1
|
Shabani K, Krupp J, Lemesre E, Lévy N, Tran H. Voltage-Gated Ion Channel Compensatory Effect in DEE: Implications for Future Therapies. Cells 2024; 13:1763. [PMID: 39513870 PMCID: PMC11544952 DOI: 10.3390/cells13211763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Developmental and Epileptic Encephalopathies (DEEs) represent a clinically and genetically heterogeneous group of rare and severe epilepsies. DEEs commonly begin early in infancy with frequent seizures of various types associated with intellectual disability and leading to a neurodevelopmental delay or regression. Disease-causing genomic variants have been identified in numerous genes and are implicated in over 100 types of DEEs. In this context, genes encoding voltage-gated ion channels (VGCs) play a significant role, and part of the large phenotypic variability observed in DEE patients carrying VGC mutations could be explained by the presence of genetic modifier alleles that can compensate for these mutations. This review will focus on the current knowledge of the compensatory effect of DEE-associated voltage-gated ion channels and their therapeutic implications in DEE. We will enter into detailed considerations regarding the sodium channels SCN1A, SCN2A, and SCN8A; the potassium channels KCNA1, KCNQ2, and KCNT1; and the calcium channels CACNA1A and CACNA1G.
Collapse
Affiliation(s)
- Khadijeh Shabani
- Institut de Recherches Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France; (J.K.); (E.L.); (N.L.)
| | | | | | | | - Helene Tran
- Institut de Recherches Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France; (J.K.); (E.L.); (N.L.)
| |
Collapse
|
2
|
Gras M, Bearden D, West J, Nabbout R. Efficacy of anti-seizure medications and alternative therapies (ketogenic diet, CBD, and quinidine) in KCNT1-related epilepsy: A systematic review. Epilepsia Open 2024; 9:1176-1191. [PMID: 39093319 PMCID: PMC11296097 DOI: 10.1002/epi4.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE KCNT1-related epilepsies encompass three main phenotypes: (i) epilepsy of infancy with migrating focal seizures (EIMFS), (ii) autosomal dominant or sporadic sleep-related hypermotor epilepsy [(AD)SHE], and (iii) different types of developmental and epileptic encephalopathies (DEE). Many patients present with drug-resistant seizures and global developmental delays. In addition to conventional anti-seizure medications (ASM), multiple alternative therapies have been tested including the ketogenic diet (KD), cannabidiol (CBD-including Epidyolex © and other CBD derivatives) and quinidine (QUIN). We aimed to clarify the current state of the art concerning the benefits of those therapies administered to the three groups of patients. METHODS We performed a literature review on PubMed and EMBase with the keyword "KCNT1" and selected articles reporting qualitative and/or quantitative information on responses to these treatments. A treatment was considered beneficial if it improved seizure frequency and/or intensity and/or quality of life. Patients were grouped by phenotype. RESULTS A total of 43 studies including 197 patients were reviewed. For EIMFS patients (32 studies, 135 patients), KD resulted in benefit in 62.5% (25/40), all types of CBD resulted in benefit in 50% (6/12), and QUIN resulted in benefit in 44.6% (25/56). For (AD)SHE patients (10 studies, 32 patients), we found only one report of treatment with KD, with no benefit noted. QUIN was trialed in 8 patients with no reported benefit. For DEE patients (10 studies, 30 patients), KD resulted in benefit for 4/7, CBD for 1/2, and QUIN for 6/9. In all groups, conventional ASM are rarely reported as beneficial (in 5%-25% of patients). SIGNIFICANCE Ketogenic diet, CBD, and QUIN treatments appear to be beneficial in a subset of patient with drug-resistant epilepsy. The KD and CBD are reasonable to trial in patients with KCNT1-related epilepsy. Further studies are needed to identify optimal treatment strategies and to establish predictive response factors. PLAIN LANGUAGE SUMMARY We performed an extensive review of scientific articles providing information about the therapeutic management of epilepsy in patients with epilepsy linked to a mutation in the KCNT1 gene. Conventional anti-seizure treatments were rarely reported to be beneficial. The ketogenic diet (a medical diet with very high fat, adequate protein and very low carbohydrate intake) and cannabidiol appeared to be useful, but larger studies are needed to reach a conclusion.
Collapse
Affiliation(s)
- Mathilde Gras
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, APHP, Member of EPICAREUniversité Paris CitéParisFrance
- Institut Imagine, INSERM U1163, Université Paris CiteParisFrance
| | - David Bearden
- Division of Child Neurology, Department of NeurologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | - Justin West
- KCNT1 Epilepsy Foundation (501C3). President. Co‐Founder. Director of Clinical MedicineNewport BeachCaliforniaUSA
| | - Rima Nabbout
- Reference Center for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, APHP, Member of EPICAREUniversité Paris CitéParisFrance
- Institut Imagine, INSERM U1163, Université Paris CiteParisFrance
| |
Collapse
|
3
|
Wang K, Shen Z, Peng X, Wu X, Mao L. Circular RNA-GRIN2B Suppresses Neuropathic Pain by Targeting the NF-κB/SLICK Pathway. Neuromolecular Med 2024; 26:12. [PMID: 38600344 DOI: 10.1007/s12017-024-08774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/21/2024] [Indexed: 04/12/2024]
Abstract
The role of circular RNAs (circRNAs) in neuropathic pain is linked to the fundamental physiological mechanisms involved. However, the exact function of circRNAs in the context of neuropathic pain is still not fully understood. The functional impact of circGRIN2B on the excitability of dorsal root ganglion (DRG) neurons was investigated using siRNA or overexpression technology in conjunction with fluorescence in situ hybridization and whole-cell patch-clamp technology. The therapeutic efficacy of circGRIN2B in treating neuropathic pain was confirmed by assessing the pain threshold in a chronic constrictive injury (CCI) model. The interaction between circGRIN2B and NF-κB was examined through RNA pulldown, RIP, and mass spectrometry assays. CircGRIN2B knockdown significantly affected the action potential discharge frequency and the sodium-dependent potassium current flux (SLICK) in DRG neurons. Furthermore, knockdown of circGRIN2B dramatically reduced the SLICK channel protein and mRNA expression in vivo and in vitro. Our research confirmed the interaction between circGRIN2B and NF-κB. These findings demonstrated that circGRIN2B promotes the transcription of the SLICK gene by binding to NF-κB. In CCI rat models, the overexpression of circGRIN2B has been shown to hinder the progression of neuropathic pain, particularly by reducing mechanical and thermal hyperalgesia. Additionally, this upregulation significantly diminished the levels of the inflammatory cytokines IL-1β, IL-6, and TNF-α in the DRG. Upon reviewing these findings, it was determined that circGRIN2B may mitigate the onset of neuropathic pain by modulating the NF-κB/SLICK pathway.
Collapse
Affiliation(s)
- Kun Wang
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China
- Medical School of Southeast University, Nanjing, China
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Zicong Shen
- Medical School of Southeast University, Nanjing, China
| | - Xin Peng
- Medical School of Southeast University, Nanjing, China
| | - Xiaotao Wu
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China.
- Medical School of Southeast University, Nanjing, China.
| | - Lu Mao
- Department of Orthopedics, Zhongda Hospital, Southeast University, Nanjing, China.
- Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
4
|
Wu J, El-Hassar L, Datta D, Thomas M, Zhang Y, Jenkins DP, DeLuca NJ, Chatterjee M, Gribkoff VK, Arnsten AFT, Kaczmarek LK. Interaction Between HCN and Slack Channels Regulates mPFC Pyramidal Cell Excitability in Working Memory Circuits. Mol Neurobiol 2024; 61:2430-2445. [PMID: 37889366 DOI: 10.1007/s12035-023-03719-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
The ability of monkeys and rats to carry out spatial working memory tasks has been shown to depend on the persistent firing of pyramidal cells in the prefrontal cortex (PFC), arising from recurrent excitatory connections on dendritic spines. These spines express hyperpolarization-activated cyclic nucleotide-gated (HCN) channels whose open state is increased by cAMP signaling, and which markedly alter PFC network connectivity and neuronal firing. In traditional neural circuits, activation of these non-selective cation channels leads to neuronal depolarization and increased firing rate. Paradoxically, cAMP activation of HCN channels in PFC pyramidal cells reduces working memory-related neuronal firing. This suggests that activation of HCN channels may hyperpolarize rather than depolarize these neurons. The current study tested the hypothesis that Na+ influx through HCN channels activates Slack Na+-activated K+ (KNa) channels to hyperpolarize the membrane. We have found that HCN and Slack KNa channels co-immunoprecipitate in cortical extracts and that, by immunoelectron microscopy, they colocalize at postsynaptic spines of PFC pyramidal neurons. A specific blocker of HCN channels, ZD7288, reduces KNa current in pyramidal cells that express both HCN and Slack channels, but has no effect on KNa currents in an HEK cell line expressing Slack without HCN channels, indicating that blockade of HCN channels in neurons reduces K+ current indirectly by lowering Na+ influx. Activation of HCN channels by cAMP in a cell line expressing a Ca2+ reporter results in elevation of cytoplasmic Ca2+, but the effect of cAMP is reversed if the HCN channels are co-expressed with Slack channels. Finally, we used a novel pharmacological blocker of Slack channels to show that inhibition of Slack in rat PFC improves working memory performance, an effect previously demonstrated for blockers of HCN channels. Our results suggest that the regulation of working memory by HCN channels in PFC pyramidal neurons is mediated by an HCN-Slack channel complex that links activation HCN channels to suppression of neuronal excitability.
Collapse
Affiliation(s)
- Jing Wu
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Lynda El-Hassar
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Dibyadeep Datta
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Merrilee Thomas
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Yalan Zhang
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - David P Jenkins
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Nicholas J DeLuca
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Manavi Chatterjee
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Valentin K Gribkoff
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Amy F T Arnsten
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, 06520, USA.
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
5
|
Wu J, Quraishi IH, Zhang Y, Bromwich M, Kaczmarek LK. Disease-causing Slack potassium channel mutations produce opposite effects on excitability of excitatory and inhibitory neurons. Cell Rep 2024; 43:113904. [PMID: 38457342 PMCID: PMC11013952 DOI: 10.1016/j.celrep.2024.113904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 12/18/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024] Open
Abstract
The KCNT1 gene encodes the sodium-activated potassium channel Slack (KCNT1, KNa1.1), a regulator of neuronal excitability. Gain-of-function mutations in humans cause cortical network hyperexcitability, seizures, and severe intellectual disability. Using a mouse model expressing the Slack-R455H mutation, we find that Na+-dependent K+ (KNa) and voltage-dependent sodium (NaV) currents are increased in both excitatory and inhibitory cortical neurons. These increased currents, however, enhance the firing of excitability neurons but suppress that of inhibitory neurons. We further show that the expression of NaV channel subunits, particularly that of NaV1.6, is upregulated and that the length of the axon initial segment and of axonal NaV immunostaining is increased in both neuron types. Our study on the coordinate regulation of KNa currents and the expression of NaV channels may provide an avenue for understanding and treating epilepsies and other neurological disorders.
Collapse
Affiliation(s)
- Jing Wu
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Imran H Quraishi
- Department of Neurology, Yale Comprehensive Epilepsy Center, Yale School of Medicine, New Haven, CT 06520, USA
| | - Yalan Zhang
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Mark Bromwich
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
6
|
Malone TJ, Wu J, Zhang Y, Licznerski P, Chen R, Nahiyan S, Pedram M, Jonas EA, Kaczmarek LK. Neuronal potassium channel activity triggers initiation of mRNA translation through binding of translation regulators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579306. [PMID: 38370631 PMCID: PMC10871293 DOI: 10.1101/2024.02.07.579306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Neuronal activity stimulates mRNA translation crucial for learning and development. While FMRP (Fragile X Mental Retardation Protein) and CYFIP1 (Cytoplasmic FMR1 Interacting Protein 1) regulate translation, the mechanism linking translation to neuronal activity is not understood. We now find that translation is stimulated when FMRP and CYFIP1 translocate to the potassium channel Slack (KCNT1, Slo2.2). When Slack is activated, both factors are released from eIF4E (Eukaryotic Initiation Factor 4E), where they normally inhibit translation initiation. A constitutively active Slack mutation and pharmacological stimulation of the wild-type channel both increase binding of FMRP and CYFIP1 to the channel, enhancing the translation of a reporter for β-actin mRNA in cell lines and the synthesis of β-actin in neuronal dendrites. Slack activity-dependent translation is abolished when both FMRP and CYFIP1 expression are suppressed. The effects of Slack mutations on activity-dependent translation may explain the severe intellectual disability produced by these mutations in humans. HIGHLIGHTS Activation of Slack channels triggers translocation of the FMRP/CYFIP1 complexSlack channel activation regulates translation initiation of a β-actin reporter constructA Slack gain-of-function mutation increases translation of β-actin reporter construct and endogenous cortical β-actinFMRP and CYFIP1 are required for Slack activity-dependent translation. IN BRIEF Malone et al . show that the activation of Slack channels triggers translocation of the FMRP/CYFIP1 complex from the translation initiation factor eIF4E to the channel. This translocation releases eIF4E and stimulates mRNA translation of a reporter for β-actin and cortical β-actin mRNA, elucidating the mechanism that connects neuronal activity with translational regulation.
Collapse
|
7
|
Rose CR, Verkhratsky A. Sodium homeostasis and signalling: The core and the hub of astrocyte function. Cell Calcium 2024; 117:102817. [PMID: 37979342 DOI: 10.1016/j.ceca.2023.102817] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 11/20/2023]
Abstract
Neuronal activity and neurochemical stimulation trigger spatio-temporal changes in the cytoplasmic concentration of Na+ ions in astrocytes. These changes constitute the substrate for Na+ signalling and are fundamental for astrocytic excitability. Astrocytic Na+ signals are generated by Na+ influx through neurotransmitter transporters, with primary contribution of glutamate transporters, and through cationic channels; whereas recovery from Na+ transients is mediated mainly by the plasmalemmal Na+/K+ ATPase. Astrocytic Na+ signals regulate the activity of plasmalemmal transporters critical for homeostatic function of astrocytes, thus providing real-time coordination between neuronal activity and astrocytic support.
Collapse
Affiliation(s)
- Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Alexej Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, United Kingdom; Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China; International Collaborative Center on Big Science Plan for Purinergic Signaling, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| |
Collapse
|
8
|
Skrabak D, Bischof H, Pham T, Ruth P, Ehinger R, Matt L, Lukowski R. Slack K + channels limit kainic acid-induced seizure severity in mice by modulating neuronal excitability and firing. Commun Biol 2023; 6:1029. [PMID: 37821582 PMCID: PMC10567740 DOI: 10.1038/s42003-023-05387-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Mutations of the Na+-activated K+ channel Slack (KCNT1) are associated with terrible epilepsy syndromes that already begin in infancy. Here we report increased severity of acute kainic acid-induced seizures in adult and juvenile Slack knockout mice (Slack-/-) in vivo. Fittingly, we find exacerbation of cell death following kainic acid exposure in organotypic hippocampal slices as well as dissociated hippocampal cultures from Slack-/- in vitro. Furthermore, in cultured Slack-/- neurons, kainic acid-triggered Ca2+ influx and K+ efflux as well as depolarization-induced tetrodotoxin-sensitive inward currents are higher compared to the respective controls. This apparent changes in ion homeostasis could possibly explain altered action potential kinetics of Slack-/- neurons: steeper rise slope, decreased threshold, and duration of afterhyperpolarization, which ultimately lead to higher action potential frequencies during kainic acid application or injection of depolarizing currents. Based on our data, we propose Slack as crucial gatekeeper of neuronal excitability to acutely limit seizure severity.
Collapse
Affiliation(s)
- David Skrabak
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Helmut Bischof
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Thomas Pham
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Peter Ruth
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Rebekka Ehinger
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Lucas Matt
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
9
|
Zhang J, Liu S, Fan J, Yan R, Huang B, Zhou F, Yuan T, Gong J, Huang Z, Jiang D. Structural basis of human Slo2.2 channel gating and modulation. Cell Rep 2023; 42:112858. [PMID: 37494189 DOI: 10.1016/j.celrep.2023.112858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 06/16/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
The sodium-activated Slo2.2 channel is abundantly expressed in the brain, playing a critical role in regulating neuronal excitability. The Na+-binding site and the underlying mechanisms of Na+-dependent activation remain unclear. Here, we present cryoelectron microscopy (cryo-EM) structures of human Slo2.2 in closed, open, and inhibitor-bound form at resolutions of 2.6-3.2 Å, revealing gating mechanisms of Slo2.2 regulation by cations and a potent inhibitor. The cytoplasmic gating ring domain of the closed Slo2.2 harbors multiple K+ and Zn2+ sites, which stabilize the channel in the closed conformation. The open Slo2.2 structure reveals at least two Na+-sensitive sites where Na+ binding induces expansion and rotation of the gating ring that opens the inner gate. Furthermore, a potent inhibitor wedges into a pocket formed by pore helix and S6 helix and blocks the pore. Together, our results provide a comprehensive structural framework for the investigation of Slo2.2 channel gating, Na+ sensation, and inhibition.
Collapse
Affiliation(s)
- Jiangtao Zhang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiqi Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China; IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Junping Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Rui Yan
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Bo Huang
- Beijing StoneWise Technology Co Ltd., Haidian District, Beijing, China
| | - Feng Zhou
- Beijing StoneWise Technology Co Ltd., Haidian District, Beijing, China
| | - Tian Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China; IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Jianke Gong
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuo Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, China; IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| | - Daohua Jiang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Wu J, El-Hassar L, Datta D, Thomas M, Zhang Y, Jenkins DP, DeLuca NJ, Chatterjee M, Gribkoff VK, Arnsten AFT, Kaczmarek LK. Interaction Between HCN and Slack Channels Regulates mPFC Pyramidal Cell Excitability and Working Memory. RESEARCH SQUARE 2023:rs.3.rs-2870277. [PMID: 37205397 PMCID: PMC10187370 DOI: 10.21203/rs.3.rs-2870277/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The ability of monkeys and rats to carry out spatial working memory tasks has been shown to depend on the persistent firing of pyramidal cells in the prefrontal cortex (PFC), arising from recurrent excitatory connections on dendritic spines. These spines express hyperpolarization-activated cyclic nucleotide-gated (HCN) channels whose open state is increased by cAMP signaling, and which markedly alter PFC network connectivity and neuronal firing. In traditional neural circuits, activation of these non-selective cation channels leads to neuronal depolarization and increased firing rate. Paradoxically, cAMP activation of HCN channels in PFC pyramidal cells reduces working memory-related neuronal firing. This suggests that activation of HCN channels may hyperpolarize rather than depolarize these neurons. The current study tested the hypothesis that Na+ influx through HCN channels activates Slack Na+-activated K+ (KNa) channels to hyperpolarize the membrane. We have found that HCN and Slack KNa channels coimmunoprecipitate in cortical extracts and that, by immunoelectron microscopy, they colocalize at postsynaptic spines of PFC pyramidal neurons. A specific blocker of HCN channels, ZD7288, reduces KNa current in pyramidal cells that express both HCN and Slack channels, but has no effect on KNa currents in an HEK cell line expressing Slack without HCN channels, indicating that blockade of HCN channels in neurons reduces K+ +current indirectly by lowering Na+ influx. Activation of HCN channels by cAMP in a cell line expressing a Ca2+ reporter results in elevation of cytoplasmic Ca2+, but the effect of cAMP is reversed if the HCN channels are co-expressed with Slack channels. Finally, we used a novel pharmacological blocker of Slack channels to show that inhibition of Slack in rat PFC improves working memory performance, an effect previously demonstrated for blockers of HCN channels. Our results suggest that the regulation of working memory by HCN channels in PFC pyramidal neurons is mediated by an HCN-Slack channel complex that links activation HCN channels to suppression of neuronal excitability.
Collapse
Affiliation(s)
- Jing Wu
- Yale University School of Medicine
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wu J, Quraishi IH, Zhang Y, Bromwich M, Kaczmarek LK. Disease-causing Slack potassium channel mutations produce opposite effects on excitability of excitatory and inhibitory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528229. [PMID: 36824888 PMCID: PMC9948954 DOI: 10.1101/2023.02.14.528229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
KCNT1 encodes the sodium-activated potassium channel Slack (KCNT1, K Na 1.1), an important mediator of neuronal membrane excitability. Gain-of-function (GOF) mutations in humans lead cortical network hyperexcitability and seizures, as well as very severe intellectual disability. Using a mouse model of Slack GOF-associated epilepsy, we found that both excitatory and inhibitory neurons of the cerebral cortex have increased Na + -dependent K + (K Na ) currents and voltage-dependent sodium (Na V ) currents. The characteristics of the increased K Na currents were, however, different in the two cell types such that the intrinsic excitability of excitatory neurons was enhanced but that of inhibitory neurons was suppressed. We further showed that the expression of Na V channel subunits, particularly that of Na V 1.6, is upregulated and that the length of the axon initial segment (AIS) and of axonal Na V immunostaining is increased in both neuron types. We found that the proximity of the AIS to the soma is shorter in excitatory neurons than in inhibitory neurons of the mutant animals, potentially contributing to the different effects on membrane excitability. Our study on the coordinate regulation of K Na currents and the expression of Na V channels may provide a new avenue for understanding and treating epilepsies and other neurological disorders. In brief In a genetic mouse model of Na + -activated K + potassium channel gene Slack -related childhood epilepsy, Wu et al . show that a disease-causing gain-of-function (GOF) mutation R455H in Slack channel causes opposite effects on excitability of cortical excitatory and inhibitory neurons. In contrast to heterologous expression systems, they find that the increase in potassium current substantially alters the expression of sodium channel subunits, resulting in increased lengths of axonal initial segments. Highlights GOF mutations in Slack potassium channel cause elevated outward K + currents and inward voltage-dependent Na + (Na V ) currents in cortical neurons Slack GOF does not alter the expression of Slack channel but upregulates the expression of Na V channel Slack GOF enhances the excitability of excitatory neurons but suppresses the firing of inhibitory interneuronsSlack GOF alters the length of AIS in both excitatory and inhibitory neuronsProximity of AIS to the soma is different between excitatory neuron and inhibitory neuron.
Collapse
|
12
|
Potassium channelopathies associated with epilepsy-related syndromes and directions for therapeutic intervention. Biochem Pharmacol 2023; 208:115413. [PMID: 36646291 DOI: 10.1016/j.bcp.2023.115413] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
A number of mutations to members of several CNS potassium (K) channel families have been identified which result in rare forms of neonatal onset epilepsy, or syndromes of which one prominent characteristic is a form of epilepsy. Benign Familial Neonatal Convulsions or Seizures (BFNC or BFNS), also referred to as Self-Limited Familial Neonatal Epilepsy (SeLNE), results from mutations in 2 members of the KV7 family (KCNQ) of K channels; while generally self-resolving by about 15 weeks of age, these mutations significantly increase the probability of generalized seizure disorders in the adult, in some cases they result in more severe developmental syndromes. Epilepsy of Infancy with Migrating Focal Seizures (EIMSF), or Migrating Partial Seizures of Infancy (MMPSI), is a rare severe form of epilepsy linked primarily to gain of function mutations in a member of the sodium-dependent K channel family, KCNT1 or SLACK. Finally, KCNMA1 channelopathies, including Liang-Wang syndrome (LIWAS), are rare combinations of neurological symptoms including seizure, movement abnormalities, delayed development and intellectual disabilities, with Liang-Wang syndrome an extremely serious polymalformative syndrome with a number of neurological sequelae including epilepsy. These are caused by mutations in the pore-forming subunit of the large-conductance calcium-activated K channel (BK channel) KCNMA1. The identification of these rare but significant channelopathies has resulted in a resurgence of interest in their treatment by direct pharmacological or genetic modulation. We will briefly review the genetics, biophysics and pharmacology of these K channels, their linkage with the 3 syndromes described above, and efforts to more effectively target these syndromes.
Collapse
|
13
|
Burbano LE, Li M, Jancovski N, Jafar-Nejad P, Richards K, Sedo A, Soriano A, Rollo B, Jia L, Gazina EV, Piltz S, Adikusuma F, Thomas PQ, Kopsidas H, Rigo F, Reid CA, Maljevic S, Petrou S. Antisense oligonucleotide therapy for KCNT1 encephalopathy. JCI Insight 2022; 7:146090. [PMID: 36173683 PMCID: PMC9746904 DOI: 10.1172/jci.insight.146090] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 09/27/2022] [Indexed: 01/12/2023] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are characterized by pharmaco-resistant seizures with concomitant intellectual disability. Epilepsy of infancy with migrating focal seizures (EIMFS) is one of the most severe of these syndromes. De novo variants in ion channels, including gain-of-function variants in KCNT1, which encodes for sodium activated potassium channel protein KNa1.1, have been found to play a major role in the etiology of EIMFS. Here, we test a potential precision therapeutic approach in KCNT1-associated DEE using a gene-silencing antisense oligonucleotide (ASO) approach. We generated a mouse model carrying the KCNT1 p.P924L pathogenic variant; only the homozygous animals presented with the frequent, debilitating seizures and developmental compromise that are seen in patients. After a single intracerebroventricular bolus injection of a Kcnt1 gapmer ASO in symptomatic mice at postnatal day 40, seizure frequency was significantly reduced, behavioral abnormalities improved, and overall survival was extended compared with mice treated with a control ASO (nonhybridizing sequence). ASO administration at neonatal age was also well tolerated and effective in controlling seizures and extending the life span of treated animals. The data presented here provide proof of concept for ASO-based gene silencing as a promising therapeutic approach in KCNT1-associated epilepsies.
Collapse
Affiliation(s)
- Lisseth Estefania Burbano
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Melody Li
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Nikola Jancovski
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Kay Richards
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Alicia Sedo
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Ben Rollo
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Linghan Jia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Elena V. Gazina
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Sandra Piltz
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Fatwa Adikusuma
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Paul Q. Thomas
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Helen Kopsidas
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Christopher A. Reid
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Snezana Maljevic
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.,Praxis Precision Medicines, Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Malone TJ, Kaczmarek LK. The role of altered translation in intellectual disability and epilepsy. Prog Neurobiol 2022; 213:102267. [PMID: 35364140 PMCID: PMC10583652 DOI: 10.1016/j.pneurobio.2022.102267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022]
Abstract
A very high proportion of cases of intellectual disability are genetic in origin and are associated with the occurrence of epileptic seizures during childhood. These two disorders together effect more than 5% of the world's population. One feature linking the two diseases is that learning and memory require the synthesis of new synaptic components and ion channels, while maintenance of overall excitability also requires synthesis of similar proteins in response to altered neuronal stimulation. Many of these disorders result from mutations in proteins that regulate mRNA processing, translation initiation, translation elongation, mRNA stability or upstream translation modulators. One theme that emerges on reviewing this field is that mutations in proteins that regulate changes in translation following neuronal stimulation are more likely to result in epilepsy with intellectual disability than general translation regulators with no known role in activity-dependent changes. This is consistent with the notion that activity-dependent translation in neurons differs from that in other cells types in that the changes in local cellular composition, morphology and connectivity that occur generally in response to stimuli are directly coupled to local synaptic activity and persist for months or years after the original stimulus.
Collapse
Affiliation(s)
- Taylor J Malone
- Departments of Pharmacology, and of Cellular & Molecular Physiology, Yale University, 333 Cedar Street B-309, New Haven, CT 06520, USA
| | - Leonard K Kaczmarek
- Departments of Pharmacology, and of Cellular & Molecular Physiology, Yale University, 333 Cedar Street B-309, New Haven, CT 06520, USA.
| |
Collapse
|
15
|
Al Dera H. Cellular and molecular mechanisms underlying autism spectrum disorders and associated comorbidities: A pathophysiological review. Biomed Pharmacother 2022; 148:112688. [PMID: 35149383 DOI: 10.1016/j.biopha.2022.112688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 12/31/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders that develop in early life due to interaction between several genetic and environmental factors and lead to alterations in brain function and structure. During the last decades, several mechanisms have been placed to explain the pathogenesis of autism. Unfortunately, these are reported in several studies and reviews which make it difficult to follow by the reader. In addition, some recent molecular mechanisms related to ASD have been unrevealed. This paper revises and highlights the major common molecular mechanisms responsible for the clinical symptoms seen in people with ASD, including the roles of common genetic factors and disorders, neuroinflammation, GABAergic signaling, and alterations in Ca+2 signaling. Besides, it covers the major molecular mechanisms and signaling pathways involved in initiating the epileptic seizure, including the alterations in the GABAergic and glutamate signaling, vitamin and mineral deficiency, disorders of metabolism, and autoimmunity. Finally, this review also discusses sleep disorder patterns and the molecular mechanisms underlying them.
Collapse
Affiliation(s)
- Hussain Al Dera
- Department of Basic Medical Sciences, College of Medicine at King Saud, Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.
| |
Collapse
|
16
|
Boscia F, Elkjaer ML, Illes Z, Kukley M. Altered Expression of Ion Channels in White Matter Lesions of Progressive Multiple Sclerosis: What Do We Know About Their Function? Front Cell Neurosci 2021; 15:685703. [PMID: 34276310 PMCID: PMC8282214 DOI: 10.3389/fncel.2021.685703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022] Open
Abstract
Despite significant advances in our understanding of the pathophysiology of multiple sclerosis (MS), knowledge about contribution of individual ion channels to axonal impairment and remyelination failure in progressive MS remains incomplete. Ion channel families play a fundamental role in maintaining white matter (WM) integrity and in regulating WM activities in axons, interstitial neurons, glia, and vascular cells. Recently, transcriptomic studies have considerably increased insight into the gene expression changes that occur in diverse WM lesions and the gene expression fingerprint of specific WM cells associated with secondary progressive MS. Here, we review the ion channel genes encoding K+, Ca2+, Na+, and Cl- channels; ryanodine receptors; TRP channels; and others that are significantly and uniquely dysregulated in active, chronic active, inactive, remyelinating WM lesions, and normal-appearing WM of secondary progressive MS brain, based on recently published bulk and single-nuclei RNA-sequencing datasets. We discuss the current state of knowledge about the corresponding ion channels and their implication in the MS brain or in experimental models of MS. This comprehensive review suggests that the intense upregulation of voltage-gated Na+ channel genes in WM lesions with ongoing tissue damage may reflect the imbalance of Na+ homeostasis that is observed in progressive MS brain, while the upregulation of a large number of voltage-gated K+ channel genes may be linked to a protective response to limit neuronal excitability. In addition, the altered chloride homeostasis, revealed by the significant downregulation of voltage-gated Cl- channels in MS lesions, may contribute to an altered inhibitory neurotransmission and increased excitability.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples "Federico II", Naples, Italy
| | - Maria Louise Elkjaer
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Zsolt Illes
- Neurology Research Unit, Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, Leioa, Spain.,Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
17
|
Abstract
Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and the leading monogenic cause of autism. The condition stems from loss of fragile X mental retardation protein (FMRP), which regulates a wide range of ion channels via translational control, protein-protein interactions and second messenger pathways. Rapidly increasing evidence demonstrates that loss of FMRP leads to numerous ion channel dysfunctions (that is, channelopathies), which in turn contribute significantly to FXS pathophysiology. Consistent with this, pharmacological or genetic interventions that target dysregulated ion channels effectively restore neuronal excitability, synaptic function and behavioural phenotypes in FXS animal models. Recent studies further support a role for direct and rapid FMRP-channel interactions in regulating ion channel function. This Review lays out the current state of knowledge in the field regarding channelopathies and the pathogenesis of FXS, including promising therapeutic implications.
Collapse
|
18
|
Griffin AM, Kahlig KM, Hatch RJ, Hughes ZA, Chapman ML, Antonio B, Marron BE, Wittmann M, Martinez-Botella G. Discovery of the First Orally Available, Selective K Na1.1 Inhibitor: In Vitro and In Vivo Activity of an Oxadiazole Series. ACS Med Chem Lett 2021; 12:593-602. [PMID: 33859800 PMCID: PMC8040054 DOI: 10.1021/acsmedchemlett.0c00675] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
The gene KCNT1 encodes the sodium-activated potassium channel KNa1.1 (Slack, Slo2.2). Variants in the KCNT1 gene induce a gain-of-function (GoF) phenotype in ionic currents and cause a spectrum of intractable neurological disorders in infants and children, including epilepsy of infancy with migrating focal seizures (EIMFS) and autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). Effective treatment options for KCNT1-related disease are absent, and novel therapies are urgently required. We describe the development of a novel class of oxadiazole KNa1.1 inhibitors, leading to the discovery of compound 31 that reduced seizures and interictal spikes in a mouse model of KCNT1 GoF.
Collapse
Affiliation(s)
- Andrew M Griffin
- Praxis Precision Medicines, Research Innovation, Cambridge, Massachusetts 02142, United States
| | - Kristopher M Kahlig
- Praxis Precision Medicines, Research Innovation, Cambridge, Massachusetts 02142, United States
| | - Robert John Hatch
- Praxis Precision Medicines, Research Innovation, Cambridge, Massachusetts 02142, United States
- The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
| | - Zoë A Hughes
- Praxis Precision Medicines, Research Innovation, Cambridge, Massachusetts 02142, United States
| | | | | | - Brian E Marron
- Praxis Precision Medicines, Research Innovation, Cambridge, Massachusetts 02142, United States
| | - Marion Wittmann
- Praxis Precision Medicines, Research Innovation, Cambridge, Massachusetts 02142, United States
| | | |
Collapse
|
19
|
Abstract
Potassium channels play an important role regulating transmembrane electrical activity in essentially all cell types. We were especially interested in those that determine the intrinsic electrical properties of mammalian central neurons. Over 30 different potassium channels have been molecularly identified in brain neurons, but there often is not a clear distinction between molecular structure and the function of a particular channel in the cell. Using patch-clamp methods to search for single potassium channels in excised inside-out (ISO) somatic patches with symmetrical potassium, we found that nearly all patches contained non-voltage-inactivating channels with a single-channel conductance of 100-200 pS. This conductance range is consistent with the family of sodium-activated potassium channels (Slo2.1, Slo2.2, or collectively, KNa). The activity of these channels was positively correlated with a low cytoplasmic Na+ concentration (2-20 mM). Cell-attached recordings from intact neurons, however, showed little or no activity of this K+ channel. Attempts to increase channel activity by increasing intracellular sodium concentration ([Na+]i) with bursts of action potentials or direct perfusion of Na+ through a whole cell pipette had little effect on KNa channel activity. Furthermore, excised outside-out (OSO) patches across a range of intracellular [Na+] showed less channel activity than we had seen with excised ISO patches. Blocking the Na+/K+ pump with ouabain increased the activity of the KNa channels in excised OSO patches to levels comparable with ISO-excised patches. Our results suggest that despite their apparent high levels of expression, the activity of somatic KNa channels is tightly regulated by the activity of the Na+/K+ pump.NEW & NOTEWORTHY We studied KNa channels in mouse hippocampal CA1 neurons. Excised inside-out patches showed the channels to be prevalent and active in most patches in the presence of Na+. Cell-attached recordings from intact neurons, however, showed little channel activity. Increasing cytoplasmic sodium in intact cells showed a small effect on channel activity compared with that seen in inside-out excised patches. Blockade of the Na+/K+ pump with ouabain, however, restored the activity of the channels to that seen in inside-out patches.
Collapse
Affiliation(s)
- Richard Gray
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas
| | - Daniel Johnston
- Center for Learning and Memory, Department of Neuroscience, University of Texas at Austin, Austin, Texas
| |
Collapse
|
20
|
Wu J, Kaczmarek LK. Modulation of Neuronal Potassium Channels During Auditory Processing. Front Neurosci 2021; 15:596478. [PMID: 33613177 PMCID: PMC7887315 DOI: 10.3389/fnins.2021.596478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/11/2021] [Indexed: 11/16/2022] Open
Abstract
The extraction and localization of an auditory stimulus of interest from among multiple other sounds, as in the ‘cocktail-party’ situation, requires neurons in auditory brainstem nuclei to encode the timing, frequency, and intensity of sounds with high fidelity, and to compare inputs coming from the two cochleae. Accurate localization of sounds requires certain neurons to fire at high rates with high temporal accuracy, a process that depends heavily on their intrinsic electrical properties. Studies have shown that the membrane properties of auditory brainstem neurons, particularly their potassium currents, are not fixed but are modulated in response to changes in the auditory environment. Here, we review work focusing on how such modulation of potassium channels is critical to shaping the firing pattern and accuracy of these neurons. We describe how insights into the role of specific channels have come from human gene mutations that impair localization of sounds in space. We also review how short-term and long-term modulation of these channels maximizes the extraction of auditory information, and how errors in the regulation of these channels contribute to deficits in decoding complex auditory information.
Collapse
Affiliation(s)
- Jing Wu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
21
|
The Na +-activated K + channel Slack contributes to synaptic development and plasticity. Cell Mol Life Sci 2021; 78:7569-7587. [PMID: 34664085 PMCID: PMC8629810 DOI: 10.1007/s00018-021-03953-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 11/29/2022]
Abstract
Human mutations of the Na+-activated K+ channel Slack (KCNT1) are associated with epilepsy and intellectual disability. Accordingly, Slack knockout mice (Slack-/-) exhibit cognitive flexibility deficits in distinct behavioral tasks. So far, however, the underlying causes as well as the role of Slack in hippocampus-dependent memory functions remain enigmatic. We now report that infant (P6-P14) Slack-/- lack both hippocampal LTD and LTP, likely due to impaired NMDA receptor (NMDAR) signaling. Postsynaptic GluN2B levels are reduced in infant Slack-/-, evidenced by lower amplitudes of NMDAR-meditated excitatory postsynaptic potentials. Low GluN2B affected NMDAR-mediated Ca2+-influx, rendering cultured hippocampal Slack-/-neurons highly insensitive to the GluN2B-specific inhibitor Ro 25-6981. Furthermore, dephosphorylation of the AMPA receptor (AMPAR) subunit GluA1 at S845, which is involved in AMPAR endocytosis during homeostatic and neuromodulator-regulated plasticity, is reduced after chemical LTD (cLTD) in infant Slack-/-. We additionally detect a lack of mGluR-induced LTD in infant Slack-/-, possibly caused by upregulation of the recycling endosome-associated small GTPase Rab4 which might accelerate AMPAR recycling from early endosomes. Interestingly, LTP and mGluR LTD, but not LTD and S845 dephosphorylation after cLTD are restored in adult Slack-/-. This together with normalized expression levels of GluN2B and Rab4 hints to developmental "restoration" of LTP expression despite Slack ablation, whereas in infant and adult brain, NMDAR-dependent LTD induction depends on this channel. Based on the present findings, NMDAR and vesicular transport might represent novel targets for the therapy of intellectual disability associated with Slack mutations. Consequently, careful modulation of hippocampal Slack activity should also improve learning abilities.
Collapse
|
22
|
Spitznagel BD, Mishra NM, Qunies AM, Prael FJ, Du Y, Kozek KA, Lazarenko RM, Denton JS, Emmitte KA, Weaver CD. VU0606170, a Selective Slack Channels Inhibitor, Decreases Calcium Oscillations in Cultured Cortical Neurons. ACS Chem Neurosci 2020; 11:3658-3671. [PMID: 33143429 DOI: 10.1021/acschemneuro.0c00583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Malignant migrating partial seizures of infancy is a rare, devastating form of epilepsy most commonly associated with gain-of-function mutations in the potassium channel, Slack. Not only is this condition almost completely pharmacoresistant, there are not even selective drug-like tools available to evaluate whether inhibition of these overactivated, mutant Slack channels may represent a viable path forward toward new antiepileptic therapies. Therefore, we used a high-throughput thallium flux assay to screen a drug-like, 100 000-compound library in search of inhibitors of both wild-type and a disease-associated mutant Slack channel. Using this approach, we discovered VU0606170, a selective Slack channel inhibitor with low micromolar potency. Critically, VU0606170 also proved effective at significantly decreasing the firing rate in overexcited, spontaneously firing cortical neuron cultures. Taken together, our data provide compelling evidence that selective inhibition of Slack channel activity can be achieved with small molecules and that inhibition of Slack channel activity in neurons produces efficacy consistent with an antiepileptic effect. Thus, the identification of VU0606170 provides a much-needed tool for advancing our understanding of the role of the Slack channel in normal physiology and disease as well as its potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Brittany D. Spitznagel
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Nigam M. Mishra
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Alshaima’a M. Qunies
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
- Graduate School of Biomedical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Francis J. Prael
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Krystian A. Kozek
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Vanderbilt Medical Scientist Training Program, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Roman M. Lazarenko
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Jerod S. Denton
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Kyle A. Emmitte
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - C. David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
23
|
Shore AN, Colombo S, Tobin WF, Petri S, Cullen ER, Dominguez S, Bostick CD, Beaumont MA, Williams D, Khodagholy D, Yang M, Lutz CM, Peng Y, Gelinas JN, Goldstein DB, Boland MJ, Frankel WN, Weston MC. Reduced GABAergic Neuron Excitability, Altered Synaptic Connectivity, and Seizures in a KCNT1 Gain-of-Function Mouse Model of Childhood Epilepsy. Cell Rep 2020; 33:108303. [PMID: 33113364 PMCID: PMC7712469 DOI: 10.1016/j.celrep.2020.108303] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 08/06/2020] [Accepted: 10/01/2020] [Indexed: 01/07/2023] Open
Abstract
Gain-of-function (GOF) variants in K+ channels cause severe childhood epilepsies, but there are no mechanisms to explain how increased K+ currents lead to network hyperexcitability. Here, we introduce a human Na+-activated K+ (KNa) channel variant (KCNT1-Y796H) into mice and, using a multiplatform approach, find motor cortex hyperexcitability and early-onset seizures, phenotypes strikingly similar to those of human patients. Although the variant increases KNa currents in cortical excitatory and inhibitory neurons, there is an increase in the KNa current across subthreshold voltages only in inhibitory neurons, particularly in those with non-fast-spiking properties, resulting in inhibitory-neuron-specific impairments in excitability and action potential (AP) generation. We further observe evidence of synaptic rewiring, including increases in homotypic synaptic connectivity, accompanied by network hyperexcitability and hypersynchronicity. These findings support inhibitory-neuron-specific mechanisms in mediating the epileptogenic effects of KCNT1 channel GOF, offering cell-type-specific currents and effects as promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Amy N Shore
- Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Sophie Colombo
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - William F Tobin
- Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Sabrina Petri
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Erin R Cullen
- Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Soledad Dominguez
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | | | - Michael A Beaumont
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA; Axion BioSystems, Atlanta, GA 30309, USA
| | - Damian Williams
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY 10032, USA
| | - Mu Yang
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA
| | | | - Yueqing Peng
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Jennifer N Gelinas
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA; Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Michael J Boland
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA; Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | - Wayne N Frankel
- Institute for Genomic Medicine, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Matthew C Weston
- Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
24
|
Kessi M, Chen B, Peng J, Tang Y, Olatoutou E, He F, Yang L, Yin F. Intellectual Disability and Potassium Channelopathies: A Systematic Review. Front Genet 2020; 11:614. [PMID: 32655623 PMCID: PMC7324798 DOI: 10.3389/fgene.2020.00614] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/20/2020] [Indexed: 01/15/2023] Open
Abstract
Intellectual disability (ID) manifests prior to adulthood as severe limitations to intellectual function and adaptive behavior. The role of potassium channelopathies in ID is poorly understood. Therefore, we aimed to evaluate the relationship between ID and potassium channelopathies. We hypothesized that potassium channelopathies are strongly associated with ID initiation, and that both gain- and loss-of-function mutations lead to ID. This systematic review explores the burden of potassium channelopathies, possible mechanisms, advancements using animal models, therapies, and existing gaps. The literature search encompassed both PubMed and Embase up to October 2019. A total of 75 articles describing 338 cases were included in this review. Nineteen channelopathies were identified, affecting the following genes: KCNMA1, KCNN3, KCNT1, KCNT2, KCNJ10, KCNJ6, KCNJ11, KCNA2, KCNA4, KCND3, KCNH1, KCNQ2, KCNAB1, KCNQ3, KCNQ5, KCNC1, KCNB1, KCNC3, and KCTD3. Twelve of these genes presented both gain- and loss-of-function properties, three displayed gain-of-function only, three exhibited loss-of-function only, and one had unknown function. How gain- and loss-of-function mutations can both lead to ID remains largely unknown. We identified only a few animal studies that focused on the mechanisms of ID in relation to potassium channelopathies and some of the few available therapeutic options (channel openers or blockers) appear to offer limited efficacy. In conclusion, potassium channelopathies contribute to the initiation of ID in several instances and this review provides a comprehensive overview of which molecular players are involved in some of the most prominent disease phenotypes.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China.,Kilimanjaro Christian Medical University College, Moshi, Tanzania.,Mawenzi Regional Referral Hospital, Moshi, Tanzania
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Yulin Tang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Eleonore Olatoutou
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| |
Collapse
|
25
|
Muller GK. The neonatal SCN2A mutant channel mimics adult channel properties. J Gen Physiol 2020; 152:151655. [PMID: 32291436 PMCID: PMC7201879 DOI: 10.1085/jgp.201912468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Grace K Muller
- Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
26
|
Perez-Flores MC, Lee JH, Park S, Zhang XD, Sihn CR, Ledford HA, Wang W, Kim HJ, Timofeyev V, Yarov-Yarovoy V, Chiamvimonvat N, Rabbitt RD, Yamoah EN. Cooperativity of K v7.4 channels confers ultrafast electromechanical sensitivity and emergent properties in cochlear outer hair cells. SCIENCE ADVANCES 2020; 6:eaba1104. [PMID: 32285007 PMCID: PMC7141818 DOI: 10.1126/sciadv.aba1104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/14/2020] [Indexed: 05/22/2023]
Abstract
The mammalian cochlea relies on active electromotility of outer hair cells (OHCs) to resolve sound frequencies. OHCs use ionic channels and somatic electromotility to achieve the process. It is unclear, though, how the kinetics of voltage-gated ionic channels operate to overcome extrinsic viscous drag on OHCs at high frequency. Here, we report ultrafast electromechanical gating of clustered Kv7.4 in OHCs. Increases in kinetics and sensitivity resulting from cooperativity among clustered-Kv7.4 were revealed, using optogenetics strategies. Upon clustering, the half-activation voltage shifted negative, and the speed of activation increased relative to solitary channels. Clustering also rendered Kv7.4 channels mechanically sensitive, confirmed in consolidated Kv7.4 channels at the base of OHCs. Kv7.4 clusters provide OHCs with ultrafast electromechanical channel gating, varying in magnitude and speed along the cochlea axis. Ultrafast Kv7.4 gating provides OHCs with a feedback mechanism that enables the cochlea to overcome viscous drag and resolve sounds at auditory frequencies.
Collapse
Affiliation(s)
- Maria C. Perez-Flores
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| | - Jeong H. Lee
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| | - Seojin Park
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| | - Xiao-Dong Zhang
- Department of Internal Medicine, Division of Cardiology, University of California, Davis, Davis, CA 95616, USA
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| | - Choong-Ryoul Sihn
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| | - Hannah A. Ledford
- Department of Internal Medicine, Division of Cardiology, University of California, Davis, Davis, CA 95616, USA
| | - Wenying Wang
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| | - Hyo Jeong Kim
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
| | - Valeriy Timofeyev
- Department of Internal Medicine, Division of Cardiology, University of California, Davis, Davis, CA 95616, USA
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiology, University of California, Davis, Davis, CA 95616, USA
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655, USA
| | - Richard D. Rabbitt
- Departments of Biomedical Engineering, Otolaryngology, and Neuroscience Program, University of Utah, Salt Lake City, UT 84112, USA
- Corresponding author. (E.N.Y.); (R.D.R.)
| | - Ebenezer N. Yamoah
- Department of Physiology, School of Medicine, University of Nevada, Reno, Reno, NV 89557, USA
- Corresponding author. (E.N.Y.); (R.D.R.)
| |
Collapse
|
27
|
Sterlini B, Fruscione F, Baldassari S, Benfenati F, Zara F, Corradi A. Progress of Induced Pluripotent Stem Cell Technologies to Understand Genetic Epilepsy. Int J Mol Sci 2020; 21:ijms21020482. [PMID: 31940887 PMCID: PMC7013950 DOI: 10.3390/ijms21020482] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/20/2022] Open
Abstract
The study of the pathomechanisms by which gene mutations lead to neurological diseases has benefit from several cellular and animal models. Recently, induced Pluripotent Stem Cell (iPSC) technologies have made possible the access to human neurons to study nervous system disease-related mechanisms, and are at the forefront of the research into neurological diseases. In this review, we will focalize upon genetic epilepsy, and summarize the most recent studies in which iPSC-based technologies were used to gain insight on the molecular bases of epilepsies. Moreover, we discuss the latest advancements in epilepsy cell modeling. At the two dimensional (2D) level, single-cell models of iPSC-derived neurons lead to a mature neuronal phenotype, and now allow a reliable investigation of synaptic transmission and plasticity. In addition, functional characterization of cerebral organoids enlightens neuronal network dynamics in a three-dimensional (3D) structure. Finally, we discuss the use of iPSCs as the cutting-edge technology for cell therapy in epilepsy.
Collapse
Affiliation(s)
- Bruno Sterlini
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy;
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy;
| | - Floriana Fruscione
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Largo P. Daneo 3, 16132 Genoa, Italy;
| | - Simona Baldassari
- Unità Operativa Complessa Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini, Genova Italy, Via G. Gaslini 5, 16147 Genoa, Italy;
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132 Genoa, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Largo P. Daneo 3, 16132 Genoa, Italy;
- Unità Operativa Complessa Genetica Medica, Istituto di Ricovero e Cura a Carattere Scientifico Giannina Gaslini, Genova Italy, Via G. Gaslini 5, 16147 Genoa, Italy;
- Correspondence: (F.Z.); (A.C.)
| | - Anna Corradi
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132 Genoa, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico, Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
- Correspondence: (F.Z.); (A.C.)
| |
Collapse
|
28
|
Ali SR, Malone TJ, Zhang Y, Prechova M, Kaczmarek LK. Phactr1 regulates Slack (KCNT1) channels via protein phosphatase 1 (PP1). FASEB J 2020; 34:1591-1601. [PMID: 31914597 PMCID: PMC6956700 DOI: 10.1096/fj.201902366r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022]
Abstract
The Slack (KCNT1) gene encodes sodium-activated potassium channels that are abundantly expressed in the central nervous system. Human mutations alter the function of Slack channels, resulting in epilepsy and intellectual disability. Most of the disease-causing mutations are located in the extended cytoplasmic C-terminus of Slack channels and result in increased Slack current. Previous experiments have shown that the C-terminus of Slack channels binds a number of cytoplasmic signaling proteins. One of these is Phactr1, an actin-binding protein that recruits protein phosphatase 1 (PP1) to certain phosphoprotein substrates. Using co-immunoprecipitation, we found that Phactr1 is required to link the channels to actin. Using patch clamp recordings, we found that co-expression of Phactr1 with wild-type Slack channels reduces the current amplitude but has no effect on Slack channels in which a conserved PKC phosphorylation site (S407) that regulates the current amplitude has been mutated. Furthermore, a Phactr1 mutant that disrupts the binding of PP1 but not that of actin fails to alter Slack currents. Our data suggest that Phactr1 regulates the Slack by linking PP1 to the channel. Targeting Slack-Phactr1 interactions may therefore be helpful in developing the novel therapies for brain disorders associated with the malfunction of Slack channels.
Collapse
Affiliation(s)
- Syed Rydwan Ali
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | | | - Yalan Zhang
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Magdalena Prechova
- Signalling and Transcription Group, The Francis Crick Institute, London, UK
- Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, CZ
| | - Leonard Konrad Kaczmarek
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
29
|
Loss of Na V1.2-Dependent Backpropagating Action Potentials in Dendrites Contributes to Autism and Intellectual Disability. Neuron 2019; 103:551-553. [PMID: 31437449 DOI: 10.1016/j.neuron.2019.07.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mutations in voltage-dependent sodium channels cause severe autism/intellectual disability. In this issue of Neuron, Spratt et al. (2019) show that lowering expression of Nav1.2 channels attenuates backpropagation of action potentials into dendrites of cortical neurons, preventing spike-timing-dependent synaptic plasticity.
Collapse
|
30
|
Kuchenbuch M, Barcia G, Chemaly N, Carme E, Roubertie A, Gibaud M, Van Bogaert P, de Saint Martin A, Hirsch E, Dubois F, Sarret C, Nguyen The Tich S, Laroche C, des Portes V, Billette de Villemeur T, Barthez MA, Auvin S, Bahi-Buisson N, Desguerre I, Kaminska A, Benquet P, Nabbout R. KCNT1 epilepsy with migrating focal seizures shows a temporal sequence with poor outcome, high mortality and SUDEP. Brain 2019; 142:2996-3008. [DOI: 10.1093/brain/awz240] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 11/14/2022] Open
Abstract
Data on KCNT1 epilepsy of infancy with migrating focal seizures are heterogeneous and incomplete. Kuchenbuch et al. refine the syndrome phenotype, showing a three-step temporal sequence, poor prognosis with acquired microcephaly, high prevalence of extra-neurological manifestations and early mortality, particularly due to SUDEP. Refining the electro-clinical spectrum should facilitate early diagnosis.
Collapse
Affiliation(s)
- Mathieu Kuchenbuch
- University Rennes, CHU Rennes (Department of Clinical neurophysiology), Inserm, LTSI (Laboratoire de Traitement du Signal et de l’Image), UMR-1099, F-35000 Rennes, France
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
- Institut Imagine, INSERM UMR 1163, Translational research for neurological disorder, France
| | - Giulia Barcia
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
- Institut Imagine, INSERM UMR 1163, Translational research for neurological disorder, France
- Department of Genetics, Necker Enfants Malades Hospital, Imagine Institute, France
| | - Nicole Chemaly
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
- Institut Imagine, INSERM UMR 1163, Translational research for neurological disorder, France
| | - Emilie Carme
- Department of Pediatric Neurology, University of Montpellier, France
| | - Agathe Roubertie
- Department of Pediatric Neurology, University of Montpellier, France
| | - Marc Gibaud
- Department of Pediatric Neurology, Angers University Hospital, France
| | | | | | - Edouard Hirsch
- Department of Pediatric Neurology, Strasbourg University Hospital, France
| | - Fanny Dubois
- Department of Pediatric Neurology, CHU Grenoble Alpes, F-38000 Grenoble, France
| | | | | | - Cecile Laroche
- Department of Pediatric Neurology, Limoges University Hospital, France
| | - Vincent des Portes
- Department of Pediatric Neurology, CNRS UMR 5304, F- 69675 Bron, France
- Lyon-1 University, F-69008 Lyon, France
| | | | | | - Stéphane Auvin
- Université Paris Diderot, Sorbonne Paris Cité, INSERM UMR1141, Paris, France
- AP-HP, Hôpital Robert Debré, Service de Neurologie Pédiatrique, Paris, France
| | - Nadia Bahi-Buisson
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
| | - Isabelle Desguerre
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
| | - Anna Kaminska
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
- AP-HP, Necker-Enfants Malades Hospital, Department of Clinical Neurophysiology, Paris, France
| | - Pascal Benquet
- University Rennes, CHU Rennes (Department of Clinical neurophysiology), Inserm, LTSI (Laboratoire de Traitement du Signal et de l’Image), UMR-1099, F-35000 Rennes, France
| | - Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker Enfants Malades Hospital, Paris Descartes University, Paris, France
- Institut Imagine, INSERM UMR 1163, Translational research for neurological disorder, France
| |
Collapse
|
31
|
An Epilepsy-Associated KCNT1 Mutation Enhances Excitability of Human iPSC-Derived Neurons by Increasing Slack K Na Currents. J Neurosci 2019; 39:7438-7449. [PMID: 31350261 DOI: 10.1523/jneurosci.1628-18.2019] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/08/2019] [Accepted: 07/17/2019] [Indexed: 12/26/2022] Open
Abstract
Mutations in the KCNT1 (Slack, KNa1.1) sodium-activated potassium channel produce severe epileptic encephalopathies. Expression in heterologous systems has shown that the disease-causing mutations give rise to channels that have increased current amplitude. It is not known, however, whether such gain of function occurs in human neurons, nor whether such increased KNa current is expected to suppress or increase the excitability of cortical neurons. Using genetically engineered human induced pluripotent stem cell (iPSC)-derived neurons, we have now found that sodium-dependent potassium currents are increased several-fold in neurons bearing a homozygous P924L mutation. In current-clamp recordings, the increased KNa current in neurons with the P924L mutation acts to shorten the duration of action potentials and to increase the amplitude of the afterhyperpolarization that follows each action potential. Strikingly, the number of action potentials that were evoked by depolarizing currents as well as maximal firing rates were increased in neurons expressing the mutant channel. In networks of spontaneously active neurons, the mean firing rate, the occurrence of rapid bursts of action potentials, and the intensity of firing during the burst were all increased in neurons with the P924L Slack mutation. The feasibility of an increased KNa current to increase firing rates independent of any compensatory changes was validated by numerical simulations. Our findings indicate that gain-of-function in Slack KNa channels causes hyperexcitability in both isolated neurons and in neural networks and occurs by a cell-autonomous mechanism that does not require network interactions.SIGNIFICANCE STATEMENT KCNT1 mutations lead to severe epileptic encephalopathies for which there are no effective treatments. This study is the first demonstration that a KCNT1 mutation increases the Slack current in neurons. It also provides the first explanation for how this increased potassium current induces hyperexcitability, which could be the underlining factor causing seizures.
Collapse
|
32
|
Jia Y, Lin Y, Li J, Li M, Zhang Y, Hou Y, Liu A, Zhang L, Li L, Xiang P, Ye J, Huang Z, Wang Y. Quinidine Therapy for Lennox-Gastaut Syndrome With KCNT1 Mutation. A Case Report and Literature Review. Front Neurol 2019; 10:64. [PMID: 30804880 PMCID: PMC6370615 DOI: 10.3389/fneur.2019.00064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/17/2019] [Indexed: 11/13/2022] Open
Abstract
Mutations in the Potassium channel subfamily T member 1 (KCNT1) gene have been reported in a range of epileptic encephalopathies. Here we report the case of a 12-year-old male suffering from multiple types of epileptic seizures and cognitive decline from the age of 10. The patient had four types of epileptic seizures, including tonic seizures, atypical absence seizures, myoclonic seizures, and generalized tonic-clonic seizures. The electroencephalogram showed generalized slow spike-and-slow-waves, mutiple-spike-and-slow-waves, as well as short-term fast rhythms bursts. Thus, he was diagnosed with Lennox-Gastaut syndrome. The patient had failed to control seizures after using five first-line antiepileptic drugs. Whole exome sequencing revealed a missense KCNT1 mutation (c.625 C>T). Previous studies revealed that quinidine could block the KCNT1 channel. Therefore, we assumed that quinidine might be effective for him. Add-on treatment with quinidine was started when the patient was 12 years old. After an 8-month treatment, the frequency of seizures and epileptiform discharges were significantly reduced. In conclusion, quinidine therapy may offer a new choice for the treatment of Lennox-Gastaut syndrome with KCNT1 mutations.
Collapse
Affiliation(s)
- Yu Jia
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Yicong Lin
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Jing Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Mingyu Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Yifan Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Yue Hou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Aihua Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Liping Zhang
- Department of Pediatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liping Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Peng Xiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Jing Ye
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Zhaoyang Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Neuromodulation, Beijing, China
| |
Collapse
|
33
|
Dilena R, DiFrancesco JC, Soldovieri MV, Giacobbe A, Ambrosino P, Mosca I, Galli MA, Guez S, Fumagalli M, Miceli F, Cattaneo D, Darra F, Gennaro E, Zara F, Striano P, Castellotti B, Gellera C, Varesio C, Veggiotti P, Taglialatela M. Early Treatment with Quinidine in 2 Patients with Epilepsy of Infancy with Migrating Focal Seizures (EIMFS) Due to Gain-of-Function KCNT1 Mutations: Functional Studies, Clinical Responses, and Critical Issues for Personalized Therapy. Neurotherapeutics 2018; 15:1112-1126. [PMID: 30112700 PMCID: PMC6277296 DOI: 10.1007/s13311-018-0657-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Epilepsy of infancy with migrating focal seizures (EIMFS) is a rare early-onset developmental epileptic encephalopathy resistant to anti-epileptic drugs. The most common cause for EIMFS is a gain-of-function mutation in the KCNT1 potassium channel gene, and treatment with the KCNT1 blocker quinidine has been suggested as a rational approach for seizure control in EIMFS patients. However, variable results on the clinical efficacy of quinidine have been reported. In the present study, we provide a detailed description of the clinical, genetic, in vitro, and in vivo electrophysiological profile and pharmacological responses to quinidine of 2 EIMFS unrelated patients with a heterozygous de novo KCNT1 mutation: c.2849G>A (p.R950Q) in patient 1 and c.2677G>A (p.E893K) in patient 2. When expressed heterologously in CHO cells, KCNT1 channels carrying each variant showed gain-of-function effects, and were more effectively blocked by quinidine when compared to wild-type KCNT1 channels. On the basis of these in vitro results, add-on quinidine treatment was started at 3 and 16 months of age in patients 1 and 2, respectively. The results obtained reveal that quinidine significantly reduced seizure burden (by about 90%) and improved quality of life in both patients, but failed to normalize developmental milestones, which persisted as severely delayed. Based on the present experience, early quinidine intervention associated with heart monitoring and control of blood levels is among the critical factors for therapy effectiveness in EIMFS patients with KCNT1 gain-of-function mutations. Multicenter studies are needed to establish a consensus protocol for patient recruitment, quinidine treatment modalities, and outcome evaluation, to optimize clinical efficacy and reduce risks as well as variability associated to quinidine use in such severe developmental encephalopathy.
Collapse
Affiliation(s)
- Robertino Dilena
- Pediatric Epileptology and Neurophysiology (RD), Infantile Neuropsichiatry (AG), Cardiology (MAG), High Intensity Pediatric Care (SG), Neonatology (MF), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Jacopo C DiFrancesco
- Clinical Neurophysiology and Epilepsy Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
- Department of Neurology, San Gerardo Hospital, School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, 20900, Monza, Italy
| | | | - Antonella Giacobbe
- Pediatric Epileptology and Neurophysiology (RD), Infantile Neuropsichiatry (AG), Cardiology (MAG), High Intensity Pediatric Care (SG), Neonatology (MF), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Paolo Ambrosino
- Department of Medicine and Health Science, University of Molise, 86100, Campobasso, Italy
| | - Ilaria Mosca
- Department of Medicine and Health Science, University of Molise, 86100, Campobasso, Italy
| | - Maria Albina Galli
- Pediatric Epileptology and Neurophysiology (RD), Infantile Neuropsichiatry (AG), Cardiology (MAG), High Intensity Pediatric Care (SG), Neonatology (MF), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Sophie Guez
- Pediatric Epileptology and Neurophysiology (RD), Infantile Neuropsichiatry (AG), Cardiology (MAG), High Intensity Pediatric Care (SG), Neonatology (MF), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Monica Fumagalli
- Pediatric Epileptology and Neurophysiology (RD), Infantile Neuropsichiatry (AG), Cardiology (MAG), High Intensity Pediatric Care (SG), Neonatology (MF), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Francesco Miceli
- Division of Pharmacology, Department of Neuroscience, University of Naples "Federico II", 80131, Naples, Italy
| | - Dario Cattaneo
- Unit of Clinical Pharmacology, ASST Fatebenefratelli Sacco, 20157, Milan, Italy
| | - Francesca Darra
- Department of Surgical, Odontostomatological, and Maternal-Infantile Sciences, University of Verona, 37134, Verona, Italy
| | - Elena Gennaro
- Laboratory of Genetics, E.O. Ospedali Galliera, 16128, Genoa, Italy
| | - Federico Zara
- Laboratory of Genetics, E.O. Ospedali Galliera, 16128, Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, "G. Gaslini" Institute, 16147, Genoa, Italy
| | - Barbara Castellotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Cinzia Gellera
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Costanza Varesio
- Department of Child Neurology and Psychiatry, "C. Mondino" National Neurological Institute, 27100, Pavia, Italy
| | - Pierangelo Veggiotti
- Department of Biomedical and Clinical Sciences, Children's Hospital Vittore Buzzi, University of Milan, and Pediatric Neurology, 20154, Milan, Italy
| | - Maurizio Taglialatela
- Department of Medicine and Health Science, University of Molise, 86100, Campobasso, Italy.
- Division of Pharmacology, Department of Neuroscience, University of Naples "Federico II", 80131, Naples, Italy.
- Department of Neuroscience, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
34
|
Bausch AE, Ehinger R, Straubinger J, Zerfass P, Nann Y, Lukowski R. Loss of Sodium-Activated Potassium Channel Slack and FMRP Differentially Affect Social Behavior in Mice. Neuroscience 2018; 384:361-374. [DOI: 10.1016/j.neuroscience.2018.05.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/22/2018] [Accepted: 05/24/2018] [Indexed: 12/31/2022]
|
35
|
Profile of neuropsychological impairment in Sleep-related Hypermotor Epilepsy. Sleep Med 2018; 48:8-15. [DOI: 10.1016/j.sleep.2018.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/03/2018] [Accepted: 03/14/2018] [Indexed: 11/21/2022]
|
36
|
Abstract
Exome and targeted sequencing have revolutionized clinical diagnosis. This has been particularly striking in epilepsy and neurodevelopmental disorders, for which new genes or new variants of preexisting candidate genes are being continuously identified at increasing rates every year. A surprising finding of these efforts is the recognition that gain of function potassium channel variants are actually associated with certain types of epilepsy, such as malignant migrating partial seizures of infancy or early-onset epileptic encephalopathy. This development has been difficult to understand as traditionally potassium channel loss-of-function, not gain-of-function, has been associated with hyperexcitability disorders. In this article, we describe the current state of the field regarding the gain-of-function potassium channel variants associated with epilepsy (KCNA2, KCNB1, KCND2, KCNH1, KCNH5, KCNJ10, KCNMA1, KCNQ2, KCNQ3, and KCNT1) and speculate on the possible cellular mechanisms behind the development of seizures and epilepsy in these patients. Understanding how potassium channel gain-of-function leads to epilepsy will provide new insights into the inner working of neural circuits and aid in developing new therapies.
Collapse
Affiliation(s)
- Zachary Niday
- Dept. of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
37
|
Gururaj S, Palmer EE, Sheehan GD, Kandula T, Macintosh R, Ying K, Morris P, Tao J, Dias KR, Zhu Y, Dinger ME, Cowley MJ, Kirk EP, Roscioli T, Sachdev R, Duffey ME, Bye A, Bhattacharjee A. A De Novo Mutation in the Sodium-Activated Potassium Channel KCNT2 Alters Ion Selectivity and Causes Epileptic Encephalopathy. Cell Rep 2018; 21:926-933. [PMID: 29069600 DOI: 10.1016/j.celrep.2017.09.088] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 06/12/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
Abstract
Early infantile epileptic encephalopathies (EOEE) are a debilitating spectrum of disorders associated with cognitive impairments. We present a clinical report of a KCNT2 mutation in an EOEE patient. The de novo heterozygous variant Phe240Leu SLICK was identified by exome sequencing and confirmed by Sanger sequencing. Phe240Leu rSlick and hSLICK channels were electrophysiologically, heterologously characterized to reveal three significant alterations to channel function. First, [Cl-]i sensitivity was reversed in Phe240Leu channels. Second, predominantly K+-selective WT channels were made to favor Na+ over K+ by Phe240Leu. Third, and consequent to altered ion selectivity, Phe240Leu channels had larger inward conductance. Further, rSlick channels induced membrane hyperexcitability when expressed in primary neurons, resembling the cellular seizure phenotype. Taken together, our results confirm that Phe240Leu is a "change-of-function" KCNT2 mutation, demonstrating unusual altered selectivity in KNa channels. These findings establish pathogenicity of the Phe240Leu KCNT2 mutation in the reported EOEE patient.
Collapse
Affiliation(s)
- Sushmitha Gururaj
- Pharmacology and Toxicology, University at Buffalo - The State University of New York, Buffalo, NY 14214, USA
| | - Elizabeth Emma Palmer
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; University of New South Wales, Sydney, NSW 2031, Australia; Genetics of Learning Disability Service, Waratah, NSW 2298, Australia
| | - Garrett D Sheehan
- Pharmacology and Toxicology, University at Buffalo - The State University of New York, Buffalo, NY 14214, USA
| | - Tejaswi Kandula
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; University of New South Wales, Sydney, NSW 2031, Australia
| | | | - Kevin Ying
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2298, Australia
| | - Paula Morris
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2298, Australia
| | - Jiang Tao
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2298, Australia
| | - Kerith-Rae Dias
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2298, Australia
| | - Ying Zhu
- Genetics of Learning Disability Service, Waratah, NSW 2298, Australia; SEALS Pathology, Randwick, NSW 2031, Australia
| | - Marcel E Dinger
- University of New South Wales, Sydney, NSW 2031, Australia; Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2298, Australia
| | - Mark J Cowley
- University of New South Wales, Sydney, NSW 2031, Australia; Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2298, Australia
| | - Edwin P Kirk
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; University of New South Wales, Sydney, NSW 2031, Australia; SEALS Pathology, Randwick, NSW 2031, Australia
| | - Tony Roscioli
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; University of New South Wales, Sydney, NSW 2031, Australia; SEALS Pathology, Randwick, NSW 2031, Australia
| | - Rani Sachdev
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; University of New South Wales, Sydney, NSW 2031, Australia
| | - Michael E Duffey
- Physiology and Biophysics, University at Buffalo - The State University of New York, Buffalo, NY 14214, USA
| | - Ann Bye
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; University of New South Wales, Sydney, NSW 2031, Australia
| | - Arin Bhattacharjee
- Pharmacology and Toxicology, University at Buffalo - The State University of New York, Buffalo, NY 14214, USA; Program for Neuroscience, University at Buffalo - The State University of New York, Buffalo, NY 14214, USA.
| |
Collapse
|
38
|
Smith CO, Wang YT, Nadtochiy SM, Miller JH, Jonas EA, Dirksen RT, Nehrke K, Brookes PS. Cardiac metabolic effects of K Na1.2 channel deletion and evidence for its mitochondrial localization. FASEB J 2018; 32:fj201800139R. [PMID: 29863912 PMCID: PMC6181635 DOI: 10.1096/fj.201800139r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/07/2018] [Indexed: 12/18/2022]
Abstract
Controversy surrounds the molecular identity of mitochondrial K+ channels that are important for protection against cardiac ischemia-reperfusion injury. Although KNa1.2 (sodium-activated potassium channel encoded by Kcn2) is necessary for cardioprotection by volatile anesthetics, electrophysiological evidence for a channel of this type in mitochondria is lacking. The endogenous physiological role of a potential mito-KNa1.2 channel is also unclear. In this study, single channel patch-clamp of 27 independent cardiac mitochondrial inner membrane (mitoplast) preparations from wild-type (WT) mice yielded 6 channels matching the known ion sensitivity, ion selectivity, pharmacology, and conductance properties of KNa1.2 (slope conductance, 138 ± 1 pS). However, similar experiments on 40 preparations from Kcnt2-/- mice yielded no such channels. The KNa opener bithionol uncoupled respiration in WT but not Kcnt2-/- cardiomyocytes. Furthermore, when oxidizing only fat as substrate, Kcnt2-/- cardiomyocytes and hearts were less responsive to increases in energetic demand. Kcnt2-/- mice also had elevated body fat, but no baseline differences in the cardiac metabolome. These data support the existence of a cardiac mitochondrial KNa1.2 channel, and a role for cardiac KNa1.2 in regulating metabolism under conditions of high energetic demand.-Smith, C. O., Wang, Y. T., Nadtochiy, S. M., Miller, J. H., Jonas, E. A., Dirksen, R. T., Nehrke, K., Brookes, P. S. Cardiac metabolic effects of KNa1.2 channel deletion and evidence for its mitochondrial localization.
Collapse
Affiliation(s)
- Charles O. Smith
- Department of Biochemistry, University of Rochester Medical Center, Rochester, New York, USA
| | - Yves T. Wang
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Sergiy M. Nadtochiy
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - James H. Miller
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Elizabeth A. Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Keith Nehrke
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Paul S. Brookes
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, New York, USA
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
39
|
McTague A, Nair U, Malhotra S, Meyer E, Trump N, Gazina EV, Papandreou A, Ngoh A, Ackermann S, Ambegaonkar G, Appleton R, Desurkar A, Eltze C, Kneen R, Kumar AV, Lascelles K, Montgomery T, Ramesh V, Samanta R, Scott RH, Tan J, Whitehouse W, Poduri A, Scheffer IE, Chong WKK, Cross JH, Topf M, Petrou S, Kurian MA. Clinical and molecular characterization of KCNT1-related severe early-onset epilepsy. Neurology 2018; 90:e55-e66. [PMID: 29196579 PMCID: PMC5754647 DOI: 10.1212/wnl.0000000000004762] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 09/26/2017] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE To characterize the phenotypic spectrum, molecular genetic findings, and functional consequences of pathogenic variants in early-onset KCNT1 epilepsy. METHODS We identified a cohort of 31 patients with epilepsy of infancy with migrating focal seizures (EIMFS) and screened for variants in KCNT1 using direct Sanger sequencing, a multiple-gene next-generation sequencing panel, and whole-exome sequencing. Additional patients with non-EIMFS early-onset epilepsy in whom we identified KCNT1 variants on local diagnostic multiple gene panel testing were also included. When possible, we performed homology modeling to predict the putative effects of variants on protein structure and function. We undertook electrophysiologic assessment of mutant KCNT1 channels in a xenopus oocyte model system. RESULTS We identified pathogenic variants in KCNT1 in 12 patients, 4 of which are novel. Most variants occurred de novo. Ten patients had a clinical diagnosis of EIMFS, and the other 2 presented with early-onset severe nocturnal frontal lobe seizures. Three patients had a trial of quinidine with good clinical response in 1 patient. Computational modeling analysis implicates abnormal pore function (F346L) and impaired tetramer formation (F502V) as putative disease mechanisms. All evaluated KCNT1 variants resulted in marked gain of function with significantly increased channel amplitude and variable blockade by quinidine. CONCLUSIONS Gain-of-function KCNT1 pathogenic variants cause a spectrum of severe focal epilepsies with onset in early infancy. Currently, genotype-phenotype correlations are unclear, although clinical outcome is poor for the majority of cases. Further elucidation of disease mechanisms may facilitate the development of targeted treatments, much needed for this pharmacoresistant genetic epilepsy.
Collapse
Affiliation(s)
- Amy McTague
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK.
| | - Umesh Nair
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Sony Malhotra
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Esther Meyer
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Natalie Trump
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Elena V Gazina
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Apostolos Papandreou
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Adeline Ngoh
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Sally Ackermann
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Gautam Ambegaonkar
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Richard Appleton
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Archana Desurkar
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Christin Eltze
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Rachel Kneen
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Ajith V Kumar
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Karine Lascelles
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Tara Montgomery
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Venkateswaran Ramesh
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Rajib Samanta
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Richard H Scott
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Jeen Tan
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - William Whitehouse
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Annapurna Poduri
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Ingrid E Scheffer
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - W K Kling Chong
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - J Helen Cross
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Maya Topf
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Steven Petrou
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK
| | - Manju A Kurian
- From Molecular Neurosciences (A.M., E.M., A., A.N., M.A.K.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health; Department of Neurology (A.M., A., A.N., C.E., J.H.C., M.A.K.) and Neuroradiology (W.K.C.), Great Ormond Street Hospital for Children, London, UK; Florey Institute of Neuroscience and Mental Health (U.N., E.V.G., I.E.S., S.P.), Melbourne, Australia; Department of Biological Sciences (S.M., M.T.), Institute of Structural and Molecular Biology, Birkbeck College, University of London; Regional Molecular Genetics Laboratory (N.T., R.H.S.), North East Thames Regional Genetics Service, and Department of Clinical Genetics (A.V.K., R.H.S.), Great Ormond Street Hospital, London, UK; Department of Paediatric Neurology (S.A.), Red Cross War Memorial Children's Hospital, Cape Town, South Africa; Department of Paediatric Neurology (G.A.), Addenbrooke's Hospital, Cambridge; Roald Dahl EEG Unit (R.A.), Department of Neurology, and Department of Neurology (R.K.), Alder Hey Children's Hospital, Liverpool; Department of Paediatric Neurology (A.D.), Sheffield Children's Hospital; Clinical Neurosciences (C.E., J.H.C.), Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London; Institute of Infection and Global Health (R.K.), University of Liverpool; Department of Paediatric Neurology (K.L.), Evelina Children's Hospital, Guys and St. Thomas' NHS Foundation Trust, London; Department of Clinical Genetics (T.M.), Northern Genetics Service; Department of Pediatric Neurology (V.R.), Great North Children's Hospital, Newcastle Upon Tyne; Department of Paediatric Neurology (R.S.), University Hospital Leicester Children's Hospital; Department of Paediatric Neurology (J.T.), Royal Manchester Children's Hospital; Department of Paediatric Neurology (W.W.), Nottingham University Hospitals NHS Trust, UK; Epilepsy Genetics Program (A. Poduri), Department of Neurology, Boston Children's Hospital; Department of Neurology (A. Poduri), Harvard Medical School, Boston, MA; University of Melbourne (I.E.S.), Austin Health and Royal Children's Hospital, Australia; and Department of Medicine (S.P.), Royal Melbourne Hospital, University of Melbourne, Australia. Dr. Malhotra is currently at the Department of Biochemistry, University of Cambridge, UK.
| |
Collapse
|
40
|
An ALS-Associated Mutant SOD1 Rapidly Suppresses KCNT1 (Slack) Na +-Activated K + Channels in Aplysia Neurons. J Neurosci 2017; 37:2258-2265. [PMID: 28119399 DOI: 10.1523/jneurosci.3102-16.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/29/2016] [Accepted: 01/10/2017] [Indexed: 11/21/2022] Open
Abstract
Mutations that alter levels of Slack (KCNT1) Na+-activated K+ current produce devastating effects on neuronal development and neuronal function. We now find that Slack currents are rapidly suppressed by oligomers of mutant human Cu/Zn superoxide dismutase 1 (SOD1), which are associated with motor neuron toxicity in an inherited form of amyotrophic lateral sclerosis (ALS). We recorded from bag cell neurons of Aplysia californica, a model system to study neuronal excitability. We found that injection of fluorescent wild-type SOD1 (wt SOD1YFP) or monomeric mutant G85R SOD1YFP had no effect on net ionic currents measured under voltage clamp. In contrast, outward potassium currents were significantly reduced by microinjection of mutant G85R SOD1YFP that had been preincubated at 37°C or of cross-linked dimers of G85R SOD1YFP. Reduction of potassium current was also seen with multimeric G85R SOD1YFP of ∼300 kDa or >300 kDa that had been cross-linked. In current clamp recordings, microinjection of cross-linked 300 kDa increased excitability by depolarizing the resting membrane potential, and decreasing the latency of action potentials triggered by depolarization. The effect of cross-linked 300 kDa on potassium current was reduced by removing Na+ from the bath solution, or by knocking down levels of Slack using siRNA. It was also prevented by pharmacological inhibition of ASK1 (apoptosis signal-regulating kinase 1) or of c-Jun N-terminal kinase, but not by an inhibitor of p38 mitogen-activated protein kinase. These results suggest that soluble mutant SOD1 oligomers rapidly trigger a kinase pathway that regulates the activity of Na+-activated K+ channels in neurons.SIGNIFICANCE STATEMENT Slack Na+-activated K+ channels (KCNT1, KNa1.1) regulate neuronal excitability but are also linked to cytoplasmic signaling pathways that control neuronal protein translation. Mutations that alter the amplitude of these currents have devastating effects on neuronal development and function. We find that injection of oligomers of mutant superoxide dismutase 1 (SOD1) into the cytoplasm of invertebrate neurons rapidly suppresses these Na+-activated K+ currents and that this effect is mediated by a MAP kinase cascade, including ASK1 and c-Jun N-terminal kinase. Because amyotrophic lateral sclerosis is a fatal adult-onset neurodegenerative disease produced by mutations in SOD1 that cause the enzyme to form toxic oligomers, our findings suggest that suppression of Slack channels may be an early step in the progression of the disease.
Collapse
|
41
|
Kaczmarek LK, Aldrich RW, Chandy KG, Grissmer S, Wei AD, Wulff H. International Union of Basic and Clinical Pharmacology. C. Nomenclature and Properties of Calcium-Activated and Sodium-Activated Potassium Channels. Pharmacol Rev 2017; 69:1-11. [PMID: 28267675 PMCID: PMC11060434 DOI: 10.1124/pr.116.012864] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
A subset of potassium channels is regulated primarily by changes in the cytoplasmic concentration of ions, including calcium, sodium, chloride, and protons. The eight members of this subfamily were originally all designated as calcium-activated channels. More recent studies have clarified the gating mechanisms for these channels and have documented that not all members are sensitive to calcium. This article describes the molecular relationships between these channels and provides an introduction to their functional properties. It also introduces a new nomenclature that differentiates between calcium- and sodium-activated potassium channels.
Collapse
Affiliation(s)
- Leonard K Kaczmarek
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Richard W Aldrich
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - K George Chandy
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Stephan Grissmer
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Aguan D Wei
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| | - Heike Wulff
- Departments of Pharmacology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut (L.K.K.); Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, Texas (R.W.A.); Laboratory of Molecular Physiology in the Infection and Immunity Theme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore (K.G.C.); Institute of Applied Physiology, Ulm University, Ulm, Germany (S.G.); Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington (A.D.W.); and Department of Pharmacology, School of Medicine, University of California, Davis, California (H.W.)
| |
Collapse
|
42
|
Reif PS, Tsai MH, Helbig I, Rosenow F, Klein KM. Precision medicine in genetic epilepsies: break of dawn? Expert Rev Neurother 2016; 17:381-392. [DOI: 10.1080/14737175.2017.1253476] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Philipp Sebastian Reif
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe-University Frankfurt, Frankfurt, Germany
| | - Meng-Han Tsai
- Division of Brain Function & Epilepsy, Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ingo Helbig
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neuropediatrics, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
- Departments of Brain and Cognitive Sciences, Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Felix Rosenow
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe-University Frankfurt, Frankfurt, Germany
- Epilepsy Center Hessen, Department of Neurology, University Hospitals Giessen & Marburg, and Philipps-University Marburg, Marburg, Germany
| | - Karl Martin Klein
- Epilepsy Center Frankfurt Rhine-Main, Department of Neurology, Center of Neurology and Neurosurgery, University Hospital, Goethe-University Frankfurt, Frankfurt, Germany
- Epilepsy Center Hessen, Department of Neurology, University Hospitals Giessen & Marburg, and Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
43
|
Stimulation of Slack K(+) Channels Alters Mass at the Plasma Membrane by Triggering Dissociation of a Phosphatase-Regulatory Complex. Cell Rep 2016; 16:2281-8. [PMID: 27545877 DOI: 10.1016/j.celrep.2016.07.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/27/2015] [Accepted: 07/13/2016] [Indexed: 11/23/2022] Open
Abstract
Human mutations in the cytoplasmic C-terminal domain of Slack sodium-activated potassium (KNa) channels result in childhood epilepsy with severe intellectual disability. Slack currents can be increased by pharmacological activators or by phosphorylation of a Slack C-terminal residue by protein kinase C. Using an optical biosensor assay, we find that Slack channel stimulation in neurons or transfected cells produces loss of mass near the plasma membrane. Slack mutants associated with intellectual disability fail to trigger any change in mass. The loss of mass results from the dissociation of the protein phosphatase 1 (PP1) targeting protein, Phactr-1, from the channel. Phactr1 dissociation is specific to wild-type Slack channels and is not observed when related potassium channels are stimulated. Our findings suggest that Slack channels are coupled to cytoplasmic signaling pathways and that dysregulation of this coupling may trigger the aberrant intellectual development associated with specific childhood epilepsies.
Collapse
|
44
|
Bansal V, Fisher TE. Na(+) -Activated K(+) Channels in Rat Supraoptic Neurones. J Neuroendocrinol 2016; 28. [PMID: 27091544 DOI: 10.1111/jne.12394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/06/2016] [Accepted: 04/15/2016] [Indexed: 11/29/2022]
Abstract
The magnocellular neurosecretory cells (MNCs) of the hypothalamus secrete the neurohormones vasopressin and oxytocin. The systemic release of these hormones depends on the rate and pattern of MNC firing and it is therefore important to identify the ion channels that contribute to the electrical behaviour of MNCs. In the present study, we report evidence for the presence of Na(+) -activated K(+) (KN a ) channels in rat MNCs. KN a channels mediate outwardly rectifying K(+) currents activated by the increases in intracellular Na(+) that occur during electrical activity. Although the molecular identity of native KN a channels is unclear, their biophysical properties are consistent with those of expressed Slick (slo 2.1) and Slack (slo 2.2) proteins. Using immunocytochemistry and Western blot experiments, we found that both Slick and Slack proteins are expressed in rat MNCs. Using whole cell voltage clamp techniques on acutely isolated rat MNCs, we found that inhibiting Na(+) influx by the addition of the Na(+) channel blocker tetrodotoxin or the replacement of Na(+) in the external solution with Li(+) caused a significant decrease in sustained outward currents. Furthermore, the evoked outward current density was significantly higher in rat MNCs using patch pipettes containing 60 mm Na(+) than it was when patch pipettes containing 0 mm Na(+) were used. Our data show that functional KN a channels are expressed in rat MNCs. These channels could contribute to the activity-dependent afterhyperpolarisations that have been identified in the MNCs and thereby play a role in the regulation of their electrical behaviour.
Collapse
Affiliation(s)
- V Bansal
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - T E Fisher
- Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
45
|
Ferron L. Fragile X mental retardation protein controls ion channel expression and activity. J Physiol 2016; 594:5861-5867. [PMID: 26864773 DOI: 10.1113/jp270675] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/14/2015] [Indexed: 01/12/2023] Open
Abstract
Fragile X-associated disorders are a family of genetic conditions resulting from the partial or complete loss of fragile X mental retardation protein (FMRP). Among these disorders is fragile X syndrome, the most common cause of inherited intellectual disability and autism. FMRP is an RNA-binding protein involved in the control of local translation, which has pleiotropic effects, in particular on synaptic function. Analysis of the brain FMRP transcriptome has revealed hundreds of potential mRNA targets encoding postsynaptic and presynaptic proteins, including a number of ion channels. FMRP has been confirmed to bind voltage-gated potassium channels (Kv 3.1 and Kv 4.2) mRNAs and regulates their expression in somatodendritic compartments of neurons. Recent studies have uncovered a number of additional roles for FMRP besides RNA regulation. FMRP was shown to directly interact with, and modulate, a number of ion channel complexes. The sodium-activated potassium (Slack) channel was the first ion channel shown to directly interact with FMRP; this interaction alters the single-channel properties of the Slack channel. FMRP was also shown to interact with the auxiliary β4 subunit of the calcium-activated potassium (BK) channel; this interaction increases calcium-dependent activation of the BK channel. More recently, FMRP was shown to directly interact with the voltage-gated calcium channel, Cav 2.2, and reduce its trafficking to the plasma membrane. Studies performed on animal models of fragile X syndrome have revealed links between modifications of ion channel activity and changes in neuronal excitability, suggesting that these modifications could contribute to the phenotypes observed in patients with fragile X-associated disorders.
Collapse
Affiliation(s)
- Laurent Ferron
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
46
|
Stanzel S, Stubbusch J, Pataskar A, Howard MJ, Deller T, Ernsberger U, Tiwari VK, Rohrer H, Tsarovina K. Distinct roles of hand2 in developing and adult autonomic neurons. Dev Neurobiol 2016; 76:1111-24. [PMID: 26818017 DOI: 10.1002/dneu.22378] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 11/08/2022]
Abstract
The bHLH transcription factor Hand2 is essential for the acquisition and maintenance of noradrenergic properties of embryonic sympathetic neurons and controls neuroblast proliferation. Hand2 is also expressed in embryonic and postnatal parasympathetic ganglia and remains expressed in sympathetic neurons up to the adult stage. Here, we address its function in developing parasympathetic and adult sympathetic neurons. We conditionally deleted Hand2 in the parasympathetic sphenopalatine ganglion by crossing a line of floxed Hand2 mice with DbhiCre transgenic mice, taking advantage of the transient Dbh expression in parasympathetic ganglia. Hand2 elimination does not affect Dbh expression and sphenopalatine ganglion size at E12.5 and E16.5, in contrast to sympathetic ganglia. These findings demonstrate different functions for Hand2 in the parasympathetic and sympathetic lineage. Our previous Hand2 knockdown in postmitotic, differentiated chick sympathetic neurons resulted in decreased expression of noradrenergic marker genes but it was unclear whether Hand2 is required for maintaining noradrenergic neuron identity in adult animals. We now show that Hand2 elimination in adult Dbh-expressing sympathetic neurons does not decrease the expression of Th and Dbh, in contrast to the situation during development. However, gene expression profiling of adult sympathetic neurons identified 75 Hand2-dependent target genes. Interestingly, a notable proportion of down-regulated genes (15%) encode for proteins with synaptic and neurotransmission functions. These results demonstrate a change in Hand2 target genes during maturation of sympathetic neurons. Whereas Hand2 controls genes regulating noradrenergic differentiation during development, Hand2 seems to be involved in the regulation of genes controlling neurotransmission in adult sympathetic neurons. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1111-1124, 2016.
Collapse
Affiliation(s)
- Sabine Stanzel
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany
| | - Jutta Stubbusch
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany
| | - Abhijeet Pataskar
- Institute of Molecular Biology (IMB) Boehringer Ingelheim Foundation, Ackermannweg 4, Mainz, 55128, Germany
| | - Marthe J Howard
- Department of Neurosciences and Program in Neurosciences and Neurological Disorders, University of Toledo Health Sciences Campus, Toledo, Ohio, 43614
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Goethe University Frankfurt/M, Theodor-Stern-Kai 7, Frankfurt/M, 60590, Germany
| | - Uwe Ernsberger
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany.,Institute of Clinical Neuroanatomy, Goethe University Frankfurt/M, Theodor-Stern-Kai 7, Frankfurt/M, 60590, Germany.,Ernst-Strüngmann-Institute, Deutschordenstr. 46, Frankfurt/M, 60528, Germany
| | - Vijay K Tiwari
- Institute of Molecular Biology (IMB) Boehringer Ingelheim Foundation, Ackermannweg 4, Mainz, 55128, Germany
| | - Hermann Rohrer
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany.,Institute of Clinical Neuroanatomy, Goethe University Frankfurt/M, Theodor-Stern-Kai 7, Frankfurt/M, 60590, Germany.,Ernst-Strüngmann-Institute, Deutschordenstr. 46, Frankfurt/M, 60528, Germany
| | - Konstantina Tsarovina
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany
| |
Collapse
|
47
|
Neuron class-specific requirements for Fragile X Mental Retardation Protein in critical period development of calcium signaling in learning and memory circuitry. Neurobiol Dis 2016; 89:76-87. [PMID: 26851502 DOI: 10.1016/j.nbd.2016.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/27/2016] [Accepted: 02/02/2016] [Indexed: 01/22/2023] Open
Abstract
Neural circuit optimization occurs through sensory activity-dependent mechanisms that refine synaptic connectivity and information processing during early-use developmental critical periods. Fragile X Mental Retardation Protein (FMRP), the gene product lost in Fragile X syndrome (FXS), acts as an activity sensor during critical period development, both as an RNA-binding translation regulator and channel-binding excitability regulator. Here, we employ a Drosophila FXS disease model to assay calcium signaling dynamics with a targeted transgenic GCaMP reporter during critical period development of the mushroom body (MB) learning/memory circuit. We find FMRP regulates depolarization-induced calcium signaling in a neuron-specific manner within this circuit, suppressing activity-dependent calcium transients in excitatory cholinergic MB input projection neurons and enhancing calcium signals in inhibitory GABAergic MB output neurons. Both changes are restricted to the developmental critical period and rectified at maturity. Importantly, conditional genetic (dfmr1) rescue of null mutants during the critical period corrects calcium signaling defects in both neuron classes, indicating a temporally restricted FMRP requirement. Likewise, conditional dfmr1 knockdown (RNAi) during the critical period replicates constitutive null mutant defects in both neuron classes, confirming cell-autonomous requirements for FMRP in developmental regulation of calcium signaling dynamics. Optogenetic stimulation during the critical period enhances depolarization-induced calcium signaling in both neuron classes, but this developmental change is eliminated in dfmr1 null mutants, indicating the activity-dependent regulation requires FMRP. These results show FMRP shapes neuron class-specific calcium signaling in excitatory vs. inhibitory neurons in developing learning/memory circuitry, and that FMRP mediates activity-dependent regulation of calcium signaling specifically during the early-use critical period.
Collapse
|
48
|
Characterization of two de novoKCNT1 mutations in children with malignant migrating partial seizures in infancy. Mol Cell Neurosci 2016; 72:54-63. [PMID: 26784557 DOI: 10.1016/j.mcn.2016.01.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/06/2015] [Accepted: 01/15/2016] [Indexed: 01/08/2023] Open
Abstract
The KCNT1 gene encodes for subunits contributing to the Na(+)-activated K(+) current (KNa), expressed in many cell types. Mutations in KCNT1 have been found in patients affected with a wide spectrum of early-onset epilepsies, including Malignant Migrating Partial Seizures in Infancy (MMPSI), a severe early-onset epileptic encephalopathy characterized by pharmacoresistant focal seizures migrating from one brain region or hemisphere to another and neurodevelopment arrest or regression, resulting in profound disability. In the present study we report identification by whole exome sequencing (WES) of two de novo, heterozygous KCNT1 mutations (G288S and, not previously reported, M516V) in two unrelated MMPSI probands. Functional studies in a heterologous expression system revealed that channels formed by mutant KCNT1 subunits carried larger currents when compared to wild-type KCNT1 channels, both as homo- and heteromers with these last. Both mutations induced a marked leftward shift in homomeric channel activation gating. Interestingly, the KCNT1 blockers quinidine (3-1000μM) and bepridil (0.03-10μM) inhibited both wild-type and mutant KCNT1 currents in a concentration-dependent manner, with mutant channels showing higher sensitivity to blockade. This latter result suggests two genotype-tailored pharmacological strategies to specifically counteract the dysfunction of KCNT1 activating mutations in MMPSI patients.
Collapse
|
49
|
Tang QY, Zhang FF, Xu J, Wang R, Chen J, Logothetis DE, Zhang Z. Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms. Cell Rep 2015; 14:129-139. [PMID: 26725113 DOI: 10.1016/j.celrep.2015.12.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/11/2015] [Accepted: 11/23/2015] [Indexed: 01/07/2023] Open
Abstract
Twelve sodium-activated potassium channel (KCNT1, Slack) genetic mutants have been identified from severe early-onset epilepsy patients. The changes in biophysical properties of these mutants and the underlying mechanisms causing disease remain elusive. Here, we report that seven of the 12 mutations increase, whereas one mutation decreases, the channel's sodium sensitivity. Two of the mutants exhibit channel over-activity only when the intracellular Na(+) ([Na(+)]i) concentration is ∼80 mM. In contrast, single-channel data reveal that all 12 mutants increase the maximal open probability (Po). We conclude that these mutant channels lead to channel over-activity predominantly by increasing the ability of sodium binding to activate the channel, which is indicated by its maximal Po. The sodium sensitivity of these epilepsy causing mutants probably determines the [Na(+)]i concentration at which these mutants exert their pathological effects.
Collapse
Affiliation(s)
- Qiong-Yao Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China
| | - Fei-Fei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China
| | - Jie Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China
| | - Ran Wang
- School of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China
| | - Jian Chen
- School of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China
| | - Diomedes E Logothetis
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Zhe Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China.
| |
Collapse
|
50
|
Abstract
Fragile X syndrome (FXS) results from a genetic mutation in a single gene yet produces a phenotypically complex disorder with a range of neurological and psychiatric problems. Efforts to decipher how perturbations in signaling pathways lead to the myriad alterations in synaptic and cellular functions have provided insights into the molecular underpinnings of this disorder. From this large body of data, the theme of circuit hyperexcitability has emerged as a potential explanation for many of the neurological and psychiatric symptoms in FXS. The mechanisms for hyperexcitability range from alterations in the expression or activity of ion channels to changes in neurotransmitters and receptors. Contributions of these processes are often brain region and cell type specific, resulting in complex effects on circuit function that manifest as altered excitability. Here, we review the current state of knowledge of the molecular, synaptic, and circuit-level mechanisms underlying hyperexcitability and their contributions to the FXS phenotypes.
Collapse
|