects of CIHH on cognition and hippocampal function in chronic epileptic rats. CIHH treatment rescued deficits in spatial and object memory, hippocampal neurogenesis, and synaptic plasticity in pilocarpine-treated epileptic rats. The Wnt/β-catenin pathway has been implicated in neural stem cell proliferation and synapse development, and Wnt/β-catenin pathway inhibition effectively blocked the neurogenic effects of CIHH. Our findings indicate that CIHH rescues cognitive deficits in epileptic rats via Wnt/β-catenin pathway activation. This study establishes CIHH and Wnt/β-catenin pathway regulators as potential treatments for epilepsy- induced cognitive impairments.
Collapse
Affiliation(s)
- Can Sun
- Key Laboratory of Neurology of Hebei Province, Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Jian Fu
- Department of Emergency Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhenzhen Qu
- Key Laboratory of Neurology of Hebei Province, Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lijing Jia
- Key Laboratory of Neurology of Hebei Province, Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dongxiao Li
- Key Laboratory of Neurology of Hebei Province, Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Junli Zhen
- Key Laboratory of Neurology of Hebei Province, Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Weiping Wang
- Key Laboratory of Neurology of Hebei Province, Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
13
|
Wild SL, Elghajiji A, Grimaldos Rodriguez C, Weston SD, Burke ZD, Tosh D. The Canonical Wnt Pathway as a Key Regulator in Liver Development, Differentiation and Homeostatic Renewal. Genes (Basel) 2020; 11:genes11101163. [PMID: 33008122 PMCID: PMC7599793 DOI: 10.3390/genes11101163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 02/06/2023] Open
Abstract
The canonical Wnt (Wnt/β-catenin) signalling pathway is highly conserved and plays a critical role in regulating cellular processes both during development and in adult tissue homeostasis. The Wnt/β-catenin signalling pathway is vital for correct body patterning and is involved in fate specification of the gut tube, the primitive precursor of liver. In adults, the Wnt/β-catenin pathway is increasingly recognised as an important regulator of metabolic zonation, homeostatic renewal and regeneration in response to injury throughout the liver. Herein, we review recent developments relating to the key role of the pathway in the patterning and fate specification of the liver, in the directed differentiation of pluripotent stem cells into hepatocytes and in governing proliferation and zonation in the adult liver. We pay particular attention to recent contributions to the controversy surrounding homeostatic renewal and proliferation in response to injury. Furthermore, we discuss how crosstalk between the Wnt/β-catenin and Hedgehog (Hh) and hypoxia inducible factor (HIF) pathways works to maintain liver homeostasis. Advancing our understanding of this pathway will benefit our ability to model disease, screen drugs and generate tissue and organ replacements for regenerative medicine.
Collapse
|
14
|
Arredondo SB, Valenzuela-Bezanilla D, Mardones MD, Varela-Nallar L. Role of Wnt Signaling in Adult Hippocampal Neurogenesis in Health and Disease. Front Cell Dev Biol 2020; 8:860. [PMID: 33042988 PMCID: PMC7525004 DOI: 10.3389/fcell.2020.00860] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Neurogenesis persists during adulthood in the dentate gyrus of the hippocampus. Signals provided by the local hippocampal microenvironment support neural stem cell proliferation, differentiation, and maturation of newborn neurons into functional dentate granule cells, that integrate into the neural circuit and contribute to hippocampal function. Increasing evidence indicates that Wnt signaling regulates multiple aspects of adult hippocampal neurogenesis. Wnt ligands bind to Frizzled receptors and co-receptors to activate the canonical Wnt/β-catenin signaling pathway, or the non-canonical β-catenin-independent signaling cascades Wnt/Ca2+ and Wnt/planar cell polarity. Here, we summarize current knowledge on the roles of Wnt signaling components including ligands, receptors/co-receptors and soluble modulators in adult hippocampal neurogenesis. Also, we review the data suggesting distinctive roles for canonical and non-canonical Wnt signaling cascades in regulating different stages of neurogenesis. Finally, we discuss the evidence linking the dysfunction of Wnt signaling to the decline of neurogenesis observed in aging and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | - Lorena Varela-Nallar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
15
|
Rifaai RA, Mokhemer SA, Saber EA, El-Aleem SAA, El-Tahawy NFG. Neuroprotective effect of quercetin nanoparticles: A possible prophylactic and therapeutic role in alzheimer's disease. J Chem Neuroanat 2020; 107:101795. [PMID: 32464160 DOI: 10.1016/j.jchemneu.2020.101795] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/29/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia in elderly. Quercetin is a well-known flavonoid with low bioavailability. Recently, quercetin nanoparticles (QNPs) has been shown to have a better bioavailability. AIMS This study aimed to investigate the protective and therapeutic effects of QNPs in Aluminum chloride (AlCl3) induced animal model of AD. MATERIALS AND METHODS AD was induced in rats by oral administration of AlCl3 (100 mg/kg/day) for 42 days. QNPs (30 mg/kg) was given along with AlCl3 in the prophylactic group and following AD induction in the treated group. Hippocampi were harvested for assessments of the structural and ultrastructural changes using histological and histochemical approaches. RESULTS AND DISCUSSION AD hippocampi showed a prominent structural and ultrastructural disorders both neuronal and extraneuronal. Including neuronal degeneration, formation of APs and NFTs, downregulation of tyrosine hydroxylase (TH), astrogliosis and inhibition of the proliferative activity (all P ≤ 0.05). Electron microscopy showed signs of neuronal degeneration with microglia and astrocyte activation and disruption of myelination and Blood Brain Barrier (BBB). Interestingly, QNPs administration remarkably reduced the neuronal degenerative changes, APs and NFTs formation (all P ≤ 0.05). Furthermore, it showed signs of regeneration (all P ≤ 0.05) and upregulation of TH. The effect was profound in the prophylactic group. Thus, QNPs reduced the damaging effect of AlCl3 on hippocampal neurons at the molecular, cellular and subcellular levels. CONCLUSION For the best of our knowledge this is the first study to show a prophylactic and therapeutic effect for QNPs in AD model. This might open the gate for further research and provide a new line for therapeutic intervention in AD.
Collapse
Affiliation(s)
- Rehab Ahmed Rifaai
- Department of Histology and Cell Biology, Minia University- Faculty of Medicine, Egypt
| | - Sahar Ahmed Mokhemer
- Department of Histology and Cell Biology, Minia University- Faculty of Medicine, Egypt
| | - Entesar Ali Saber
- Department of Histology and Cell Biology, Minia University- Faculty of Medicine, Egypt; Delegated to Deraya University, New Minia City, Egypt
| | - Seham A Abd El-Aleem
- Department of Histology and Cell Biology, Minia University- Faculty of Medicine, Egypt.
| | | |
Collapse
|
16
|
Hansen JM, Jones DP, Harris C. The Redox Theory of Development. Antioxid Redox Signal 2020; 32:715-740. [PMID: 31891515 PMCID: PMC7047088 DOI: 10.1089/ars.2019.7976] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 12/16/2022]
Abstract
Significance: The geological record shows that as atmospheric O2 levels increased, it concomitantly coincided with the evolution of metazoans. More complex, higher organisms contain a more cysteine-rich proteome, potentially as a means to regulate homeostatic responses in a more O2-rich environment. Regulation of redox-sensitive processes to control development is likely to be evolutionarily conserved. Recent Advances: During early embryonic development, the conceptus is exposed to varying levels of O2. Oxygen and redox-sensitive elements can be regulated to promote normal development, defined as changes to cellular mass, morphology, biochemistry, and function, suggesting that O2 is a developmental morphogen. During periods of O2 fluctuation, embryos are "reprogrammed," on the genomic and metabolic levels. Reprogramming imparts changes to particular redox couples (nodes) that would support specific post-translational modifications (PTMs), targeting the cysteine proteome to regulate protein function and development. Critical Issues: Major developmental events such as stem cell expansion, proliferation, differentiation, migration, and cell fate decisions are controlled through oxidative PTMs of cysteine-based redox nodes. As such, timely coordinated redox regulation of these events yields normal developmental outcomes and viable species reproduction. Disruption of normal redox signaling can produce adverse developmental outcomes. Future Directions: Furthering our understanding of the redox-sensitive processes/pathways, the nature of the regulatory PTMs involved in development and periods of activation/sensitivity to specific developmental pathways would greatly support the theory of redox regulation of development, and would also provide rationale and direction to more fully comprehend poor developmental outcomes, such as dysmorphogenesis, functional deficits, and preterm embryonic death.
Collapse
Affiliation(s)
- Jason M. Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Dean P. Jones
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Craig Harris
- Toxicology Program, Department of Environmental Sciences, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
17
|
Pigment epithelium-derived factor alleviates depressive-like behaviors in mice by modulating adult hippocampal synaptic growth and Wnt pathway. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109792. [PMID: 31676463 DOI: 10.1016/j.pnpbp.2019.109792] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/13/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022]
Abstract
Pigment epithelium-derived factor (PEDF, also known as SERPINF1) is a secreted glycoprotein with neuroprotective effects. However, the potential role of PEDF in major depressive disorder (MDD) remains largely unknown. Here, applying two-dimensional gel electrophoresis (2-DE) proteomics, we found that PEDF levels were significantly decreased in the plasma of 12 first-episode treatment-naïve MDD patients (FETND) compared to the levels in 12 healthy controls (HCs). PEDF levels were especially lower in MDD patients than in HCs and patients with bipolar disorder (BD) and schizophrenia (SCZ), and elevated PEDF were consistent with decreased HAM-D scores in patients given antidepressant therapy (ADT). Animal research indicated that PEDF was decreased in the periphery and hippocampus of two well-known depression rodent models (the chronic unpredictable mild stress (CUMS) rat model and chronic social defeat stress (CSDS) mouse model). Decreased PEDF levels in the hippocampus led to depressive-like behaviors, synaptic impairments and aberrant Wnt signaling in C57BL mice, while increased PEDF resulted in the opposite results. Mechanistic studies indicated that PEDF contributes to dendritic growth and Wnt signaling activation in the hippocampus of adult mice. Taken together, the results of our study demonstrate the involvement of PEDF and its related mechanism in depression, thus providing translational evidence suggesting that PEDF may be a novel therapeutic target for depression.
Collapse
|
18
|
Arredondo SB, Guerrero FG, Herrera-Soto A, Jensen-Flores J, Bustamante DB, Oñate-Ponce A, Henny P, Varas-Godoy M, Inestrosa NC, Varela-Nallar L. Wnt5a promotes differentiation and development of adult-born neurons in the hippocampus by noncanonical Wnt signaling. Stem Cells 2019; 38:422-436. [PMID: 31721364 DOI: 10.1002/stem.3121] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/08/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022]
Abstract
In the adult hippocampus, new neurons are generated in the dentate gyrus. The Wnt signaling pathway regulates this process, but little is known about the endogenous Wnt ligands involved. We investigated the role of Wnt5a on adult hippocampal neurogenesis. Wnt5a regulates neuronal morphogenesis during embryonic development, and maintains dendritic architecture of pyramidal neurons in the adult hippocampus. Here, we determined that Wnt5a knockdown in the mouse dentate gyrus by lentivirus-mediated shRNA impaired neuronal differentiation of progenitor cells, and reduced dendritic development of adult-born neurons. In cultured adult hippocampal progenitors (AHPs), Wnt5a knockdown reduced neuronal differentiation and morphological development of AHP-derived neurons, whereas treatment with Wnt5a had the opposite effect. Interestingly, no changes in astrocytic differentiation were observed in vivo or in vitro, suggesting that Wnt5a does not affect fate-commitment. By using specific inhibitors, we determined that Wnt5a signals through CaMKII to induce neurogenesis, and promotes dendritic development of newborn neurons through activating Wnt/JNK and Wnt/CaMKII signaling. Our results indicate Wnt5a as a niche factor in the adult hippocampus that promotes neuronal differentiation and development through activation of noncanonical Wnt signaling pathways.
Collapse
Affiliation(s)
- Sebastian B Arredondo
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Fernanda G Guerrero
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Andrea Herrera-Soto
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Joaquin Jensen-Flores
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Daniel B Bustamante
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Alejandro Oñate-Ponce
- Laboratorio de Neuroanatomía, Departamento de Anatomía, Facultad de Medicina and Centro Interdisciplinario de Neurociencias, NeuroUC, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Henny
- Laboratorio de Neuroanatomía, Departamento de Anatomía, Facultad de Medicina and Centro Interdisciplinario de Neurociencias, NeuroUC, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Manuel Varas-Godoy
- Cancer Cell Biology Lab, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Lorena Varela-Nallar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
19
|
Liver Zonation in Health and Disease: Hypoxia and Hypoxia-Inducible Transcription Factors as Concert Masters. Int J Mol Sci 2019; 20:ijms20092347. [PMID: 31083568 PMCID: PMC6540308 DOI: 10.3390/ijms20092347] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 02/06/2023] Open
Abstract
The liver and its zonation contribute to whole body homeostasis. Acute and chronic, not always liver, diseases impair proper metabolic zonation. Various underlying pathways, such as β-catenin, hedgehog signaling, and the Hippo pathway, along with the physiologically occurring oxygen gradient, appear to be contributors. Interestingly, hypoxia and hypoxia-inducible transcription factors can orchestrate those pathways. In the current review, we connect novel findings of liver zonation in health and disease and provide a view about the dynamic interplay between these different pathways and cell-types to drive liver zonation and systemic homeostasis.
Collapse
|
20
|
Zeng Q, Long Z, Feng M, Zhao Y, Luo S, Wang K, Wang Y, Yang G, He G. Valproic Acid Stimulates Hippocampal Neurogenesis via Activating the Wnt/β-Catenin Signaling Pathway in the APP/PS1/Nestin-GFP Triple Transgenic Mouse Model of Alzheimer's Disease. Front Aging Neurosci 2019; 11:62. [PMID: 30971911 PMCID: PMC6443965 DOI: 10.3389/fnagi.2019.00062] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/05/2019] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by the deposition of amyloid-β (Aβ) peptides and neurofibrillary tangles (NFTs) and massive loss of neuronal cells in the brain. Adult hippocampus continuously generates new neurons throughout life to shape brain function and impaired neurogenesis may contribute to a series of cognitive deterioration associated with AD. Enhancing endogenous neurogenesis represents a promising strategy that may ameliorate AD-associated cognitive defects. However, neurogenesis-enhancing approaches and underlying mechanisms are still not well studied. Here, using a mouse model of AD amyloid precursor protein (APP/PS1/Nestin-GFP triple transgenic mice, 3xTgAD), we examined the effects of 4 weeks of valproic acid (VPA) treatment on hippocampal neurogenesis in 2- and 6-month-old mice. VPA treatment promoted cell proliferation and increased the density of immature neurons in the dentate gyrus (DG) of the hippocampus of 3xTgAD mice. Consistent with enhanced neurogenesis, behavioral and morphological analysis showed that VPA treatment improved the learning and memory ability of 3xTgAD mice. Mechanistically, VPA treatment increased β-catenin levels, accumulated the inactive form of glycogen synthase kinase-3β (GSK-3β), and induced the expression of NeuroD1, a Wnt target gene involved in neurogenesis, suggesting the activation of the Wnt signaling pathway in the hippocampus of 3xTgAD mice. This study indicates that VPA stimulates neurogenesis in the adult hippocampus of AD mice model through the Wnt pathway, highlighting VPA as a potential therapeutic for treating AD and related diseases.
Collapse
Affiliation(s)
- Qinghua Zeng
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Zhimin Long
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China.,Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Min Feng
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Yueyang Zhao
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
| | - Shifang Luo
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China.,Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Kejian Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China.,Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China.,International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Guang Yang
- Department of Medical Genetics, Cummings School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Biochemistry and Molecular Biology, Cummings School of Medicine, University of Calgary, Calgary, AB, Canada.,Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Guiqiong He
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China.,Department of Anatomy, Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Sun C, Fu J, Qu Z, Li D, Si P, Qiao Q, Zhang W, Xue Y, Zhen J, Wang W. Chronic mild hypoxia promotes hippocampal neurogenesis involving Notch1 signaling in epileptic rats. Brain Res 2019; 1714:88-98. [PMID: 30768929 DOI: 10.1016/j.brainres.2019.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/06/2019] [Accepted: 02/11/2019] [Indexed: 01/08/2023]
Abstract
Cognitive impairment is one of the most common and disabling co-morbidities of epilepsy. It is therefore imperative to find novel treatment approaches to rescue cognitive function among epilepsy patients. Adult neurogenesis is strongly implicated in cognitive function, and mild hypoxia is known to promote the proliferation and differentiation of both embryonic and adult neural stem cells (NSCs). In the present study, we investigated the effect of mild hypoxia on cognitive function and hippocampal neurogenesis of rats with pilocarpine-induced chronic epilepsy. Chronic epilepsy induced marked spatial learning and memory deficits in the Morris water maze that were rescued by consecutively 28 days mild hypoxia exposure (6 h/d at 3000 m altitude equivalent) during the chronic phase. Moreover, mild hypoxia reversed the suppression of hippocampal neurogenesis and the downregulation of NT-3 and BDNF expression in hippocampus and cortex of epileptic rats. Mild hypoxia in vitro also promoted hippocampus-derived NSC proliferation and neuronal differentiation. In addition, mild hypoxia enhanced Notch1 and Hes1 expression, suggesting that Notch1 signaling may be involved in neuroprotection of hypoxia. Our data may help to pave the way for identifying new therapeutic targets for rescuing cognition conflicts in epileptic patients by using hypoxia to promote hippocampus neurogenesis.
Collapse
Affiliation(s)
- Can Sun
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Jian Fu
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Zhenzhen Qu
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Dongxiao Li
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Peipei Si
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Qi Qiao
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Wenlin Zhang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Yan Xue
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Junli Zhen
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China.
| | - Weiping Wang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China.
| |
Collapse
|
22
|
Koester-Hegmann C, Bengoetxea H, Kosenkov D, Thiersch M, Haider T, Gassmann M, Schneider Gasser EM. High-Altitude Cognitive Impairment Is Prevented by Enriched Environment Including Exercise via VEGF Signaling. Front Cell Neurosci 2019; 12:532. [PMID: 30687018 PMCID: PMC6335396 DOI: 10.3389/fncel.2018.00532] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/24/2018] [Indexed: 01/17/2023] Open
Abstract
Exposure to hypobaric hypoxia at high altitude (above 2500 m asl) causes cognitive impairment, mostly attributed to changes in brain perfusion and consequently neuronal death. Enriched environment and voluntary exercise has been shown to improve cognitive function, to enhance brain microvasculature and neurogenesis, and to be neuroprotective. Here we show that high-altitude exposure (3540 m asl) of Long Evans rats during early adulthood (P48-P59) increases brain microvasculature and neurogenesis but impairs spatial and visual memory along with an increase in neuronal apoptosis. We tested whether enriched environment including a running wheel for voluntary exercise (EE) can prevent cognitive impairment at high-altitude and whether apoptosis is prevented. We found that EE retained spatial and visual memory at high altitude, and prevented neuronal apoptosis. Further, we tested whether vascular endothelial growth factor (VEGF) signaling is required for the EE-mediated recovery of spatial and visual memory and the reduction in apoptosis. Pharmacological inhibition of VEGF signaling by oral application of a tyrosine kinase inhibitor (Vandetanib) prevented the recovery of spatial and visual memory in animals housed in EE, along with an increase in apoptosis and a reduction in neurogenesis. Surprisingly, inhibition of VEGF signaling also caused impairment in spatial memory in EE-housed animals reared at low altitude, affecting mainly dentate gyrus microvasculature but not neurogenesis. We conclude that EE-mediated VEGF signaling is neuroprotective and essential for the maintenance of cognition and neurogenesis during high-altitude exposure, and for the maintenance of spatial memory at low altitude. Finally, our data also underlines the potential risk of cognitive impairment and disturbed high altitude adaption from the use of VEGF-signaling inhibitors for therapeutic purposes.
Collapse
Affiliation(s)
- Christina Koester-Hegmann
- Neuroprotection Group, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Harkaitz Bengoetxea
- Laboratory of Clinical and Experimental Neuroscience (LaNCE), Department of Neuroscience, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Dmitry Kosenkov
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Markus Thiersch
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Thomas Haider
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru
| | - Edith M Schneider Gasser
- Neuroprotection Group, Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Center for Neuroscience Zurich (ZNZ), Zurich, Switzerland
| |
Collapse
|
23
|
Neuroglobin promotes neurogenesis through Wnt signaling pathway. Cell Death Dis 2018; 9:945. [PMID: 30237546 PMCID: PMC6147998 DOI: 10.1038/s41419-018-1007-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/14/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
Abstract
Neuroglobin (Ngb) has been demonstrated by our lab and others to be neuroprotective against neurological disorders including stroke. However, the roles of Ngb in neurogenesis remain elusive. Neurogenesis can occur in adulthood and can be induced by pathological conditions in the brain such as stroke, and significantly contributes to functional recovery, thus enhancing endogenous neurogenesis may be a promising therapeutic strategy for neurodegenerative diseases. In this study we aimed to investigate the roles of Ngb in neurogenesis using Lentivirus overexpressing Ngb (Lv-Ngb). We show that Ngb overexpression promoted the proliferation of neural progenitor cells (NPC) marked by increased neurosphere number and size. Ngb overexpression also enhanced neuronal differentiation of cultured NPC under differentiation conditions. Moreover, subventricular injection of Lv-Ngb in mice after middle cerebral artery occlusion (MCAO) increased PSA-NCAM positive neuroblasts and Tuj1 positive immature neurons, suggesting that Ngb overexpression promotes neurogenesis in mice brain after stroke. We further show that the pro-neurogenesis effect of Ngb overexpression might be mediated through Dvl1 up-regulation, and subsequent activation of Wnt signaling, indicated by increased nuclear localization of beta-catenin. These results suggest that Ngb may play an important role in promoting neurogenesis in neurodegenerative diseases such as stroke, which may eventually benefit the development of stroke therapeutics targeting neurogenesis through Ngb upregulation.
Collapse
|
24
|
He W, Tian X, Lv M, Wang H. Liraglutide Protects Neurite Outgrowth of Cortical Neurons Under Oxidative Stress though Activating the Wnt Pathway. J Stroke Cerebrovasc Dis 2018; 27:2696-2702. [PMID: 30042033 DOI: 10.1016/j.jstrokecerebrovasdis.2018.05.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/20/2018] [Accepted: 05/25/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Neurogenesis including neurite outgrowth is important for brain plasticity under physiological conditions and in brain repair after injury. Liraglutide has been found to have neuroprotective action in the risk of central nervous system disease. However, the effect and the potential mechanism of liraglutide-induced neurite outgrowth in primary cortical neurons under oxidative stress remain poorly documented. METHODS In the text, H2O2 was used to mimic ischemia injury in primary cortical neurons. The viability and apoptosis of cell was assessed by Cell Counting Kit-8 and Hoechst 33342. Immunofluorescence method was used to examine the effect of liraglutide on neurite outgrowth in cortical neuron under H2O2 condition. Then, the potential mechanisms involving the Wnt pathway were investigated. The expression of β-catenin, c-myc, and cyclin D1 was determined using quantitative real-time polymerase chain reaction and Western blot. RESULTS Liraglutide significantly increased the viability and alleviated the apoptosis rate of cortical neurons induced by H2O2. Next, liraglutide promoted neurite outgrowth, which could be partially inhibited by the Wnt pathway inhibitor Xav939. Besides, liraglutide induced an increase of β-catenin, c-myc, and cyclin D1 levels, which could also be blocked in the presence of Xav939. CONCLUSIONS These results illustrate that liraglutide exerts neurotrophin-like activity in cortical neurons under oxidative stress condition, partly through activating the Wnt pathway.
Collapse
Affiliation(s)
- Weiliang He
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Xiaochao Tian
- Department of Cardiology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Mimi Lv
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Hebo Wang
- Department of Neurology, Hebei General Hospital, Shijiazhuang, Hebei, PR China.
| |
Collapse
|
25
|
Zhang Y, Zhang M, Li L, Wei B, He A, Lu L, Li X, Zhang L, Xu Z, Sun M. Methylation-reprogrammed Wnt/β-catenin signalling mediated prenatal hypoxia-induced brain injury in foetal and offspring rats. J Cell Mol Med 2018; 22:3866-3874. [PMID: 29808608 PMCID: PMC6050486 DOI: 10.1111/jcmm.13660] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/27/2018] [Indexed: 12/13/2022] Open
Abstract
Prenatal hypoxia (PH) is a common pregnancy complication, harmful to brain development. This study investigated whether and how PH affected Wnt pathway in the brain. Pregnant rats were exposed to hypoxia (10.5% O2) or normoxia (21% O2; Control). Foetal brain weight and body weight were decreased in the PH group, the ratio of brain weight to body weight was increased significantly. Prenatal hypoxia increased mRNA expression of Wnt3a, Wnt7a, Wnt7b and Fzd4, but not Lrp6. Activated β‐catenin protein and Fosl1 expression were also significantly up‐regulated. Increased Hif1a expression was found in the PH group associated with the higher Wnt signalling. Among 5 members of the Sfrp family, Sfrp4 was down‐regulated. In the methylation‐regulating genes, higher mRNA expressions of Dnmt1 and Dnmt3b were found in the PH group. Sodium bisulphite and sequencing revealed hyper‐methylation in the promoter region of Sfrp4 gene in the foetal brain, accounting for its decreased expression and contributing to the activation of the Wnt‐Catenin signalling. The study of PC12 cells treated with 5‐aza further approved that decreased methylation could result in the higher Sfrp4 expression. In the offspring hippocampus, protein levels of Hif1a and mRNA expression of Sfrp4 were unchanged, whereas Wnt signal pathway was inhibited. The data demonstrated that PH activated the Wnt pathway in the foetal brain, related to the hyper‐methylation of Sfrp4 as well as Hif1a signalling. Activated Wnt signalling might play acute protective roles to the foetal brain in response to hypoxia, also would result in disadvantageous influence on the offspring in long‐term.
Collapse
Affiliation(s)
- Yingying Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Mengshu Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Lingjun Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Bin Wei
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Axin He
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Likui Lu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Lubo Zhang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China.,Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, USA
| | - Zhice Xu
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China.,Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, USA
| | - Miao Sun
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| |
Collapse
|
26
|
Aguilar-Arredondo A, Zepeda A. Memory retrieval-induced activation of adult-born neurons generated in response to damage to the dentate gyrus. Brain Struct Funct 2018; 223:2859-2877. [PMID: 29663136 DOI: 10.1007/s00429-018-1664-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
The dentate gyrus (DG) is a neurogenic structure that exhibits functional and structural reorganization after injury. Neurogenesis and functional recovery occur after brain damage, and the possible relation between both processes is a matter of study. We explored whether neurogenesis and the activation of new neurons correlated with DG recovery over time. We induced a DG lesion in young adult rats through the intrahippocampal injection of kainic acid and analyzed functional recovery and the activation of new neurons after animals performed a contextual fear memory task (CFM) or a control spatial exploratory task. We analyzed the number of BrdU+ cells that co-localized with doublecortin (DCX) or with NeuN within the damaged DG and evaluated the number of cells in each population that were labelled with the activity marker c-fos after either task. At 10 days post-lesion (dpl), a region of the granular cell layer was devoid of cells, evidencing the damaged area, whereas at 30 dpl this region was significantly smaller. At 10 dpl, the number of BrdU+/DCX+/c-fos positive cells was increased compared to the sham-lesion group, but CFM was impaired. At 30 dpl, a significantly greater number of BrdU+/NeuN+/c-fos positive cells was observed than at 10 dpl, and activation correlated with CFM recovery. Performance in the spatial exploratory task induced marginal c-fos immunoreactivity in the BrdU+/NeuN+ population. We demonstrate that neurons born after the DG was damaged survive and are activated in a time- and task-dependent manner and that activation of new neurons occurs along functional recovery.
Collapse
Affiliation(s)
- Andrea Aguilar-Arredondo
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, Mexico, DF, Mexico
| | - Angélica Zepeda
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, Mexico, DF, Mexico.
| |
Collapse
|
27
|
Fluoxetine attenuates the impairment of spatial learning ability and prevents neuron loss in middle-aged APPswe/PSEN1dE9 double transgenic Alzheimer's disease mice. Oncotarget 2018; 8:27676-27692. [PMID: 28430602 PMCID: PMC5438600 DOI: 10.18632/oncotarget.15398] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 01/31/2017] [Indexed: 01/04/2023] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) have been reported to increase cognitive performance in some clinical studies of Alzheimer's disease (AD). However, there is a lack of evidence supporting the efficacy of SSRIs as cognition enhancers in AD, and the role of SSRIs as a treatment for AD remains largely unclear. Here, we characterized the impact of fluoxetine (FLX), a well-known SSRI, on neurons in the dentate gyrus (DG) and in CA1 and CA3 of the hippocampus of middle-aged (16 to 17 months old) APPswe/PSEN1dE9 (APP/PS1) transgenic AD model mice. We found that intraperitoneal (i.p.) injection of FLX (10 mg/kg/day) for 5 weeks effectively alleviated the impairment of spatial learning ability in middle-aged APP/PS1 mice as evaluated using the Morris water maze. More importantly, the number of neurons in the hippocampal DG was significantly increased by FLX. Additionally, FLX reduced the deposition of beta amyloid, inhibited GSK-3β activity and increased the level of β-catenin in middle-aged APP/PS1 mice. Collectively, the results of this study indicate that FLX delayed the progression of neuronal loss in the hippocampal DG in middle-aged AD mice, and this effect may underlie the FLX-induced improvement in learning ability. FLX may therefore serve as a promising therapeutic drug for AD.
Collapse
|
28
|
Shi ZY, Deng JX, Fu S, Wang L, Wang Q, Liu B, Li YQ, Deng JB. Protective effect of autophagy in neural ischemia and hypoxia: Negative regulation of the Wnt/β-catenin pathway. Int J Mol Med 2017; 40:1699-1708. [PMID: 29039446 PMCID: PMC5716434 DOI: 10.3892/ijmm.2017.3158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 09/26/2017] [Indexed: 01/08/2023] Open
Abstract
Autophagy is a highly conserved process of self-digestion to promote cell survival in response to nutrient starvation and other metabolic stresses. However, whether ischemic-hypoxic (IH) injury-induced autophagy acts as a neuroprotective mechanism or leads to neuroinjury is a subject of debate. It is known that autophagy is regulated by signaling pathways, including the mammalian target of rapamycin pathway. However, in neural IH injury, whether other signaling pathways are involved in the regulation of autophagy remains to be fully elucidated. In the present study, using the autophagy agonist (rampycin), autophagy antagonist [3-methyl adenine (3-MA)] and lysosome antagonist (MHY1485), autophagy was intervened with at oxygen-glucose deprivation (OGD) 6 h, in order to elucidate the regulatory mechanisms of autophagy. Using immunocytochemistry and western blot analysis, the expression levels of stress-related proteins, such as hypoxia-inducible factor-1α (HIF-1α) (a key regulator in hypoxia) and cyclooxygenase 2 (COX2; inflammatory indicator), were analyzed. In addition, the upstream proteins (Wnt1 and Wnt3a), downstream proteins (Dvl2, β-catenin) and target proteins (C-myc and cyclin D) in the Wnt/β-catenin signaling pathway were examined by immunocytochemistry and western blot analysis. The present study revealed that autophagy was activated with the upregulation of autophagic flux in IH injury; it was demonstrated that autophagy had a protective role in IH injury. The Wnt/β-catenin pathway was involved in IH injury regulation, and the upstream proteins in the Wnt/β-catenin signaling pathway were upregulated, whereas downstream proteins were downregulated by the activity of autophagy accordingly.
Collapse
Affiliation(s)
- Zhen-Yu Shi
- Institute of Neurobiology, Nursing College, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Jie-Xin Deng
- Institute of Neurobiology, Nursing College, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Su Fu
- Institute of Neurobiology, Nursing College, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Lai Wang
- Institute of Neurobiology, College of Life Science, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Qiang Wang
- Institute of Neurobiology, Nursing College, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Bin Liu
- Institute of Neurobiology, Nursing College, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Yong-Qiang Li
- Institute of Neurobiology, Nursing College, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Jin-Bo Deng
- Institute of Neurobiology, Nursing College, Henan University, Kaifeng, Henan 475004, P.R. China
| |
Collapse
|
29
|
Xie Y, Lowry WE. Manipulation of neural progenitor fate through the oxygen sensing pathway. Methods 2017; 133:44-53. [PMID: 28864353 DOI: 10.1016/j.ymeth.2017.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/17/2017] [Accepted: 08/24/2017] [Indexed: 12/15/2022] Open
Abstract
Neural progenitor cells hold significant promise in a variety of clinical settings. While both the brain and spinal cord harbor endogenous neural progenitor or stem cells, they typically are not capable of repopulating neural populations in case of injury or degenerative disease. In vitro systems for the culture of neural progenitors has come a long ways due to advances in the method development. Recently, many groups have shown that manipulation of the oxygen-sensing pathway leading to activation of hypoxia inducible factors (HIFs) that can influence the proliferation, differentiation or maturation of neural progenitors. Moreover, different oxygen concentrations appear to affect lineage specification of neural progenitors upon their differentiation in vitro. Here we summarize some of these studies in an attempt to direct effort towards implementation of best methods to advance the use of neural progenitors from basic development towards clinical application.
Collapse
Affiliation(s)
- Yuan Xie
- Department of Biochemistry and Molecular Biology, University of Chicago, United States
| | - William E Lowry
- Eli and Edythe Broad Center for Regenerative Medicine, UCLA, United States; The Molecular Biology Institute, UCLA, United States; The Jonsson Comprehensive Cancer Center, UCLA, United States; Department of Dermatology, David Geffen School of Medicine, UCLA, United States.
| |
Collapse
|
30
|
Ortega JA, Sirois CL, Memi F, Glidden N, Zecevic N. Oxygen Levels Regulate the Development of Human Cortical Radial Glia Cells. Cereb Cortex 2017; 27:3736-3751. [PMID: 27600849 PMCID: PMC6075453 DOI: 10.1093/cercor/bhw194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 04/29/2016] [Accepted: 05/24/2016] [Indexed: 12/17/2022] Open
Abstract
The oxygen (O2) concentration is a vital parameter for controlling the survival, proliferation, and differentiation of neural stem cells. A prenatal reduction of O2 levels (hypoxia) often leads to cognitive and behavioral defects, attributable to altered neural development. In this study, we analyzed the effects of O2 levels on human cortical progenitors, the radial glia cells (RGCs), during active neurogenesis, corresponding to the second trimester of gestation. Small changes in O2 levels profoundly affected RGC survival, proliferation, and differentiation. Physiological hypoxia (3% O2) promoted neurogenesis, whereas anoxia (<1% O2) and severe hypoxia (1% O2) arrested the differentiation of human RGCs, mainly by altering the generation of glutamatergic neurons. The in vitro activation of Wnt-β-catenin signaling rescued the proliferation and neuronal differentiation of RGCs subjected to anoxia. Pathologic hypoxia (≤1% O2) also exerted negative effects on gliogenesis, by decreasing the number of O4+ preoligodendrocytes and increasing the number of reactive astrocytes derived from cortical RGCs. O2-dependent alterations in glutamatergic neurogenesis and oligodendrogenesis can lead to significant changes in cortical circuitry formation. A better understanding of the cellular effects caused by changes in O2 levels during human cortical development is essential to elucidating the etiology of numerous neurodevelopmental disorders.
Collapse
Affiliation(s)
- J Alberto Ortega
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
| | - Carissa L Sirois
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Fani Memi
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
| | - Nicole Glidden
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
| | - Nada Zecevic
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
| |
Collapse
|
31
|
Cisternas P, Inestrosa NC. Brain glucose metabolism: Role of Wnt signaling in the metabolic impairment in Alzheimer's disease. Neurosci Biobehav Rev 2017. [PMID: 28624434 DOI: 10.1016/j.neubiorev.2017.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The brain is an organ that has a high demand for glucose. In the brain, glucose is predominantly used in energy production, with almost 70% of the energy used by neurons. The importance of the energy requirement in neurons is clearly demonstrated by the fact that all neurodegenerative disorders exhibit a critical metabolic impairment that includes decreased glucose uptake/utilization and decreased mitochondrial activity, with a consequent diminution in ATP production. In fact, in Alzheimer's disease, the measurement of the general metabolic rate of the brain has been reported to be an accurate tool for diagnosis. Additionally, the administration of metabolic activators such as insulin/glucagon-like peptide 1 can improve memory/learning performance. Despite the importance of energy metabolism in the brain, little is known about the cellular pathways involved in the regulation of this process. Several reports postulate a role for Wnt signaling as a general metabolic regulator. Thus, in the present review, we discuss the antecedents that support the relationship between Wnt signaling and energy metabolism in the Alzheimer's disease.
Collapse
Affiliation(s)
- Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile; Center for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia; Centro de Excelencia en Biomedicina de Magallanes(CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
32
|
Kietzmann T. Metabolic zonation of the liver: The oxygen gradient revisited. Redox Biol 2017; 11:622-630. [PMID: 28126520 PMCID: PMC5257182 DOI: 10.1016/j.redox.2017.01.012] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 02/06/2023] Open
Abstract
The liver has a multitude of functions which are necessary to maintain whole body homeostasis. This requires that various metabolic pathways can run in parallel in the most efficient manner and that futile cycles are kept to a minimum. To a large extent this is achieved due to a functional specialization of the liver parenchyma known as metabolic zonation which is often lost in liver diseases. Although this phenomenon is known for about 40 years, the underlying regulatory pathways are not yet fully elucidated. The physiologically occurring oxygen gradient was considered to be crucial for the appearance of zonation; however, a number of reports during the last decade indicating that β-catenin signaling, and the hedgehog (Hh) pathway contribute to metabolic zonation may have shifted this view. In the current review we connect these new observations with the concept that the oxygen gradient within the liver acinus is a regulator of zonation. This is underlined by a number of facts showing that the β-catenin and the Hh pathway can be modulated by the hypoxia signaling system and the hypoxia-inducible transcription factors (HIFs). Altogether, we provide a view by which the dynamic interplay between all these pathways can drive liver zonation and thus contribute to its physiological function.
Collapse
Affiliation(s)
- Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
33
|
Pan YY, Deng Y, Xie S, Wang ZH, Wang Y, Ren J, Liu HG. Altered Wnt Signaling Pathway in Cognitive Impairment Caused by Chronic Intermittent Hypoxia: Focus on Glycogen Synthase Kinase-3β and β-catenin. Chin Med J (Engl) 2017; 129:838-45. [PMID: 26996481 PMCID: PMC4819306 DOI: 10.4103/0366-6999.178969] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cognitive impairment is a severe complication caused by obstructive sleep apnea (OSA). The mechanisms of causation are still unclear. The Wnt/β-catenin signaling pathway is involved in cognition, and abnormalities in it are implicated in neurological disorders. Here, we explored the Wnt/β-catenin signaling pathway abnormalities caused by chronic intermittent hypoxia (CIH), the most characteristic pathophysiological component of OSA. METHODS We divided 32 4-week-old male C57/BL mice into four groups of eight each: a CIH + normal saline (NS) group, CIH + LiCl group, sham CIH + NS group, and a sham CIH + LiCl group. The spatial learning performance of each group was assessed by using the Morris water maze (MWM). Protein expressions of glycogen synthase kinase-3β (GSK-3β) and β-catenin in the hippocampus were examined using the Western blotting test. EdU labeling and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling staining methods were used, respectively, to determine the proliferation and apoptosis of neurons in the hippocampal dentate gyrus region. RESULTS Mice exposed to CIH showed impaired spatial learning performance in the MWM, including increased mean escape latencies to reach the target platform, decreased mean times passing through the target platform and mean duration in the target quadrant. The GSK-3β activity increased, and expression of β-catenin decreased significantly in the hippocampus of the CIH-exposed mice. Besides, CIH significantly increased hippocampal neuronal apoptosis, with an elevated apoptosis index. Meanwhile, LiCl decreased the activity of GSK-3β and increased the expression of β-catenin and partially reversed the spatial memory deficits in MWM and the apoptosis caused by CIH. CONCLUSIONS Wnt/β-catenin signaling pathway abnormalities possibly play an important role in the development of cognitive deficits among mice exposed to CIH and that LiCl might attenuate CIH-induced cognitive impairment via Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hui-Guo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Respiratory Disease of the Ministry of Health, Wuhan, Hubei 430030, China
| |
Collapse
|
34
|
Almeida AS, Vieira HLA. Role of Cell Metabolism and Mitochondrial Function During Adult Neurogenesis. Neurochem Res 2016; 42:1787-1794. [DOI: 10.1007/s11064-016-2150-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 12/15/2022]
|
35
|
Li S, Shao J, Zhou Y, Friis T, Yao J, Shi B, Xiao Y. The impact of Wnt signalling and hypoxia on osteogenic and cementogenic differentiation in human periodontal ligament cells. Mol Med Rep 2016; 14:4975-4982. [PMID: 27840938 PMCID: PMC5355726 DOI: 10.3892/mmr.2016.5909] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/26/2016] [Indexed: 01/09/2023] Open
Abstract
Cementum is a periodontal support tissue that is directly connected to the periodontal ligament. It shares common traits with bone tissues, however, unlike bone, the cementum has a limited capacity for regeneration. As a result, following damage the cementum rarely, if ever, regenerates. Periodontal ligament cells (PDLCs) are able to differentiate into osteoblastic and cementogenic lineages according to specific local environmental conditions, including hypoxia, which is induced by inflammation or activation of the Wnt signalling pathway by local loading. The interactions between the Wnt signalling pathway and hypoxia during cementogenesis are of particular interest to improve the understanding of periodontal tissue regeneration. In the present study, osteogenic and cementogenic differentiation of PDLCs was investigated under hypoxic conditions in the presence and absence of Wnt pathway activation. Protein and gene expression of the osteogenic markers type 1 collagen (COL1) and runt-related transcription factor 2 (RUNX2), and cementum protein 1 (CEMP1) were used as markers for osteogenic and cementogenic differentiation, respectively. Wnt signalling activation inhibited cementogenesis, whereas hypoxia alone did not affect PDLC differentiation. However, hypoxia reversed the inhibition of cementogenesis that resulted from overexpression of Wnt signalling. Cross-talk between hypoxia and Wnt signalling pathways was, therefore, demonstrated to be involved in the differentiation of PDLCs to the osteogenic and cementogenic lineages. In summary, the present study suggests that the differentiation of PDLCs into osteogenic and cementogenic lineages is partially regulated by the Wnt signalling pathway and that hypoxia is also involved in this process.
Collapse
Affiliation(s)
- Shuigen Li
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‑MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| | - Jin Shao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‑MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| | - Yinghong Zhou
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Thor Friis
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Jiangwu Yao
- Department of Oral Biology and Biomaterials, Xiamen Stomatology Research Institute, Xiamen, Fujian 361000, P.R. China
| | - Bin Shi
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‑MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| | - Yin Xiao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‑MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, P.R. China
| |
Collapse
|
36
|
Cisternas P, Salazar P, Silva-Álvarez C, Barros LF, Inestrosa NC. Activation of Wnt Signaling in Cortical Neurons Enhances Glucose Utilization through Glycolysis. J Biol Chem 2016; 291:25950-25964. [PMID: 27703002 DOI: 10.1074/jbc.m116.735373] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 09/29/2016] [Indexed: 12/29/2022] Open
Abstract
The Wnt signaling pathway is critical for a number of functions in the central nervous system, including regulation of the synaptic cleft structure and neuroprotection against injury. Deregulation of Wnt signaling has been associated with several brain pathologies, including Alzheimer's disease. In recent years, it has been suggested that the Wnt pathway might act as a central integrator of metabolic signals from peripheral organs to the brain, which would represent a new role for Wnt signaling in cell metabolism. Energy metabolism is critical for normal neuronal function, which mainly depends on glucose utilization. Brain energy metabolism is important in almost all neurological disorders, to which a decrease in the capacity of the brain to utilize glucose has been linked. However, little is known about the relationship between Wnt signaling and neuronal glucose metabolism in the cellular context. In the present study, we found that acute treatment with the Wnt3a ligand induced a large increase in glucose uptake, without changes in the expression or localization of glucose transporter type 3. In addition, we observed that Wnt3a treatment increased the activation of the metabolic sensor Akt. Moreover, we observed an increase in the activity of hexokinase and in the glycolytic rate, and both processes were dependent on activation of the Akt pathway. Furthermore, we did not observe changes in the activity of glucose-6-phosphate dehydrogenase or in the pentose phosphate pathway. The effect of Wnt3a was independent of both the transcription of Wnt target genes and synaptic effects of Wnt3a. Together, our results suggest that Wnt signaling stimulates glucose utilization in cortical neurons through glycolysis to satisfy the high energy demand of these cells.
Collapse
Affiliation(s)
- Pedro Cisternas
- From the Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile.,the Universidad de Atacama, Facultad de Ciencias Naturales, Departamento de Química y Biología, Copayapu 485, Copiapó, Chile
| | - Paulina Salazar
- From the Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | - Carmen Silva-Álvarez
- From the Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile
| | - L Felipe Barros
- the Centro de Estudios Científicos (CECs), Casilla 1469, Valdivia, Chile
| | - Nibaldo C Inestrosa
- From the Centro de Envejecimiento y Regeneración (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile, .,the Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney 1235, Australia, and.,the Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200732, Chile
| |
Collapse
|
37
|
Functional Differences of Very-Low-Density Lipoprotein Receptor Splice Variants in Regulating Wnt Signaling. Mol Cell Biol 2016; 36:2645-54. [PMID: 27528615 PMCID: PMC5038150 DOI: 10.1128/mcb.00235-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/22/2016] [Indexed: 11/20/2022] Open
Abstract
The very-low-density lipoprotein receptor (VLDLR) negatively regulates Wnt signaling. VLDLR has two major alternative splice variants, VLDLRI and VLDLRII, but their biological significance and distinction are unknown. Here we found that most tissues expressed both VLDLRI and VLDLRII, while the retina expressed only VLDLRII. The shed soluble VLDLR extracellular domain (sVLDLR-N) was detected in the conditioned medium of retinal pigment epithelial cells, interphotoreceptor matrix, and mouse plasma, indicating that ectodomain shedding of VLDLR occurs endogenously. VLDLRII displayed a higher ectodomain shedding rate and a more potent inhibitory effect on Wnt signaling than VLDLRI in vitro and in vivo O-glycosylation, which is present in VLDLRI but not VLDLRII, determined the differential ectodomain shedding rates. Moreover, the release of sVLDLR-N was inhibited by a metalloproteinase inhibitor, TAPI-1, while it was promoted by phorbol 12-myristate 13-acetate (PMA). In addition, sVLDLR-N shedding was suppressed under hypoxia. Further, plasma levels of sVLDLR-N were reduced in both type 1 and type 2 diabetic mouse models. We concluded that VLDLRI and VLDLRII had differential roles in regulating Wnt signaling and that decreased plasma levels of sVLDLR-N may contribute to Wnt signaling activation in diabetic complications. Our study reveals a novel mechanism for intercellular regulation of Wnt signaling through VLDLR ectodomain shedding.
Collapse
|
38
|
Hippocampal neurogenesis response: What can we expect from two different models of hypertension? Brain Res 2016; 1646:199-206. [DOI: 10.1016/j.brainres.2016.05.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/11/2016] [Accepted: 05/24/2016] [Indexed: 01/17/2023]
|
39
|
Mardones MD, Andaur GA, Varas-Godoy M, Henriquez JF, Salech F, Behrens MI, Couve A, Inestrosa NC, Varela-Nallar L. Frizzled-1 receptor regulates adult hippocampal neurogenesis. Mol Brain 2016; 9:29. [PMID: 26980182 PMCID: PMC4791773 DOI: 10.1186/s13041-016-0209-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/06/2016] [Indexed: 01/19/2023] Open
Abstract
Background In the adult hippocampus new neurons are continuously generated from neural stem cells (NSCs) present at the subgranular zone of the dentate gyrus. This process is controlled by Wnt signaling, which plays a complex role in regulating multiple steps of neurogenesis including maintenance, proliferation and differentiation of progenitor cells and the development of newborn neurons. Differential effects of Wnt signaling during progression of neurogenesis could be mediated by cell-type specific expression of Wnt receptors. Here we studied the potential role of Frizzled-1 (FZD1) receptor in adult hippocampal neurogenesis. Results In the adult dentate gyrus, we determined that FZD1 is highly expressed in NSCs, neural progenitors and immature neurons. Accordingly, FZD1 is expressed in cultured adult hippocampal progenitors isolated from mouse brain. To evaluate the role of this receptor in vivo we targeted FZD1 in newborn cells using retroviral-mediated RNA interference. FZD1 knockdown resulted in a marked decrease in the differentiation of newborn cells into neurons and increased the generation of astrocytes, suggesting a regulatory role for the receptor in cell fate commitment. In addition, FZD1 knockdown induced an extended migration of adult-born neurons within the granule cell layer. However, no differences were observed in total dendritic length and dendritic arbor complexity between control and FZD1-deficient newborn neurons. Conclusions Our results show that FZD1 regulates specific stages of adult hippocampal neurogenesis, being required for neuronal differentiation and positioning of newborn neurons into the granule cell layer, but not for morphological development of adult-born granule neurons.
Collapse
Affiliation(s)
- Muriel D Mardones
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Gabriela A Andaur
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Manuel Varas-Godoy
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
| | - Jenny F Henriquez
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Felipe Salech
- Unidad de Geriatría, Hospital Clínico Universidad de Chile, Santiago, Chile.,Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - María Isabel Behrens
- Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago, Chile.,Clínica Alemana de Santiago, Santiago, Chile
| | - Andrés Couve
- Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute (BNI), Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile.,Center for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Lorena Varela-Nallar
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
40
|
The Wnt/β-catenin signaling/Id2 cascade mediates the effects of hypoxia on the hierarchy of colorectal-cancer stem cells. Sci Rep 2016; 6:22966. [PMID: 26965643 PMCID: PMC4786801 DOI: 10.1038/srep22966] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 02/22/2016] [Indexed: 01/03/2023] Open
Abstract
Hypoxia, a feature common to most solid tumors, is known to regulate many aspects of tumorigenesis. Recently, it was suggested that hypoxia increased the size of the cancer stem-cell (CSC) subpopulations and promoted the acquisition of a CSC-like phenotype. However, candidate hypoxia-regulated mediators specifically relevant to the stemness-related functions of colorectal CSCs have not been examined in detail. In the present study, we showed that hypoxia specifically promoted the self-renewal potential of CSCs. Through various in vitro studies, we found that hypoxia-induced Wnt/β-catenin signaling increased the occurrence of CSC-like phenotypes and the level of Id2 expression in colorectal-cancer cells. Importantly, the levels of hypoxia-induced CSC-sphere formation and Id2 expression were successfully attenuated by treatment with a Wnt/β-catenin-signaling inhibitor. We further demonstrated, for the first time, that the degree of hypoxia-induced CSC-sphere formation (CD44(+) subpopulation) in vitro and of tumor metastasis/dissemination in vivo were markedly suppressed by knocking down Id2 expression. Taken together, these data suggested that Wnt/β-catenin signaling mediated the hypoxia-induced self-renewal potential of colorectal-cancer CSCs through reactivating Id2 expression.
Collapse
|
41
|
Wagenführ L, Meyer AK, Marrone L, Storch A. Oxygen Tension Within the Neurogenic Niche Regulates Dopaminergic Neurogenesis in the Developing Midbrain. Stem Cells Dev 2016; 25:227-38. [PMID: 26577812 DOI: 10.1089/scd.2015.0214] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oxygen tension is an important factor controlling stem cell proliferation and maintenance in various stem cell populations with a particular relevance in midbrain dopaminergic progenitors. Further studies have shown that the oxygen-dependent transcription factor hypoxia-inducible factor 1α (HIF-1α) is involved in these processes. However, all available studies on oxygen effects in dopaminergic neuroprogenitors were performed in vitro and thus it remains unclear whether tissue oxygen tension in the embryonic midbrain is also relevant for the regulation of dopaminergic neurogenesis in vivo. We thus dissect here the effects of oxygen tension in combination with HIF-1α conditional knockout on dopaminergic neurogenesis by using a novel experimental design allowing for the control of oxygen tension within the microenvironment of the neurogenic niche of the murine fetal midbrain in vivo. The microenvironment of the midbrain dopaminergic neurogenic niche was detected as hypoxic with oxygen tensions below 1.1%. Maternal oxygen treatment of 10%, 21%, and 75% atmospheric oxygen tension for 48 h translates into robust changes in fetal midbrain oxygenation. Fetal midbrain hypoxia hampered the generation of dopaminergic neurons and is accompanied with restricted fetal midbrain development. In contrast, induced hyperoxia stimulated proliferation and differentiation of dopaminergic progenitors during early and late embryogenesis. Oxygen effects were not directly mediated through HIF-1α signaling. These data--in agreement with in vitro data-indicate that oxygen is a crucial regulator of developmental dopaminergic neurogenesis. Our study provides the initial framework for future studies on molecular mechanisms mediating oxygen regulation of dopaminergic neurogenesis within the fetal midbrain as its natural environment.
Collapse
Affiliation(s)
- Lisa Wagenführ
- 1 Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden , Dresden, Germany
| | - Anne Karen Meyer
- 1 Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden , Dresden, Germany
| | - Lara Marrone
- 1 Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden , Dresden, Germany .,2 Center for Regenerative Therapies Dresden (CRTD) , Technische Universität Dresden, Dresden, Germany
| | - Alexander Storch
- 1 Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden , Dresden, Germany .,2 Center for Regenerative Therapies Dresden (CRTD) , Technische Universität Dresden, Dresden, Germany .,3 Department of Neurology, University of Rostock , Rostock, Germany .,4 German Centre for Neurodegenerative Diseases (DZNE) , Rostock, Germany
| |
Collapse
|
42
|
Andrographolide Stimulates Neurogenesis in the Adult Hippocampus. Neural Plast 2015; 2015:935403. [PMID: 26798521 PMCID: PMC4700200 DOI: 10.1155/2015/935403] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/17/2015] [Indexed: 12/12/2022] Open
Abstract
Andrographolide (ANDRO) is a labdane diterpenoid component of Andrographis paniculata widely used for its anti-inflammatory properties. We have recently determined that ANDRO is a competitive inhibitor of glycogen synthase kinase-3β (GSK-3β), a key enzyme of the Wnt/β-catenin signaling cascade. Since this signaling pathway regulates neurogenesis in the adult hippocampus, we evaluated whether ANDRO stimulates this process. Treatment with ANDRO increased neural progenitor cell proliferation and the number of immature neurons in the hippocampus of 2- and 10-month-old mice compared to age-matched control mice. Moreover, ANDRO stimulated neurogenesis increasing the number of newborn dentate granule neurons. Also, the effect of ANDRO was evaluated in the APPswe/PS1ΔE9 transgenic mouse model of Alzheimer's disease. In these mice, ANDRO increased cell proliferation and the density of immature neurons in the dentate gyrus. Concomitantly with the increase in neurogenesis, ANDRO induced the activation of the Wnt signaling pathway in the hippocampus of wild-type and APPswe/PS1ΔE9 mice determined by increased levels of β-catenin, the inactive form of GSK-3β, and NeuroD1, a Wnt target gene involved in neurogenesis. Our findings indicate that ANDRO stimulates neurogenesis in the adult hippocampus suggesting that this drug could be used as a therapy in diseases in which neurogenesis is affected.
Collapse
|
43
|
Hypoxia-inducible factor-1α upregulates tyrosine hydroxylase and dopamine transporter by nuclear receptor ERRγ in SH-SY5Y cells. Neuroreport 2015; 26:380-6. [PMID: 25807177 DOI: 10.1097/wnr.0000000000000356] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is a transcription factor relevant to the development of many mammalian organs including the brain. However, the molecular mechanisms by which signaling events mediate neuronal differentiation have not been fully elucidated. In the present study, we show for the first time that the orphan nuclear receptor estrogen-related receptor γ (ERRγ) is upregulated by HIF-1α and plays essential roles in HIF-1α-induced upregulation of dopaminergic marker molecules such as tyrosine hydroxylase and dopamine transporter. We found that deferoxamine upregulated HIF-1α and enhanced the dopaminergic phenotype and neurite outgrowth of SH-SY5Y cells. Deferoxamine activated transcription and protein expression of ERRγ, and deferoxamine-induced upregulation of tyrosine hydroxylase and dopamine transporter was attenuated by using the ERRγ inverse agonist or silencing ERRγ. Altogether, these results suggest that HIF-1α can positively regulate the dopaminergic phenotype through ERRγ. This study could provide new perspectives for understanding the mechanisms underlying the promotion of dopaminergic neuronal differentiation by hypoxia.
Collapse
|
44
|
Functional Integration of Adult-Born Hippocampal Neurons after Traumatic Brain Injury(1,2,3). eNeuro 2015; 2:eN-NWR-0056-15. [PMID: 26478908 PMCID: PMC4603252 DOI: 10.1523/eneuro.0056-15.2015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/24/2015] [Accepted: 07/31/2015] [Indexed: 01/31/2023] Open
Abstract
Traumatic brain injury (TBI) increases hippocampal neurogenesis, which may contribute to cognitive recovery after injury. However, it is unknown whether TBI-induced adult-born neurons mature normally and functionally integrate into the hippocampal network. We assessed the generation, morphology, and synaptic integration of new hippocampal neurons after a controlled cortical impact (CCI) injury model of TBI. To label TBI-induced newborn neurons, we used 2-month-old POMC-EGFP mice, which transiently and specifically express EGFP in immature hippocampal neurons, and doublecortin-CreERT2 transgenic mice crossed with Rosa26-CAG-tdTomato reporter mice, to permanently pulse-label a cohort of adult-born hippocampal neurons. TBI increased the generation, outward migration, and dendritic complexity of neurons born during post-traumatic neurogenesis. Cells born after TBI had profound alterations in their dendritic structure, with increased dendritic branching proximal to the soma and widely splayed dendritic branches. These changes were apparent during early dendritic outgrowth and persisted as these cells matured. Whole-cell recordings from neurons generated during post-traumatic neurogenesis demonstrate that they are excitable and functionally integrate into the hippocampal circuit. However, despite their dramatic morphologic abnormalities, we found no differences in the rate of their electrophysiological maturation, or their overall degree of synaptic integration when compared to age-matched adult-born cells from sham mice. Our results suggest that cells born after TBI participate in information processing, and receive an apparently normal balance of excitatory and inhibitory inputs. However, TBI-induced changes in their anatomic localization and dendritic projection patterns could result in maladaptive network properties.
Collapse
|
45
|
Ghoneim FM, Khalaf HA, Elsamanoudy AZ, Abo El-khair SM, Helaly AMN, Mahmoud EHM, Elshafey SH. Protective effect of chronic caffeine intake on gene expression of brain derived neurotrophic factor signaling and the immunoreactivity of glial fibrillary acidic protein and Ki-67 in Alzheimer's disease. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:7710-7728. [PMID: 26339337 PMCID: PMC4555665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/26/2015] [Indexed: 06/05/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with progressive degeneration of the hippocampal and cortical neurons. This study was designed to demonstrate the protective effect of caffeine on gene expression of brain derived neurotrophic factor (BDNF) and its receptor neural receptor protein-tyrosine kinase-β (TrkB) as well as glial fibrillary acidic protein (GFAP) and Ki-67 immunoreactivity in Aluminum chloride (AlCl3) induced animal model of AD. Fifty adult rats included in this study were classified into 5 group (10 rats each); negative and positive control groups (I&II), AD model group (III), group treated with caffeine from the start of AD induction (IV) and group treated with caffeine two weeks before AD induction (V). Hippocampal tissue BDNF and its receptor (TrkB) gene expression by real time RT-PCR in addition to immunohistochemical study of GFAP and Ki67 immunoreactivity were performed for all rats in the study. The results of this study revealed that caffeine has protective effect through improving the histological and immunohistochemical findings induced by AlCl3 as well as BDNF and its receptor gene expression. It could be concluded from the current study, that chronic caffeine consumption in a dose of 1.5 mg/kg body weight daily has a potentially good protective effect against AD.
Collapse
Affiliation(s)
- Fatma M Ghoneim
- Department of Histology and Cell Biology, Mansoura UniversityEgypt
| | - Hanaa A Khalaf
- Department of Histology and Cell Biology, Mansoura UniversityEgypt
| | - Ayman Z Elsamanoudy
- Department of Medical Biochemistry and Molecular Biology, Mansoura UniversityEgypt
| | - Salwa M Abo El-khair
- Department of Medical Biochemistry and Molecular Biology, Mansoura UniversityEgypt
| | - Ahmed MN Helaly
- Department of Forensic Medicine and Toxicology, Mansoura UniversityEgypt
| | | | - Saad H Elshafey
- Department of Histology and Cell Biology, Mansoura UniversityEgypt
| |
Collapse
|
46
|
Braunschweig L, Meyer AK, Wagenführ L, Storch A. Oxygen regulates proliferation of neural stem cells through Wnt/β-catenin signalling. Mol Cell Neurosci 2015; 67:84-92. [PMID: 26079803 DOI: 10.1016/j.mcn.2015.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 11/25/2022] Open
Abstract
Reduced oxygen levels (1-5% O2, named herein 'physioxia') are beneficial for stem cell cultures leading to enhanced proliferation, better survival and higher differentiation potential, but the underlying molecular mechanisms remain elusive. A potential link between physioxia and the canonical Wnt pathway was found recently, but the differential involvement of this signalling pathway for the various stem cell properties such as proliferation, stem cell maintenance, and differentiation capacity remains enigmatic. We here demonstrate increased Wnt target gene transcription and stabilised active β-catenin upon physioxic cell culture in primary tissue-specific foetal mouse neural stem cells. Knock-out of the main oxygen sensing molecule, hypoxia-inducible factor-1α (Hif-1α), had no impact on Wnt activation assuming that physioxia induces the Wnt pathway independently of Hif-1α. To determine the physiological relevance of physioxia-induced Wnt/β-catenin signalling, we examined proliferation, cell cycle kinetics, survival and stem cell maintenance upon Wnt activation and inhibition. Whereas survival and stem cell maintenance seem to be independent of the Wnt pathway, our studies provide first evidence that Wnt/β-catenin signalling positively stimulates proliferation of physioxic cells by affecting cell cycle regulation. Together, our results provide mechanistic insight into oxygen-mediated regulation of the self-renewal activity of neural stem cells.
Collapse
Affiliation(s)
- Lena Braunschweig
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Anne K Meyer
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; Leibniz Institute for Solid State and Material Research, IFW Dresden, Institute for Integrative Nanosciences, Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Lisa Wagenführ
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Alexander Storch
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, 01307 Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany; German Centre for Neurodegenerative Diseases (DZNE) Dresden, 01307 Dresden, Germany.
| |
Collapse
|
47
|
d’Anglemont de Tassigny X, Sirerol-Piquer MS, Gómez-Pinedo U, Pardal R, Bonilla S, Capilla-Gonzalez V, López-López I, De la Torre-Laviana FJ, García-Verdugo JM, López-Barneo J. Resistance of subventricular neural stem cells to chronic hypoxemia despite structural disorganization of the germinal center and impairment of neuronal and oligodendrocyte survival. HYPOXIA (AUCKLAND, N.Z.) 2015; 3:15-33. [PMID: 27774479 PMCID: PMC5045070 DOI: 10.2147/hp.s78248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chronic hypoxemia, as evidenced in de-acclimatized high-altitude residents or in patients with chronic obstructive respiratory disorders, is a common medical condition that can produce serious neurological alterations. However, the pathogenesis of this phenomenon is unknown. We have found that adult rodents exposed for several days/weeks to hypoxia, with an arterial oxygen tension similar to that of chronically hypoxemic patients, manifest a partially irreversible structural disarrangement of the subventricular neurogenic niche (subventricular zone) characterized by displacement of neurons and myelinated axons, flattening of the ependymal cell layer, and thinning of capillary walls. Despite these abnormalities, the number of neuronal and oligodendrocyte progenitors, neuroblasts, and neurosphere-forming cells as well as the proliferative activity in subventricular zone was unchanged. These results suggest that neural stem cells and their undifferentiated progeny are resistant to hypoxia. However, in vivo and in vitro experiments indicate that severe chronic hypoxia decreases the survival of newly generated neurons and oligodendrocytes, with damage of myelin sheaths. These findings help explain the effects of hypoxia on adult neurogenesis and provide new perspectives on brain responsiveness to persistent hypoxemia.
Collapse
Affiliation(s)
- Xavier d’Anglemont de Tassigny
- Medical Physiology and Biophysics Department, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - M Salomé Sirerol-Piquer
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
- Network Center of Biomedical Research on Neurodegenerative Diseases (CIBERNED), Spain
| | - Ulises Gómez-Pinedo
- Laboratory of Regenerative Medicine, San Carlos Institute of Health Investigation, Madrid, Spain
| | - Ricardo Pardal
- Medical Physiology and Biophysics Department, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Sonia Bonilla
- Medical Physiology and Biophysics Department, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Vivian Capilla-Gonzalez
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Ivette López-López
- Medical Physiology and Biophysics Department, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - Francisco Javier De la Torre-Laviana
- Medical Physiology and Biophysics Department, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
| | - José Manuel García-Verdugo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
- Network Center of Biomedical Research on Neurodegenerative Diseases (CIBERNED), Spain
| | - José López-Barneo
- Medical Physiology and Biophysics Department, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital/CSIC/University of Seville, Seville, Spain
- Network Center of Biomedical Research on Neurodegenerative Diseases (CIBERNED), Spain
| |
Collapse
|
48
|
Jin Y, Wang W, Chai S, Liu J, Yang T, Wang J. Wnt5a attenuates hypoxia-induced pulmonary arteriolar remodeling and right ventricular hypertrophy in mice. Exp Biol Med (Maywood) 2015; 240:1742-51. [PMID: 25956683 DOI: 10.1177/1535370215584889] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/24/2015] [Indexed: 12/14/2022] Open
Abstract
Hypoxic pulmonary hypertension (HPH), which is characterized by pulmonary arteriolar remodeling and right ventricular hypertrophy, is still a life-threatening disease with the current treatment strategies. The underlying molecular mechanisms of HPH remain unclear. Our previously published study showed that Wnt5a, one of the ligands in the Wnt family, was critically involved in the inhibition of hypoxia-induced pulmonary arterial smooth muscle cell proliferation by downregulation of β-catenin/cyclin D1 in vitro. In this study, we investigated the possible functions and mechanisms of Wnt5a in HPH in vivo. Recombinant mouse Wnt5a (rmWnt5a) or phosphate buffered saline (PBS) was administered to male C57/BL6 mice weekly from the first day to the end of the two or four weeks after exposed to hypoxia (10% O2). Hypoxia-induced pulmonary hypertension was associated with a marked increase in β-catenin/cyclin D1 expression in lungs. Right ventricular systolic pressure and right ventricular hypertrophy index were reduced in animals treated with rmWnt5a compared with PBS. Histology showed less pulmonary vascular remodeling and right ventricular hypertrophy in the group treated with rmWnt5a than with PBS. Treatment with rmWnt5a resulted in a concomitant reduction in β-catenin/cyclin D1 levels in lungs. These data demonstrate that Wnt5a exerts its beneficial effects on HPH by regulating pulmonary vascular remodeling and right ventricular hypertrophy in a manner that is associated with reduction in β-catenin/cyclin D1 signaling. A therapy targeting the β-catenin/cyclin D1 signaling pathway might be a potential strategy for HPH treatment.
Collapse
Affiliation(s)
- Yuling Jin
- Department of Physiology, Capital Medical University, Beijing 100069, P.R. China
| | - Wang Wang
- Department of Physiology, Capital Medical University, Beijing 100069, P.R. China
| | - Sanbao Chai
- Department of Physiology, Capital Medical University, Beijing 100069, P.R. China
| | - Jie Liu
- Department of Physiology, Capital Medical University, Beijing 100069, P.R. China
| | - Ting Yang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100016, P.R. China
| | - Jun Wang
- Department of Physiology, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
49
|
Tapia-Rojas C, Aranguiz F, Varela-Nallar L, Inestrosa NC. Voluntary Running Attenuates Memory Loss, Decreases Neuropathological Changes and Induces Neurogenesis in a Mouse Model of Alzheimer's Disease. Brain Pathol 2015; 26:62-74. [PMID: 25763997 DOI: 10.1111/bpa.12255] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/26/2015] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by loss of memory and cognitive abilities, and the appearance of amyloid plaques composed of the amyloid-β peptide (Aβ) and neurofibrillary tangles formed of tau protein. It has been suggested that exercise might ameliorate the disease; here, we evaluated the effect of voluntary running on several aspects of AD including amyloid deposition, tau phosphorylation, inflammatory reaction, neurogenesis and spatial memory in the double transgenic APPswe/PS1ΔE9 mouse model of AD. We report that voluntary wheel running for 10 weeks decreased Aβ burden, Thioflavin-S-positive plaques and Aβ oligomers in the hippocampus. In addition, runner APPswe/PS1ΔE9 mice showed fewer phosphorylated tau protein and decreased astrogliosis evidenced by lower staining of GFAP. Further, runner APPswe/PS1ΔE9 mice showed increased number of neurons in the hippocampus and exhibited increased cell proliferation and generation of cells positive for the immature neuronal protein doublecortin, indicating that running increased neurogenesis. Finally, runner APPswe/PS1ΔE9 mice showed improved spatial memory performance in the Morris water maze. Altogether, our findings indicate that in APPswe/PS1ΔE9 mice, voluntary running reduced all the neuropathological hallmarks of AD studied, reduced neuronal loss, increased hippocampal neurogenesis and reduced spatial memory loss. These findings support that voluntary exercise might have therapeutic value on AD.
Collapse
Affiliation(s)
- Cheril Tapia-Rojas
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Florencia Aranguiz
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Lorena Varela-Nallar
- Centro de Investigaciones Biomédicas, Facultad de Ciencias Biológicas y Facultad de Medicina, Universidad Andrés Bello, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro UC Síndrome de Down, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.,Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
50
|
Guo F, Lang J, Sohn J, Hammond E, Chang M, Pleasure D. Canonical Wnt signaling in the oligodendroglial lineage-puzzles remain. Glia 2015; 63:1671-93. [DOI: 10.1002/glia.22813] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/17/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Fuzheng Guo
- Neurology Department; School of Medicine at UC Davis Medical Center; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, Northern California; Sacramento California
| | - Jordan Lang
- Neurology Department; School of Medicine at UC Davis Medical Center; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, Northern California; Sacramento California
| | - Jiho Sohn
- Neurology Department; School of Medicine at UC Davis Medical Center; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, Northern California; Sacramento California
| | - Elizabeth Hammond
- Neurology Department; School of Medicine at UC Davis Medical Center; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, Northern California; Sacramento California
| | - Marcello Chang
- Neurology Department; School of Medicine at UC Davis Medical Center; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, Northern California; Sacramento California
| | - David Pleasure
- Neurology Department; School of Medicine at UC Davis Medical Center; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, Northern California; Sacramento California
| |
Collapse
|