1
|
Summers BS, Thomas Broome S, Pang TWR, Mundell HD, Koh Belic N, Tom NC, Ng ML, Yap M, Sen MK, Sedaghat S, Weible MW, Castorina A, Lim CK, Lovelace MD, Brew BJ. A Review of the Evidence for Tryptophan and the Kynurenine Pathway as a Regulator of Stem Cell Niches in Health and Disease. Int J Tryptophan Res 2024; 17:11786469241248287. [PMID: 38757094 PMCID: PMC11097742 DOI: 10.1177/11786469241248287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
Stem cells are ubiquitously found in various tissues and organs in the body, and underpin the body's ability to repair itself following injury or disease initiation, though repair can sometimes be compromised. Understanding how stem cells are produced, and functional signaling systems between different niches is critical to understanding the potential use of stem cells in regenerative medicine. In this context, this review considers kynurenine pathway (KP) metabolism in multipotent adult progenitor cells, embryonic, haematopoietic, neural, cancer, cardiac and induced pluripotent stem cells, endothelial progenitor cells, and mesenchymal stromal cells. The KP is the major enzymatic pathway for sequentially catabolising the essential amino acid tryptophan (TRP), resulting in key metabolites including kynurenine, kynurenic acid, and quinolinic acid (QUIN). QUIN metabolism transitions into the adjoining de novo pathway for nicotinamide adenine dinucleotide (NAD) production, a critical cofactor in many fundamental cellular biochemical pathways. How stem cells uptake and utilise TRP varies between different species and stem cell types, because of their expression of transporters and responses to inflammatory cytokines. Several KP metabolites are physiologically active, with either beneficial or detrimental outcomes, and evidence of this is presented relating to several stem cell types, which is important as they may exert a significant impact on surrounding differentiated cells, particularly if they metabolise or secrete metabolites differently. Interferon-gamma (IFN-γ) in mesenchymal stromal cells, for instance, highly upregulates rate-limiting enzyme indoleamine-2,3-dioxygenase (IDO-1), initiating TRP depletion and production of metabolites including kynurenine/kynurenic acid, known agonists of the Aryl hydrocarbon receptor (AhR) transcription factor. AhR transcriptionally regulates an immunosuppressive phenotype, making them attractive for regenerative therapy. We also draw attention to important gaps in knowledge for future studies, which will underpin future application for stem cell-based cellular therapies or optimising drugs which can modulate the KP in innate stem cell populations, for disease treatment.
Collapse
Affiliation(s)
- Benjamin Sebastian Summers
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Sarah Thomas Broome
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | | | - Hamish D Mundell
- Faculty of Medicine and Health, New South Wales Brain Tissue Resource Centre, School of Medical Sciences, Charles Perkins Centre, University of Sydney, NSW, Australia
| | - Naomi Koh Belic
- School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | - Nicole C Tom
- Formerly of the Department of Physiology, University of Sydney, NSW, Australia
| | - Mei Li Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Maylin Yap
- Formerly of the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Monokesh K Sen
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- School of Medicine, Western Sydney University, NSW, Australia
- Faculty of Medicine and Health, School of Medical Sciences, Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Sara Sedaghat
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Michael W Weible
- School of Environment and Science, Griffith University, Brisbane, QLD, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Alessandro Castorina
- Faculty of Science, Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, University of Technology Sydney, NSW, Australia
| | - Chai K Lim
- Faculty of Medicine, Macquarie University, Sydney, NSW, Australia
| | - Michael D Lovelace
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
| | - Bruce J Brew
- Applied Neurosciences Program, Peter Duncan Neurosciences Research Unit, St. Vincent’s Centre for Applied Medical Research, Sydney, NSW, Australia
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia
- Departments of Neurology and Immunology, St. Vincent’s Hospital, Sydney, NSW, Australia
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia
| |
Collapse
|
2
|
Chandwani MN, Kamte YS, Singh VR, Hemerson ME, Michaels AC, Leak RK, O'Donnell LA. The anti-viral immune response of the adult host robustly modulates neural stem cell activity in spatial, temporal, and sex-specific manners. Brain Behav Immun 2023; 114:61-77. [PMID: 37516388 DOI: 10.1016/j.bbi.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/20/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023] Open
Abstract
Viruses induce a wide range of neurological sequelae through the dysfunction and death of infected cells and persistent inflammation in the brain. Neural stem cells (NSCs) are often disturbed during viral infections. Although some viruses directly infect and kill NSCs, the antiviral immune response may also indirectly affect NSCs. To better understand how NSCs are influenced by a productive immune response, where the virus is successfully resolved and the host survives, we used the CD46+ mouse model of neuron-restricted measles virus (MeV) infection. As NSCs are spared from direct infection in this model, they serve as bystanders to the antiviral immune response initiated by selective infection of mature neurons. MeV-infected mice showed distinct regional and temporal changes in NSCs in the primary neurogenic niches of the brain, the hippocampus and subventricular zone (SVZ). Hippocampal NSCs increased throughout the infection (7 and 60 days post-infection; dpi), while mature neurons transiently declined at 7 dpi and then rebounded to basal levels by 60 dpi. In the SVZ, NSC numbers were unchanged, but mature neurons declined even after the infection was controlled at 60 dpi. Further analyses demonstrated sex, temporal, and region-specific changes in NSC proliferation and neurogenesis throughout the infection. A relatively long-term increase in NSC proliferation and neurogenesis was observed in the hippocampus; however, neurogenesis was reduced in the SVZ. This decline in SVZ neurogenesis was associated with increased immature neurons in the olfactory bulb in female, but not male mice, suggesting potential migration of newly-made neurons out of the female SVZ. These sex differences in SVZ neurogenesis were accompanied by higher infiltration of B cells and greater expression of interferon-gamma and interleukin-6 in female mice. Learning, memory, and olfaction tests revealed no overt behavioral changes after the acute infection subsided. These results indicate that antiviral immunity modulates NSC activity in adult mice without inducing gross behavioral deficits among those tested, suggestive of mechanisms to restore neurons and maintain adaptive behavior, but also revealing the potential for robust NSC disruption in subclinical infections.
Collapse
Affiliation(s)
- Manisha N Chandwani
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Yashika S Kamte
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Vivek R Singh
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Marlo E Hemerson
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Alexa C Michaels
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Rehana K Leak
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA
| | - Lauren A O'Donnell
- Duquesne University School of Pharmacy, Graduate School of Pharmaceutical Sciences, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Li X, Wang H, Zhang Q, Sun X, Zhang M, Wang G. Inhibition of adult hippocampal neurogenesis induced by postoperative CD8 + T-cell infiltration is associated with cognitive decline later following surgery in adult mice. J Neuroinflammation 2023; 20:227. [PMID: 37798730 PMCID: PMC10557222 DOI: 10.1186/s12974-023-02910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Some patients show persistent cognitive decline for weeks, months or even years after surgery, which seriously affects their long-term prognosis and quality of life. However, most previous basic studies have focused mainly on the mechanisms of early postoperative cognitive decline, whereas cognitive decline in the longer term after surgery is less well-understood. The subgranular zone of the dentate gyrus exhibits life-long neurogenesis, supporting hippocampus-dependent learning and memory. MAIN TEXT The aim of this study was to investigate whether adult hippocampal neurogenesis (AHN) involves in cognitive decline later following surgery and to further explore the roles of CD8 + T lymphocytes infiltrating the hippocampal parenchyma after surgery in this pathological process. Cognitive function was examined in adult mice that underwent laparotomy combined with partial hepatectomy, and the results showed that cognitive decline persisted in mice who underwent surgery during the first postoperative month, even though there was a trend toward continuous improvement over time. Significantly decreased numbers of DCX + cells, BrdU + cells, and BrdU + /DCX + cells were observed on day 8 after surgery, and a significantly decreased number of NeuN + /BrdU + cells was observed on day 28 after surgery, which indicated inhibition of AHN. After surgery, T lymphocytes, the majority of which were CD8 + T cells, infiltrated the hippocampus and secreted Interferon-γ (IFN-γ). Depletion of CD8 + T cells could inhibit the increase of IFN-γ synthesis, improve hippocampal neurogenesis, and improve postoperative cognitive function. Hippocampal microinjection of IFN-γ neutralizing antibody or adeno-associated virus to knock down IFN-γ receptor 1 (IFNGR1) could also partially attenuate the inhibition of AHN and improve postoperative cognitive function. CONCLUSIONS These results demonstrate that postoperative infiltration of CD8 + T cells into the hippocampus and subsequent secretion of IFN-γ contribute to the inhibition of AHN and cognitive decline later following surgery.
Collapse
Affiliation(s)
- Xiaowei Li
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
- Department of Anesthesiology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Hong Wang
- Department of Nephrology, Tai' an Central Hospital, Taian, 271000, Shandong, China
| | - Qidi Zhang
- Department of Anesthesiology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xiaobin Sun
- Department of Anesthesiology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Mengyuan Zhang
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Anesthesiology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| | - Gongming Wang
- Department of Anesthesiology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Anesthesiology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
4
|
Imitola J, Hollingsworth EW, Watanabe F, Olah M, Elyaman W, Starossom S, Kivisäkk P, Khoury SJ. Stat1 is an inducible transcriptional repressor of neural stem cells self-renewal program during neuroinflammation. Front Cell Neurosci 2023; 17:1156802. [PMID: 37663126 PMCID: PMC10469489 DOI: 10.3389/fncel.2023.1156802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023] Open
Abstract
A central issue in regenerative medicine is understanding the mechanisms that regulate the self-renewal of endogenous stem cells in response to injury and disease. Interferons increase hematopoietic stem cells during infection by activating STAT1, but the mechanisms by which STAT1 regulates intrinsic programs in neural stem cells (NSCs) during neuroinflammation is less known. Here we explored the role of STAT1 on NSC self-renewal. We show that overexpressing Stat1 in NSCs derived from the subventricular zone (SVZ) decreases NSC self-renewal capacity while Stat1 deletion increases NSC self-renewal, neurogenesis, and oligodendrogenesis in isolated NSCs. Importantly, we find upregulation of STAT1 in NSCs in a mouse model of multiple sclerosis (MS) and an increase in pathological T cells expressing IFN-γ rather than interleukin 17 (IL-17) in the cerebrospinal fluid of affected mice. We find IFN-γ is superior to IL-17 in reducing proliferation and precipitating an abnormal NSC phenotype featuring increased STAT1 phosphorylation and Stat1 and p16ink4a gene expression. Notably, Stat1-/- NSCs were resistant to the effect of IFN-γ. Lastly, we identified a Stat1-dependent gene expression profile associated with an increase in the Sox9 transcription factor, a regulator of self-renewal. Stat1 binds and transcriptionally represses Sox9 in a transcriptional luciferase assay. We conclude that Stat1 serves as an inducible checkpoint for NSC self-renewal that is upregulated during chronic brain inflammation leading to decreased self-renewal. As such, Stat1 may be a potential target to modulate for next generation therapies to prevent progression and loss of repair function in NSCs/neural progenitors in MS.
Collapse
Affiliation(s)
- Jaime Imitola
- Laboratory for Neural Stem Cells and Functional Neurogenetics, Division of Multiple Sclerosis and Neuroimmunology, University of Connecticut Health Center, Farmington, CT, United States
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Ethan W. Hollingsworth
- Medical Scientist Training Program, University of California, Irvine, Irvine, CA, United States
| | - Fumihiro Watanabe
- Laboratory for Neural Stem Cells and Functional Neurogenetics, Division of Multiple Sclerosis and Neuroimmunology, University of Connecticut Health Center, Farmington, CT, United States
| | - Marta Olah
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Neurology, Columbia University Medical Center, New York City, NY, United States
| | - Wassim Elyaman
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Neurology, Columbia University Medical Center, New York City, NY, United States
| | - Sarah Starossom
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Institute for Medical Immunology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Pia Kivisäkk
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Alzheimer’s Clinical and Translational Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Samia J. Khoury
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Abu Haidar Neuroscience Institute, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
5
|
Fujimura K, Guise AJ, Nakayama T, Schlaffner CN, Meziani A, Kumar M, Cheng L, Vaughan DJ, Kodani A, Van Haren S, Parker K, Levy O, Durbin AF, Bosch I, Gehrke L, Steen H, Mochida GH, Steen JA. Integrative systems biology characterizes immune-mediated neurodevelopmental changes in murine Zika virus microcephaly. iScience 2023; 26:106909. [PMID: 37332674 PMCID: PMC10275723 DOI: 10.1016/j.isci.2023.106909] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/12/2023] [Accepted: 05/12/2023] [Indexed: 06/20/2023] Open
Abstract
Characterizing perturbation of molecular pathways in congenital Zika virus (ZIKV) infection is critical for improved therapeutic approaches. Leveraging integrative systems biology, proteomics, and RNA-seq, we analyzed embryonic brain tissues from an immunocompetent, wild-type congenital ZIKV infection mouse model. ZIKV induced a robust immune response accompanied by the downregulation of critical neurodevelopmental gene programs. We identified a negative correlation between ZIKV polyprotein abundance and host cell cycle-inducing proteins. We further captured the downregulation of genes/proteins, many of which are known to be causative for human microcephaly, including Eomesodermin/T-box Brain Protein 2 (EOMES/TBR2) and Neuronal Differentiation 2 (NEUROD2). Disturbances of distinct molecular pathways in neural progenitors and post-mitotic neurons may contribute to complex brain phenotype of congenital ZIKV infection. Overall, this report on protein- and transcript-level dynamics enhances understanding of the ZIKV immunopathological landscape through characterization of fetal immune response in the developing brain.
Collapse
Affiliation(s)
- Kimino Fujimura
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics and Genomics and The Manton Center for Orphan Disease, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
- Department of Pediatrics, Shin-Yurigaoka General Hospital, Kanagawa, Japan
| | - Amanda J. Guise
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tojo Nakayama
- Division of Genetics and Genomics and The Manton Center for Orphan Disease, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Christoph N. Schlaffner
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Anais Meziani
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mukesh Kumar
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Long Cheng
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Dylan J. Vaughan
- Division of Genetics and Genomics and The Manton Center for Orphan Disease, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Andrew Kodani
- Center for Pediatric Neurological Disease Research and Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Simon Van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | | | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Ann F. Durbin
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Irene Bosch
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lee Gehrke
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hanno Steen
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ganeshwaran H. Mochida
- Division of Genetics and Genomics and The Manton Center for Orphan Disease, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Pediatric Neurology Unit, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Judith A. Steen
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Kraus A, Garcia B, Ma J, Herrera KJ, Zwaka H, Harpaz R, Wong RY, Engert F, Salinas I. Olfactory detection of viruses shapes brain immunity and behavior in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533129. [PMID: 37034630 PMCID: PMC10081220 DOI: 10.1101/2023.03.17.533129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Olfactory sensory neurons (OSNs) are constantly exposed to pathogens, including viruses. However, serious brain infection via the olfactory route rarely occurs. When OSNs detect a virus, they coordinate local antiviral immune responses to stop virus progression to the brain. Despite effective immune control in the olfactory periphery, pathogen-triggered neuronal signals reach the CNS via the olfactory bulb (OB). We hypothesized that neuronal detection of a virus by OSNs initiates neuroimmune responses in the OB that prevent pathogen invasion. Using zebrafish ( Danio rerio ) as a model, we demonstrate viral-specific neuronal activation of OSNs projecting into the OB, indicating that OSNs are electrically activated by viruses. Further, behavioral changes are seen in both adult and larval zebrafish after viral exposure. By profiling the transcription of single cells in the OB after OSNs are exposed to virus, we found that both microglia and neurons enter a protective state. Microglia and macrophage populations in the OB respond within minutes of nasal viral delivery followed decreased expression of neuronal differentiation factors and enrichment of genes in the neuropeptide signaling pathway in neuronal clusters. Pituitary adenylate-cyclase-activating polypeptide ( pacap ), a known antimicrobial, was especially enriched in a neuronal cluster. We confirm that PACAP is antiviral in vitro and that PACAP expression increases in the OB 1 day post-viral treatment. Our work reveals how encounters with viruses in the olfactory periphery shape the vertebrate brain by inducing antimicrobial programs in neurons and by altering host behavior.
Collapse
|
7
|
Bove GM, Mokler DJ. Effects of a single dose of psilocybin on cytokines, chemokines and leptin in rat serum. JOURNAL OF PSYCHEDELIC STUDIES 2022. [DOI: 10.1556/2054.2022.00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractBackground and AimsThe hallucinogenic drug psilocybin is being widely tested in humans for the treatment of psychiatric disorders. Psilocybin and other psychedelics are proposed to work through serotonin 2a (5-HT2a) receptors, which are tightly linked to immune function. The purpose of the present study was to assess the effects of a single dose of psilocybin on a panel of cytokines, chemokines, and peptides in the short term (24 h) and long term (seven days) in female rats.MethodsFemale rats were given a dose of psilocybin (20 mg kg−1, i.p.} or a dose of synthetic interstitial fluid. At 24 h, the control group and one group of rats were anesthetized, and blood was withdrawn by intracardiac puncture. In a third group of rats, blood was withdrawn after seven days. Serum was analyzed by a separate lab (Eve Laboratories, Calgary, Canada) for 27 immunomodulators.ResultsSerum levels of IL-1β, TNF-α, MCP-1, IP-10, G-CSF, IFN-γ, IL-10, IL-13, and leptin were significantly increased compared to controls after 24 h and were increased further after 7 days. Most of the other assays showed this same pattern of increase, although not statistically significant.ConclusionsPsilocybin induces the release of multiple immune factors, consistent with a generalized activation of the immune system, which can persist for at least seven days after a single dose. These findings may relate to the mechanism of action. The implications of these findings require additional research to determine how these finding relate to the clinical effects of psilocybin.
Collapse
|
8
|
Derkus B, Isik M, Eylem CC, Ergin I, Camci CB, Bilgin S, Elbuken C, Arslan YE, Akkulak M, Adali O, Kiran F, Okesola BO, Nemutlu E, Emregul E. Xenogenic Neural Stem Cell-Derived Extracellular Nanovesicles Modulate Human Mesenchymal Stem Cell Fate and Reconstruct Metabolomic Structure. Adv Biol (Weinh) 2022; 6:e2101317. [PMID: 35347890 DOI: 10.1002/adbi.202101317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/02/2022] [Indexed: 01/27/2023]
Abstract
Extracellular nanovesicles, particularly exosomes, can deliver their diverse bioactive biomolecular content, including miRNAs, proteins, and lipids, thus providing a context for investigating the capability of exosomes to induce stem cells toward lineage-specific cells and tissue regeneration. In this study, it is demonstrated that rat subventricular zone neural stem cell-derived exosomes (rSVZ-NSCExo) can control neural-lineage specification of human mesenchymal stem cells (hMSCs). Microarray analysis shows that the miRNA content of rSVZ-NSCExo is a faithful representation of rSVZ tissue. Through immunocytochemistry, gene expression, and multi-omics analyses, the capability to use rSVZ-NSCExo to induce hMSCs into a neuroglial or neural stem cell phenotype and genotype in a temporal and dose-dependent manner via multiple signaling pathways is demonstrated. The current study presents a new and innovative strategy to modulate hMSCs fate by harnessing the molecular content of exosomes, thus suggesting future opportunities for rSVZ-NSCExo in nerve tissue regeneration.
Collapse
Affiliation(s)
- Burak Derkus
- Stem Cell Research Lab, Department of ChemistryFaculty of Science, Ankara University, Ankara, 06560, Turkey.,Interdisciplinary Research Unit for Advanced Materials (INTRAM) Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Melis Isik
- Interdisciplinary Research Unit for Advanced Materials (INTRAM) Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Cemil Can Eylem
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, Ankara, 06530, Turkey
| | - Irem Ergin
- Department of Surgery, Faculty of Veterinary Medicine, Ankara University, Turkey
| | - Can Berk Camci
- Interdisciplinary Research Unit for Advanced Materials (INTRAM) Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Sila Bilgin
- Interdisciplinary Research Unit for Advanced Materials (INTRAM) Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Caglar Elbuken
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkey.,Faculty of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Oulu, Oulu, 90014, Finland
| | - Yavuz Emre Arslan
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Engineering Faculty, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Merve Akkulak
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| | - Orhan Adali
- Department of Biological Sciences, Faculty of Science, Middle East Technical University, Ankara, 06800, Turkey
| | - Fadime Kiran
- Department of Biology, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Babatunde O Okesola
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, Faculty of Medicine, University of Liverpool, Liverpool, L7 8TX, UK
| | - Emirhan Nemutlu
- Analytical Chemistry Division, Faculty of Pharmacy, Hacettepe University, Ankara, 06530, Turkey.,Bioanalytic and Omics Laboratory, Faculty of Pharmacy, Hacettepe University, Ankara, 06530, Turkey
| | - Emel Emregul
- Interdisciplinary Research Unit for Advanced Materials (INTRAM) Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| |
Collapse
|
9
|
Kagoya R, Toma-Hirano M, Yamagishi J, Matsumoto N, Kondo K, Ito K. Immunological status of the olfactory bulb in a murine model of Toll-like receptor 3-mediated upper respiratory tract inflammation. J Neuroinflammation 2022; 19:13. [PMID: 35012562 PMCID: PMC8744287 DOI: 10.1186/s12974-022-02378-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Postviral olfactory dysfunction (PVOD) following a viral upper respiratory tract infection (URI) is one of the most common causes of olfactory disorders, often lasting for over a year. To date, the molecular pathology of PVOD has not been elucidated. METHODS A murine model of Toll-like receptor 3 (TLR3)-mediated upper respiratory tract inflammation was used to investigate the impact of URIs on the olfactory system. Inflammation was induced via the intranasal administration of polyinosinic-polycytidylic acid (poly(I:C), a TLR3 ligand) to the right nostril for 3 days. Peripheral olfactory sensory neurons (OSNs), immune cells in the olfactory mucosa, and glial cells in the olfactory bulb (OB) were analyzed histologically. Proinflammatory cytokines in the nasal tissue and OB were evaluated using the quantitative real-time polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay (ELISA). RESULTS In the treated mice, OSNs were markedly reduced in the olfactory mucosa, and T cell and neutrophil infiltration therein was observed 1 day after the end of poly(I:C) administration. Moreover, there was a considerable increase in microglial cells and slight increase in activated astrocytes in the OB. In addition, qPCR and ELISA revealed the elevated expression of interleukin-1 beta, interleukin-6, tumor necrosis factor-alpha, and interferon-gamma both in the OB and nasal tissue. CONCLUSIONS Taken together, the decreased peripheral OSNs, OB microgliosis, and elevated proinflammatory cytokines suggest that immunological changes in the OB may be involved in the pathogenesis of PVOD.
Collapse
Affiliation(s)
- Ryoji Kagoya
- Department of Otolaryngology, Faculty of Medicine, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan. .,Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Makiko Toma-Hirano
- Department of Otolaryngology, Faculty of Medicine, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Junya Yamagishi
- Department of Otolaryngology, Faculty of Medicine, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| | - Naoyuki Matsumoto
- Department of Otolaryngology, Faculty of Medicine, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan.,Department of Otolaryngology and Head and Neck Surgery, Kameda Medical Center, 929, Higashi-cho, Kamogawa, Chiba, 296-8602, Japan
| | - Kenji Kondo
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ken Ito
- Department of Otolaryngology, Faculty of Medicine, Teikyo University, 2-11-1, Kaga, Itabashi-ku, Tokyo, 173-8605, Japan
| |
Collapse
|
10
|
Popova G, Soliman SS, Kim CN, Keefe MG, Hennick KM, Jain S, Li T, Tejera D, Shin D, Chhun BB, McGinnis CS, Speir M, Gartner ZJ, Mehta SB, Haeussler M, Hengen KB, Ransohoff RR, Piao X, Nowakowski TJ. Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids. Cell Stem Cell 2021; 28:2153-2166.e6. [PMID: 34536354 PMCID: PMC8642295 DOI: 10.1016/j.stem.2021.08.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 06/23/2021] [Accepted: 08/25/2021] [Indexed: 01/25/2023]
Abstract
Microglia are resident macrophages in the brain that emerge in early development and respond to the local environment by altering their molecular and phenotypic states. Fundamental questions about microglia diversity and function during development remain unanswered because we lack experimental strategies to interrogate their interactions with other cell types and responses to perturbations ex vivo. We compared human microglia states across culture models, including cultured primary and pluripotent stem cell-derived microglia. We developed a "report card" of gene expression signatures across these distinct models to facilitate characterization of their responses across experimental models, perturbations, and disease conditions. Xenotransplantation of human microglia into cerebral organoids allowed us to characterize key transcriptional programs of developing microglia in vitro and reveal that microglia induce transcriptional changes in neural stem cells and decrease interferon signaling response genes. Microglia additionally accelerate the emergence of synchronized oscillatory network activity in brain organoids by modulating synaptic density.
Collapse
Affiliation(s)
- Galina Popova
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Sarah S Soliman
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Chang N Kim
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew G Keefe
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Kelsey M Hennick
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | - Samhita Jain
- Division of Neonatology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Tao Li
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Dario Tejera
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - David Shin
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
| | | | - Christopher S McGinnis
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA USA
| | - Matthew Speir
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Zev J Gartner
- Chan Zuckerberg Biohub, San Francisco, CA, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA USA; Center for Cellular Construction, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - Keith B Hengen
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Xianhua Piao
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Division of Neonatology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Newborn Brain Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
11
|
Wang G, Zhang H, Sun J, Zhang Y, He F, Zou J. Cyclosporin A impairs neurogenesis and cognitive abilities in brain development via the IFN-γ-Shh-BDNF pathway. Int Immunopharmacol 2021; 96:107744. [PMID: 33993101 DOI: 10.1016/j.intimp.2021.107744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 01/07/2023]
Abstract
A wealth of evidence indicate that the peripheral immune activation alters brain development. However, it is still largely unclear whether and how peripheral immunosuppression affects neurodevelopment. Here, we found that the immunosuppressant cyclosporin A (CsA) decreased the number of BrdU+, BrdU+/DCX+, BrdU+/NeuN + cells in the hippocampus, impaired learning and memory and inhibited protein levels of the shh signaling pathway, including Shh, Smo and Gli1. However, the shh pathway receptor agonist SAG could block the impairment of cognitive ability and the decrease of hippocampal neurogenesis and brain-derived neurotrophic factor (BDNF) level induced by CsA. We also found that CsA decreased the level of interferon-gamma (IFN-γ), while up-regulation of IFN-γ altered the inhibitory effect of the shh signaling pathway and the decrease of BDNF induced by CsA. Collectively, these data indicate that peripheral CsA impairs neurogenesis and cognition in brain development through downregulating the IFN-γ-Shh-BDNF pathway. The present study guides us to correctly apply immunomodulatory drugs in early life and suggests that the IFN-γ-Shh-BDNF pathway may represent a novel protective target for neurodevelopment under the condition of immunosuppression.
Collapse
Affiliation(s)
- Ge Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China; Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200032 Shanghai, People's Republic of China
| | - Hongyang Zhang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jiancong Sun
- Department of Radiation Oncology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yuwei Zhang
- Department of Anatomy, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Fen He
- Department of Radiation Oncology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Juntao Zou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
12
|
Al-Awadi AMI, AlJawder AI, Mousa A, Taha S, Bakhiet M. A role for the immune system-released activating agent (ISRAA) in the ontogenetic development of brain astrocytes. PLoS One 2021; 16:e0248455. [PMID: 33970944 PMCID: PMC8109834 DOI: 10.1371/journal.pone.0248455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/25/2021] [Indexed: 11/23/2022] Open
Abstract
The Immune System-Released Activating Agent (ISRAA) was discovered as a novel molecule that functions as a mediator between the nervous and immune systems in response to a nervous stimulus following an immune challenge. This research investigated the role of ISRAA) in promoting the ontogeny of the mouse brain astrocytes. Astrocyte cultures were prepared from two-month-old BALB/c mice. Recombinant ISRAA protein was used to stimulate astrocyte cultures. Immunohistochemistry and ELISA were utilized to measure ISRAA and IFN-γ levels, IFN-γR expression and STAT1 nuclear translocation. MTT-assay was used to evaluate cellular survival and proliferation. To assess astrocyte cell lysates and tyrosine-phosphorylated proteins, SDS-PAGE and western blot were used. ISRAA was highly expressed in mouse embryonic astrocytes, depending on cell age. Astrocytes aged seven days (E7) showed increased proliferation and diminished differentiation, while 21-day-old (E21) astrocytes depicted reversed effects. IFN-γ was involved in the ISRAA action as ISRAA induced IFN-γ in both age groups, but only E21 astrocytes expressed IFN-γR. ISRAA stimulation of E21 resulted in tyrosine phosphorylation of numerous cellular proteins and the nuclear translocation of STAT1, a signalling pathway utilized by IFN-γ. The results suggest that ISRAA is involved in mouse brain development through the cytokine network involving IFN-γ.
Collapse
Affiliation(s)
- Aminah M. I. Al-Awadi
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Abdulaziz Isa AlJawder
- Department of Physiology, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Alyaa Mousa
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Safa Taha
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al Jawhara Center for Molecular Medicine, Genetics and Inherited Diseases, Arabian Gulf University, Manama, Bahrain
| | - Moiz Bakhiet
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al Jawhara Center for Molecular Medicine, Genetics and Inherited Diseases, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
13
|
Xu P, Gao J, Shan C, Dunn TJ, Xie X, Xia H, Zou J, Thames BH, Sajja A, Yu Y, Freiberg AN, Vasilakis N, Shi PY, Weaver SC, Wu P. Inhibition of innate immune response ameliorates Zika virus-induced neurogenesis deficit in human neural stem cells. PLoS Negl Trop Dis 2021; 15:e0009183. [PMID: 33657175 PMCID: PMC7959377 DOI: 10.1371/journal.pntd.0009183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/15/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
Global Zika virus (ZIKV) outbreaks and their strong link to microcephaly have raised major public health concerns. ZIKV has been reported to affect the innate immune responses in neural stem/progenitor cells (NS/PCs). However, it is unclear how these immune factors affect neurogenesis. In this study, we used Asian-American lineage ZIKV strain PRVABC59 to infect primary human NS/PCs originally derived from fetal brains. We found that ZIKV overactivated key molecules in the innate immune pathways to impair neurogenesis in a cell stage-dependent manner. Inhibiting the overactivated innate immune responses ameliorated ZIKV-induced neurogenesis reduction. This study thus suggests that orchestrating the host innate immune responses in NS/PCs after ZIKV infection could be promising therapeutic approach to attenuate ZIKV-associated neuropathology.
Collapse
Affiliation(s)
- Pei Xu
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Junling Gao
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Chao Shan
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tiffany J. Dunn
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hongjie Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jing Zou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Beatriz H. Thames
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Amulya Sajja
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yongjia Yu
- Department of Radiology and Oncology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alexander N. Freiberg
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Scott C. Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Ping Wu
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
14
|
Embryonic periventricular endothelial cells demonstrate a unique pro-neurodevelopment and anti-inflammatory gene signature. Sci Rep 2020; 10:20393. [PMID: 33230288 PMCID: PMC7683543 DOI: 10.1038/s41598-020-77297-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/02/2020] [Indexed: 01/08/2023] Open
Abstract
Brain embryonic periventricular endothelial cells (PVEC) crosstalk with neural progenitor cells (NPC) promoting mutual proliferation, formation of tubular-like structures in the former and maintenance of stemness in the latter. To better characterize this interaction, we conducted a comparative transcriptome analysis of mouse PVEC vs. adult brain endothelial cells (ABEC) in mono-culture or NPC co-culture. We identified > 6000 differentially expressed genes (DEG), regardless of culture condition. PVEC exhibited a 30-fold greater response to NPC than ABEC (411 vs. 13 DEG). Gene Ontology (GO) analysis of DEG that were higher or lower in PVEC vs. ABEC identified "Nervous system development" and "Response to Stress" as the top significantly different biological process, respectively. Enrichment in canonical pathways included HIF1A, FGF/stemness, WNT signaling, interferon signaling and complement. Solute carriers (SLC) and ABC transporters represented an important subset of DEG, underscoring PVEC's implication in blood-brain barrier formation and maintenance of nutrient-rich/non-toxic environment. Our work characterizes the gene signature of PVEC and their important partnership with NPC, underpinning their unique role in maintaining a healthy neurovascular niche, and in supporting brain development. This information may pave the way for additional studies to explore their therapeutic potential in neuro-degenerative diseases, such as Alzheimer's and Parkinson's disease.
Collapse
|
15
|
Neuropeptides Modulate Local Astrocytes to Regulate Adult Hippocampal Neural Stem Cells. Neuron 2020; 108:349-366.e6. [PMID: 32877641 DOI: 10.1016/j.neuron.2020.07.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/12/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
Neural stem cells (NSCs) in the dentate gyrus (DG) reside in a specialized local niche that supports their neurogenic proliferation to produce adult-born neurons throughout life. How local niche cells interact at the circuit level to ensure continuous neurogenesis from NSCs remains unknown. Here we report the role of endogenous neuropeptide cholecystokinin (CCK), released from dentate CCK interneurons, in regulating neurogenic niche cells and NSCs. Specifically, stimulating CCK release supports neurogenic proliferation of NSCs through a dominant astrocyte-mediated glutamatergic signaling cascade. In contrast, reducing dentate CCK induces reactive astrocytes, which correlates with decreased neurogenic proliferation of NSCs and upregulation of genes involved in immune processes. Our findings provide novel circuit-based information on how CCK acts on local astrocytes to regulate the key behavior of adult NSCs.
Collapse
|
16
|
Yuan X, He F, Zheng F, Xu Y, Zou J. Interferon-gamma Facilitates Neurogenesis by Activating Wnt/β-catenin Cell Signaling Pathway via Promotion of STAT1 Regulation of the β-Catenin Promoter. Neuroscience 2020; 448:219-233. [PMID: 32860934 DOI: 10.1016/j.neuroscience.2020.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/27/2023]
Abstract
Interferon-gamma (IFN-γ) is critical for central nervous system (CNS) functions and it may be a promising treatment to stimulate CNS regeneration. However, previous studies reported inconsistent results, and the molecular mechanisms remain controversial. Here we show that IFN-γ-treated mice via intraperitoneal injection have elevated IFN-γ level in central hippocampus and superior cognitive behaviors IFN-γ could activates the level of protein expression of Wnt7a, β-catenin, and CyclinD1 in Wnt/β-catenin signaling pathway of mice hippocampus. Functional and mechanism analysis in vitro revealed that IFN-γ promoted the proliferation and differentiation in primary cultured neural stem cells (NSCs). STAT1 was accountable for IFN-γ-induced activation of the β-catenin promoter, and IFN-γ increased the binding affinity of STAT1 to β-catenin promoter based on luciferase activity and chromatin immunoprecipitation. Our results suggest that IFN-γ exerts many effects ranging from cognitive function in vivo to NSC proliferation, self-renewal, and differentiation in vitro. It does so by recruiting STAT1 to the β-catenin promoter, enhancing cis-regulation by STAT1, and ultimately activating Wnt/β-catenin signaling. In this study, we first found that STAT1 was recruited into the promoter of β-catenin to activate β-catenin expression, and this effect was regulated by IFN-γ. It is also discovered firstly that Wnt/β-catenin and JAK/STAT pathways form cross-links through STAT1. Promoting neurogenesis through immune stimulation might be a promising strategy for repairing the diseased/injured CNS. This study provides a scientific basis for immunomodulation to promote nerve regeneration and offer a new therapeutic direction for central nervous system regeneration.
Collapse
Affiliation(s)
- Xianlin Yuan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Fen He
- Department of Radiation Oncology, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Fuxiang Zheng
- Institute of Human Virology and Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yunlong Xu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Juntao Zou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
17
|
Baumann HJ, Betonio P, Abeywickrama CS, Shriver LP, Leipzig ND. Metabolomic and Signaling Programs Induced by Immobilized versus Soluble IFN γ in Neural Stem Cells. Bioconjug Chem 2020; 31:2125-2135. [PMID: 32820900 DOI: 10.1021/acs.bioconjchem.0c00338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neural stem cells (NSCs) provide a strategy to replace damaged neurons following traumatic central nervous system injuries. A major hurdle to translation of this therapy is that direct application of NSCs to CNS injury does not support sufficient neurogenesis due to lack of proper cues. To provide prolonged spatial cues to NSCs IFN-γ was immobilized to biomimetic hydrogel substrate to supply physical and biochemical signals to instruct the encapsulated NSCs to be neurogenic. However, the immobilization of factors, including IFN-γ, versus soluble delivery of the same factor, has been incompletely characterized especially with respect to activation of signaling and metabolism in cells over longer time points. In this study, protein and metabolite changes in NSCs induced by immobilized versus soluble IFN-γ at 7 days were evaluated. Soluble IFN-γ, refreshed daily over 7 days, elicited stronger responses in NSCs compared to immobilized IFN-γ, indicating that immobilization may not sustain signaling or has altered ligand/receptor interaction and integrity. However, both IFN-γ delivery types supported increased βIII tubulin expression in parallel with canonical and noncanonical receptor-signaling compared to no IFN-γ. Global metabolomics and pathway analysis revealed that soluble and immobilized IFN-γ altered metabolic pathway activities including energy, lipid, and amino acid synthesis, with soluble IFN-γ having the greatest metabolic impact overall. Finally, soluble and immobilized IFN-γ support mitochondrial voltage-dependent anion channel (VDAC) expression that correlates to differentiated NSCs. This work utilizes new methods to evaluate cell responses to protein delivery and provides insight into mode of action that can be harnessed to improve regenerative medicine-based strategies.
Collapse
Affiliation(s)
- Hannah J Baumann
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Patricia Betonio
- School of Nursing, The University of Akron, Akron, Ohio 44325, United States
| | | | - Leah P Shriver
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| | - Nic D Leipzig
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
18
|
Fan B, Pan W, Wang X, Wei M, He A, Zhao A, Chopp M, Zhang ZG, Liu XS. Long noncoding RNA mediates stroke-induced neurogenesis. Stem Cells 2020; 38:973-985. [PMID: 32346940 PMCID: PMC11062764 DOI: 10.1002/stem.3189] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/18/2020] [Accepted: 04/01/2020] [Indexed: 01/11/2023]
Abstract
Neurogenesis contributes to poststroke recovery. Long noncoding RNAs (lncRNAs) participate in the regulation of stem cell self-renewal and differentiation. However, the role of lncRNAs in stroke-induced neurogenesis remains unknown. In this study, we found that H19 was the most highly upregulated lncRNA in neural stem cells (NSCs) of the subventricular zone (SVZ) of rats subjected to focal cerebral ischemia. Deletion of H19 suppressed cell proliferation, promoted cell death, and blocked NSC differentiation. RNA sequencing analysis revealed that genes deregulated by H19 knockdown were those that are involved in transcription, apoptosis, proliferation, cell cycle, and response to hypoxia. H19 knockdown significantly increased the transcription of cell cycle-related genes including p27, whereas overexpression of H19 substantially reduced expression of these genes through the interaction with chromatin remodeling proteins EZH2 and SUZ12. Moreover, H19 regulated neurogenesis-related miRNAs. Inactivation of H19 in NSCs of ischemic rats attenuated spontaneous functional recovery after stroke. Collectively, our data provide novel insights into the epigenetic regulation of lncRNAs in stroke-induced neurogenesis.
Collapse
Affiliation(s)
- Baoyan Fan
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
| | - Wanlong Pan
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
| | - Xinli Wang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
| | - Min Wei
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
| | - Annie He
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
| | - Anna Zhao
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
- Department of Physics, Oakland University, Rochester, Michigan
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
| | - Xian Shuang Liu
- Department of Neurology, Henry Ford Health System, Detroit, Michigan
| |
Collapse
|
19
|
Navarro Negredo P, Yeo RW, Brunet A. Aging and Rejuvenation of Neural Stem Cells and Their Niches. Cell Stem Cell 2020; 27:202-223. [PMID: 32726579 DOI: 10.1016/j.stem.2020.07.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aging has a profound and devastating effect on the brain. Old age is accompanied by declining cognitive function and enhanced risk of brain diseases, including cancer and neurodegenerative disorders. A key question is whether cells with regenerative potential contribute to brain health and even brain "rejuvenation." This review discusses mechanisms that regulate neural stem cells (NSCs) during aging, focusing on the effect of metabolism, genetic regulation, and the surrounding niche. We also explore emerging rejuvenating strategies for old NSCs. Finally, we consider how new technologies may help harness NSCs' potential to restore healthy brain function during physiological and pathological aging.
Collapse
Affiliation(s)
| | - Robin W Yeo
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Glenn Laboratories for the Biology of Aging, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 2019; 571:205-210. [PMID: 31270459 PMCID: PMC7111535 DOI: 10.1038/s41586-019-1362-5] [Citation(s) in RCA: 317] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/04/2019] [Indexed: 02/06/2023]
Abstract
The mammalian brain contains neurogenic niches comprising neural stem cells (NSCs) and other cell types. Neurogenic niches become less functional with age, but how they change during aging remains unclear. Here we perform single cell RNA-sequencing of young and old neurogenic niches in mice. Analysis of 14,685 single cell transcriptomes reveals a decrease in activated NSCs, changes in endothelial cells and microglia, and infiltration of T cells in old neurogenic niches. Surprisingly, T cells in old brains are clonally expanded and generally distinct from those in old blood, suggesting they may experience specific antigens. T cells from old brains express interferon γ, and the subset of NSCs with a high interferon response shows decreased proliferation in vivo. Interestingly, T cells can inhibit NSC proliferation in co-cultures and in vivo, in part by secreting interferon. Our study reveals an interaction between T cells and NSCs in old brains, opening potential avenues to counter age-related decline in brain function.
Collapse
|
21
|
Imitola J. Regenerative neuroimmunology: The impact of immune and neural stem cell interactions for translation in neurodegeneration and repair. J Neuroimmunol 2019; 331:1-3. [DOI: 10.1016/j.jneuroim.2019.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Chandwani MN, Creisher PS, O'Donnell LA. Understanding the Role of Antiviral Cytokines and Chemokines on Neural Stem/Progenitor Cell Activity and Survival. Viral Immunol 2018; 32:15-24. [PMID: 30307795 DOI: 10.1089/vim.2018.0091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Viral infections of the central nervous system are accompanied by the expression of cytokines and chemokines that can be critical for the control of viral replication in the brain. The outcomes of cytokine/chemokine signaling in neural cells vary widely, with cell-specific effects on cellular activity, proliferation, and survival. Neural stem/progenitor cells (NSPCs) are often altered during viral infections, through direct infection by the virus or by the influence of immune cell activity or cytokine/chemokine signaling. However, it has been challenging to dissect the contribution of the virus and specific inflammatory mediators during an infection. In addition to initiating an antiviral program in infected NSPCs, cytokines/chemokines can induce multiple changes in NSPC behavior that can perturb NSPC numbers, differentiation into other neural cells, and migration to sites of injury, and ultimately brain development and repair. The focus of this review was to dissect the effects of common antiviral cytokines and chemokines on NSPC activity, and to consider the subsequent pathological consequences for the host from changes in NSPC function.
Collapse
Affiliation(s)
- Manisha N Chandwani
- Department of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, Duquesne University School of Pharmacy , Pittsburgh, Pennsylvania
| | - Patrick S Creisher
- Department of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, Duquesne University School of Pharmacy , Pittsburgh, Pennsylvania
| | - Lauren A O'Donnell
- Department of Pharmaceutical, Administrative, and Social Sciences, Graduate School of Pharmaceutical Sciences, Duquesne University School of Pharmacy , Pittsburgh, Pennsylvania
| |
Collapse
|
23
|
Feng X, Lu J, He Z, Wang Y, Qi F, Pi R, Zhang G. Mycobacterium smegmatis Induces Neurite Outgrowth and Differentiation in an Autophagy-Independent Manner in PC12 and C17.2 Cells. Front Cell Infect Microbiol 2018; 8:201. [PMID: 29988402 PMCID: PMC6024096 DOI: 10.3389/fcimb.2018.00201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 05/29/2018] [Indexed: 01/01/2023] Open
Abstract
Both pathogenic and non-pathogenic Mycobacteria can induce the differentiation of immune cells into dendritic cells (DC) or DC-like cells. In addition, pathogenic Mycobacteria is found to stimulate cell differentiation in the nerves system. Whether non-pathogenic Mycobacteria interacts with nerve cells remains unknown. In this study, we found that co-incubation with fast-growing Mycobacteria smegmatis induced neuron-like morphological changes of PC12 and C17.2 cells. Moreover, the M. smegmatis culture supernatant which was ultrafiltrated through a membrane with a 10 kDa cut-off, induced neurite outgrowth and differentiation in an autophagy-independent pathway in PC12 and C17.2 cells. Further analysis showed that IFN-γ production and activation of the PI3K-Akt signaling pathway were involved in the neural differentiation. In conclusion, our finding demonstrated that non-pathogenic M. smegmatis was able to promote neuronal differentiation by its extracellular proteins, which might provide a novel therapeutic strategy for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Xinwei Feng
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Junfeng Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zitian He
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yidan Wang
- Department of Biotechnology, School of McCormick Engineering, Northwestern University, Evanston, IL, United States
| | - Fangfang Qi
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Rongbiao Pi
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ge Zhang
- Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Shalimov VF, Suvorinova NY, Nesterovsky YE. [Treatment of speech disorders in preschool children]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 117:80-87. [PMID: 29359724 DOI: 10.17116/jnevro201711711280-87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To study the efficacy of neyroferon in developmental speech disorders (SDD). MATERIAL AND METHODS Thirty preschool children were stratified into 3 groups: 4-5 years (n=8), 5-6 years (n=10) and 6-7 years (n=12). The children were treated with neyroferon in dose 1 tablet three times a day during 2 month. A multifaceted study of speech disorders using several methods was conducted. General mental state, emotional and behavioral characteristics of the children were assessed as well. RESULTS AND CONCLUSION A therapeutic effect of neyroferon (the improvement of auditory-speech memory, expressive speech, phonemic perception, articulatory movements, vocabulary activity, connected speech etc) as well as the decrease in anxiety, hyperactivity and attention deficit was found in children with SDD. The safety of the drug was confirmed. The results should be treated as preliminary ones.
Collapse
Affiliation(s)
- V F Shalimov
- Serbsky Federal Medical Research Center of Psychiatry and Addiction, Moscow, Russia
| | - N Yu Suvorinova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Yu E Nesterovsky
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
25
|
Brain interference: Revisiting the role of IFNγ in the central nervous system. Prog Neurobiol 2017; 156:149-163. [DOI: 10.1016/j.pneurobio.2017.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 01/28/2023]
|
26
|
Su LN, Song XQ, Wei HP, Yin HF. Identification of neuron-related genes for cell therapy of neurological disorders by network analysis. J Zhejiang Univ Sci B 2017; 18:172-182. [PMID: 28124845 DOI: 10.1631/jzus.b1600109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bone mesenchymal stem cells (BMSCs) differentiated into neurons have been widely proposed for use in cell therapy of many neurological disorders. It is therefore important to understand the molecular mechanisms underlying this differentiation. We screened differentially expressed genes between immature neural tissues and untreated BMSCs to identify the genes responsible for neuronal differentiation from BMSCs. GSE68243 gene microarray data of rat BMSCs and GSE18860 gene microarray data of rat neurons were received from the Gene Expression Omnibus database. Transcriptome Analysis Console software showed that 1248 genes were up-regulated and 1273 were down-regulated in neurons compared with BMSCs. Gene Ontology functional enrichment, protein-protein interaction networks, functional modules, and hub genes were analyzed using DAVID, STRING 10, BiNGO tool, and Network Analyzer software, revealing that nine hub genes, Nrcam, Sema3a, Mapk8, Dlg4, Slit1, Creb1, Ntrk2, Cntn2, and Pax6, may play a pivotal role in neuronal differentiation from BMSCs. Seven genes, Dcx, Nrcam, sema3a, Cntn2, Slit1, Ephb1, and Pax6, were shown to be hub nodes within the neuronal development network, while six genes, Fgf2, Tgfβ1, Vegfa, Serpine1, Il6, and Stat1, appeared to play an important role in suppressing neuronal differentiation. However, additional studies are required to confirm these results.
Collapse
Affiliation(s)
- Li-Ning Su
- Department of Biology, Hebei North University, Zhangjiakou 075029, China
| | - Xiao-Qing Song
- Department of Biology, Hebei North University, Zhangjiakou 075029, China
| | - Hui-Ping Wei
- Department of Biology, Hebei North University, Zhangjiakou 075029, China
| | - Hai-Feng Yin
- Department of Biology, Hebei North University, Zhangjiakou 075029, China
| |
Collapse
|
27
|
Ottoboni L, Merlini A, Martino G. Neural Stem Cell Plasticity: Advantages in Therapy for the Injured Central Nervous System. Front Cell Dev Biol 2017; 5:52. [PMID: 28553634 PMCID: PMC5427132 DOI: 10.3389/fcell.2017.00052] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/25/2017] [Indexed: 12/14/2022] Open
Abstract
The physiological and pathological properties of the neural germinal stem cell niche have been well-studied in the past 30 years, mainly in animals and within given limits in humans, and knowledge is available for the cyto-architectonic structure, the cellular components, the timing of development and the energetic maintenance of the niche, as well as for the therapeutic potential and the cross talk between neural and immune cells. In recent years we have gained detailed understanding of the potentiality of neural stem cells (NSCs), although we are only beginning to understand their molecular, metabolic, and epigenetic profile in physiopathology and, further, more can be invested to measure quantitatively the activity of those cells, to model in vitro their therapeutic responses or to predict interactions in silico. Information in this direction has been put forward for other organs but is still limited in the complex and very less accessible context of the brain. A comprehensive understanding of the behavior of endogenous NSCs will help to tune or model them toward a desired response in order to treat complex neurodegenerative diseases. NSCs have the ability to modulate multiple cellular functions and exploiting their plasticity might make them into potent and versatile cellular drugs.
Collapse
Affiliation(s)
- Linda Ottoboni
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific InstituteMilan, Italy
| | - Arianna Merlini
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific InstituteMilan, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific InstituteMilan, Italy
| |
Collapse
|
28
|
Kulkarni A, Scully TJ, O'Donnell LA. The antiviral cytokine interferon-gamma restricts neural stem/progenitor cell proliferation through activation of STAT1 and modulation of retinoblastoma protein phosphorylation. J Neurosci Res 2016; 95:1582-1601. [PMID: 27862183 PMCID: PMC5432422 DOI: 10.1002/jnr.23987] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/18/2016] [Accepted: 10/14/2016] [Indexed: 12/20/2022]
Abstract
Neural stem/progenitor cells (NPSCs) express receptors for many inflammatory cytokines, with varying effects on differentiation and proliferation depending on the stage of development and the milieu of inflammatory mediators. In primary neurons and astrocytes, we recently showed that interferon gamma (IFNγ), a potent antiviral cytokine that is required for the control and clearance of many central nervous system (CNS) infections, could differentially affect cell survival and cell cycle progression depending upon the cell type and the profile of activated intracellular signaling molecules. Here, we show that IFNγ inhibits proliferation of primary NSPCs through dephosphorylation of the tumor suppressor Retinoblastoma protein (pRb), which is dependent on activation of signal transducers and activators of transcription‐1 (STAT1) signaling pathways. Our results show i) IFNγ inhibits neurosphere growth and proliferation rate in a dose‐dependent manner; ii) IFNγ blocks cell cycle progression through a late‐stage G1/S phase restriction; iii) IFNγ induces phosphorylation and expression of STAT1 and STAT3; iv) IFNγ decreases cyclin E/cdk2 expression and reduces phosphorylation of cyclin D1 and pRb on serine residue 795; and v) the effects of IFNγ on NSPC proliferation, cell cycle protein expression, and pRb phosphorylation are STAT1‐dependent. These data define a mechanism by which IFNγ could contribute to a reduction in NSPC proliferation in inflammatory conditions. Further delineation of the effects of inflammatory cytokines on NSPC growth could improve our understanding of how CNS infections and other inflammatory events disrupt brain development and NSPC function. © 2016 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Apurva Kulkarni
- Duquesne University, Mylan School of Pharmacy, 600 Forbes Avenue, Pittsburgh, PA, 15282
| | - Taylor J Scully
- Duquesne University, Mylan School of Pharmacy, 600 Forbes Avenue, Pittsburgh, PA, 15282
| | - Lauren A O'Donnell
- Duquesne University, Mylan School of Pharmacy, 600 Forbes Avenue, Pittsburgh, PA, 15282
| |
Collapse
|
29
|
Kulkarni A, Ganesan P, O'Donnell LA. Interferon Gamma: Influence on Neural Stem Cell Function in Neurodegenerative and Neuroinflammatory Disease. Clin Med Insights Pathol 2016; 9:9-19. [PMID: 27774000 PMCID: PMC5065109 DOI: 10.4137/cpath.s40497] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 01/05/2023] Open
Abstract
Interferon-gamma (IFNγ), a pleiotropic cytokine, is expressed in diverse neurodegenerative and neuroinflammatory conditions. Its protective mechanisms are well documented during viral infections in the brain, where IFNγ mediates non-cytolytic viral control in infected neurons. However, IFNγ also plays both protective and pathological roles in other central nervous system (CNS) diseases. Of the many neural cells that respond to IFNγ, neural stem/progenitor cells (NSPCs), the only pluripotent cells in the developing and adult brain, are often altered during CNS insults. Recent studies highlight the complex effects of IFNγ on NSPC activity in neurodegenerative diseases. However, the mechanisms that mediate these effects, and the eventual outcomes for the host, are still being explored. Here, we review the effects of IFNγ on NSPC activity during different pathological insults. An improved understanding of the role of IFNγ would provide insight into the impact of immune responses on the progression and resolution of neurodegenerative diseases.
Collapse
Affiliation(s)
- Apurva Kulkarni
- Mylan School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Priya Ganesan
- Mylan School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Lauren A O'Donnell
- Mylan School of Pharmacy and the Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|