1
|
Gonul CP, Kiser C, Yaka EC, Oz D, Hunerli D, Yerlikaya D, Olcum M, Keskinoglu P, Yener G, Genc S. Microglia-like cells from patient monocytes demonstrate increased phagocytic activity in probable Alzheimer's disease. Mol Cell Neurosci 2024:103990. [PMID: 39732446 DOI: 10.1016/j.mcn.2024.103990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by the accumulation of amyloid plaques, phosphorylated tau tangles and microglia toxicity, resulting in neuronal death and cognitive decline. Since microglia are recognized as one of the key players in the disease, it is crucial to understand how microglia operate in disease conditions and incorporate them into models. The studies on human microglia functions are thought to reflect the post-symptomatic stage of the disease. Recently developed methods involve induced microglia-like cells (iMGs) generated from patients' blood monocytes or induced pluripotent stem cells (iPSCs) as an alternative to studying the microglia cells in vitro. In this research, we aimed to investigate the phenotype and inflammatory responses of iMGs from AD patients. Monocytes derived from blood using density gradient centrifugation were differentiated into iMGs using a cytokine cocktail, including granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-34 (IL-34). After differentiation, cells were assessed by morphological analysis and a microglia surface marker, TMEM119. We used stimulants, lipopolysaccharide (LPS) and beta-amyloid, to examine iMGs' functions. Results showed that iMGs derived from AD patients exhibited increased secretion of pro-inflammatory cytokines upon LPS stimulation. Furthermore, their phagocytic ability was also heightened in stimulated and unstimulated conditions, with cells derived from patients showing increased phagocytic activity compared to healthy controls. Overall, these findings suggest that iMGs derived from patients using the direct conversion method possess characteristics of human microglia, making them an easy and promising model for studying microglia function in AD.
Collapse
Affiliation(s)
- Ceren Perihan Gonul
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Türkiye; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| | - Cagla Kiser
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Türkiye; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| | - Emis Cansu Yaka
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Türkiye; Department of Neurology, İzmir City Hospital, Izmir, Türkiye
| | - Didem Oz
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Türkiye; Department of Neurology, Dokuz Eylul University Hospital, Izmir, Türkiye; Global Brain Health Institute, University of California, San Francisco, USA
| | - Duygu Hunerli
- Department of Biostatistics and Medical Informatics, Basic Medical Sciences, Faculty of Medicine, Dokuz Eylul University, Izmir, Türkiye
| | - Deniz Yerlikaya
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Türkiye
| | - Melis Olcum
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Türkiye
| | - Pembe Keskinoglu
- Department of Biostatistics and Medical Informatics, Basic Medical Sciences, Faculty of Medicine, Dokuz Eylul University, Izmir, Türkiye
| | - Gorsev Yener
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Türkiye; Department of Neurology, Dokuz Eylul University Hospital, Izmir, Türkiye
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Türkiye; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye; Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Türkiye.
| |
Collapse
|
2
|
Cuní-López C, Stewart R, Oikari LE, Nguyen TH, Roberts TL, Sun Y, Guo CC, Lupton MK, White AR, Quek H. Advanced patient-specific microglia cell models for pre-clinical studies in Alzheimer's disease. J Neuroinflammation 2024; 21:50. [PMID: 38365833 PMCID: PMC10870454 DOI: 10.1186/s12974-024-03037-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is an incurable neurodegenerative disorder with a rapidly increasing prevalence worldwide. Current approaches targeting hallmark pathological features of AD have had no consistent clinical benefit. Neuroinflammation is a major contributor to neurodegeneration and hence, microglia, the brain's resident immune cells, are an attractive target for potentially more effective therapeutic strategies. However, there is no current in vitro model system that captures AD patient-specific microglial characteristics using physiologically relevant and experimentally flexible culture conditions. METHODS To address this shortcoming, we developed novel 3D Matrigel-based monocyte-derived microglia-like cell (MDMi) mono-cultures and co-cultures with neuro-glial cells (ReNcell VM). We used single-cell RNA sequencing (scRNAseq) analysis to compare the transcriptomic signatures of MDMi between model systems (2D, 3D and 3D co-culture) and against published human microglia datasets. To demonstrate the potential of MDMi for use in personalized pre-clinical strategies, we generated and characterized MDMi models from sixteen AD patients and matched healthy controls, and profiled cytokine responses upon treatment with anti-inflammatory drugs (dasatinib and spiperone). RESULTS MDMi in 3D exhibited a more branched morphology and longer survival in culture compared to 2D. scRNAseq uncovered distinct MDMi subpopulations that exhibit higher functional heterogeneity and best resemble human microglia in 3D co-culture. AD MDMi in 3D co-culture showed altered cell-to-cell interactions, growth factor and cytokine secretion profiles and responses to amyloid-β. Drug testing assays revealed patient- and model-specific cytokine responses. CONCLUSION Our study presents a novel, physiologically relevant and AD patient-specific 3D microglia cell model that opens avenues towards improving personalized drug development strategies in AD.
Collapse
Affiliation(s)
- Carla Cuní-López
- Mental Health and Neuroscience Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, 4006, Australia
| | - Romal Stewart
- Mental Health and Neuroscience Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- UQ Centre for Clinical Research, The University of Queensland, Brisbane City, QLD, 4029, Australia
| | - Lotta E Oikari
- Mental Health and Neuroscience Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane City, QLD, 4000, Australia
| | - Tam Hong Nguyen
- Scientific Services, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Tara L Roberts
- UQ Centre for Clinical Research, The University of Queensland, Brisbane City, QLD, 4029, Australia
- Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, 2170, Australia
| | - Yifan Sun
- Mental Health and Neuroscience Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Christine C Guo
- Mental Health and Neuroscience Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- ActiGraph LLC, Pensacola, FL, 32502, USA
| | - Michelle K Lupton
- Mental Health and Neuroscience Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, 4006, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane City, QLD, 4000, Australia
| | - Anthony R White
- Mental Health and Neuroscience Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia.
- Faculty of Medicine, The University of Queensland, Herston, QLD, 4006, Australia.
| | - Hazel Quek
- Mental Health and Neuroscience Department, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia.
- School of Biomedical Sciences, The University of Queensland, Lucia, QLD, 4072, Australia.
- School of Biomedical Sciences, Queensland University of Technology, Brisbane City, QLD, 4000, Australia.
| |
Collapse
|
3
|
Yonemoto K, Fujii F, Taira R, Ohgidani M, Eguchi K, Okuzono S, Ichimiya Y, Sonoda Y, Chong PF, Goto H, Kanemasa H, Motomura Y, Ishimura M, Koga Y, Tsujimura K, Hashiguchi T, Torisu H, Kira R, Kato TA, Sakai Y, Ohga S. Heterogeneity and mitochondrial vulnerability configurate the divergent immunoreactivity of human induced microglia-like cells. Clin Immunol 2023; 255:109756. [PMID: 37678717 DOI: 10.1016/j.clim.2023.109756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Microglia play versatile roles in progression of and protection against neuroinflammatory diseases. Little is known, however, about the mechanisms underlying the diverse reactivity of microglia to inflammatory conditions. We investigated how human induced microglia-like (iMG) cells respond to innate immune ligands. Quantitative PCR showed that poly-I:C and lipopolysaccharide (LPS) activated the expression of IL1B and TNF. Immunoreactivity of iMG did not differ between controls (n = 11) and patients with neuroinflammatory diseases (n = 24). Flow cytometry revealed that CD14high cells expressed interleukin (IL) -1β after LPS treatment. Immunoblotting showed that poly-I:C and LPS differentially activated inflammatory pathways but commonly induced mitochondrial instability and the expression of pyruvate kinase isoform M2 (PKM2). Furthermore, a potent stimulator of PKM2 (DASA-58) alleviated IL-1β production after LPS treatment. These data indicate that heterogeneous cell populations and mitochondrial stability underlie the divergent immunoreactivity of human iMG in environments.
Collapse
Affiliation(s)
- Kousuke Yonemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihiko Fujii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Hokkaido, Japan
| | - Katsuhide Eguchi
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Sayaka Okuzono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Yuko Ichimiya
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuri Sonoda
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Pin Fee Chong
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hironori Goto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hikaru Kanemasa
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitomo Motomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuhki Koga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keita Tsujimura
- Group of Brain Function and Development, Neuroscience Institute of the Graduate School of Science, Nagoya University, Aichi, Japan; Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Aichi, Japan
| | - Takao Hashiguchi
- Laboratory of Medical Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Torisu
- Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka, Japan
| | - Ryutaro Kira
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Shirozu N, Ohgidani M, Hata N, Tanaka S, Inamine S, Sagata N, Kimura T, Inoue I, Arimura K, Nakamizo A, Nishimura A, Maehara N, Takagishi S, Iwaki K, Nakao T, Masuda K, Sakai Y, Mizoguchi M, Yoshimoto K, Kato TA. Angiogenic and inflammatory responses in human induced microglia-like (iMG) cells from patients with Moyamoya disease. Sci Rep 2023; 13:14842. [PMID: 37684266 PMCID: PMC10491754 DOI: 10.1038/s41598-023-41456-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Angiogenic factors associated with Moyamoya disease (MMD) are overexpressed in M2 polarized microglia in ischemic stroke, suggesting that microglia may be involved in the pathophysiology of MMD; however, existing approaches are not applicable to explore this hypothesis. Herein we applied blood induced microglial-like (iMG) cells. We recruited 25 adult patients with MMD and 24 healthy volunteers. Patients with MMD were subdivided into progressive (N = 7) or stable (N = 18) group whether novel symptoms or radiographic advancement of Suzuki stage within 1 year was observed or not. We produced 3 types of iMG cells; resting, M1-, and M2-induced cells from monocytes, then RNA sequencing followed by GO and KEGG pathway enrichment analysis and qPCR assay were performed. RNA sequencing of M2-induced iMG cells revealed that 600 genes were significantly upregulated (338) or downregulated (262) in patients with MMD. Inflammation and immune-related factors and angiogenesis-related factors were specifically associated with MMD in GO analysis. qPCR for MMP9, VEGFA, and TGFB1 expression validated these findings. This study is the first to demonstrate that M2 microglia may be involved in the angiogenic process of MMD. The iMG technique provides a promising approach to explore the bioactivity of microglia in cerebrovascular diseases.
Collapse
Affiliation(s)
- Noritoshi Shirozu
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Asahikawa, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunya Tanaka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shogo Inamine
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Noriaki Sagata
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tetsuaki Kimura
- Division of Human Genetics, National Institute of Genetics, Mishima, Japan
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Ituro Inoue
- Division of Human Genetics, National Institute of Genetics, Mishima, Japan
| | - Koichi Arimura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Nakamizo
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ataru Nishimura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoki Maehara
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Soh Takagishi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuma Iwaki
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
5
|
Noh MY, Kwon MS, Oh KW, Nahm M, Park J, Kim YE, Ki CS, Jin HK, Bae JS, Kim SH. Role of NCKAP1 in the Defective Phagocytic Function of Microglia-Like Cells Derived from Rapidly Progressing Sporadic ALS. Mol Neurobiol 2023; 60:4761-4777. [PMID: 37154887 PMCID: PMC10293423 DOI: 10.1007/s12035-023-03339-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/04/2023] [Indexed: 05/10/2023]
Abstract
Microglia plays a key role in determining the progression of amyotrophic lateral sclerosis (ALS), yet their precise role in ALS has not been identified in humans. This study aimed to identify a key factor related to the functional characteristics of microglia in rapidly progressing sporadic ALS patients using the induced microglia model, although it is not identical to brain resident microglia. After confirming that microglia-like cells (iMGs) induced by human monocytes could recapitulate the main signatures of brain microglia, step-by-step comparative studies were conducted to delineate functional differences using iMGs from patients with slowly progressive ALS [ALS(S), n = 14] versus rapidly progressive ALS [ALS(R), n = 15]. Despite an absence of significant differences in the expression of microglial homeostatic genes, ALS(R)-iMGs preferentially showed defective phagocytosis and an exaggerated pro-inflammatory response to LPS stimuli compared to ALS(S)-iMGs. Transcriptome analysis revealed that the perturbed phagocytosis seen in ALS(R)-iMGs was closely associated with decreased NCKAP1 (NCK-associated protein 1)-mediated abnormal actin polymerization. NCKAP1 overexpression was sufficient to rescue impaired phagocytosis in ALS(R)-iMGs. Post-hoc analysis indicated that decreased NCKAP1 expression in iMGs was correlated with the progression of ALS. Our data suggest that microglial NCKAP1 may be an alternative therapeutic target in rapidly progressive sporadic ALS.
Collapse
Affiliation(s)
- Min-Young Noh
- Department of Neurology, College of Medicine, Hanyang University, Wangsimniro 222-1, Seoul, 04763 Republic of Korea
| | - Min-Soo Kwon
- Department of Pharmacology, Research Institute of Basic Medical Science, School of Medicine, CHA University, CHA Bio Complex, 335 Pangyo, Gyeonggi-Do 13488 Republic of Korea
| | - Ki-Wook Oh
- Department of Neurology, College of Medicine, Hanyang University, Wangsimniro 222-1, Seoul, 04763 Republic of Korea
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Jinseok Park
- Department of Neurology, College of Medicine, Hanyang University, Wangsimniro 222-1, Seoul, 04763 Republic of Korea
| | - Young-Eun Kim
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Wangsimniro 222-1, Seoul, 04763 Republic of Korea
| | - Chang-Seok Ki
- GC Genome Corporation, Yongin, 16924 Republic of Korea
| | - Hee Kyung Jin
- KNU Alzheimer’s Disease Research Institute, Kyungpook National University, Daegu, 41566 Republic of Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566 Republic of Korea
| | - Jae-sung Bae
- KNU Alzheimer’s Disease Research Institute, Kyungpook National University, Daegu, 41566 Republic of Korea
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, 41944 Republic of Korea
- Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Wangsimniro 222-1, Daegu, 41944 Republic of Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Wangsimniro 222-1, Seoul, 04763 Republic of Korea
- Cell Therapy Center, Hanyang University Hospital, Wangsimniro 222-1, Seoul, 04763 Republic of Korea
| |
Collapse
|
6
|
Li S, Sakurai K, Ohgidani M, Kato TA, Hikida T. Ameliorative effects of Fingolimod (FTY720) on microglial activation and psychosis-related behavior in short term cuprizone exposed mice. Mol Brain 2023; 16:59. [PMID: 37438826 DOI: 10.1186/s13041-023-01047-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/21/2023] [Indexed: 07/14/2023] Open
Abstract
Schizophrenia is a psychiatric disorder that affects around 1% of the population in widespread populations, with severe cases leading to long-term hospitalization and necessitation of lifelong treatment. Recent studies on schizophrenia have highlighted the involvement of inflammatory and immunoregulatory mechanisms with the onset of symptoms, and the usage of anti-inflammatory treatments are being tested against periods of rapid psychosis. In the central nervous system, microglia are the innate immune population which are activated in response to a wide range of physical and psychological stress factors and produce proinflammatory mediators such as cytokines. Microglial activation and neuroinflammation has been associated to numerous psychiatric disorders including schizophrenia, especially during psychotic episodes. Thus, novel treatments which dampen microglial activation may be of great relevance in the treatment of psychiatric disorders. Fingolimod (FTY720) is a drug used as an immunosuppressive treatment to multiple sclerosis. Recent clinical trials have focused on FTY720 as a treatment for the behavioral symptoms in schizophrenia. However, the mechanisms of Fingolimod in treating the symptoms of schizophrenia are not clear. In this study we use a recently developed neuroinflammatory psychosis model in mice: cuprizone short-term exposure, to investigate the effects of FTY720 administration. FTY720 administration was able to completely alleviate methamphetamine hypersensitivity caused by cuprizone exposure. Moreover, administration of FTY720 improved multiple measures of neuroinflammation (microglial activation, cytokine production, and leucocyte infiltration). In conclusion, our results highlight the future use of FTY720 as a direct anti-inflammatory treatment against microglial activation and psychosis.
Collapse
Affiliation(s)
- Siyao Li
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Koki Sakurai
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| | - Masahiro Ohgidani
- Department of Functional Anatomy and Neuroscience, Asahikawa Medical University, Hokkaido, Japan
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
7
|
da Silva FER, Cordeiro RC, de Carvalho Lima CN, Cardozo PL, Vasconcelos GS, Monte AS, Sanders LLO, Vasconcelos SMM, de Lucena DF, Cruz BF, Nicolato R, Seeman MV, Ribeiro FM, Macedo DS. Sex and the Estrous-Cycle Phase Influence the Expression of G Protein-Coupled Estrogen Receptor 1 (GPER) in Schizophrenia: Translational Evidence for a New Target. Mol Neurobiol 2023; 60:3650-3663. [PMID: 36917419 DOI: 10.1007/s12035-023-03295-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023]
Abstract
Schizophrenia is a mental disorder with sex bias in disease onset and symptom severity. Recently, it was observed that females present more severe symptoms in the perimenstrual phase of the menstrual cycle. The administration of estrogen also alleviates schizophrenia symptoms. Despite this, little is known about symptom fluctuation over the menstrual cycle and the underlying mechanisms. To address this issue, we worked with the two-hit schizophrenia animal model induced by neonatal exposure to a virus-like particle, Poly I:C, associated with peripubertal unpredictable stress exposure. Prepulse inhibition of the startle reflex (PPI) in male and female mice was considered analogous to human schizophrenia-like behavior. Female mice were studied in the proestrus (high-estrogen estrous cycle phase) and diestrus (low-estrogen phase). Additionally, we evaluated the hippocampal mRNA expression of estrogen synthesis proteins; TSPO and aromatase; and estrogen receptors ERα, ERβ, and GPER. We also collected peripheral blood mononuclear cells (PBMCs) from male and female patients with schizophrenia and converted them to induced microglia-like cells (iMGs) to evaluate the expression of GPER. We observed raised hippocampal expression of GPER in two-hit female mice at the proestrus phase without PPI deficits and higher levels of proteins related to estrogen synthesis, TSPO, and aromatase. In contrast, two-hit adult males with PPI deficits presented lower hippocampal mRNA expression of TSPO, aromatase, and GPER. iMGs from male and female patients with schizophrenia showed lower mRNA expression of GPER than controls. Therefore, our results suggest that GPER alterations constitute an underlying mechanism for sex influence in schizophrenia.
Collapse
Affiliation(s)
- Francisco Eliclécio Rodrigues da Silva
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Cel. Nunes de Melo 1000, 60430-275, CE, Fortaleza, Brazil
| | - Rafaela Carneiro Cordeiro
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Cel. Nunes de Melo 1000, 60430-275, CE, Fortaleza, Brazil.,University of Texas Health Science Center at Houston, Houston, USA
| | - Camila N de Carvalho Lima
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Cel. Nunes de Melo 1000, 60430-275, CE, Fortaleza, Brazil.,University of Texas Health Science Center at Houston, Houston, USA
| | - Pablo Leal Cardozo
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Germana Silva Vasconcelos
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Cel. Nunes de Melo 1000, 60430-275, CE, Fortaleza, Brazil
| | - Aline Santos Monte
- Health Science Institute, University of International Integration of Afro-Brazilian Lusophony UNILAB, Redenção, Brazil
| | - Lia Lira Olivier Sanders
- Course of Medicine, Centro Universitário Christus-Unichristus, Fortaleza, Brazil.,Department of Clinical Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Silvânia Maria Mendes Vasconcelos
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Cel. Nunes de Melo 1000, 60430-275, CE, Fortaleza, Brazil
| | - David Freitas de Lucena
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Cel. Nunes de Melo 1000, 60430-275, CE, Fortaleza, Brazil
| | - Breno Fiuza Cruz
- Department of Mental Health, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo Nicolato
- Department of Mental Health, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mary V Seeman
- Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Fabíola Mara Ribeiro
- Department of Biochemistry and Immunology, Institute of Biological Sciences (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danielle S Macedo
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Rua Cel. Nunes de Melo 1000, 60430-275, CE, Fortaleza, Brazil. .,National Institute for Translational Medicine (INCT-TM, CNPq), São Paulo, Brazil.
| |
Collapse
|
8
|
You MJ, Rim C, Bang M, Sung S, Kim HJ, Lee SH, Kwon MS. A molecular characterization and clinical relevance of microglia-like cells derived from patients with panic disorder. Transl Psychiatry 2023; 13:48. [PMID: 36750547 PMCID: PMC9905570 DOI: 10.1038/s41398-023-02342-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023] Open
Abstract
Few studies report the microglia involvement in the pathogenesis of panic disorder (PD), although the crucial role of microglia in other neuropsychiatric diseases is being emphasized. In addition, there is no report to characterize the phenotypic and functional levels of PD patient-derived microglia to find their clinical relevance. Herein, we used a model to induce patient-derived microglia-like cells (iMGs) to clarify the molecular characteristics and function of PD-iMGs. We established iMGs from 17 PD patients and 16 healthy controls (non-psychiatric controls, HC). PD-iMGs showed increased T-cell death-associated gene-8 expression per the proposal of a previous in vivo study. In addition, we found that patient-derived iMGs showed reduced phagocytosis and increased TREM2 expression. We analyzed the phenotype of the PD-iMGs by RNA sequencing. The PD-iMGs clustered together distinct from HC-iMGs. Gene set enrichment analysis revealed the involvement of cholesterol biosynthesis and steroid metabolism in PD-iMGs. Regarding the cholesterol synthesis pathway, we discovered ACAT2 and DHCR7 as the most impacted genes related to a character of PD-iMGs compared to HC-iMGs. The ACAT2, a major cholesterol esterifier, was increased in PD-iMGs. Nevertheless, PD-iMGs did not show lipid droplet accumulation. Interestingly, ACAT2 expression was inversely correlated with the severity of depression and anxiety sensitivity to publicly observable anxiety reactions. We propose that microglia of PD patients have unique characteristics with dysregulation of cholesterol biosynthesis pathway and impaired phagocytosis, reflecting clinical phenotype.
Collapse
Affiliation(s)
- Min-Jung You
- grid.410886.30000 0004 0647 3511Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, Gyeonggi-do 13488 Republic of Korea
| | - Chan Rim
- grid.410886.30000 0004 0647 3511Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, Gyeonggi-do 13488 Republic of Korea
| | - Minji Bang
- grid.452398.10000 0004 0570 1076Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 13497 Republic of Korea
| | - Soyoung Sung
- grid.410886.30000 0004 0647 3511Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, Gyeonggi-do 13488 Republic of Korea
| | - Hui-Ju Kim
- grid.410886.30000 0004 0647 3511Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, Gyeonggi-do 13488 Republic of Korea
| | - Sang-Hyuk Lee
- Department of Psychiatry, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, 13497, Republic of Korea.
| | - Min-Soo Kwon
- Department of Pharmacology, Research Institute for Basic Medical Science, School of Medicine, CHA University, CHA BIO COMPLEX, 335 Pangyo, Bundang-Gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.
| |
Collapse
|
9
|
Warden AS, Han C, Hansen E, Trescott S, Nguyen C, Kim R, Schafer D, Johnson A, Wright M, Ramirez G, Lopez-Sanchez M, Coufal NG. Tools for studying human microglia: In vitro and in vivo strategies. Brain Behav Immun 2023; 107:369-382. [PMID: 36336207 PMCID: PMC9810377 DOI: 10.1016/j.bbi.2022.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/11/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Microglia may only represent 10% of central nervous system (CNS) cells but they perform critical roles in development, homeostasis and neurological disease. Microglia are also environmentally regulated, quickly losing their transcriptomic and epigenetic signature after leaving the CNS. This facet of microglia biology is both fascinating and technically challenging influencing the study of the genetics and function of human microglia in a manner that recapitulates the CNS environment. In this review we provide a comprehensive overview of existing in vitro and in vivo methodology to study human microglia, such as immortalized cells lines, stem cell-derived microglia, cerebral organoids and xenotransplantation. Since there is currently no single method that completely recapitulates all hallmarks of human ex vivo adult homeostatic microglia, we also discuss the advantages and limitations of each existing model as a practical guide for researchers.
Collapse
Affiliation(s)
- Anna S Warden
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Claudia Han
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emily Hansen
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samantha Trescott
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Celina Nguyen
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Roy Kim
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Danielle Schafer
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Avalon Johnson
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Madison Wright
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gabriela Ramirez
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark Lopez-Sanchez
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole G Coufal
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Boucher T, Liang S, Brown AM. Advancing basic and translational research to deepen understanding of the molecular immune-mediated mechanisms regulating long-term persistence of HIV-1 in microglia in the adult human brain. J Leukoc Biol 2022; 112:1223-1231. [PMID: 35612272 PMCID: PMC9613482 DOI: 10.1002/jlb.1mr0422-620r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/22/2022] [Indexed: 12/30/2022] Open
Abstract
Knowledge about the diversity microglia (MG) type and function in the rodent and human brain has advanced significantly in the last few years. Nevertheless, we have known for 40 years that MG, monocytes, and macrophages in the brain play crucial roles in the pathogenesis of the HIV-1 in all tissues. HIV enters and spreads in the brain early, long before the initiation of antiviral therapy. As a result, many people with HIV continue to experience neurologic and neuropsychiatric comorbid conditions collectively known as HIV-associated neurocognitive disorder (HAND). HIV pathogenic sequelae in the CNS pose a challenge for cure strategies. Detailed understanding at a mechanistic level of how low-level and latent HIV-1 infection in MG negatively impacts neuroglial function has remained somewhat elusive. Direct rigorous in vivo experimental validation that the virus can integrate into MG and assume a latent but reactivatable state has remained constrained. However, there is much excitement that human in vitro models for MG can now help close the gap. This review will provide a brief background to place the role of MG in the ongoing neurologic complications of HIV infection of the CNS, then focus on the use and refinement of human postmitotic monocyte-derived MG-like cells and how they are being applied to advance research on HIV persistence and proinflammatory signaling in the CNS. Critically, an understanding of myeloid plasticity and heterogeneity and rigorous attention to all aspects of cell handling is essential for reproducibility. Summary Sentence: This review focuses on human postmitotic monocyte-derived microglia-like cells as tools to advance research on HIV persistence and neuroinflammatory signaling.
Collapse
Affiliation(s)
- Thomas Boucher
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Shijun Liang
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Amanda M. Brown
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
11
|
Brisch R, Wojtylak S, Saniotis A, Steiner J, Gos T, Kumaratilake J, Henneberg M, Wolf R. The role of microglia in neuropsychiatric disorders and suicide. Eur Arch Psychiatry Clin Neurosci 2022; 272:929-945. [PMID: 34595576 PMCID: PMC9388452 DOI: 10.1007/s00406-021-01334-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
This narrative review examines the possible role of microglial cells, first, in neuroinflammation and, second, in schizophrenia, depression, and suicide. Recent research on the interactions between microglia, astrocytes and neurons and their involvement in pathophysiological processes of neuropsychiatric disorders is presented. This review focuses on results from postmortem, positron emission tomography (PET) imaging studies, and animal models of schizophrenia and depression. Third, the effects of antipsychotic and antidepressant drug therapy, and of electroconvulsive therapy on microglial cells are explored and the upcoming development of therapeutic drugs targeting microglia is described. Finally, there is a discussion on the role of microglia in the evolutionary progression of human lineage. This view may contribute to a new understanding of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ralf Brisch
- Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Szymon Wojtylak
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Arthur Saniotis
- Department of Anthropology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- Department of Pharmacy, Knowledge University, Erbil, Kurdistan Region, Iraq
| | - Johann Steiner
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University, Magdeburg, Germany
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Jaliya Kumaratilake
- Biological Anthropology and Comparative Anatomy Research Unit, Medical School, The University of Adelaide, Adelaide, Australia
| | - Maciej Henneberg
- Biological Anthropology and Comparative Anatomy Research Unit, Medical School, The University of Adelaide, Adelaide, Australia
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Rainer Wolf
- Department of Nursing and Health, Hochschule Fulda, University of Applied Sciences, Fulda, Germany.
| |
Collapse
|
12
|
Cuní-López C, Stewart R, Quek H, White AR. Recent Advances in Microglia Modelling to Address Translational Outcomes in Neurodegenerative Diseases. Cells 2022; 11:cells11101662. [PMID: 35626698 PMCID: PMC9140031 DOI: 10.3390/cells11101662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are deteriorating conditions of the nervous system that are rapidly increasing in the aging population. Increasing evidence suggests that neuroinflammation, largely mediated by microglia, the resident immune cells of the brain, contributes to the onset and progression of neurodegenerative diseases. Hence, microglia are considered a major therapeutic target that could potentially yield effective disease-modifying treatments for neurodegenerative diseases. Despite the interest in studying microglia as drug targets, the availability of cost-effective, flexible, and patient-specific microglia cellular models is limited. Importantly, the current model systems do not accurately recapitulate important pathological features or disease processes, leading to the failure of many therapeutic drugs. Here, we review the key roles of microglia in neurodegenerative diseases and provide an update on the current microglia platforms utilised in neurodegenerative diseases, with a focus on human microglia-like cells derived from peripheral blood mononuclear cells as well as human-induced pluripotent stem cells. The described microglial platforms can serve as tools for investigating disease biomarkers and improving the clinical translatability of the drug development process in neurodegenerative diseases.
Collapse
Affiliation(s)
- Carla Cuní-López
- Cell & Molecular Biology Department, Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (C.C.-L.); (R.S.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Romal Stewart
- Cell & Molecular Biology Department, Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (C.C.-L.); (R.S.)
- UQ Centre for Clinical Research, The University of Queensland, Royal Brisbane & Women’s Hospital, Brisbane, QLD 4006, Australia
| | - Hazel Quek
- Cell & Molecular Biology Department, Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (C.C.-L.); (R.S.)
- Correspondence: (H.Q.); (A.R.W.)
| | - Anthony R. White
- Cell & Molecular Biology Department, Mental Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (C.C.-L.); (R.S.)
- Correspondence: (H.Q.); (A.R.W.)
| |
Collapse
|
13
|
Smit T, Ormel PR, Sluijs JA, Hulshof LA, Middeldorp J, de Witte LD, Hol EM, Donega V. Transcriptomic and functional analysis of Aβ 1-42 oligomer-stimulated human monocyte-derived microglia-like cells. Brain Behav Immun 2022; 100:219-230. [PMID: 34896594 DOI: 10.1016/j.bbi.2021.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/19/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of microglial function contributes to Alzheimer's disease (AD) pathogenesis. Several genetic and transcriptome studies have revealed microglia specific genetic risk factors, and changes in microglia expression profiles in AD pathogenesis, viz. the human-Alzheimer's microglia/myeloid (HAM) profile in AD patients and the disease-associated microglia profile (DAM) in AD mouse models. The transcriptional changes involve genes in immune and inflammatory pathways, and in pathways associated with Aβ clearance. Aβ oligomers have been suggested to be the initial trigger of microglia activation in AD. To study the direct response to Aβ oligomers exposure, we assessed changes in gene expression in an in vitro model for microglia, the human monocyte-derived microglial-like (MDMi) cells. We confirmed the initiation of an inflammatory profile following LPS stimulation, based on increased expression of IL1B, IL6, and TNFα. In contrast, the Aβ1-42 oligomers did not induce an inflammatory profile or a classical HAM profile. Interestingly, we observed a specific increase in the expression of metallothioneins in the Aβ1-42 oligomer treated MDMi cells. Metallothioneins are involved in metal ion regulation, protection against reactive oxygen species, and have anti-inflammatory properties. In conclusion, our data suggests that exposure to Aβ1-42 oligomers may initially trigger a protective response in vitro.
Collapse
Affiliation(s)
- Tamar Smit
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Paul R Ormel
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Jacqueline A Sluijs
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Lianne A Hulshof
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands.
| | - Vanessa Donega
- Department of Translational Neuroscience, Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
14
|
Yoo HJ, Kwon MS. Aged Microglia in Neurodegenerative Diseases: Microglia Lifespan and Culture Methods. Front Aging Neurosci 2022; 13:766267. [PMID: 35069173 PMCID: PMC8766407 DOI: 10.3389/fnagi.2021.766267] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Microglia have been recognized as macrophages of the central nervous system (CNS) that are regarded as a culprit of neuroinflammation in neurodegenerative diseases. Thus, microglia have been considered as a cell that should be suppressed for maintaining a homeostatic CNS environment. However, microglia ontogeny, fate, heterogeneity, and their function in health and disease have been defined better with advances in single-cell and imaging technologies, and how to maintain homeostatic microglial function has become an emerging issue for targeting neurodegenerative diseases. Microglia are long-lived cells of yolk sac origin and have limited repopulating capacity. So, microglial perturbation in their lifespan is associated with not only neurodevelopmental disorders but also neurodegenerative diseases with aging. Considering that microglia are long-lived cells and may lose their functional capacity as they age, we can expect that aged microglia contribute to various neurodegenerative diseases. Thus, understanding microglial development and aging may represent an opportunity for clarifying CNS disease mechanisms and developing novel therapies.
Collapse
Affiliation(s)
- Hyun-Jung Yoo
- Department of Pharmacology, School of Medicine, Research Institute for Basic Medical Science, CHA University, Cha Bio Complex, Seongnam-si, South Korea
- Research Competency Milestones Program (RECOMP) of School of Medicine, CHA University, Seongnam-si, South Korea
| | - Min-Soo Kwon
- Department of Pharmacology, School of Medicine, Research Institute for Basic Medical Science, CHA University, Cha Bio Complex, Seongnam-si, South Korea
- *Correspondence: Min-Soo Kwon,
| |
Collapse
|
15
|
Otsuka R, Wada H, Seino KI. IL-34, the rationale of its expression in physiological and pathological condition. Semin Immunol 2021; 54:101517. [PMID: 34774392 DOI: 10.1016/j.smim.2021.101517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/23/2021] [Indexed: 10/19/2022]
Abstract
IL-34 is a cytokine that shares one of its receptors with CSF-1. It has long been thought that CSF-1 receptor (CSF-1R) receives signals only from CSF-1, but the identification of IL-34 reversed this stereotype. Regardless of low structural homology, IL-34 and CSF-1 emanate similar downstream signaling through binding to CSF-1R and provoke similar but different physiological events afterward. In addition to CSF-1R, protein-tyrosine phosphatase (PTP)-ζ and Syndecan-1 were also identified as IL-34 receptors and shown to be at play. Although IL-34 expression is limited to particular tissues in physiological conditions, previous studies have revealed that it is upregulated in several diseases. In cancer, IL-34 is produced by several types of tumor cells and contributes to therapy resistance and disease progression. A recent study has demonstrated that tumor cell-derived IL-34 abrogates immunotherapy efficacy through myeloid cell remodeling. On the other hand, IL-34 expression is downregulated in some brain and dermal disorders. Despite accumulating insights, our understanding of IL-34 may not be even close to its nature. This review aims to comprehensively describe the physiological and pathological roles of IL-34 based on its similarity and differences to CSF-1 and discuss the rationale for its disease-dependent expression pattern.
Collapse
Affiliation(s)
- Ryo Otsuka
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Hokkaido, 060-0815, Japan
| | - Haruka Wada
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Hokkaido, 060-0815, Japan
| | - Ken-Ichiro Seino
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Sapporo, Hokkaido, 060-0815, Japan.
| |
Collapse
|
16
|
Tanaka S, Ohgidani M, Hata N, Inamine S, Sagata N, Shirouzu N, Mukae N, Suzuki SO, Hamasaki H, Hatae R, Sangatsuda Y, Fujioka Y, Takigawa K, Funakoshi Y, Iwaki T, Hosoi M, Iihara K, Mizoguchi M, Kato TA. CD206 Expression in Induced Microglia-Like Cells From Peripheral Blood as a Surrogate Biomarker for the Specific Immune Microenvironment of Neurosurgical Diseases Including Glioma. Front Immunol 2021; 12:670131. [PMID: 34267749 PMCID: PMC8276757 DOI: 10.3389/fimmu.2021.670131] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023] Open
Abstract
Targeting the unique glioma immune microenvironment is a promising approach in developing breakthrough immunotherapy treatments. However, recent advances in immunotherapy, including the development of immune checkpoint inhibitors, have not improved the outcomes of patients with glioma. A way of monitoring biological activity of immune cells in neural tissues affected by glioma should be developed to address this lack of sensitivity to immunotherapy. Thus, in this study, we sought to examine the feasibility of non-invasive monitoring of glioma-associated microglia/macrophages (GAM) by utilizing our previously developed induced microglia-like (iMG) cells. Primary microglia (pMG) were isolated from surgically obtained brain tissues of 22 patients with neurological diseases. iMG cells were produced from monocytes extracted from the patients’ peripheral blood. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed a significant correlation of the expression levels of representative markers for M1 and M2 microglia phenotypes between pMG and the corresponding iMG cells in each patient (Spearman’s correlation coefficient = 0.5225, P <0.0001). Synchronous upregulation of CD206 expression levels was observed in most patients with glioma (6/9, 66.7%) and almost all patients with glioblastoma (4/5, 80%). Therefore, iMG cells can be used as a minimally invasive tool for monitoring the disease-related immunological state of GAM in various brain diseases, including glioma. CD206 upregulation detected in iMG cells can be used as a surrogate biomarker of glioma.
Collapse
Affiliation(s)
- Shunya Tanaka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shogo Inamine
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriaki Sagata
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noritoshi Shirouzu
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobutaka Mukae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi O Suzuki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideomi Hamasaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Takigawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Funakoshi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toru Iwaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masako Hosoi
- Department of Psychosomatic Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Koji Iihara
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
17
|
Rocha NP, Charron O, Latham LB, Colpo GD, Zanotti-Fregonara P, Yu M, Freeman L, Furr Stimming E, Teixeira AL. Microglia Activation in Basal Ganglia Is a Late Event in Huntington Disease Pathophysiology. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:e984. [PMID: 33795375 PMCID: PMC8017723 DOI: 10.1212/nxi.0000000000000984] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To define the role played by microglia in different stages of Huntington disease (HD), we used the TSPO radioligand [11C]-ER176 and PET to evaluate microglial activation in relation to neurodegeneration and in relation to the clinical features seen at premanifest and manifest stages of the disease. METHODS This is a cross-sectional study in which 18 subjects (6 controls, 6 premanifest, and 6 manifest HD gene carriers) underwent a [11C]-ER176 PET scan and an MRI for anatomic localization. Segmentation of regions of interest (ROIs) was performed, and group differences in [11C]-ER176 binding (used to evaluate the extent of microglial activation) were assessed by the standardized uptake value ratio (SUVR). Microglial activation was correlated with ROIs volumes, disease burden, and the scores obtained in the clinical scales. As an exploratory aim, we evaluated the dynamic functions of microglia in vitro, by using induced microglia-like (iMG) cells from peripheral blood monocytes. RESULTS Individuals with manifest HD present higher [11C]-ER176 SUVR in both globi pallidi and putamina in comparison with controls. No differences were observed when we compared premanifest HD with controls or with manifest HD. We also found a significant correlation between increased microglial activation and cumulative disease burden, and with reduced volumes. iMG from controls, premanifest HD, and manifest HD patients showed similar phagocytic capacity. CONCLUSIONS Altogether, our data demonstrate that microglial activation is involved in HD pathophysiology and is associated with disease progression.
Collapse
Affiliation(s)
- Natalia P. Rocha
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders (N.P.R.), Department of Neurology, McGovern Medical School, The University of Texas Health Science Center, Houston; Department of Neurology (O.C., L.F.), The University of Texas at Austin; School of Medicine (L.B.L.), University of Washington, Seattle; Neuropsychiatry Program (G.D.C., A.L.T.), Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas, Houston; Houston Methodist Research Institute and Weill Cornell Medicine (P.Z.-F., M.Y.), TX; and HDSA Center of Excellence at University of Texas Health Science Center at Houston (E.F.S.)
| | - Odelin Charron
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders (N.P.R.), Department of Neurology, McGovern Medical School, The University of Texas Health Science Center, Houston; Department of Neurology (O.C., L.F.), The University of Texas at Austin; School of Medicine (L.B.L.), University of Washington, Seattle; Neuropsychiatry Program (G.D.C., A.L.T.), Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas, Houston; Houston Methodist Research Institute and Weill Cornell Medicine (P.Z.-F., M.Y.), TX; and HDSA Center of Excellence at University of Texas Health Science Center at Houston (E.F.S.)
| | - Leigh B. Latham
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders (N.P.R.), Department of Neurology, McGovern Medical School, The University of Texas Health Science Center, Houston; Department of Neurology (O.C., L.F.), The University of Texas at Austin; School of Medicine (L.B.L.), University of Washington, Seattle; Neuropsychiatry Program (G.D.C., A.L.T.), Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas, Houston; Houston Methodist Research Institute and Weill Cornell Medicine (P.Z.-F., M.Y.), TX; and HDSA Center of Excellence at University of Texas Health Science Center at Houston (E.F.S.)
| | - Gabriela D. Colpo
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders (N.P.R.), Department of Neurology, McGovern Medical School, The University of Texas Health Science Center, Houston; Department of Neurology (O.C., L.F.), The University of Texas at Austin; School of Medicine (L.B.L.), University of Washington, Seattle; Neuropsychiatry Program (G.D.C., A.L.T.), Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas, Houston; Houston Methodist Research Institute and Weill Cornell Medicine (P.Z.-F., M.Y.), TX; and HDSA Center of Excellence at University of Texas Health Science Center at Houston (E.F.S.)
| | - Paolo Zanotti-Fregonara
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders (N.P.R.), Department of Neurology, McGovern Medical School, The University of Texas Health Science Center, Houston; Department of Neurology (O.C., L.F.), The University of Texas at Austin; School of Medicine (L.B.L.), University of Washington, Seattle; Neuropsychiatry Program (G.D.C., A.L.T.), Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas, Houston; Houston Methodist Research Institute and Weill Cornell Medicine (P.Z.-F., M.Y.), TX; and HDSA Center of Excellence at University of Texas Health Science Center at Houston (E.F.S.)
| | - Meixiang Yu
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders (N.P.R.), Department of Neurology, McGovern Medical School, The University of Texas Health Science Center, Houston; Department of Neurology (O.C., L.F.), The University of Texas at Austin; School of Medicine (L.B.L.), University of Washington, Seattle; Neuropsychiatry Program (G.D.C., A.L.T.), Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas, Houston; Houston Methodist Research Institute and Weill Cornell Medicine (P.Z.-F., M.Y.), TX; and HDSA Center of Excellence at University of Texas Health Science Center at Houston (E.F.S.)
| | - Leorah Freeman
- From the Mitchell Center for Alzheimer's Disease and Related Brain Disorders (N.P.R.), Department of Neurology, McGovern Medical School, The University of Texas Health Science Center, Houston; Department of Neurology (O.C., L.F.), The University of Texas at Austin; School of Medicine (L.B.L.), University of Washington, Seattle; Neuropsychiatry Program (G.D.C., A.L.T.), Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas, Houston; Houston Methodist Research Institute and Weill Cornell Medicine (P.Z.-F., M.Y.), TX; and HDSA Center of Excellence at University of Texas Health Science Center at Houston (E.F.S.)
| | | | | |
Collapse
|
18
|
Freuchet A, Salama A, Remy S, Guillonneau C, Anegon I. IL-34 and CSF-1, deciphering similarities and differences at steady state and in diseases. J Leukoc Biol 2021; 110:771-796. [PMID: 33600012 DOI: 10.1002/jlb.3ru1120-773r] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Although IL-34 and CSF-1 share actions as key mediators of monocytes/macrophages survival and differentiation, they also display differences that should be identified to better define their respective roles in health and diseases. IL-34 displays low sequence homology with CSF-1 but has a similar general structure and they both bind to a common receptor CSF-1R, although binding and subsequent intracellular signaling shows differences. CSF-1R expression has been until now mainly described at a steady state in monocytes/macrophages and myeloid dendritic cells, as well as in some cancers. IL-34 has also 2 other receptors, protein-tyrosine phosphatase zeta (PTPζ) and CD138 (Syndecan-1), expressed in some epithelium, cells of the central nervous system (CNS), as well as in numerous cancers. While most, if not all, of CSF-1 actions are mediated through monocyte/macrophages, IL-34 has also other potential actions through PTPζ and CD138. Additionally, IL-34 and CSF-1 are produced by different cells in different tissues. This review describes and discusses similarities and differences between IL-34 and CSF-1 at steady state and in pathological situations and identifies possible ways to target IL-34, CSF-1, and its receptors.
Collapse
Affiliation(s)
- Antoine Freuchet
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Apolline Salama
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Séverine Remy
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Carole Guillonneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
19
|
Wu WY, Liu Y, Wu MC, Wang HW, Chu CP, Jin H, Li YZ, Qiu DL. Corticotrophin-Releasing Factor Modulates the Facial Stimulation-Evoked Molecular Layer Interneuron-Purkinje Cell Synaptic Transmission in vivo in Mice. Front Cell Neurosci 2020; 14:563428. [PMID: 33324165 PMCID: PMC7726213 DOI: 10.3389/fncel.2020.563428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/22/2020] [Indexed: 11/21/2022] Open
Abstract
Corticotropin-releasing factor (CRF) is an important neuromodulator in central nervous system that modulates neuronal activity via its receptors during stress responses. In cerebellar cortex, CRF modulates the simple spike (SS) firing activity of Purkinje cells (PCs) has been previously demonstrated, whereas the effect of CRF on the molecular layer interneuron (MLI)–PC synaptic transmission is still unknown. In this study, we examined the effect of CRF on the facial stimulation–evoked cerebellar cortical MLI-PC synaptic transmission in urethane-anesthetized mice by in vivo cell-attached recording, neurobiotin juxtacellular labeling, immunohistochemistry techniques, and pharmacological method. Cell-attached recordings from cerebellar PCs showed that air-puff stimulation of ipsilateral whisker pad evoked a sequence of tiny parallel fiber volley (N1) followed by MLI-PC synaptic transmission (P1). Microapplication of CRF in cerebellar cortical molecular layer induced increases in amplitude of P1 and pause of SS firing. The CRF decreases in amplitude of P1 waveform were in a dose-dependent manner with the EC50 of 241 nM. The effects of CRF on amplitude of P1 and pause of SS firing were abolished by either a non-selective CRF receptor antagonist, α-helical CRF-(9-14), or a selective CRF-R1 antagonist, BMS-763534 (BMS, 200 nM), but were not prevented by a selective CRF-R2 antagonist, antisauvagine-30 (200 nM). Notably, application CRF not only induced a significant increase in spontaneous spike firing rate, but also produced a significant increase in the number of the facial stimulation–evoked action potential in MLIs. The effect of CRF on the activity of MLIs was blocked by the selective CRF-R1 antagonist, and the MLIs expressed the CRF-R1 imunoreactivity. These results indicate that CRF increases excitability of MLIs via CRF-R1, resulting in an enhancement of the facial stimulation–evoked MLI-PC synaptic transmission in vivo in mice.
Collapse
Affiliation(s)
- Wen-Yuan Wu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China.,Brain Science Research Center, Yanbian University, Yanji, China.,Department of Urology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yang Liu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China.,Brain Science Research Center, Yanbian University, Yanji, China
| | - Mao-Cheng Wu
- Department of Osteology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Hong-Wei Wang
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Chun-Ping Chu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China.,Brain Science Research Center, Yanbian University, Yanji, China
| | - Hua Jin
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Nephrology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yu-Zi Li
- Brain Science Research Center, Yanbian University, Yanji, China.,Department of Cardiology, Affiliated Hospital of Yanbian University, Yanji, China
| | - De-Lai Qiu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji, China.,Brain Science Research Center, Yanbian University, Yanji, China
| |
Collapse
|
20
|
Quarta A, Berneman Z, Ponsaerts P. Functional consequences of a close encounter between microglia and brain-infiltrating monocytes during CNS pathology and repair. J Leukoc Biol 2020; 110:89-106. [PMID: 33155726 DOI: 10.1002/jlb.3ru0820-536r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation is recognized as an important factor contributing to the development and progression of several central nervous system (CNS) disorders. Upon CNS trauma or disease, parenchymal microglia highly proliferate and accumulate in and around the lesion site. In addition, blood-derived monocytes can infiltrate the inflamed CNS in response to cellular damage and/or a compromised blood-brain barrier. Both microglia and infiltrating monocytes are characterized by multiple functional states and can either display highly proinflammatory properties or promote resolution of inflammation and tissue regeneration. Despite sharing some basic immunologic functions, microglia and monocytes display many distinctive features, which ultimately define their contribution to neuropathology. Understanding how the innate immune system participates to brain disease is imperative to identify novel treatment options for CNS inflammatory disorders. In this context, existing and newly developed in vitro platforms for disease modeling are fundamental tools to investigate and modulate microglia and monocyte immune functions within a specific neuropathologic context. In this review, we first briefly summarize the current knowledge on microglia and monocyte ontogenesis, as well as their complex and interconnected contributions to the development of various CNS pathologies. Following the well-recognized concept that both microglia and monocytes can either exert neuroprotective functions or exacerbate tissue damage, we provide a comprehensive overview of cellular models currently available for in vitro study of neuroinflammatory responses. In this context, we highlight how simplified single-cell models may not always correctly recapitulate in vivo biology, hence future research should move toward novel models with higher and multicellular complexity.
Collapse
Affiliation(s)
- Alessandra Quarta
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Zwi Berneman
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
21
|
Microglia as possible therapeutic targets for autism spectrum disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 167:223-245. [PMID: 31601405 DOI: 10.1016/bs.pmbts.2019.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malfunctions of the nervous and immune systems are now recognized to be fundamental causes of autism spectrum disorders (ASDs). Studies have suggested that the brain's resident immune cells, microglia are possible key players in ASDs. Specifically, deficits in synaptic pruning by microglia may underlie the pathogenesis of ASDs, in which excess synapses are occasionally reported. This idea has driven researchers to investigate causal links between microglial dysfunction and ASDs. In this review, we first introduce the characteristics of microglia in ASD brains and discuss their possible roles in the pathogenesis of ASDs. We also refer to immunomodulatory agents that could be potentially used as symptomatic therapies for ASDs in light of their ability to modify microglial functions. Finally, we will mention a possible strategy to radically cure some of the symptoms reported in ASDs through reorganizing neural circuits via microglia-dependent synaptic pruning.
Collapse
|
22
|
Ge Y, Huang M, Zhu XM, Yao YM. Biological functions and clinical implications of interleukin-34 in inflammatory diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 119:39-63. [PMID: 31997772 DOI: 10.1016/bs.apcsb.2019.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Interleukin (IL)-34 is a recently discovered cytokine and ligand of the colony-stimulating factor (CSF)-1 receptor. Although CSF-1 and IL-34 share similar biological properties, their expression patterns and downstream signaling pathways are distinct. IL-34 can influence differentiation and has functions in multiple cell types (e.g., dendritic cells, monocytes, macrophages). In the pathological conditions, IL-34 is induced by pro-inflammatory stimuli (e.g., cytokines, pathogen-associated molecular patterns, and infection). Current evidence shows that IL-34 is a critical player in inflammatory response and is involved in the pathogenesis of inflammatory autoimmune dysfunction. Therefore, IL-34 may be a promising clinical biomarker and therapeutic target for treating inflammatory related disorders. In this article, we review the advances in biological functions of IL-34 and our understanding of its role in the development of inflammatory diseases as well as therapeutic applications.
Collapse
Affiliation(s)
- Yun Ge
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Man Huang
- Department of General Intensive Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China
| | - Xiao-Mei Zhu
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China
| | - Yong-Ming Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100048, China
| |
Collapse
|
23
|
Suzuki H, Ohgidani M, Kuwano N, Chrétien F, Lorin de la Grandmaison G, Onaya M, Tominaga I, Setoyama D, Kang D, Mimura M, Kanba S, Kato TA. Suicide and Microglia: Recent Findings and Future Perspectives Based on Human Studies. Front Cell Neurosci 2019; 13:31. [PMID: 30814929 PMCID: PMC6381042 DOI: 10.3389/fncel.2019.00031] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/22/2019] [Indexed: 12/21/2022] Open
Abstract
Suicide is one of the most disastrous outcomes for psychiatric disorders. Recent advances in biological psychiatry have suggested a positive relationship between some specific brain abnormalities and specific symptoms in psychiatric disorders whose organic bases were previously completely unknown. Microglia, immune cells in the brain, are regarded to play crucial roles in brain inflammation by releasing inflammatory mediators and are suggested to contribute to various psychiatric disorders such as depression and schizophrenia. Recently, activated microglia have been suggested to be one of the possible contributing cells to suicide and suicidal behaviors via various mechanisms especially including the tryptophan-kynurenine pathway. Animal model research focusing on psychiatric disorders has a long history, however, there are only limited animal models that can properly express psychiatric symptoms. In particular, to our knowledge, animal models of human suicidal behaviors have not been established. Suicide is believed to be limited to humans, therefore human subjects should be the targets of research despite various ethical and technical limitations. From this perspective, we introduce human biological studies focusing on suicide and microglia. We first present neuropathological studies using the human postmortem brain of suicide victims. Second, we show recent findings based on positron emission tomography (PET) imaging and peripheral blood biomarker analysis on living subjects with suicidal ideation and/or suicide-related behaviors especially focusing on the tryptophan-kynurenine pathway. Finally, we propose future perspectives and tasks to clarify the role of microglia in suicide using multi-dimensional analytical methods focusing on human subjects with suicidal ideation, suicide-related behaviors and suicide victims.
Collapse
Affiliation(s)
- Hisaomi Suzuki
- National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuki Kuwano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fabrice Chrétien
- Neuropathology Department, Sainte-Anne Hospital, Paris, France.,Human Histopathology and Animal Models Laboratory, Institute Pasteur, Paris, France
| | | | - Mitsumoto Onaya
- National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan
| | - Itaru Tominaga
- National Hospital Organization Shimofusa Psychiatric Medical Center, Chiba, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
24
|
van Hugte E, Nadif Kasri N. Modeling Psychiatric Diseases with Induced Pluripotent Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1192:297-312. [PMID: 31705501 DOI: 10.1007/978-981-32-9721-0_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuropsychiatric disorders are a heterogeneous group of disorders that are challenging to model and treat, due to their underlying complex genetic architecture and clinical variability. Presently, increasingly more studies are making use of induced pluripotent stem cell (iPSC)-derived neurons, reprogrammed from patient somatic cells, to model neuropsychiatric disorders. iPSC-derived neurons offer the possibility to recapitulate relevant disease biology in the context of the individual patient genetic background. In addition to disease modeling, iPSC-derived neurons offer unprecedented opportunities in drug screening. In this chapter, the current status of iPSC disease modeling for neuropsychiatric disorders is presented. Both 2D and 3D disease modeling approaches are discussed as well as the generation of different neuronal cell types that are relevant for studying neuropsychiatric disorders. Moreover, the advantages and limitations are highlighted in addition to the future perspectives of using iPSC-derived neurons in the uncovering of robust cellular phenotypes that consecutively have the potential to lead to clinical developments.
Collapse
Affiliation(s)
- Eline van Hugte
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB, Nijmegen, The Netherlands
- Academic Center for Epileptology Kempenhaeghe, Heeze, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition, and Behaviour, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| |
Collapse
|
25
|
Ryan KJ, White CC, Patel K, Xu J, Olah M, Replogle JM, Frangieh M, Cimpean M, Winn P, McHenry A, Kaskow BJ, Chan G, Cuerdon N, Bennett DA, Boyd JD, Imitola J, Elyaman W, De Jager PL, Bradshaw EM. A human microglia-like cellular model for assessing the effects of neurodegenerative disease gene variants. Sci Transl Med 2018; 9:9/421/eaai7635. [PMID: 29263232 DOI: 10.1126/scitranslmed.aai7635] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 04/12/2017] [Accepted: 08/18/2017] [Indexed: 12/25/2022]
Abstract
Microglia are emerging as a key cell type in neurodegenerative diseases, yet human microglia are challenging to study in vitro. We developed an in vitro cell model system composed of human monocyte-derived microglia-like (MDMi) cells that recapitulated key aspects of microglia phenotype and function. We then used this model system to perform an expression quantitative trait locus (eQTL) study examining 94 genes from loci associated with Alzheimer's disease, Parkinson's disease, and multiple sclerosis. We found six loci (CD33, PILRB, NUP160, LRRK2, RGS1, and METTL21B) in which the risk haplotype drives the association with both disease susceptibility and altered expression of a nearby gene (cis-eQTL). In the PILRB and LRRK2 loci, the cis-eQTL was found in the MDMi cells but not in human peripheral blood monocytes, suggesting that differentiation of monocytes into microglia-like cells led to the acquisition of a cellular state that could reveal the functional consequences of certain genetic variants. We further validated the effect of risk haplotypes at the protein level for PILRB and CD33, and we confirmed that the CD33 risk haplotype altered phagocytosis by the MDMi cells. We propose that increased LRRK2 gene expression by MDMi cells could be a functional outcome of rs76904798, a single-nucleotide polymorphism in the LRKK2 locus that is associated with Parkinson's disease.
Collapse
Affiliation(s)
- Katie J Ryan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Charles C White
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Kruti Patel
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Jishu Xu
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Marta Olah
- Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA.,Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Joseph M Replogle
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Michael Frangieh
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Maria Cimpean
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Phoebe Winn
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Allison McHenry
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Belinda J Kaskow
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Gail Chan
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Nicole Cuerdon
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Program in Translational NeuroPsychiatric Genomics, Institute for the Neurosciences, Departments of Neurology and Psychiatry, Brigham and Women's Hospital, 77 Avenue Louis Pasteur, NRB168, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA.,Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Justin D Boyd
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Jaime Imitola
- Laboratory of Neural Stem Cells and Functional Neurogenetics, Departments of Neurology and Neuroscience, The Ohio State University College of Medicine, 333 West 10th Avenue, Columbus, OH 43210, USA
| | - Wassim Elyaman
- Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA.,Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Philip L De Jager
- Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA.,Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Elizabeth M Bradshaw
- Program in Medical and Population Genetics, Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA. .,Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
26
|
Kanazawa M, Ninomiya I, Hatakeyama M, Takahashi T, Shimohata T. Microglia and Monocytes/Macrophages Polarization Reveal Novel Therapeutic Mechanism against Stroke. Int J Mol Sci 2017; 18:ijms18102135. [PMID: 29027964 PMCID: PMC5666817 DOI: 10.3390/ijms18102135] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 12/12/2022] Open
Abstract
Stroke is a leading cause of morbidity and mortality worldwide, and consists of two types, ischemic and hemorrhagic. Currently, there is no effective treatment to increase the survival rate or improve the quality of life after ischemic and hemorrhagic stroke in the subacute to chronic phases. Therefore, it is necessary to establish therapeutic strategies to facilitate functional recovery in patients with stroke during both phases. Cell-based therapies, using microglia and monocytes/macrophages preconditioned by optimal stimuli and/or any therapies targeting these cells, might be an ideal therapeutic strategy for managing stroke. Microglia and monocytes/macrophages polarize to the classic pro-inflammatory type (M1-like) or alternative protective type (M2-like) by optimal condition. Cell-based therapies using M2-like microglia and monocytes/macrophages might be protective therapeutic strategies against stroke for three reasons. First, M2-like microglia and monocytes/monocytes secrete protective remodeling factors, thus prompting neuronal network recovery via tissue (including neuronal) and vascular remodeling. Second, these cells could migrate to the injured hemisphere through the blood–brain barrier or choroid–plexus. Third, these cells could mitigate the extent of inflammation-induced injuries by suitable timing of therapeutic intervention. Although future translational studies are required, M2-like microglia and monocytes/macrophages therapies are attractive for managing stroke based on their protective functions.
Collapse
Affiliation(s)
- Masato Kanazawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan.
| | - Itaru Ninomiya
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan.
| | - Masahiro Hatakeyama
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan.
| | - Tetsuya Takahashi
- Department of Neurology, Niishi-Niigata Chuo Hospital, Niigata 950-2085, Japan.
| | - Takayoshi Shimohata
- Department of Neurology and Geriatrics, Gifu University Graduate School of Medicine, Gifu 501-1193, Japan.
| |
Collapse
|
27
|
Fibromyalgia and microglial TNF-α: Translational research using human blood induced microglia-like cells. Sci Rep 2017; 7:11882. [PMID: 28928366 PMCID: PMC5605512 DOI: 10.1038/s41598-017-11506-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/24/2017] [Indexed: 12/22/2022] Open
Abstract
Fibromyalgia is a refractory disease characterized by chronic intractable pain and psychological suffering, the cause of which has not yet been elucidated due to its complex pathology. Activation of immune cells in the brain called microglia has attracted attention as a potential underlying pathological mechanism in chronic pain. Until recently, however, technological and ethical considerations have limited the ability to conduct research using human microglia. To overcome this limitation, we have recently developed a technique to create human-induced microglia-like (iMG) cells from human peripheral blood monocytes. In this study, we created the iMG cells from 14 patients with fibromyalgia and 10 healthy individuals, and compared the activation of iMG cells between two groups at the cellular level. The expression of tumor necrosis factor (TNF)-α at mRNA and protein levels significantly increased in ATP-stimulated iMG cells from patients with fibromyalgia compared to cells from healthy individuals. Interestingly, there was a moderate correlation between ATP-induced upregulation of TNF-α expression and clinical parameters of subjective pain and other mental manifestations of fibromyalgia. These findings suggest that microglia in patients with fibromyalgia are hypersensitive to ATP. TNF-α from microglia may be a key factor underlying the complex pathology of fibromyalgia.
Collapse
|
28
|
Watmuff B, Liu B, Karmacharya R. Stem cell-derived neurons in the development of targeted treatment for schizophrenia and bipolar disorder. Pharmacogenomics 2017; 18:471-479. [PMID: 28346060 DOI: 10.2217/pgs-2016-0187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The recent advent of induced pluripotent stem cells has enabled the study of patient-specific and disease-related neurons in vitro and has facilitated new directions of inquiry into disease mechanisms. With these approaches, we now have the possibility of correlating ex vivo cellular phenotypes with individual patient response to treatment and/or side effects, which makes targeted treatments for schizophrenia and bipolar disorder a distinct prospect in the coming years. Here, we briefly review the current state of stem cell-based models and explore studies that are providing new insights into the disease biology of schizophrenia and bipolar disorder, which are laying the foundations for the development of novel targeted therapies.
Collapse
Affiliation(s)
- Bradley Watmuff
- Center for Experimental Drugs & Diagnostics, Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Harvard Medical School & Massachusetts General Hospital, Boston, MA 02114, USA.,Chemical Biology Program, Broad Institute of Harvard & MIT, Cambridge, MA 02142, USA
| | - Bangyan Liu
- Center for Experimental Drugs & Diagnostics, Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Harvard Medical School & Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rakesh Karmacharya
- Center for Experimental Drugs & Diagnostics, Psychiatric & Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Harvard Medical School & Massachusetts General Hospital, Boston, MA 02114, USA.,Chemical Biology Program, Broad Institute of Harvard & MIT, Cambridge, MA 02142, USA.,Schizophrenia & Bipolar Disorder Program, McLean Hospital, Belmont, MA 02478, USA
| |
Collapse
|
29
|
Ohgidani M, Kato TA, Haraguchi Y, Matsushima T, Mizoguchi Y, Murakawa-Hirachi T, Sagata N, Monji A, Kanba S. Microglial CD206 Gene Has Potential as a State Marker of Bipolar Disorder. Front Immunol 2017; 7:676. [PMID: 28119691 PMCID: PMC5220016 DOI: 10.3389/fimmu.2016.00676] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/21/2016] [Indexed: 01/06/2023] Open
Abstract
The pathophysiology of bipolar disorder, especially the underlying mechanisms of the bipolarity between manic and depressive states, has yet to be clarified. Microglia, immune cells in the brain, play important roles in the process of brain inflammation, and recent positron emission tomography studies have indicated microglial overactivation in the brain of patients with bipolar disorder. We have recently developed a technique to induced microglia-like (iMG) cells from peripheral blood (monocytes). We introduce a novel translational approach focusing on bipolar disorder using this iMG technique. We hypothesize that immunological conditional changes in microglia may contribute to the shift between manic and depressive states, and thus we herein analyzed gene profiling patterns of iMG cells from three patients with rapid cycling bipolar disorder during both manic and depressive states, respectively. We revealed that the gene profiling patterns are different between manic and depressive states. The profiling pattern of case 1 showed that M1 microglia is dominant in the manic state compared to the depressive state. However, the patterns of cases 2 and 3 were not consistent with the pattern of case 1. CD206, a mannose receptor known as a typical M2 marker, was significantly downregulated in the manic state among all three patients. This is the first report to indicate the importance of shifting microglial M1/M2 characteristics, especially the CD206 gene expression pattern between depressive and manic states. Further translational studies are needed to dig up the microglial roles in the underlying biological mechanisms of bipolar disorder.
Collapse
Affiliation(s)
- Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Yoshinori Haraguchi
- Department of Psychiatry, Graduate School of Medical Sciences, Saga University , Saga , Japan
| | - Toshio Matsushima
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Yoshito Mizoguchi
- Department of Psychiatry, Graduate School of Medical Sciences, Saga University , Saga , Japan
| | - Toru Murakawa-Hirachi
- Department of Psychiatry, Graduate School of Medical Sciences, Saga University , Saga , Japan
| | - Noriaki Sagata
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Akira Monji
- Department of Psychiatry, Graduate School of Medical Sciences, Saga University , Saga , Japan
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| |
Collapse
|
30
|
Aripiprazole inhibits polyI:C-induced microglial activation possibly via TRPM7. Schizophr Res 2016; 178:35-43. [PMID: 27614570 DOI: 10.1016/j.schres.2016.08.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 08/20/2016] [Accepted: 08/20/2016] [Indexed: 12/13/2022]
Abstract
Viral infections during fetal and adolescent periods, as well as during the course of schizophrenia itself have been linked to the onset and/or relapse of a psychosis. We previously reported that the unique antipsychotic aripiprazole, a partial D2 agonist, inhibits the release of tumor necrosis factor (TNF)-α from interferon-γ-activated rodent microglial cells. Polyinosinic-polycytidylic acid (polyI:C) has recently been used as a standard model of viral infections, and recent in vitro studies have shown that microglia are activated by polyI:C. Aripiprazole has been reported to ameliorate behavioral abnormalities in polyI:C-induced mice. To clarify the anti-inflammatory properties of aripiprazole, we investigated the effects of aripiprazole on polyI:C-induced microglial activation in a cellular model of murine microglial cells and possible surrogate cells for human microglia. PolyI:C treatment of murine microglial cells activated the production of TNF-α and enhanced the p38 mitogen-activated protein kinase (MAPK) pathway, whereas aripiprazole inhibited these responses. In addition, polyI:C treatment of possible surrogate cells for human microglia markedly increased TNF-α mRNA expression in cells from three healthy volunteers. Aripiprazole inhibited this increase in cells from two individuals. PolyI:C consistently increased intracellular Ca2+ concentration ([Ca2+]i) in murine microglial cells by influx of extracellular Ca2+. We demonstrated that transient receptor potential in melastatin 7 (TRPM7) channels contributed to this polyI:C-induced increase in [Ca2+]i. Taken together, these data suggest that aripiprazole may be therapeutic for schizophrenia by reducing microglial inflammatory reactions, and TRPM7 may be a novel therapeutic target for schizophrenia. Further studies are needed to validate these findings.
Collapse
|
31
|
Möller T, Boddeke HWGM. Glial cells as drug targets: What does it take? Glia 2016; 64:1742-54. [PMID: 27121701 DOI: 10.1002/glia.22993] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/04/2016] [Accepted: 04/07/2016] [Indexed: 12/26/2022]
Abstract
The last two decades have brought a significant increase in our understanding of glial biology and glial contribution to CNS disease. Yet, despite the fact that glial cells make up the majority of CNS cells, no drug specifically targeting glial cells is on the market. Given the long development times of CNS drugs, on average over 12 years, this is not completely surprising. However, there is increasing interest from academia and industry to exploit glial targets to develop drugs for the benefit of patients with currently limited or no therapeutic options. CNS drug development has a high attrition rate and has encountered many challenges. It seems unlikely that developing drugs against glial targets would be any less demanding. However, the knowledge generated in traditional CNS drug discovery teaches valuable lessons, which could enable the glial community to accelerate the cycle time from basic discovery to drug development. In this review we will discuss steps necessary to bring a "glial target idea" to a clinical development program. GLIA 2016;64:1742-1754.
Collapse
Affiliation(s)
- Thomas Möller
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA, Paramus, New Jersey
| | - Hendrikus W G M Boddeke
- Department of Neuroscience, Section of Medical Physiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
32
|
Disease signatures for schizophrenia and bipolar disorder using patient-derived induced pluripotent stem cells. Mol Cell Neurosci 2016; 73:96-103. [PMID: 26777134 DOI: 10.1016/j.mcn.2016.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia and bipolar disorder are complex psychiatric disorders that present unique challenges in the study of disease biology. There are no objective biological phenotypes for these disorders, which are characterized by complex genetics and prominent roles for gene-environment interactions. The study of the neurobiology underlying these severe psychiatric disorders has been hindered by the lack of access to the tissue of interest - neurons from patients. The advent of reprogramming methods that enable generation of induced pluripotent stem cells (iPSCs) from patient fibroblasts and peripheral blood mononuclear cells has opened possibilities for new approaches to study relevant disease biology using iPSC-derived neurons. While early studies with patient iPSCs have led to promising and intriguing leads, significant hurdles remain in our attempts to capture the complexity of these disorders in vitro. We present here an overview of studies to date of schizophrenia and bipolar disorder using iPSC-derived neuronal cells and discuss potential future directions that can result in the identification of robust and valid cellular phenotypes that in turn can lay the groundwork for meaningful clinical advances.
Collapse
|
33
|
Converging models of schizophrenia--Network alterations of prefrontal cortex underlying cognitive impairments. Prog Neurobiol 2015; 134:178-201. [PMID: 26408506 DOI: 10.1016/j.pneurobio.2015.09.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 09/10/2015] [Accepted: 09/17/2015] [Indexed: 02/08/2023]
Abstract
The prefrontal cortex (PFC) and its connections with other brain areas are crucial for cognitive function. Cognitive impairments are one of the core symptoms associated with schizophrenia, and manifest even before the onset of the disorder. Altered neural networks involving PFC contribute to cognitive impairments in schizophrenia. Both genetic and environmental risk factors affect the development of the local circuitry within PFC as well as development of broader brain networks, and make the system vulnerable to further insults during adolescence, leading to the onset of the disorder in young adulthood. Since spared cognitive functions correlate with functional outcome and prognosis, a better understanding of the mechanisms underlying cognitive impairments will have important implications for novel therapeutics for schizophrenia focusing on cognitive functions. Multidisciplinary approaches, from basic neuroscience to clinical studies, are required to link molecules, circuitry, networks, and behavioral phenotypes. Close interactions among such fields by sharing a common language on connectomes, behavioral readouts, and other concepts are crucial for this goal.
Collapse
|