1
|
Di Lorenzo D. Tau Protein and Tauopathies: Exploring Tau Protein-Protein and Microtubule Interactions, Cross-Interactions and Therapeutic Strategies. ChemMedChem 2024; 19:e202400180. [PMID: 39031682 DOI: 10.1002/cmdc.202400180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024]
Abstract
Tau, a microtubule-associated protein (MAP), is essential to maintaining neuronal stability and function in the healthy brain. However, aberrant modifications and pathological aggregations of Tau are implicated in various neurodegenerative disorders, collectively known as tauopathies. The most common Tauopathy is Alzheimer's Disease (AD) counting nowadays more than 60 million patients worldwide. This comprehensive review delves into the multifaceted realm of Tau protein, puzzling out its intricate involvement in both physiological and pathological roles. Emphasis is put on Tau Protein-Protein Interactions (PPIs), depicting its interaction with tubulin, microtubules and its cross-interaction with other proteins such as Aβ1-42, α-synuclein, and the chaperone machinery. In the realm of therapeutic strategies, an overview of diverse possibilities is presented with their relative clinical progresses. The focus is mostly addressed to Tau protein aggregation inhibitors including recent small molecules, short peptides and peptidomimetics with specific focus on compounds that showed a double anti aggregative activity on both Tau protein and Aβ amyloid peptide. This review amalgamates current knowledge on Tau protein and evolving therapeutic strategies, providing a comprehensive resource for researchers seeking to deepen their understanding of the Tau protein and for scientists involved in the development of new peptide-based anti-aggregative Tau compounds.
Collapse
Affiliation(s)
- Davide Di Lorenzo
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, D-33615, Bielefeld, Germany
| |
Collapse
|
2
|
Hossen F, Geng X, Sun GY, Yao X, Lee JC. Oligomeric Amyloid-β and Tau Alter Cell Adhesion Properties and Induce Inflammatory Responses in Cerebral Endothelial Cells Through the RhoA/ROCK Pathway. Mol Neurobiol 2024; 61:8759-8776. [PMID: 38561558 PMCID: PMC11445398 DOI: 10.1007/s12035-024-04138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Dysfunction of cerebral endothelial cells (CECs) has been implicated in the pathology of Alzheimer's disease (AD). Despite evidence showing cytotoxic effects of oligomeric amyloid-β (oAβ) and Tau (oTau) in the central nervous system, their direct effects on CECs have not been fully investigated. In this study, we examined the direct effects of oAβ, oTau, and their combination on cell adhesion properties and inflammatory responses in CECs. We found that both oAβ and oTau increased cell stiffness, as well as the p-selectin/Sialyl-LewisX (sLeX) bonding-mediated membrane tether force and probability of adhesion in CECs. Consistent with these biomechanical alterations, treatments with oAβ or oTau also increased actin polymerization and the expression of p-selectin at the cell surface. These toxic oligomeric peptides also triggered inflammatory responses, including upregulations of p-NF-kB p65, IL-1β, and TNF-α. In addition, they rapidly activated the RhoA/ROCK pathway. These biochemical and biomechanical changes were further enhanced by the treatment with the combination of oAβ and oTau, which were significantly suppressed by Fasudil, a specific inhibitor for the RhoA/ROCK pathway. In conclusion, our data suggest that oAβ, oTau, and their combination triggered subcellular mechanical alterations and inflammatory responses in CECs through the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Faruk Hossen
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Xue Geng
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Grace Y Sun
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Xincheng Yao
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - James C Lee
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
3
|
Liu J, Jiang J, He C, Zhou L, Zhang Y, Zhao S, Yang Z. Platycodin D and voluntary running synergistically ameliorate memory deficits in 5 × FAD mice via mediating neuromodulation and neuroinflammation. Front Aging Neurosci 2024; 16:1451766. [PMID: 39385832 PMCID: PMC11461226 DOI: 10.3389/fnagi.2024.1451766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is the leading cause of dementia, and currently, no effective treatments are available to reverse or halt its progression in clinical practice. Although a plethora of studies have highlighted the benefits of physical exercise in combating AD, elder individuals often have limited exercise capacity. Therefore, mild physical exercise and nutritional interventions represent potential strategies for preventing and mitigating neurodegenerative diseases. Our research, along with other studies, have demonstrated that platycodin D (PD) or its metabolite, platycodigenin, derived from the medicinal plant Platycodon grandiflorus, exerts neuroprotective effects against amyloid β (Aβ)-induced neuroinflammation. However, the combined effects of PD and physical exercise on alleviating AD have yet to be explored. The current study aimed to investigate whether combined therapy could synergistically ameliorate memory deficits and AD pathology in 5 × FAD mice. Methods Five-month-old 5 × FAD mice were randomly assigned to four groups, and received either PD (5 mg/kg/day, p.o.), voluntary running, or a combination of both for 47 days. Nest building test, locomotion test, and Morris water maze test were used to evaluate the cognitive function. Immunohistochemical and ELISA analysis was performed to determine Aβ build-up, microglia and astrocytes hyperactivation, and survival neurons in the hippocampus and perirhinal cortex. Real-time quantitative PCR analysis was used to assess the polarization of microglia and astrocytes. HPLC analysis was performed to measure monoamine neurotransmitters in the hippocampus. Results and discussion The combination of PD and voluntary running synergistically restored nest-building behavior, alleviated recognition and spatial memory deficits, and showed superior effects compared to monotherapy. In addition, the PD and voluntary running combination reduced Aβ build-up, decreased hyperactivation of microglia and astrocytes in the hippocampus and perirhinal cortex, promoted the polarization of inflammatory M1 microglia and reactive astrocytes toward beneficial phenotypes, and lowered systemic circulating pro-inflammatory cytokines while increasing anti-inflammatory cytokines in 5 × FAD mice. Furthermore, combined therapy effectively protected neurons and increased levels of 5-hydroxytryptamine (5-HT) and dopamine (DA) in the hippocampus of 5 × FAD mice. In conclusion, the combination of PD and voluntary running holds great potential as a treatment for AD, offering promise for delaying onset or progression of AD.
Collapse
Affiliation(s)
- Junxin Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Jiahui Jiang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Chuantong He
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Longjian Zhou
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Shuai Zhao
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Zhiyou Yang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang Municipal Key Laboratory of Marine Drugs and Nutrition for Brain Health, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
4
|
Sun Z, Kwon JS, Ren Y, Chen S, Walker CK, Lu X, Cates K, Karahan H, Sviben S, Fitzpatrick JAJ, Valdez C, Houlden H, Karch CM, Bateman RJ, Sato C, Mennerick SJ, Diamond MI, Kim J, Tanzi RE, Holtzman DM, Yoo AS. Modeling late-onset Alzheimer's disease neuropathology via direct neuronal reprogramming. Science 2024; 385:adl2992. [PMID: 39088624 DOI: 10.1126/science.adl2992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/31/2024] [Indexed: 08/03/2024]
Abstract
Late-onset Alzheimer's disease (LOAD) is the most common form of Alzheimer's disease (AD). However, modeling sporadic LOAD that endogenously captures hallmark neuronal pathologies such as amyloid-β (Aβ) deposition, tau tangles, and neuronal loss remains an unmet need. We demonstrate that neurons generated by microRNA (miRNA)-based direct reprogramming of fibroblasts from individuals affected by autosomal dominant AD (ADAD) and LOAD in a three-dimensional environment effectively recapitulate key neuropathological features of AD. Reprogrammed LOAD neurons exhibit Aβ-dependent neurodegeneration, and treatment with β- or γ-secretase inhibitors before (but not subsequent to) Aβ deposit formation mitigated neuronal death. Moreover inhibiting age-associated retrotransposable elements in LOAD neurons reduced both Aβ deposition and neurodegeneration. Our study underscores the efficacy of modeling late-onset neuropathology of LOAD through high-efficiency miRNA-based neuronal reprogramming.
Collapse
Affiliation(s)
- Zhao Sun
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ji-Sun Kwon
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Program in Computational and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yudong Ren
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Program in Developmental, Regenerative, and Stem Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shawei Chen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Courtney K Walker
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xinguo Lu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kitra Cates
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Program in Molecular Genetics and Genomics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sanja Sviben
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James A J Fitzpatrick
- Washington University Center for Cellular Imaging, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Clarissa Valdez
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Henry Houlden
- UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Celeste M Karch
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Randall J Bateman
- Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chihiro Sato
- Tracy Family SILQ Center for Neurodegenerative Biology, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven J Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jungsu Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - David M Holtzman
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew S Yoo
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
5
|
Jarero-Basulto JJ, Gasca-Martínez Y, Rivera-Cervantes MC, Gasca-Martínez D, Carrillo-González NJ, Beas-Zárate C, Gudiño-Cabrera G. Cytotoxic Effect of Amyloid-β1-42 Oligomers on Endoplasmic Reticulum and Golgi Apparatus Arrangement in SH-SY5Y Neuroblastoma Cells. NEUROSCI 2024; 5:141-157. [PMID: 39483494 PMCID: PMC11469764 DOI: 10.3390/neurosci5020010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 11/03/2024] Open
Abstract
Amyloid-β oligomers are a cytotoxic structure that is key for the establishment of the beginning stages of Alzheimer's disease (AD). These structures promote subcellular alterations that cause synaptic dysfunction, loss of cell communication, and even cell death, generating cognitive deficits. The aim of this study was to investigate the cytotoxic effects of amyloid-β1-42 oligomers (AβOs) on the membranous organelles involved in protein processing: the endoplasmic reticulum (ER) and Golgi apparatus (GA). The results obtained with 10 μM AβOs in SH-SY5Y neuroblastoma cells showed that oligomeric structures are more toxic than monomers because they cause cell viability to decrease as exposure time increases. Survivor cells were analyzed to further understand the toxic effects of AβOs on intracellular organelles. Survivor cells showed morphological alterations associated with abnormal cytoskeleton modification 72-96 h after exposure to AβOs. Moreover, the ER and GA presented rearrangement throughout the cytoplasmic space, which could be attributed to a lack of constitutive protein processing or to previous abnormal cytoskeleton modification. Interestingly, the disorganization of both ER and GA organelles exposed to AβOs is likely an early pathological alteration that could be related to aberrant protein processing and accumulation in AD.
Collapse
Affiliation(s)
- José J Jarero-Basulto
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, University Center of Biological and Agricultural Sciences (CUCBA), University of Guadalajara, Zapopan 45220, Mexico; (J.J.J.-B.); (M.C.R.-C.)
| | - Yadira Gasca-Martínez
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, University Center of Biological and Agricultural Sciences (CUCBA), University of Guadalajara, Zapopan 45220, Mexico; (Y.G.-M.); (N.J.C.-G.)
| | - Martha C Rivera-Cervantes
- Cellular Neurobiology Laboratory, Cell and Molecular Biology Department, University Center of Biological and Agricultural Sciences (CUCBA), University of Guadalajara, Zapopan 45220, Mexico; (J.J.J.-B.); (M.C.R.-C.)
| | - Deisy Gasca-Martínez
- Behavioral Analysis Unit, Neurobiology Institute, Campus UNAM, Juriquilla 76230, Mexico;
| | - Nidia Jannette Carrillo-González
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, University Center of Biological and Agricultural Sciences (CUCBA), University of Guadalajara, Zapopan 45220, Mexico; (Y.G.-M.); (N.J.C.-G.)
| | - Carlos Beas-Zárate
- Neurobiotechnology Laboratory, Cell and Molecular Biology Department, University Center of Biological and Agricultural Sciences (CUCBA), University of Guadalajara, Zapopan 45220, Mexico;
| | - Graciela Gudiño-Cabrera
- Development and Neural Regeneration Laboratory, Cell and Molecular Biology Department, University Center of Biological and Agricultural Sciences (CUCBA), University of Guadalajara, Zapopan 45220, Mexico; (Y.G.-M.); (N.J.C.-G.)
| |
Collapse
|
6
|
Parra Bravo C, Giani AM, Madero-Perez J, Zhao Z, Wan Y, Samelson AJ, Wong MY, Evangelisti A, Cordes E, Fan L, Ye P, Zhu D, Pozner T, Mercedes M, Patel T, Yarahmady A, Carling GK, Sterky FH, Lee VMY, Lee EB, DeTure M, Dickson DW, Sharma M, Mok SA, Luo W, Zhao M, Kampmann M, Gong S, Gan L. Human iPSC 4R tauopathy model uncovers modifiers of tau propagation. Cell 2024; 187:2446-2464.e22. [PMID: 38582079 PMCID: PMC11365117 DOI: 10.1016/j.cell.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/12/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
Tauopathies are age-associated neurodegenerative diseases whose mechanistic underpinnings remain elusive, partially due to a lack of appropriate human models. Here, we engineered human induced pluripotent stem cell (hiPSC)-derived neuronal lines to express 4R Tau and 4R Tau carrying the P301S MAPT mutation when differentiated into neurons. 4R-P301S neurons display progressive Tau inclusions upon seeding with Tau fibrils and recapitulate features of tauopathy phenotypes including shared transcriptomic signatures, autophagic body accumulation, and reduced neuronal activity. A CRISPRi screen of genes associated with Tau pathobiology identified over 500 genetic modifiers of seeding-induced Tau propagation, including retromer VPS29 and genes in the UFMylation cascade. In progressive supranuclear palsy (PSP) and Alzheimer's Disease (AD) brains, the UFMylation cascade is altered in neurofibrillary-tangle-bearing neurons. Inhibiting the UFMylation cascade in vitro and in vivo suppressed seeding-induced Tau propagation. This model provides a robust platform to identify novel therapeutic strategies for 4R tauopathy.
Collapse
Affiliation(s)
- Celeste Parra Bravo
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alice Maria Giani
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jesus Madero-Perez
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Zeping Zhao
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Yuansong Wan
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Avi J Samelson
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Man Ying Wong
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Alessandro Evangelisti
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Ethan Cordes
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Li Fan
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Pearly Ye
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Daphne Zhu
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tatyana Pozner
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Maria Mercedes
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tark Patel
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Allan Yarahmady
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Gillian K Carling
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Fredrik H Sterky
- Department of Laboratory Medicine, University of Gothenburg, 41345 Gothenburg, Sweden; Department of Clinical Chemistry, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Virginia M Y Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Edward B Lee
- Institute of Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Manu Sharma
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Sue-Ann Mok
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Wenjie Luo
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Mingrui Zhao
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shiaoching Gong
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
7
|
He K, Li B, Wang J, Wang Y, You Z, Chen X, Chen H, Li J, Huang Q, Guo Q, Huang YH, Guan Y, Chen K, Zhao J, Deng Y, Xie F. APOE ε4 is associated with decreased synaptic density in cognitively impaired participants. Alzheimers Dement 2024; 20:3157-3166. [PMID: 38477490 PMCID: PMC11095422 DOI: 10.1002/alz.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION We aimed to investigate the effect of apolipoprotein E4 (APOE) ε4 on synaptic density in cognitively impaired (CI) participants. METHODS One hundred ten CI participants underwent amyloid positron emission tomography (PET) with 18F-florbetapir and synaptic density PET with 18F-SynVesT-1. We evaluated the influence of APOE ε4 allele on synaptic density and investigated the effects of ε4 genotype on the associations of synaptic density with Alzheimer's disease (AD) biomarkers. The mediation effects of AD biomarkers on ε4-associated synaptic density loss were analyzed. RESULTS Compared with non-carriers, APOE ε4 allele carriers exhibited significant synaptic loss in the medial temporal lobe. Amyloid beta (Aβ) and tau pathology mediated the effects of APOE ε4 on synaptic density to different extents. The associations between synaptic density and tau pathology were regulated by the APOE ε4 genotype. DISCUSSION The APOE ε4 allele was associated with decreased synaptic density in CI individuals and may be driven by AD biomarkers.
Collapse
Affiliation(s)
- Kun He
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Binyin Li
- Department of Neurology & Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Neuroscience CenterRuijin Hospital LuWan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jie Wang
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Ying Wang
- Department of GerontologyShanghai Jiaotong University Affiliated Sixth People's HospitalShanghaiChina
| | - Zhiwen You
- Department of Nuclear MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Xing Chen
- Department of Nuclear MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Haijuan Chen
- Department of Neurology & Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Junpeng Li
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Qi Huang
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Qihao Guo
- Department of GerontologyShanghai Jiaotong University Affiliated Sixth People's HospitalShanghaiChina
| | - Yiyun Henry Huang
- PET CenterDepartment of Radiology and Biomedical ImagingYale University School of MedicineNew HavenUSA
| | - Yihui Guan
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
| | - Kewei Chen
- Banner Alzheimer InstituteArizona State University, University of Arizona and Arizona Alzheimer's ConsortiumPhoenixUSA
| | - Jun Zhao
- Department of Nuclear MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yulei Deng
- Department of Neurology & Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Neuroscience CenterRuijin Hospital LuWan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang Xie
- Department of Nuclear Medicine & PET CenterHuashan Hospital, Fudan UniversityShanghaiChina
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
8
|
Al-Saad OM, Gabr M, Darwish SS, Rullo M, Pisani L, Miniero DV, Liuzzi GM, Kany AM, Hirsch AKH, Abadi AH, Engel M, Catto M, Abdel-Halim M. Novel 6-hydroxybenzothiazol-2-carboxamides as potent and selective monoamine oxidase B inhibitors endowed with neuroprotective activity. Eur J Med Chem 2024; 269:116266. [PMID: 38490063 DOI: 10.1016/j.ejmech.2024.116266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/02/2024] [Accepted: 02/18/2024] [Indexed: 03/17/2024]
Abstract
In neurodegenerative diseases, using a single molecule that can exert multiple effects to modify the disease may have superior activity over the classical "one molecule-one target" approach. Herein, we describe the discovery of 6-hydroxybenzothiazol-2-carboxamides as highly potent and selective MAO-B inhibitors. Variation of the amide substituent led to several potent compounds having diverse side chains with cyclohexylamide 40 displaying the highest potency towards MAO-B (IC50 = 11 nM). To discover new compounds with extended efficacy against neurotoxic mechanisms in neurodegenerative diseases, MAO-B inhibitors were screened against PHF6, R3 tau, cellular tau and α-synuclein (α-syn) aggregation. We identified the phenethylamide 30 as a multipotent inhibitor of MAO-B (IC50 = 41 nM) and α-syn and tau aggregation. It showed no cytotoxic effects on SH-SY5Y neuroblastoma cells, while also providing neuroprotection against toxicities induced by α-syn and tau. The evaluation of key physicochemical and in vitro-ADME properties revealed a great potential as drug-like small molecules with multitarget neuroprotective activity.
Collapse
Affiliation(s)
- Omar M Al-Saad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Moustafa Gabr
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sarah S Darwish
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt; School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, 11578, Cairo, Egypt
| | - Mariagrazia Rullo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Leonardo Pisani
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Daniela Valeria Miniero
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy
| | - Andreas M Kany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarland University Campus E8.1, 66123, Saarbrücken, Germany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarland University Campus E8.1, 66123, Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany
| | - Marco Catto
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125, Bari, Italy.
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| |
Collapse
|
9
|
Lista S, Santos-Lozano A, Emanuele E, Mercuri NB, Gabelle A, López-Ortiz S, Martín-Hernández J, Maisto N, Imbimbo C, Caraci F, Imbimbo BP, Zetterberg H, Nisticò R. Monitoring synaptic pathology in Alzheimer's disease through fluid and PET imaging biomarkers: a comprehensive review and future perspectives. Mol Psychiatry 2024; 29:847-857. [PMID: 38228892 DOI: 10.1038/s41380-023-02376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024]
Abstract
Alzheimer's disease (AD) is currently constrained by limited clinical treatment options. The initial pathophysiological event, which can be traced back to decades before the clinical symptoms become apparent, involves the excessive accumulation of amyloid-beta (Aβ), a peptide comprised of 40-42 amino acids, in extraneuronal plaques within the brain. Biochemical and histological studies have shown that overaccumulation of Aβ instigates an aberrant escalation in the phosphorylation and secretion of tau, a microtubule-binding axonal protein. The accumulation of hyperphosphorylated tau into intraneuronal neurofibrillary tangles is in turn correlated with microglial dysfunction and reactive astrocytosis, culminating in synaptic dysfunction and neurodegeneration. As neurodegeneration progresses, it gives rise to mild clinical symptoms of AD, which may eventually evolve into overt dementia. Synaptic loss in AD may develop even before tau alteration and in response to possible elevations in soluble oligomeric forms of Aβ associated with early AD. These findings largely rely on post-mortem autopsy examinations, which typically involve a limited number of patients. Over the past decade, a range of fluid biomarkers such as neurogranin, α-synuclein, visinin-like protein 1 (VILIP-1), neuronal pentraxin 2, and β-synuclein, along with positron emission tomography (PET) markers like synaptic vesicle glycoprotein 2A, have been developed. These advancements have facilitated the exploration of how synaptic markers in AD patients correlate with cognitive impairment. However, fluid biomarkers indicating synaptic loss have only been validated in cerebrospinal fluid (CSF), not in plasma, with the exception of VILIP-1. The most promising PET radiotracer, [11C]UCB-J, currently faces significant challenges hindering its widespread clinical use, primarily due to the necessity of a cyclotron. As such, additional research geared toward the exploration of synaptic pathology biomarkers is crucial. This will not only enable their extensive clinical application, but also refine the optimization process of AD pharmacological trials.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain.
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain
- Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital 12 de Octubre ('imas12'), 28041, Madrid, Spain
| | | | - Nicola B Mercuri
- Experimental Neurology Laboratory, IRCCS Santa Lucia Foundation, 00143, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Audrey Gabelle
- CMRR, Memory Resources and Research Center, Montpellier University of Excellence i-site, 34295, Montpellier, France
| | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain
| | - Juan Martín-Hernández
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), 47012, Valladolid, Spain
| | - Nunzia Maisto
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, 00143, Rome, Italy
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, 00185, Rome, Italy
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125, Catania, Italy
- Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, 94018, Troina, Italy
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, 43122, Parma, Italy
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, 431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N, London, UK
- UK Dementia Research Institute at UCL, WC1E 6BT, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, 53726, WI, USA
| | - Robert Nisticò
- Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, 00143, Rome, Italy.
- School of Pharmacy, University of Rome "Tor Vergata", 00133, Rome, Italy.
| |
Collapse
|
10
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
11
|
Arendash GW, Lin X, Cao C. Enhanced Brain Clearance of Tau and Amyloid-β in Alzheimer's Disease Patients by Transcranial Radiofrequency Wave Treatment: A Central Role of Vascular Endothelial Growth Factor (VEGF). J Alzheimers Dis 2024; 100:S223-S241. [PMID: 39177605 PMCID: PMC11380279 DOI: 10.3233/jad-240600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2024] [Indexed: 08/24/2024]
Abstract
Background While drainage/removal of fluid and toxins from the brain by cerebrospinal fluid (CSF) directly into venous blood is well-known, a second drainage route has recently been (re)discovered-meningeal lymphatic vessels (mLVs)-which are responsible for up to half of total brain fluid/toxin drainage. The cytokine vascular endothelial growth factor (VEGF) increases mLV diameter and numbers to increase mLV drainage, resulting in increased mLV drainage. Alzheimer's disease (AD) is characterized by low plasma and CSF levels of VEGF. Objective To determine if non-invasive transcranial radiofrequency wave treatment (TRFT), through modulation of VEGF levels in blood and CSF, can affect removal of toxins tau and amyloid-β (Aβ) from the brain. Methods Eight mild/moderate AD subjects were given twice-daily 1-hour TRFT sessions at home by their caregivers. Blood and CSF samples were taken at baseline and following completion of 2 months of TRFT. Results In plasma and/or CSF, strong baseline correlations between VEGF levels and AD markers (t-tau, p-tau, Aβ1-40, Aβ1-42) were eliminated by TRFT. This effect was primarily due to TRFT-induced increases in VEGF levels in AD subjects with low or unmeasurable "baseline" VEGF levels. These increased VEGF levels were associated with increased clearance/drainage of tau and Aβ from the brain, likely through VEGF's actions on mLVs. Conclusions A new mechanism of TRFT is identified (facilitation of brain tau and Aβ clearance via VEGF) that is likely contributory to TRFT's reversal of cognitive impairment in AD subjects. TRFT may be particularly effective for cognitive benefit in AD subjects who have low VEGF levels.
Collapse
Affiliation(s)
- Gary W. Arendash
- RF Longevity, Phoenix, AZ, USA
- NeuroEM Therapeutics, Inc., Tampa, FL, USA
| | - Xiaoyang Lin
- Taneja College of Pharmacy, University of South Florida, Tampa FL, USA
| | - Chuanhai Cao
- Taneja College of Pharmacy, University of South Florida, Tampa FL, USA
- MegaNano Biotech, Tampa, FL, USA
| |
Collapse
|
12
|
Congdon EE, Ji C, Tetlow AM, Jiang Y, Sigurdsson EM. Tau-targeting therapies for Alzheimer disease: current status and future directions. Nat Rev Neurol 2023; 19:715-736. [PMID: 37875627 PMCID: PMC10965012 DOI: 10.1038/s41582-023-00883-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Alzheimer disease (AD) is the most common cause of dementia in older individuals. AD is characterized pathologically by amyloid-β (Aβ) plaques and tau neurofibrillary tangles in the brain, with associated loss of synapses and neurons, which eventually results in dementia. Many of the early attempts to develop treatments for AD focused on Aβ, but a lack of efficacy of these treatments in terms of slowing disease progression led to a change of strategy towards targeting of tau pathology. Given that tau shows a stronger correlation with symptom severity than does Aβ, targeting of tau is more likely to be efficacious once cognitive decline begins. Anti-tau therapies initially focused on post-translational modifications, inhibition of tau aggregation and stabilization of microtubules. However, trials of many potential drugs were discontinued because of toxicity and/or lack of efficacy. Currently, the majority of tau-targeting agents in clinical trials are immunotherapies. In this Review, we provide an update on the results from the initial immunotherapy trials and an overview of new therapeutic candidates that are in clinical development, as well as considering future directions for tau-targeting therapies.
Collapse
Affiliation(s)
- Erin E Congdon
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Changyi Ji
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Amber M Tetlow
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Yixiang Jiang
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
13
|
Taddei RN, Perbet R, Mate de Gerando A, Wiedmer AE, Sanchez-Mico M, Connors Stewart T, Gaona A, Melloni A, Amaral AC, Duff K, Frosch MP, Gómez-Isla T. Tau Oligomer-Containing Synapse Elimination by Microglia and Astrocytes in Alzheimer Disease. JAMA Neurol 2023; 80:1209-1221. [PMID: 37812432 PMCID: PMC10562992 DOI: 10.1001/jamaneurol.2023.3530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/03/2023] [Indexed: 10/10/2023]
Abstract
Importance Factors associated with synapse loss beyond amyloid-β plaques and neurofibrillary tangles may more closely correlate with the emergence of cognitive deficits in Alzheimer disease (AD) and be relevant for early therapeutic intervention. Objective To investigate whether accumulation of tau oligomers in synapses is associated with excessive synapse elimination by microglia or astrocytes and with cognitive outcomes (dementia vs no dementia [hereinafter termed resilient]) of individuals with equal burdens of AD neuropathologic changes at autopsy. Design, Setting, and Participants This cross-sectional postmortem study included 40 human brains from the Massachusetts Alzheimer Disease Research Center Brain Bank with Braak III to IV stages of tau pathology but divergent antemortem cognition (dementia vs resilient) and cognitively normal controls with negligible AD neuropathologic changes. The visual cortex, a region without tau tangle deposition at Braak III to IV stages, was assessed after expansion microscopy to analyze spatial relationships of synapses with microglia and astrocytes. Participants were matched for age, sex, and apolipoprotein E status. Evidence of Lewy bodies, TDP-43 aggregates, or other lesions different from AD neuropathology were exclusion criteria. Tissue was collected from July 1998 to November 2020, and analyses were conducted from February 1, 2022, through May 31, 2023. Main Outcomes and Measures Amyloid-β plaques, tau neuropil thread burden, synapse density, tau oligomers in synapses, and internalization of tau oligomer-tagged synapses by microglia and astrocytes were quantitated. Analyses were performed using 1-way analysis of variance for parametric variables and the Kruskal-Wallis test for nonparametric variables; between-group differences were evaluated with Holm-Šídák tests. Results Of 40 included participants (mean [SD] age at death, 88 [8] years; 21 [52%] male), 19 had early-stage dementia with Braak stages III to IV, 13 had resilient brains with similar Braak stages III to IV, and 8 had no dementia (Braak stages 0-II). Brains with dementia but not resilient brains had substantial loss of presynaptic (43%), postsynaptic (33%), and colocalized mature synaptic elements (38%) compared with controls and significantly higher percentages of mature synapses internalized by IBA1-positive microglia (mean [SD], 13.3% [3.9%] in dementia vs 2.6% [1.9%] in resilient vs 0.9% [0.5%] in control; P < .001) and by GFAP-positive astrocytes (mean [SD], 17.2% [10.9%] in dementia vs 3.7% [4.0%] in resilient vs 2.7% [1.8%] in control; P = .001). In brains with dementia but not in resilient brains, tau oligomers more often colocalized with synapses, and the proportions of tau oligomer-containing synapses inside microglia (mean [SD] for presynapses, mean [SD], 7.4% [1.8%] in dementia vs 5.1% [1.9%] resilient vs 3.7% [0.8%] control; P = .006; and for postsynapses 11.6% [3.6%] dementia vs 6.8% [1.3%] resilient vs 7.4% [2.5%] control; P = .001) and astrocytes (mean [SD] for presynapses, 7.0% [2.1%] dementia vs 4.3% [2.2%] resilient vs 4.0% [0.7%] control; P = .001; and for postsynapses, 7.9% [2.2%] dementia vs 5.3% [1.8%] resilient vs 3.0% [1.5%] control; P < .001) were significantly increased compared with controls. Those changes in brains with dementia occurred in the absence of tau tangle deposition in visual cortex. Conclusion and Relevance The findings from this cross-sectional study suggest that microglia and astrocytes may excessively engulf synapses in brains of individuals with dementia and that the abnormal presence of tau oligomers in synapses may serve as signals for increased glial-mediated synapse elimination and early loss of brain function in AD.
Collapse
Affiliation(s)
- Raquel N. Taddei
- Neurology Department, Massachusetts General Hospital, Harvard University, Boston, Massachusetts
- Department of Neurology, Dementia Research Institute, University College London, United Kingdom
| | - Romain Perbet
- Neurology Department, Massachusetts General Hospital, Harvard University, Boston, Massachusetts
| | | | - Anne E. Wiedmer
- Neurology Department, Massachusetts General Hospital, Harvard University, Boston, Massachusetts
| | - Maria Sanchez-Mico
- Neurology Department, Massachusetts General Hospital, Harvard University, Boston, Massachusetts
| | - Theresa Connors Stewart
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Angelica Gaona
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Alexandra Melloni
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Ana C. Amaral
- Neurology Department, Massachusetts General Hospital, Harvard University, Boston, Massachusetts
| | - Karen Duff
- Department of Neurology, Dementia Research Institute, University College London, United Kingdom
| | - Matthew P. Frosch
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Teresa Gómez-Isla
- Neurology Department, Massachusetts General Hospital, Harvard University, Boston, Massachusetts
| |
Collapse
|
14
|
Grinberg LT. Synaptic Oligomers and Glial Cells in Alzheimer Disease. JAMA Neurol 2023; 80:1136-1137. [PMID: 37812438 PMCID: PMC10903969 DOI: 10.1001/jamaneurol.2023.3539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Affiliation(s)
- Lea Tenenholz Grinberg
- Department of Neurology, University of California, San Francisco
- Department of Pathology, University of California, San Francisco
- Department of Pathology, University of Sao Paulo Medical School, São Paulo, São Paulo
| |
Collapse
|
15
|
ÖZSOY Ş, ÇAKIR Z, AKÇAY E, GEVREK F. Effects of thymoquinone and memantine alone and in combination on memory and hippocampal morphology in rats with streptozotocin-induced Alzheimer's disease. Turk J Med Sci 2023; 53:894-901. [PMID: 38031940 PMCID: PMC10760553 DOI: 10.55730/1300-0144.5653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/18/2023] [Accepted: 05/25/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease. Thymoquinone (TQ) has broad biological functions, including antiinflammatory, antioxidant, neuroprotective properties. Memantine (MEM) is indicated for the symptomatic treatment of moderate to severe AD. We aimed to evaluate the effect of TQ alone or in combination with MEM on memory and hippocampal morphology in an STZ-induced rat AD model. METHODS Thirty male rats were included in this study. The AD model was created by giving ICV STZ. The rats were divided into 5 groups (n = 6 each). Group 1 (control group): The rats received only ICV-STZ 3 mg/kg for 2 weeks. Group 2 (sham group): In addition to ICV STZ, 9% NaCl, 1 mL/day i.p. for 2 weeks of injection, was applied. Group 3 (TQ group): In addition to ICV STZ, rats received TQ 10 mg/kg i.p. for 2 weeks. Group 4 (MEM group): In addition to ICV STZ, rats were given MEM at a dose of 5 mg/kg for two weeks. Group 5 (TQ+MEM group): In addition to ICV STZ, this group was given TQ (10 mg/kg/day, i.p.) and MEM (5 mg/kg/day, i.p.) for 2 weeks. On the 15th day, passive avoidance learning (PAL) was applied to all groups. Then, rats were sacrificed, neurons in the hippocampal CA1, CA2, CA3 regions were evaluated. RESULTS Groups 3, 4, 5 had longer latency periods than groups 1 and 2. The neuron density in the CA1, CA2, CA3 regions had decreased in groups 1 and 2 compared to groups 3, 4, 5. There were significantly more neurons in groups 3, 4, 5 than in groups 1 and 2. DISCUSSION We found that TQ alone and in combination with MEM showed ameliorative effects on memory and hippocampal morphology. TQ may offer a promising treatment strategy for AD.
Collapse
Affiliation(s)
- Şeyma ÖZSOY
- Department of Physiology, Faculty of Medicine, Tokat Gaziosmanpaşa University, Tokat,
Turkiye
| | - Ziya ÇAKIR
- Department of Oral and Dental Health, Faculty of Health Services Vocational School, Tokat Gaziosmanpaşa University, Tokat,
Turkiye
| | - Elif AKÇAY
- Department of Pathology, Faculty of Medicine, Tokat Gaziosmanpaşa University, Tokat,
Turkiye
| | - Fikret GEVREK
- Department of Histology, Faculty of Medicine, Tokat Gaziosmanpaşa University, Tokat,
Turkiye
| |
Collapse
|
16
|
Bravo CP, Giani AM, Perez JM, Zhao Z, Samelson A, Wong MY, Evangelisti A, Fan L, Pozner T, Mercedes M, Ye P, Patel T, Yarahmady A, Carling G, Lee VMY, Sharma M, Mok SA, Luo W, Zhao M, Kampmann M, Gong S, Gan L. Human iPSC 4R tauopathy model uncovers modifiers of tau propagation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.19.544278. [PMID: 37745431 PMCID: PMC10516028 DOI: 10.1101/2023.06.19.544278] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Tauopathies are age-associated neurodegenerative diseases whose mechanistic underpinnings remain elusive, partially due to lack of appropriate human models. Current human induced pluripotent stem cell (hiPSC)-derived neurons express very low levels of 4-repeat (4R)-tau isoforms that are normally expressed in adult brain. Here, we engineered new iPSC lines to express 4R-tau and 4R-tau carrying the P301S MAPT mutation when differentiated into neurons. 4R-P301S neurons display progressive Tau inclusions upon seeding with Tau fibrils and recapitulate features of tauopathy phenotypes, including shared transcriptomic signatures, autophagic body accumulation, and impaired neuronal activity. A CRISPRi screen of genes associated with Tau pathobiology identified over 500 genetic modifiers of Tau-seeding-induced Tau propagation, including retromer VPS29 and the UFMylation cascade as top modifiers. In AD brains, the UFMylation cascade is altered in neurofibrillary-tangle-bearing neurons. Inhibiting the UFMylation cascade suppressed seeding-induced Tau propagation. This model provides a powerful platform to identify novel therapeutic strategies for 4R tauopathy.
Collapse
|
17
|
Chu Z, Han S, Luo Y, Zhou Y, Zhu L, Luo F. Targeting gut-brain axis by dietary flavonoids ameliorate aging-related cognition decline: Evidences and mechanisms. Crit Rev Food Sci Nutr 2023; 64:10281-10302. [PMID: 37300491 DOI: 10.1080/10408398.2023.2222404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aging-related cognitive impairment, mainly Alzheimer's disease (AD), has been widely studied. However, effective prevention and treatment methods are still lacking. In recent years, researchers have observed beneficial effects of plant-based supplements, such as flavonoids, on cognitive protection. This provides a new clue for the prevention of cognitive dysfunction. Studies have shown that dietary flavonoids have neuroprotective effects, but the mechanism is not clear. In this review, we systematically reviewed the research progress on the effects of dietary flavonoids on gut microbes and their metabolites, and concluded that flavonoids could improve cognitive function through the gut-brain axis. Flavonoids can be absorbed through the intestine, cross the blood-brain barrier, and enter the brain tissue. Flavonoids can inhibit the expression and secretion of inflammatory factors in brain tissue, reduce the damage caused by oxidative stress, clear neural damage proteins and inhibit neuronal apoptosis, thereby ameliorating age-related cognitive disorders. Future work will continue to explore the gut-brain axis and target genes regulated by flavonoids. In addition, clinical research and its mechanisms need to be further explored to provide solutions or advise for patients with cognitive impairment.
Collapse
Affiliation(s)
- Zhongxing Chu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yi Luo
- Department of Clinic Medicine, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yaping Zhou
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Lingfeng Zhu
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
18
|
Eteläinen TS, Silva MC, Uhari-Väänänen JK, De Lorenzo F, Jäntti MH, Cui H, Chavero-Pieres M, Kilpeläinen T, Mechtler C, Svarcbahs R, Seppälä E, Savinainen JR, Puris E, Fricker G, Gynther M, Julku UH, Huttunen HJ, Haggarty SJ, Myöhänen TT. A prolyl oligopeptidase inhibitor reduces tau pathology in cellular models and in mice with tauopathy. Sci Transl Med 2023; 15:eabq2915. [PMID: 37043557 DOI: 10.1126/scitranslmed.abq2915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Tauopathies are neurodegenerative diseases that are characterized by accumulation of hyperphosphorylated tau protein, higher-order aggregates, and tau filaments. Protein phosphatase 2A (PP2A) is a major tau dephosphorylating phosphatase, and a decrease in its activity has been demonstrated in tauopathies, including Alzheimer's disease. Prolyl oligopeptidase is a serine protease that is associated with neurodegeneration, and its inhibition normalizes PP2A activity without toxicity under pathological conditions. Here, we assessed whether prolyl oligopeptidase inhibition could protect against tau-mediated toxicity in cellular models in vitro and in the PS19 transgenic mouse model of tauopathy carrying the human tau-P301S mutation. We show that inhibition of prolyl oligopeptidase with the inhibitor KYP-2047 reduced tau aggregation in tau-transfected HEK-293 cells and N2A cells as well as in human iPSC-derived neurons carrying either the P301L or tau-A152T mutation. Treatment with KYP-2047 resulted in increased PP2A activity and activation of autophagic flux in HEK-293 cells and N2A cells and in patient-derived iNeurons, as indicated by changes in autophagosome and autophagy receptor markers; this contributed to clearance of insoluble tau. Furthermore, treatment of PS19 transgenic mice for 1 month with KYP-2047 reduced tau burden in the brain and cerebrospinal fluid and slowed cognitive decline according to several behavioral tests. In addition, a reduction in an oxidative stress marker was seen in mouse brains after KYP-2047 treatment. This study suggests that inhibition of prolyl oligopeptidase could help to ameliorate tau-dependent neurodegeneration.
Collapse
Affiliation(s)
- Tony S Eteläinen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - M Catarina Silva
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Johanna K Uhari-Väänänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Francesca De Lorenzo
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Maria H Jäntti
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Hengjing Cui
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Marta Chavero-Pieres
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Tommi Kilpeläinen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Christina Mechtler
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Reinis Svarcbahs
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Erin Seppälä
- School of Medicine / Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Juha R Savinainen
- School of Medicine / Biomedicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| | - Elena Puris
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht Karls University, Heidelberg D-69120, Germany
| | - Gert Fricker
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht Karls University, Heidelberg D-69120, Germany
| | - Mikko Gynther
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht Karls University, Heidelberg D-69120, Germany
| | - Ulrika H Julku
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Henri J Huttunen
- Neuroscience Center, University of Helsinki, Helsinki 00014, Finland
- Herantis Pharma Plc., Espoo 02600, Finland
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Timo T Myöhänen
- Division of Pharmacology and Pharmacotherapy/Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio 70211, Finland
| |
Collapse
|
19
|
Kara B, Gordon MN, Gifani M, Dorrance AM, Counts SE. Vascular and Nonvascular Mechanisms of Cognitive Impairment and Dementia. Clin Geriatr Med 2023; 39:109-122. [PMID: 36404024 PMCID: PMC10062062 DOI: 10.1016/j.cger.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aging, familial gene mutations, and genetic, environmental, and modifiable lifestyle risk factors predispose individuals to cognitive impairment or dementia by influencing the efficacy of multiple, often interdependent cellular and molecular homeostatic pathways mediating neuronal, glial, and vascular integrity and, ultimately, cognitive status. This review summarizes data from foundational and recent breakthrough studies to highlight common and differential vascular and nonvascular pathogenic mechanisms underlying the progression of Alzheimer disease, vascular dementia, frontotemporal dementia, and dementia with Lewy bodies.
Collapse
Affiliation(s)
- Betul Kara
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Avenue Northwest, Grand Rapids, MI 49503, USA
| | - Marcia N Gordon
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Avenue Northwest, Grand Rapids, MI 49503, USA
| | - Mahsa Gifani
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Avenue Northwest, Grand Rapids, MI 49503, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue Street, East Lansing, MI 48824, USA
| | - Scott E Counts
- Department of Translational Neuroscience, Michigan State University, 400 Monroe Avenue Northwest, Grand Rapids, MI 49503, USA; Department of Family Medicine, Michigan State University, 15 Michigan Street Northeast, Grand Rapids, MI 49503, USA; Hauenstein Neurosciences Center, Mercy Health Saint Mary's Medical Center, 20 Jefferson Avenue Southeast, Grand Rapids, MI 49503, USA.
| |
Collapse
|
20
|
Kabir ER, Chowdhury NM, Yasmin H, Kabir MT, Akter R, Perveen A, Ashraf GM, Akter S, Rahman MH, Sweilam SH. Unveiling the Potential of Polyphenols as Anti-Amyloid Molecules in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:787-807. [PMID: 36221865 PMCID: PMC10227919 DOI: 10.2174/1570159x20666221010113812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease that mostly affects the elderly population. Mechanisms underlying AD pathogenesis are yet to be fully revealed, but there are several hypotheses regarding AD. Even though free radicals and inflammation are likely to be linked with AD pathogenesis, still amyloid-beta (Aβ) cascade is the dominant hypothesis. According to the Aβ hypothesis, a progressive buildup of extracellular and intracellular Aβ aggregates has a significant contribution to the AD-linked neurodegeneration process. Since Aβ plays an important role in the etiology of AD, therefore Aβ-linked pathways are mainly targeted in order to develop potential AD therapies. Accumulation of Aβ plaques in the brains of AD individuals is an important hallmark of AD. These plaques are mainly composed of Aβ (a peptide of 39-42 amino acids) aggregates produced via the proteolytic cleavage of the amyloid precursor protein. Numerous studies have demonstrated that various polyphenols (PPHs), including cyanidins, anthocyanins, curcumin, catechins and their gallate esters were found to markedly suppress Aβ aggregation and prevent the formation of Aβ oligomers and toxicity, which is further suggesting that these PPHs might be regarded as effective therapeutic agents for the AD treatment. This review summarizes the roles of Aβ in AD pathogenesis, the Aβ aggregation pathway, types of PPHs, and distribution of PPHs in dietary sources. Furthermore, we have predominantly focused on the potential of food-derived PPHs as putative anti-amyloid drugs.
Collapse
Affiliation(s)
- Eva Rahman Kabir
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | | | - Hasina Yasmin
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md. Tanvir Kabir
- School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Dhaka, Bangladesh
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India
| | - Ghulam Md. Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Shamima Akter
- Department of Bioinformatics and Computational Biology, George Mason University, Fairfax, Virginia 22030, USA
| | | | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| |
Collapse
|
21
|
Sehar U, Rawat P, Reddy AP, Kopel J, Reddy PH. Amyloid Beta in Aging and Alzheimer's Disease. Int J Mol Sci 2022; 23:12924. [PMID: 36361714 PMCID: PMC9655207 DOI: 10.3390/ijms232112924] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 12/06/2022] Open
Abstract
Alzheimer's disease (AD), is a progressive neurodegenerative disease that affects behavior, thinking, learning, and memory in elderly individuals. AD occurs in two forms, early onset familial and late-onset sporadic; genetic mutations in PS1, PS2, and APP genes cause early onset familial AD, and a combination of lifestyle, environment and genetic factors causes the late-onset sporadic form of the disease. However, accelerated disease progression is noticed in patients with familial AD. Disease-causing pathological changes are synaptic damage, and mitochondrial structural and functional changes, in addition to increased production and accumulation of phosphorylated tau (p-tau), and amyloid beta (Aβ) in the affected brain regions in AD patients. Aβ is a peptide derived from amyloid precursor protein (APP) by proteolytic cleavage of beta and gamma secretases. APP is a glycoprotein that plays a significant role in maintaining neuronal homeostasis like signaling, neuronal development, and intracellular transport. Aβ is reported to have both protective and toxic effects in neurons. The purpose of our article is to summarize recent developments of Aβ and its association with synapses, mitochondria, microglia, astrocytes, and its interaction with p-tau. Our article also covers the therapeutic strategies that reduce Aβ toxicities in disease progression and discusses the reasons for the failures of Aβ therapeutics.
Collapse
Affiliation(s)
- Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Priyanka Rawat
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P. Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jonathan Kopel
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
22
|
Rawat P, Sehar U, Bisht J, Selman A, Culberson J, Reddy PH. Phosphorylated Tau in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2022; 23:12841. [PMID: 36361631 PMCID: PMC9654278 DOI: 10.3390/ijms232112841] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 07/29/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in elderly people. Amyloid beta (Aβ) deposits and neurofibrillary tangles are the major pathological features in an Alzheimer's brain. These proteins are highly expressed in nerve cells and found in most tissues. Tau primarily provides stabilization to microtubules in the part of axons and dendrites. However, tau in a pathological state becomes hyperphosphorylated, causing tau dysfunction and leading to synaptic impairment and degeneration of neurons. This article presents a summary of the role of tau, phosphorylated tau (p-tau) in AD, and other tauopathies. Tauopathies, including Pick's disease, frontotemporal dementia, corticobasal degeneration, Alzheimer's disease, argyrophilic grain disease, progressive supranuclear palsy, and Huntington's disease, are the result of misprocessing and accumulation of tau within the neuronal and glial cells. This article also focuses on current research on the post-translational modifications and genetics of tau, tau pathology, the role of tau in tauopathies and the development of new drugs targeting p-tau, and the therapeutics for treating and possibly preventing tauopathies.
Collapse
Affiliation(s)
- Priyanka Rawat
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jasbir Bisht
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - John Culberson
- Department of Family Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
23
|
Applications of Single-Molecule Vibrational Spectroscopic Techniques for the Structural Investigation of Amyloid Oligomers. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196448. [PMID: 36234985 PMCID: PMC9573641 DOI: 10.3390/molecules27196448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Amyloid oligomeric species, formed during misfolding processes, are believed to play a major role in neurodegenerative and metabolic diseases. Deepening the knowledge about the structure of amyloid intermediates and their aggregation pathways is essential in understanding the underlying mechanisms of misfolding and cytotoxicity. However, structural investigations are challenging due to the low abundance and heterogeneity of those metastable intermediate species. Single-molecule techniques have the potential to overcome these difficulties. This review aims to report some of the recent advances and applications of vibrational spectroscopic techniques for the structural analysis of amyloid oligomers, with special focus on single-molecule studies.
Collapse
|
24
|
Schilling LP, Balthazar MLF, Radanovic M, Forlenza OV, Silagi ML, Smid J, Barbosa BJAP, Frota NAF, de Souza LC, Vale FAC, Caramelli P, Bertolucci PHF, Chaves MLF, Brucki SMD, Damasceno BP, Nitrini R. Diagnosis of Alzheimer's disease: recommendations of the Scientific Department of Cognitive Neurology and Aging of the Brazilian Academy of Neurology. Dement Neuropsychol 2022; 16:25-39. [PMID: 36533157 PMCID: PMC9745995 DOI: 10.1590/1980-5764-dn-2022-s102pt] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/22/2021] [Accepted: 04/27/2022] [Indexed: 01/25/2023] Open
Abstract
This paper presents the consensus of the Scientific Department of Cognitive Neurology and Aging from the Brazilian Academy of Neurology on the diagnostic criteria for Alzheimer's disease (AD) in Brazil. The authors conducted a literature review regarding clinical and research criteria for AD diagnosis and proposed protocols for use at primary, secondary, and tertiary care levels. Within this clinical scenario, the diagnostic criteria for typical and atypical AD are presented as well as clinical, cognitive, and functional assessment tools and complementary propaedeutics with laboratory and neuroimaging tests. The use of biomarkers is also discussed for both clinical diagnosis (in specific conditions) and research.
Collapse
Affiliation(s)
- Lucas Porcello Schilling
- Pontifícia Universidade do Rio Grande do Sul, Escola de Medicina, Serviço de Neurologia, Porto Alegre RS, Brasil
- Pontifícia Universidade do Rio Grande do Sul, Instituto do Cérebro do Rio Grande do Sul, Porto Alegre RS, Brasil
- Pontifícia Universidade do Rio Grande do Sul, Programa de Pós-Graduação em Gerontologia Biomédica, Porto Alegre RS, Brasil
| | | | - Márcia Radanovic
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Instituto de Psiquiatria, Laboratório de Neurociências, São Paulo SP, Brasil
| | - Orestes Vicente Forlenza
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Instituto de Psiquiatria, Laboratório de Neurociências, São Paulo SP, Brasil
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Psiquiatria, São Paulo SP, Brasil
| | - Marcela Lima Silagi
- Universidade Federal de São Paulo, Departamento de Fonoaudiologia, São Paulo SP, Brasil
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brasil
| | - Jerusa Smid
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brasil
| | - Breno José Alencar Pires Barbosa
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brasil
- Universidade Federal de Pernambuco, Centro de Ciências Médicas, Área Acadêmica de Neuropsiquiatria, Recife PE, Brasil
- Instituto de Medicina Integral Prof. Fernando Figueira, Recife PE, Brasil
| | | | - Leonardo Cruz de Souza
- Universidade Federal de Minas Gerais, Departamento de Clínica Médica, Belo Horizonte MG, Brasil
| | - Francisco Assis Carvalho Vale
- Universidade Federal de São Carlos, Centro de Ciências Biológicas e da Saúde, Departamento de Medicina, São Carlos SP, Brasil
| | - Paulo Caramelli
- Universidade Federal de Minas Gerais, Departamento de Clínica Médica, Belo Horizonte MG, Brasil
| | | | - Márcia Lorena Fagundes Chaves
- Hospital de Clínicas de Porto Alegre, Serviço de Neurologia, Porto Alegre RS, Brasil
- Universidade Federal do Rio Grande do Sul, Faculdade de Medicina, Departamento de Medicina Interna, Porto Alegre RS, Brasil
| | - Sonia Maria Dozzi Brucki
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brasil
| | - Benito Pereira Damasceno
- Universidade Estadual de Campinas, Faculdade de Ciências Médicas, Departamento de Neurologia, Campinas SP, Brasil
| | - Ricardo Nitrini
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, Grupo de Neurologia Cognitiva e do Comportamento, São Paulo SP, Brasil
| |
Collapse
|
25
|
Forloni G, La Vitola P, Balducci C. Oligomeropathies, inflammation and prion protein binding. Front Neurosci 2022; 16:822420. [PMID: 36081661 PMCID: PMC9445368 DOI: 10.3389/fnins.2022.822420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The central role of oligomers, small soluble aggregates of misfolded proteins, in the pathogenesis of neurodegenerative disorders is recognized in numerous experimental conditions and is compatible with clinical evidence. To underline this concept, some years ago we coined the term oligomeropathies to define the common mechanism of action of protein misfolding diseases like Alzheimer, Parkinson or prion diseases. Using simple experimental conditions, with direct application of synthetic β amyloid or α-synuclein oligomers intraventricularly at micromolar concentrations, we could detect differences and similarities in the biological consequences. The two oligomer species affected cognitive behavior, neuronal dysfunction and cerebral inflammatory reactions with distinct mechanisms. In these experimental conditions the proposed mediatory role of cellular prion protein in oligomer activities was not confirmed. Together with oligomers, inflammation at different levels can be important early in neurodegenerative disorders; both β amyloid and α-synuclein oligomers induce inflammation and its control strongly affects neuronal dysfunction. This review summarizes our studies with β-amyloid or α-synuclein oligomers, also considering the potential curative role of doxycycline, a well-known antibiotic with anti-amyloidogenic and anti-inflammatory activities. These actions are analyzed in terms of the therapeutic prospects.
Collapse
|
26
|
Qin P, Ran Y, Liu Y, Wei C, Luan X, Niu H, Peng J, Sun J, Wu J. Recent advances of small molecule JNK3 inhibitors for Alzheimer's disease. Bioorg Chem 2022; 128:106090. [PMID: 35964505 DOI: 10.1016/j.bioorg.2022.106090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/22/2022] [Accepted: 08/06/2022] [Indexed: 02/06/2023]
Abstract
C-Jun N-terminal kinase (JNK) is a member of mitogen-activated protein kinases (MAPKs) family, with three isoforms, JNK1, JNK2 and JNK3. Alzheimer's disease (AD) is a neurological disorder and the most common type of dementia. Two well-established AD pathologies are the deposition of Aβ amyloid plaques and neurofibrillary tangles caused by Tau hyperphosphorylation. JNK3 is involved in forming amyloid Aβ and neurofibrillary tangles, suggesting that JNK3 may represent a target to develop treatments for AD. Therefore, this review will discuss the roles of JNK3 in the pathogenesis and treatment of AD, and the latest progress in the development of JNK3 inhibitors.
Collapse
Affiliation(s)
- Pengxia Qin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yingying Ran
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Yujing Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Chao Wei
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Xiaoyi Luan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Haoqian Niu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Peng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jie Sun
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
27
|
Transcranial Electromagnetic Treatment Stops Alzheimer’s Disease Cognitive Decline over a 2½-Year Period: A Pilot Study. MEDICINES 2022; 9:medicines9080042. [PMID: 36005647 PMCID: PMC9416517 DOI: 10.3390/medicines9080042] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/29/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Background: There is currently no therapeutic that can stop or reverse the progressive memory impairment of Alzheimer’s disease (AD). However, we recently published that 2 months of daily, in-home transcranial electromagnetic treatment (TEMT) reversed the cognitive impairment in eight mild/moderate AD subjects. These cognitive enhancements were accompanied by predicted changes in AD markers within both the blood and cerebrospinal fluid (CSF). Methods: In view of these encouraging findings, the initial clinical study was extended twice to encompass a period of 2½ years. The present study reports on the resulting long-term safety, cognitive assessments, and AD marker evaluations from the five subjects who received long-term treatment. Results: TEMT administration was completely safe over the 2½-year period, with no deleterious side effects. In six cognitive/functional tasks (including the ADAS-cog13, Rey AVLT, MMSE, and ADL), no decline in any measure occurred over this 2½-year period. Long-term TEMT induced reductions in the CSF levels of C-reactive protein, p-tau217, Aβ1-40, and Aβ1-42 while modulating CSF oligomeric Aβ levels. In the plasma, long-term TEMT modulated/rebalanced levels of both p-tau217 and total tau. Conclusions: Although only a limited number of AD patients were involved in this study, the results suggest that TEMT can stop the cognitive decline of AD over a period of at least 2½ years and can do so with no safety issues.
Collapse
|
28
|
Cascella R, Bigi A, Riffert DG, Gagliani MC, Ermini E, Moretti M, Cortese K, Cecchi C, Chiti F. A quantitative biology approach correlates neuronal toxicity with the largest inclusions of TDP-43. SCIENCE ADVANCES 2022; 8:eabm6376. [PMID: 35895809 PMCID: PMC9328675 DOI: 10.1126/sciadv.abm6376] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A number of neurodegenerative conditions are associated with the formation of cytosolic inclusions of TDP-43 within neurons. We expressed full-length TDP-43 in a motoneuron/neuroblastoma hybrid cell line (NSC-34) and exploited the high-resolution power of stimulated emission depletion microscopy to monitor the changes of nuclear and cytoplasmic TDP-43 levels and the formation of various size classes of cytoplasmic TDP-43 aggregates with time. Concomitantly, we monitored oxidative stress and mitochondrial impairment using the MitoSOX and MTT reduction assays, respectively. Using a quantitative biology approach, we attributed neuronal dysfunction associated with cytoplasmic deposition component to the formation of the largest inclusions, independently of stress granules. This is in contrast to other neurodegenerative diseases where toxicity is attributed to small oligomers. Using specific inhibitors, markers, and electron microscopy, the proteasome and autophagy were found to target mainly the largest deleterious inclusions, but their efficiency soon decreases without full recovery of neuronal viability.
Collapse
Affiliation(s)
- Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Dylan Giorgino Riffert
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Maria Cristina Gagliani
- Department of Experimental Medicine, Cellular Electron Microscopy Laboratory, University of Genova, 16132 Genova, Italy
| | - Emilio Ermini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Matteo Moretti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
| | - Katia Cortese
- Department of Experimental Medicine, Cellular Electron Microscopy Laboratory, University of Genova, 16132 Genova, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
- Corresponding author. (C.C.); (F.C.)
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy
- Corresponding author. (C.C.); (F.C.)
| |
Collapse
|
29
|
Papagiouvannis G, Theodosis-Nobelos P, Tziona P, Gavalas A, Kourounakis PN, Rekka EA. Gabapentin Antioxidant Derivatives with Anti-Inflammatory and Neuroprotective
Potency. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666211210161922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aims:
The aim of this work is to investigate the antioxidant and anti-inflammatory potency of
novel gabapentin derivatives, which could be proven useful as neuroprotective agents.
Background:
Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders worldwide.
Due to its multi-factorial character, no effective treatment has been obtained yet. In this direction,
the multi-targeting compounds approach could be useful for the development of novel, more effective
drugs against AD. Oxidative stress and inflammation are highly involved in the progression of neurodegeneration,
while gabapentin has been investigated for the treatment of behavioral symptoms in AD.
Objective:
In this work, derivatives of cinnamic acid, Trolox, and 3,5-di-tertbutyl-4-hydroxybenzoic acid
amidated with gabapentin methyl ester were designed and studied. Compounds with these structural characteristics
are expected to act in various biochemical pathways, affecting neurodegenerative processes.
Methods:
The designed compounds were synthesized with classical amidation methods, purified by flash
column chromatography, and identified spectrometrically (1H-NMR and 13C-NMR). Their purity was
determined by CHN elemental analysis. They were tested in vitro for their antioxidant and antiinflammatory
properties and for their inhibitory effect on acetylcholinesterase. Their in vivo antiinflammatory
activity was also tested.
Results:
Molecules that incorporated antioxidant moiety possessed inhibitory activity against rat microsomal
membrane lipid peroxidation and oxidative protein glycation, as well as radical scavenging activity.
Moreover, most of them presented moderate inhibition towards lipoxygenase (up to 51% at 100μΜ)
and acetylcholinesterase (AchE) (IC50 up to 274μΜ) activities. Finally, all synthesized compounds presented
in vivo anti-inflammatory activity, decreasing carrageenan-induced rat paw edema up to 53%, and
some of them could inhibit cyclooxygenase significantly.
Conclusion:
These results indicate that the designed compounds could be proven useful as multitargeting
molecules against AD since they affect various biochemical pathways associated with neurodegeneration.
Thus, more effective drugs can be obtained, and the possible adverse effects of drug combinations
can be limited.
Collapse
Affiliation(s)
- Georgios Papagiouvannis
- Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia 1036, Cyprus
| | | | - Paraskevi Tziona
- Department of
Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Antonios Gavalas
- Department of
Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Panos N. Kourounakis
- Department of
Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Eleni A. Rekka
- Department of
Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
30
|
Zhang WJ, Li DN, Lian TH, Guo P, Zhang YN, Li JH, Guan HY, He MY, Zhang WJ, Zhang WJ, Luo DM, Wang XM, Zhang W. Clinical Features and Potential Mechanisms Relating Neuropathological Biomarkers and Blood-Brain Barrier in Patients With Alzheimer’s Disease and Hearing Loss. Front Aging Neurosci 2022; 14:911028. [PMID: 35783139 PMCID: PMC9245454 DOI: 10.3389/fnagi.2022.911028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
Background The aim of this study was to explore clinical features and potential mechanisms relating neuropathological biomarkers and blood-brain barrier (BBB) in Alzheimer’s disease (AD) and hearing loss (HL). Materials and Methods A total of 65 patients with AD were recruited and auditory function was assessed by threshold of pure tone audiometry (PTA). Patients were divided into AD with HL (AD-HL) and AD with no HL (AD-nHL) groups based on the standard of World Health Organization. Clinical symptoms were assessed by multiple rating scales. The levels of neuropathological biomarkers of β amyloid1-42 (Aβ1–42) and multiple phosphorylated tau (P-tau), and BBB factors of matrix metalloproteinases (MMPs), receptor of advanced glycation end products, glial fibrillary acidic protein, and low-density lipoprotein receptor related protein 1 were measured. Results (1) Compared with AD-nHL group, AD-HL group had significantly impaired overall cognitive function and cognitive domains of memory, language, attention, execution, and activities of daily living (ADL) reflected by the scores of rating scales (P < 0.05). PTA threshold was significantly correlated with the impairments of overall cognitive function and cognitive domains of memory and language, and ADL in patients with AD (P < 0.05). (2) P-tau (S199) level was significantly increased in CSF from AD-HL group (P < 0.05), and was significantly and positively correlated with PTA threshold in patients with AD. (3) MMP-3 level was significantly elevated in CSF from AD-HL group (P < 0.05), and was significantly and positively correlated with PTA threshold in patients with AD (P < 0.05). (4) In AD-HL group, P-tau (S199) level was significantly and positively correlated with the levels of MMP-2 and MMP-3 in CSF (P < 0.05). Conclusion AD-HL patients have severely compromised overall cognitive function, multiple cognitive domains, and ADL. The potential mechanisms of AD-HL involve elevations of AD neuropathological biomarker of P-tau (S199) and BBB factor of MMP-3, and close correlations between P-tau (S199) and MMP-2/MMP-3 in CSF. Findings from this investigation highly suggest significance of early evaluation of HL for delaying AD progression, and indicate new directions of drug development by inhibiting neuropathological biomarkers of AD and protecting BBB.
Collapse
Affiliation(s)
- Wei-jiao Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dan-ning Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Teng-hong Lian
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peng Guo
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ya-nan Zhang
- Department of Blood Transfusion, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing-hui Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hui-ying Guan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ming-yue He
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen-jing Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei-jia Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dong-mei Luo
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiao-min Wang
- Department of Physiology, Capital Medical University, Beijing, China
| | - Wei Zhang
- Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Center of Parkinson’s Disease, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory on Parkinson’s Disease, Beijing, China
- *Correspondence: Wei Zhang,
| |
Collapse
|
31
|
Wakeman DR, Weed MR, Perez SE, Cline EN, Viola KL, Wilcox KC, Moddrelle DS, Nisbett EZ, Kurian AM, Bell AF, Pike R, Jacobson PB, Klein WL, Mufson EJ, Lawrence MS, Elsworth JD. Intrathecal amyloid-beta oligomer administration increases tau phosphorylation in the medial temporal lobe in the African green monkey: A nonhuman primate model of Alzheimer's disease. Neuropathol Appl Neurobiol 2022; 48:e12800. [PMID: 35156715 PMCID: PMC10902791 DOI: 10.1111/nan.12800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/31/2022] [Accepted: 02/05/2022] [Indexed: 11/26/2022]
Abstract
AIMS An obstacle to developing new treatment strategies for Alzheimer's disease (AD) has been the inadequate translation of findings in current AD transgenic rodent models to the prediction of clinical outcomes. By contrast, nonhuman primates (NHPs) share a close neurobiology with humans in virtually all aspects relevant to developing a translational AD model. The present investigation used African green monkeys (AGMs) to refine an inducible NHP model of AD based on the administration of amyloid-beta oligomers (AβOs), a key upstream initiator of AD pathology. METHODS AβOs or vehicle were repeatedly delivered over 4 weeks to age-matched young adult AGMs by intracerebroventricular (ICV) or intrathecal (IT) injections. Induction of AD-like pathology was assessed in subregions of the medial temporal lobe (MTL) by quantitative immunohistochemistry (IHC) using the AT8 antibody to detect hyperphosphorylated tau. Hippocampal volume was measured by magnetic resonance imaging (MRI) scans prior to, and after, intrathecal injections. RESULTS IT administration of AβOs in young adult AGMs revealed an elevation of tau phosphorylation in the MTL cortical memory circuit compared with controls. The largest increases were detected in the entorhinal cortex that persisted for at least 12 weeks after dosing. MRI scans showed a reduction in hippocampal volume following AβO injections. CONCLUSIONS Repeated IT delivery of AβOs in young adult AGMs led to an accelerated AD-like neuropathology in MTL, similar to human AD, supporting the value of this translational model to de-risk the clinical trial of diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Sylvia E Perez
- Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Erika N Cline
- Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Kirsten L Viola
- Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Kyle C Wilcox
- Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - David S Moddrelle
- Virscio Inc., St. Kitts Biomedical Research Foundation, St. Kitts, West Indies
| | - Ernell Z Nisbett
- Virscio Inc., St. Kitts Biomedical Research Foundation, St. Kitts, West Indies
| | | | - Amanda F Bell
- Virscio Inc., St. Kitts Biomedical Research Foundation, St. Kitts, West Indies
| | - Ricaldo Pike
- Virscio Inc., St. Kitts Biomedical Research Foundation, St. Kitts, West Indies
| | | | - William L Klein
- Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Elliott J Mufson
- Neurobiology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | | | | |
Collapse
|
32
|
Puma DDL, Ripoli C, Puliatti G, Pastore F, Lazzarino G, Tavazzi B, Arancio O, Piacentini R, Grassi C. Extracellular tau oligomers affect extracellular glutamate handling by astrocytes through downregulation of GLT-1 expression and impairment of NKA1A2 function. Neuropathol Appl Neurobiol 2022; 48:e12811. [PMID: 35274343 PMCID: PMC9262805 DOI: 10.1111/nan.12811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/14/2022] [Accepted: 02/26/2022] [Indexed: 11/29/2022]
Abstract
AIMS Several studies reported that astrocytes support neuronal communication by the release of gliotransmitters, including ATP and glutamate. Astrocytes also play a fundamental role in buffering extracellular glutamate in the synaptic cleft, thus limiting the risk of excitotoxicity in neurons. We previously demonstrated that extracellular tau oligomers (ex-oTau), by specifically targeting astrocytes, affect glutamate-dependent synaptic transmission via a reduction in gliotransmitter release. The aim of this work was to determine if ex-oTau also impair the ability of astrocytes to uptake extracellular glutamate, thus further contributing to ex-oTau-dependent neuronal dysfunction. METHODS Primary cultures of astrocytes and organotypic brain slices were exposed to ex-oTau (200 nM) for 1 hour. Extracellular glutamate buffering by astrocytes was studied by: Na+ imaging; electrophysiological recordings; high-performance liquid chromatography; Western blot and immunofluorescence. Experimental paradigms avoiding ex-oTau internalization (i.e., heparin pre-treatment and amyloid precursor protein knockout astrocytes) were used to dissect intracellular vs. extracellular effects of oTau. RESULTS Ex-oTau uploading in astrocytes significantly affected glutamate-transporter-1 expression and function, thus impinging on glutamate buffering activity. Ex-oTau also reduced Na-K-ATPase activity because of pump mislocalization on the plasma membrane, with no significant changes in expression. This effect was independent of oTau internalization and it caused Na+ overload and membrane depolarization in ex-oTau-targeted astrocytes. CONCLUSIONS Ex-oTau exerted a complex action on astrocytes, at both intracellular and extracellular levels. The net effect was dysregulated glutamate signalling in terms of both release and uptake that relied on reduced expression of glutamate-transporter-1, altered function and localization of NKA1A1, and NKA1A2. Consequently, Na+ gradients and all Na+ -dependent transports were affected.
Collapse
Affiliation(s)
- Domenica Donatella Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giulia Puliatti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Pastore
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giacomo Lazzarino
- UniCamillus Saint Camillus International University of Health Sciences, Rome, Italy
| | - Barbara Tavazzi
- UniCamillus Saint Camillus International University of Health Sciences, Rome, Italy
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, and Department of Medicine, Columbia University, New York, NY, United States
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
33
|
Schoonhoven DN, Briels CT, Hillebrand A, Scheltens P, Stam CJ, Gouw AA. Sensitive and reproducible MEG resting-state metrics of functional connectivity in Alzheimer's disease. Alzheimers Res Ther 2022; 14:38. [PMID: 35219327 PMCID: PMC8881826 DOI: 10.1186/s13195-022-00970-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 01/30/2022] [Indexed: 01/08/2023]
Abstract
Background Analysis of functional brain networks in Alzheimer’s disease (AD) has been hampered by a lack of reproducible, yet valid metrics of functional connectivity (FC). This study aimed to assess both the sensitivity and reproducibility of the corrected amplitude envelope correlation (AEC-c) and phase lag index (PLI), two metrics of FC that are insensitive to the effects of volume conduction and field spread, in two separate cohorts of patients with dementia due to AD versus healthy elderly controls. Methods Subjects with a clinical diagnosis of AD dementia with biomarker proof, and a control group of subjective cognitive decline (SCD), underwent two 5-min resting-state MEG recordings. Data consisted of a test (AD = 28; SCD = 29) and validation (AD = 29; SCD = 27) cohort. Time-series were estimated for 90 regions of interest (ROIs) in the automated anatomical labelling (AAL) atlas. For each of five canonical frequency bands, the AEC-c and PLI were calculated between all 90 ROIs, and connections were averaged per ROI. General linear models were constructed to compare the global FC differences between the groups, assess the reproducibility, and evaluate the effects of age and relative power. Reproducibility of the regional FC differences was assessed using the Mann-Whitney U tests, with correction for multiple testing using the false discovery rate (FDR). Results The AEC-c showed significantly and reproducibly lower global FC for the AD group compared to SCD, in the alpha (8–13 Hz) and beta (13–30 Hz) bands, while the PLI revealed reproducibly lower FC for the AD group in the delta (0.5–4 Hz) band and higher FC for the theta (4–8 Hz) band. Regionally, the beta band AEC-c showed reproducibility for almost all ROIs (except for 13 ROIs in the frontal and temporal lobes). For the other bands, the AEC-c and PLI did not show regional reproducibility after FDR correction. The theta band PLI was susceptible to the effect of relative power. Conclusion For MEG, the AEC-c is a sensitive and reproducible metric, able to distinguish FC differences between patients with AD dementia and cognitively healthy controls. These two measures likely reflect different aspects of neural activity and show differential sensitivity to changes in neural dynamics. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-00970-4.
Collapse
Affiliation(s)
- Deborah N Schoonhoven
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands. .,Department of Clinical Neurophysiology and MEG Center, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Casper T Briels
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Clinical Neurophysiology and MEG Center, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alida A Gouw
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Clinical Neurophysiology and MEG Center, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Lan Z, Chen Y, Jin J, Xu Y, Zhu X. Long Non-coding RNA: Insight Into Mechanisms of Alzheimer's Disease. Front Mol Neurosci 2022; 14:821002. [PMID: 35095418 PMCID: PMC8795976 DOI: 10.3389/fnmol.2021.821002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/22/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD), a heterogeneous neurodegenerative disorder, is the most common cause of dementia accounting for an estimated 60–80% of cases. The pathogenesis of AD remains unclear, and no curative treatment is available so far. Increasing evidence has revealed a vital role of non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), in AD. LncRNAs contribute to the pathogenesis of AD via modulating amyloid production, Tau hyperphosphorylation, mitochondrial dysfunction, oxidative stress, synaptic impairment and neuroinflammation. This review describes the biological functions and mechanisms of lncRNAs in AD, indicating that lncRNAs may provide potential therapeutic targets for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Zhen Lan
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
| | - Yanting Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, the Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Jiali Jin
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, the Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, the Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
- Institute of Brain Sciences, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Neurology, the Affiliated Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China
- Institute of Brain Sciences, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, China
- *Correspondence: Xiaolei Zhu
| |
Collapse
|
35
|
Jester HM, Gosrani SP, Ding H, Zhou X, Ko MC, Ma T. Characterization of Early Alzheimer's Disease-Like Pathological Alterations in Non-Human Primates with Aging: A Pilot Study. J Alzheimers Dis 2022; 88:957-970. [PMID: 35723096 PMCID: PMC9378582 DOI: 10.3233/jad-215303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Sporadic or late onset Alzheimer's disease (LOAD) is a multifactorial neurodegenerative disease with aging the most known risk factor. Non-human primates (NHPs) may serve as an excellent model to study LOAD because of their close similarity to humans in many aspects including neuroanatomy and neurodevelopment. Recent studies reveal AD-like pathology in old NHPs. OBJECTIVE In this pilot study, we took advantage of brain samples from 6 Cynomolgus macaques that were divided into two groups: middle aged (average age 14.81 years) and older (average age 19.33 years). We investigated whether AD-like brain pathologies are present in the NHPs. METHODS We used immunohistochemical method to examine brain Aβ pathology and neuron density. We applied biochemical assays to measure tau phosphorylation and multiple signaling pathways indicated in AD. We performed electron microscopy experiments to study alterations of postsynaptic density and mitochondrial morphology in the brain of NHPs. RESULTS We found multiple AD-like pathological alteration in the prefrontal cortex (but not in the hippocampus) of the older NHPs including tau hyperphosphorylation, increased activity of AMP-activated protein kinase (AMPK), decreased expression of protein phosphatase 2A (PP2A), impairments in mitochondrial morphology, and postsynaptic densities formation. CONCLUSION These findings may provide insights into the factors contributing to the development of LOAD, particularly during the early stage transitioning from middle to old age. Future endeavors are warranted to elucidate mechanisms underlying the regional (and perhaps cellular) vulnerability with aging and the functional correlation of such pathological changes in NHPs.
Collapse
Affiliation(s)
- Hannah M. Jester
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Saahj P. Gosrani
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Xueyan Zhou
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Tao Ma
- Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
36
|
Liang YY, Zhang LD, Luo X, Wu LL, Chen ZW, Wei GH, Zhang KQ, Du ZA, Li RZ, So KF, Li A. All roads lead to Rome - a review of the potential mechanisms by which exerkines exhibit neuroprotective effects in Alzheimer's disease. Neural Regen Res 2021; 17:1210-1227. [PMID: 34782555 PMCID: PMC8643060 DOI: 10.4103/1673-5374.325012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Age-related neurodegenerative disorders such as Alzheimer’s disease (AD) have become a critical public health issue due to the significantly extended human lifespan, leading to considerable economic and social burdens. Traditional therapies for AD such as medicine and surgery remain ineffective, impractical, and expensive. Many studies have shown that a variety of bioactive substances released by physical exercise (called “exerkines”) help to maintain and improve the normal functions of the brain in terms of cognition, emotion, and psychomotor coordination. Increasing evidence suggests that exerkines may exert beneficial effects in AD as well. This review summarizes the neuroprotective effects of exerkines in AD, focusing on the underlying molecular mechanism and the dynamic expression of exerkines after physical exercise. The findings described in this review will help direct research into novel targets for the treatment of AD and develop customized exercise therapy for individuals of different ages, genders, and health conditions.
Collapse
Affiliation(s)
- Yi-Yao Liang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, Guangdong Province, China
| | - Li-Dan Zhang
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, Guangdong Province, China
| | - Xi Luo
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education, Guangzhou, Guangdong Province, China
| | - Li-Li Wu
- Department of Medical Ultrasonics, Third Affiliated Hospital of Sun Yat-sen University; Guangdong Key Laboratory of Liver Disease Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhao-Wei Chen
- Department of Clinical Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Guang-Hao Wei
- Department of Clinical Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Kai-Qing Zhang
- Department of Clinical Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Ze-An Du
- Department of Clinical Medicine, International School, Jinan University, Guangzhou, Guangdong Province, China
| | - Ren-Zhi Li
- International Department of the Affiliated High School of South China Normal University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ang Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University; Key Laboratory of CNS Regeneration (Jinan University), Ministry of Education; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
| |
Collapse
|
37
|
Wu M, Zhang M, Yin X, Chen K, Hu Z, Zhou Q, Cao X, Chen Z, Liu D. The role of pathological tau in synaptic dysfunction in Alzheimer's diseases. Transl Neurodegener 2021; 10:45. [PMID: 34753506 PMCID: PMC8579533 DOI: 10.1186/s40035-021-00270-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease characterized by progressive cognitive decline, accompanied by amyloid-β (Aβ) overload and hyperphosphorylated tau accumulation in the brain. Synaptic dysfunction, an important pathological hallmark in AD, is recognized as the main cause of the cognitive impairments. Accumulating evidence suggests that synaptic dysfunction could be an early pathological event in AD. Pathological tau, which is detached from axonal microtubules and mislocalized into pre- and postsynaptic neuronal compartments, is suggested to induce synaptic dysfunction in several ways, including reducing mobility and release of presynaptic vesicles, decreasing glutamatergic receptors, impairing the maturation of dendritic spines at postsynaptic terminals, disrupting mitochondrial transport and function in synapses, and promoting the phagocytosis of synapses by microglia. Here, we review the current understanding of how pathological tau mediates synaptic dysfunction and contributes to cognitive decline in AD. We propose that elucidating the mechanism by which pathological tau impairs synaptic function is essential for exploring novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Moxin Wu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China.,Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
| | - Manqing Zhang
- Medical College of Jiujiang University, Jiujiang, 332000, China
| | - Xiaoping Yin
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China.,Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Kai Chen
- Department of Dermatology, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhijian Hu
- Department of Medical Laboratory, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Qin Zhou
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China
| | - Xianming Cao
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China.,Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China
| | - Zhiying Chen
- Jiujiang Clinical Precision Medicine Research Center, Jiujiang, 332000, China. .,Department of Neurology, Affiliated Hospital of Jiujiang University, Jiujiang, 332000, China.
| | - Dan Liu
- Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
38
|
Legname G, Scialò C. On the role of the cellular prion protein in the uptake and signaling of pathological aggregates in neurodegenerative diseases. Prion 2021; 14:257-270. [PMID: 33345731 PMCID: PMC7757855 DOI: 10.1080/19336896.2020.1854034] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Neurodegenerative disorders are associated with intra- or extra-cellular deposition of aggregates of misfolded insoluble proteins. These deposits composed of tau, amyloid-β or α-synuclein spread from cell to cell, in a prion-like manner. Novel evidence suggests that the circulating soluble oligomeric species of these misfolded proteins could play a major role in pathology, while insoluble aggregates would represent their protective less toxic counterparts. Recent convincing data support the proposition that the cellular prion protein, PrPC, act as a toxicity-inducing receptor for amyloid-β oligomers. As a consequence, several studies focused their investigations to the role played by PrPC in binding other protein aggregates, such as tau and α-synuclein, for its possible common role in mediating toxic signalling. The biological relevance of PrPC as key ligand and potential mediator of toxicity for multiple proteinaceous aggregated species, prions or PrPSc included, could lead to relevant therapeutic implications. Here we describe the structure of PrPC and the proposed interplay with its pathological counterpart PrPSc and then we recapitulate the most recent findings regarding the role of PrPC in the interaction with aggregated forms of other neurodegeneration-associated proteins.
Collapse
Affiliation(s)
- Giuseppe Legname
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| | - Carlo Scialò
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore Di Studi Avanzati (SISSA) , Trieste, Italy
| |
Collapse
|
39
|
NK1 antagonists attenuate tau phosphorylation after blast and repeated concussive injury. Sci Rep 2021; 11:8861. [PMID: 33893374 PMCID: PMC8065119 DOI: 10.1038/s41598-021-88237-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 04/05/2021] [Indexed: 01/05/2023] Open
Abstract
Exposure to repeated concussive traumatic brain injury (TBI) and to blast-induced TBI has been associated with the potential development of the neurodegenerative condition known as chronic traumatic encephalopathy (CTE). CTE is characterized by the accumulation of hyperphosphorylated tau protein, with the resultant tau tangles thought to initiate the cognitive and behavioral manifestations that appear as the condition progresses. However, the mechanisms linking concussive and blast TBI with tau hyperphosphorylation are unknown. Here we show that single moderate TBI, repeated concussive TBI and blast-induced mild TBI all result in hyperphosphorylation of tau via a substance P mediated mechanism. Post-injury administration of a substance P, NK1 receptor antagonist attenuated the injury-induced phosphorylation of tau by modulating the activity of several key kinases including Akt, ERK1/2 and JNK, and was associated with improvement in neurological outcome. We also demonstrate that inhibition of the TRPV1 mechanoreceptor, which is linked to substance P release, attenuated injury-associated tau hyperphosphorylation, but only when it was administered prior to injury. Our results demonstrate that TBI-mediated stimulation of brain mechanoreceptors is associated with substance P release and consequent tau hyperphosphorylation, with administration of an NK1 receptor antagonist attenuating tau phosphorylation and associated neurological deficits. NK1 antagonists may thus represent a pharmacological approach to attenuate the potential development of CTE following concussive and blast TBI.
Collapse
|
40
|
Laval K, Enquist LW. The Potential Role of Herpes Simplex Virus Type 1 and Neuroinflammation in the Pathogenesis of Alzheimer's Disease. Front Neurol 2021; 12:658695. [PMID: 33889129 PMCID: PMC8055853 DOI: 10.3389/fneur.2021.658695] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease affecting ~50 million people worldwide. To date, there is no cure and current therapies have not been effective in delaying disease progression. Therefore, there is an urgent need for better understanding of the pathogenesis of AD and to rethink possible therapies. Herpes simplex virus type 1 (HSV1) has recently received growing attention for its potential role in sporadic AD. The virus is a ubiquitous human pathogen that infects mucosal epithelia and invades the peripheral nervous system (PNS) of its host to establish a reactivable, latent infection. Upon reactivation, HSV1 spreads back to the epithelium and initiates a new infection, causing epithelial lesions. Occasionally, the virus spreads from the PNS to the brain after reactivation. In this review, we discuss current work on the pathogenesis of AD and summarize research results that support a potential role for HSV1 in the infectious hypothesis of AD. We also highlight recent findings on the neuroinflammatory response, which has been proposed to be the main driving force of AD, starting early in the course of the disease. Relevant rodent models to study neuroinflammation in AD and novel therapeutic approaches are also discussed. Throughout this review, we focus on several aspects of HSV1 pathogenesis, including its primary role as an invader of the PNS, that should be considered in the etiology of AD. We also point out some of the contradictory data and remaining knowledge gaps that require further research to finally fully understand the cause of AD in humans.
Collapse
Affiliation(s)
- Kathlyn Laval
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | | |
Collapse
|
41
|
Wegmann S, DeVos SL, Zeitler B, Marlen K, Bennett RE, Perez-Rando M, MacKenzie D, Yu Q, Commins C, Bannon RN, Corjuc BT, Chase A, Diez L, Nguyen HOB, Hinkley S, Zhang L, Goodwin A, Ledeboer A, Lam S, Ankoudinova I, Tran H, Scarlott N, Amora R, Surosky R, Miller JC, Robbins AB, Rebar EJ, Urnov FD, Holmes MC, Pooler AM, Riley B, Zhang HS, Hyman BT. Persistent repression of tau in the brain using engineered zinc finger protein transcription factors. SCIENCE ADVANCES 2021; 7:7/12/eabe1611. [PMID: 33741591 PMCID: PMC7978433 DOI: 10.1126/sciadv.abe1611] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/05/2021] [Indexed: 05/12/2023]
Abstract
Neuronal tau reduction confers resilience against β-amyloid and tau-related neurotoxicity in vitro and in vivo. Here, we introduce a novel translational approach to lower expression of the tau gene MAPT at the transcriptional level using gene-silencing zinc finger protein transcription factors (ZFP-TFs). Following a single administration of adeno-associated virus (AAV), either locally into the hippocampus or intravenously to enable whole-brain transduction, we selectively reduced tau messenger RNA and protein by 50 to 80% out to 11 months, the longest time point studied. Sustained tau lowering was achieved without detectable off-target effects, overt histopathological changes, or molecular alterations. Tau reduction with AAV ZFP-TFs was able to rescue neuronal damage around amyloid plaques in a mouse model of Alzheimer's disease (APP/PS1 line). The highly specific, durable, and controlled knockdown of endogenous tau makes AAV-delivered ZFP-TFs a promising approach for the treatment of tau-related human brain diseases.
Collapse
Affiliation(s)
- Susanne Wegmann
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA.
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Sarah L DeVos
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | | | | | - Rachel E Bennett
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Marta Perez-Rando
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Danny MacKenzie
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Qi Yu
- Sangamo Therapeutics Inc., Richmond, CA 94804, USA
| | - Caitlin Commins
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Riley N Bannon
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Bianca T Corjuc
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Alison Chase
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | - Lisa Diez
- German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | | | | | - Lei Zhang
- Sangamo Therapeutics Inc., Richmond, CA 94804, USA
| | | | | | - Stephen Lam
- Sangamo Therapeutics Inc., Richmond, CA 94804, USA
| | | | - Hung Tran
- Sangamo Therapeutics Inc., Richmond, CA 94804, USA
| | | | | | | | | | - Ashley B Robbins
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA
| | | | | | | | - Amy M Pooler
- Sangamo Therapeutics Inc., Richmond, CA 94804, USA
| | - Brigit Riley
- Sangamo Therapeutics Inc., Richmond, CA 94804, USA
| | | | - Bradley T Hyman
- Massachusetts General Hospital, Massachusetts Institute of Neurodegenerative Disease, Charlestown, MA 02129, USA.
| |
Collapse
|
42
|
Li Puma DD, Piacentini R, Grassi C. Does Impairment of Adult Neurogenesis Contribute to Pathophysiology of Alzheimer's Disease? A Still Open Question. Front Mol Neurosci 2021; 13:578211. [PMID: 33551741 PMCID: PMC7862134 DOI: 10.3389/fnmol.2020.578211] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Adult hippocampal neurogenesis is a physiological mechanism contributing to hippocampal memory formation. Several studies associated altered hippocampal neurogenesis with aging and Alzheimer's disease (AD). However, whether amyloid-β protein (Aβ)/tau accumulation impairs adult hippocampal neurogenesis and, consequently, the hippocampal circuitry, involved in memory formation, or altered neurogenesis is an epiphenomenon of AD neuropathology contributing negligibly to the AD phenotype, is, especially in humans, still debated. The detrimental effects of Aβ/tau on synaptic function and neuronal viability have been clearly addressed both in in vitro and in vivo experimental models. Until some years ago, studies carried out on in vitro models investigating the action of Aβ/tau on proliferation and differentiation of hippocampal neural stem cells led to contrasting results, mainly due to discrepancies arising from different experimental conditions (e.g., different cellular/animal models, different Aβ and/or tau isoforms, concentrations, and/or aggregation profiles). To date, studies investigating in situ adult hippocampal neurogenesis indicate severe impairment in most of transgenic AD mice; this impairment precedes by several months cognitive dysfunction. Using experimental tools, which only became available in the last few years, research in humans indicated that hippocampal neurogenesis is altered in cognitive declined individuals affected by either mild cognitive impairment or AD as well as in normal cognitive elderly with a significant inverse relationship between the number of newly formed neurons and cognitive impairment. However, despite that such information is available, the question whether impaired neurogenesis contributes to AD pathogenesis or is a mere consequence of Aβ/pTau accumulation is not definitively answered. Herein, we attempted to shed light on this complex and very intriguing topic by reviewing relevant literature on impairment of adult neurogenesis in mouse models of AD and in AD patients analyzing the temporal relationship between the occurrence of altered neurogenesis and the appearance of AD hallmarks and cognitive dysfunctions.
Collapse
Affiliation(s)
- Domenica Donatella Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
43
|
Gu JL, Liu F. Tau in Alzheimer's Disease: Pathological Alterations and an Attractive Therapeutic Target. Curr Med Sci 2021; 40:1009-1021. [PMID: 33428128 DOI: 10.1007/s11596-020-2282-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/03/2020] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease with two major hallmarks: extracellular amyloid plaques made of amyloid-β (Aβ) and intracellular neurofibrillary tangles (NFTs) of abnormally hyperphosphorylated tau. The number of NFTs correlates positively with the severity of dementia in AD patients. However, there is still no efficient therapy available for AD treatment and prevention so far. A deeper understanding of AD pathogenesis has identified novel strategies for the generation of specific therapies over the past few decades. Several studies have suggested that the prion-like seeding and spreading of tau pathology in the brain may be a key driver of AD. Tau protein is considered as a promising candidate target for the development of therapeutic interventions due to its considerable pathological role in a variety of neurodegenerative disorders. Abnormal tau hyperphosphorylation plays a detrimental pathological role, eventually leading to neurodegeneration. In the present review, we describe the recent research progresses in the pathological mechanisms of tau protein in AD and briefly discuss tau-based therapeutic strategies.
Collapse
Affiliation(s)
- Jian-Lan Gu
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, 226001, China. .,Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration and Ministry of Education of Jiangsu, Nantong, 226001, China.
| | - Fei Liu
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, 10314, USA
| |
Collapse
|
44
|
Exosomal tau with seeding activity is released from Alzheimer's disease synapses, and seeding potential is associated with amyloid beta. J Transl Med 2021; 101:1605-1617. [PMID: 34462532 PMCID: PMC8590975 DOI: 10.1038/s41374-021-00644-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 01/23/2023] Open
Abstract
Synaptic transfer of tau has long been hypothesized from the human pathology pattern and has been demonstrated in vitro and in vivo, but the precise mechanisms remain unclear. Extracellular vesicles such as exosomes have been suggested as a mechanism, but not all tau is exosomal. The present experiments use a novel flow cytometry assay to quantify depolarization of synaptosomes by KCl after loading with FM2-10, which induces a fluorescence reduction associated with synaptic vesicle release; the degree of reduction in cryopreserved human samples equaled that seen in fresh mouse synaptosomes. Depolarization induced the release of vesicles in the size range of exosomes, along with tetraspanin markers of extracellular vesicles. A number of tau peptides were released, including tau oligomers; released tau was primarily unphosphorylated and C-terminal truncated, with Aβ release just above background. When exosomes were immunopurified from release supernatants, a prominent tau band showed a dark smeared appearance of SDS-stable oligomers along with the exosomal marker syntenin-1, and these exosomes induced aggregation in the HEK tau biosensor assay. However, the flow-through did not seed aggregation. Size exclusion chromatography of purified released exosomes shows faint signals from tau in the same fractions that show a CD63 band, an exosomal size signal, and seeding activity. Crude synaptosomes from control, tauopathy, and AD cases demonstrated lower seeding in tauopathy compared to AD that is correlated with the measured Aβ42 level. These results show that AD synapses release exosomal tau that is C-terminal-truncated, oligomeric, and with seeding activity that is enhanced by Aβ. Taken together with previous findings, these results are consistent with a direct prion-like heterotypic seeding of tau by Aβ within synaptic terminals, with subsequent loading of aggregated tau onto exosomes that are released and competent for tau seeding activity.
Collapse
|
45
|
Culibrk RA, Hahn MS. The Role of Chronic Inflammatory Bone and Joint Disorders in the Pathogenesis and Progression of Alzheimer's Disease. Front Aging Neurosci 2020; 12:583884. [PMID: 33364931 PMCID: PMC7750365 DOI: 10.3389/fnagi.2020.583884] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Late-onset Alzheimer's Disease (LOAD) is a devastating neurodegenerative disorder that causes significant cognitive debilitation in tens of millions of patients worldwide. Throughout disease progression, abnormal secretase activity results in the aberrant cleavage and subsequent aggregation of neurotoxic Aβ plaques in the cerebral extracellular space and hyperphosphorylation and destabilization of structural tau proteins surrounding neuronal microtubules. Both pathologies ultimately incite the propagation of a disease-associated subset of microglia-the principle immune cells of the brain-characterized by preferentially pro-inflammatory cytokine secretion and inhibited AD substrate uptake capacity, which further contribute to neuronal degeneration. For decades, chronic neuroinflammation has been identified as one of the cardinal pathophysiological driving features of AD; however, despite a number of works postulating the underlying mechanisms of inflammation-mediated neurodegeneration, its pathogenesis and relation to the inception of cognitive impairment remain obscure. Moreover, the limited clinical success of treatments targeting specific pathological features in the central nervous system (CNS) illustrates the need to investigate alternative, more holistic approaches for ameliorating AD outcomes. Accumulating evidence suggests significant interplay between peripheral immune activity and blood-brain barrier permeability, microglial activation and proliferation, and AD-related cognitive decline. In this work, we review a narrow but significant subset of chronic peripheral inflammatory conditions, describe how these pathologies are associated with the preponderance of neuroinflammation, and posit that we may exploit peripheral immune processes to design interventional, preventative therapies for LOAD. We then provide a comprehensive overview of notable treatment paradigms that have demonstrated considerable merit toward treating these disorders.
Collapse
Affiliation(s)
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
46
|
Dominguez-Meijide A, Vasili E, Outeiro TF. Pharmacological Modulators of Tau Aggregation and Spreading. Brain Sci 2020; 10:E858. [PMID: 33203009 PMCID: PMC7696562 DOI: 10.3390/brainsci10110858] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Tauopathies are neurodegenerative disorders characterized by the deposition of aggregates composed of abnormal tau protein in the brain. Additionally, misfolded forms of tau can propagate from cell to cell and throughout the brain. This process is thought to lead to the templated misfolding of the native forms of tau, and thereby, to the formation of newer toxic aggregates, thereby propagating the disease. Therefore, modulation of the processes that lead to tau aggregation and spreading is of utmost importance in the fight against tauopathies. In recent years, several molecules have been developed for the modulation of tau aggregation and spreading. In this review, we discuss the processes of tau aggregation and spreading and highlight selected chemicals developed for the modulation of these processes, their usefulness, and putative mechanisms of action. Ultimately, a stronger understanding of the molecular mechanisms involved, and the properties of the substances developed to modulate them, will lead to the development of safer and better strategies for the treatment of tauopathies.
Collapse
Affiliation(s)
- Antonio Dominguez-Meijide
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, IDIS, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Goettingen, 37073 Goettingen, Germany; (A.D.-M.); (E.V.)
- Max Planck Institute for Experimental Medicine, 37075 Goettingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
47
|
Roda AR, Montoliu-Gaya L, Serra-Mir G, Villegas S. Both Amyloid-β Peptide and Tau Protein Are Affected by an Anti-Amyloid-β Antibody Fragment in Elderly 3xTg-AD Mice. Int J Mol Sci 2020; 21:E6630. [PMID: 32927795 PMCID: PMC7554787 DOI: 10.3390/ijms21186630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is the most common dementia worldwide. According to the amyloid hypothesis, the early accumulation of the Aβ-peptide triggers tau phosphorylation, synaptic dysfunction, and eventually neuronal death leading to cognitive impairment, as well as behavioral and psychological symptoms of dementia. ScFv-h3D6 is a single-chain variable fragment that has already shown its ability to diminish the amyloid burden in 5-month-old 3xTg-AD mice. However, tau pathology is not evident at this early stage of the disease in this mouse model. In this study, the effects of scFv-h3D6 on Aβ and tau pathologies have been assessed in 22-month-old 3xTg-AD mice. Briefly, 3xTg-AD female mice were treated for 2 weeks with scFv-h3D6 and compared with 3xTg-AD and non-transgenic (NTg) mice treated with PBS. The treatment with scFv-h3D6 was unequivocally effective in reducing the area of Aβ staining. Furthermore, a tendency for a reduction in tau levels was also observed after treatment that points to the interplay between Aβ and tau pathologies. The pro-inflammatory state observed in the 3xTg-AD mice did not progress after scFv-h3D6 treatment. In addition, the treatment did not alter the levels of apolipoprotein E or apolipoprotein J. Thus, a 2-week treatment with scFv-h3D6 was able to reduce AD-like pathology in elderly 3xTg-AD female mice.
Collapse
Affiliation(s)
- Alejandro R. Roda
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (A.R.R.); (L.M.-G.); (G.S.-M.)
| | - Laia Montoliu-Gaya
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (A.R.R.); (L.M.-G.); (G.S.-M.)
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 431 41 Mölndal, Sweden
| | - Gabriel Serra-Mir
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (A.R.R.); (L.M.-G.); (G.S.-M.)
| | - Sandra Villegas
- Protein Design and Immunotherapy Group, Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; (A.R.R.); (L.M.-G.); (G.S.-M.)
| |
Collapse
|
48
|
Scialò C, Legname G. The role of the cellular prion protein in the uptake and toxic signaling of pathological neurodegenerative aggregates. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:297-323. [PMID: 32958237 DOI: 10.1016/bs.pmbts.2020.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Neurodegenerative disorders are invariably associated with intra- or extra-cellular deposition of aggregates composed of misfolded insoluble proteins. These deposits composed of tau, amyloid-β or α-synuclein spread from cell to cell, in a prion-like manner. Emerging evidence suggests that the circulating soluble species of these misfolded proteins (usually referred as oligomers) could play a major role in pathology, while insoluble aggregates would represent their protective less toxic counterparts. Convincing data support the hypothesis that the cellular prion protein, PrPC, act as a toxicity-transducing receptor for amyloid-β oligomers. As a consequence, several studies extended investigations to the role played by PrPC in binding aggregates of proteins other than Aβ, such as tau and α-synuclein, for its possible common role in mediating toxic signaling. A better characterization of the biological relevance of PrPC as key ligand and potential mediator of toxicity for multiple proteinaceous aggregated species, prions or PrPSc included, would bring relevant therapeutic implications. Here we will first describe the structure of the prion protein and the hypothesized interplay with its pathological counterpart PrPSc and then we will recapitulate the most relevant discoveries regarding the role of PrPC in the interaction with aggregated forms of other neurodegeneration-associated proteins.
Collapse
Affiliation(s)
- Carlo Scialò
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
49
|
Younas N, Zafar S, Shafiq M, Noor A, Siegert A, Arora AS, Galkin A, Zafar A, Schmitz M, Stadelmann C, Andreoletti O, Ferrer I, Zerr I. SFPQ and Tau: critical factors contributing to rapid progression of Alzheimer's disease. Acta Neuropathol 2020; 140:317-339. [PMID: 32577828 PMCID: PMC7423812 DOI: 10.1007/s00401-020-02178-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 12/12/2022]
Abstract
Dysfunctional RNA-binding proteins (RBPs) have been implicated in several neurodegenerative disorders. Recently, this paradigm of RBPs has been extended to pathophysiology of Alzheimer’s disease (AD). Here, we identified disease subtype specific variations in the RNA-binding proteome (RBPome) of sporadic AD (spAD), rapidly progressive AD (rpAD), and sporadic Creutzfeldt Jakob disease (sCJD), as well as control cases using RNA pull-down assay in combination with proteomics. We show that one of these identified proteins, splicing factor proline and glutamine rich (SFPQ), is downregulated in the post-mortem brains of rapidly progressive AD patients, sCJD patients and 3xTg mice brain at terminal stage of the disease. In contrast, the expression of SFPQ was elevated at early stage of the disease in the 3xTg mice, and in vitro after oxidative stress stimuli. Strikingly, in rpAD patients’ brains SFPQ showed a significant dislocation from the nucleus and cytoplasmic colocalization with TIA-1. Furthermore, in rpAD brain lesions, SFPQ and p-tau showed extranuclear colocalization. Of note, association between SFPQ and tau-oligomers in rpAD brains suggests a possible role of SFPQ in oligomerization and subsequent misfolding of tau protein. In line with the findings from the human brain, our in vitro study showed that SFPQ is recruited into TIA-1-positive stress granules (SGs) after oxidative stress induction, and colocalizes with tau/p-tau in these granules, providing a possible mechanism of SFPQ dislocation through pathological SGs. Furthermore, the expression of human tau in vitro induced significant downregulation of SFPQ, suggesting a causal role of tau in the downregulation of SFPQ. The findings from the current study indicate that the dysregulation and dislocation of SFPQ, the subsequent DNA-related anomalies and aberrant dynamics of SGs in association with pathological tau represents a critical pathway which contributes to rapid progression of AD.
Collapse
Affiliation(s)
- Neelam Younas
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Saima Zafar
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany.
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Mohsin Shafiq
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Aneeqa Noor
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Anna Siegert
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | - Amandeep Singh Arora
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
- Institute for Behavioral Medicine Research, The Ohio State University, 460 Medical Center Dr, Columbus, OH, 43210, USA
| | - Alexey Galkin
- St. Petersburg Branch, Vavilov Institute of General Genetics, St. Petersburg, Russia
| | - Ayesha Zafar
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- College of Medicine Center for Pharmacogenomics, The Ohio State University, 460 W 12th Avenue, Columbus, OH, 1004 BRT, USA
| | - Mathias Schmitz
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany
| | | | - Olivier Andreoletti
- UMR INRA ENVT 1225- Interactions Hôte Agent Pathogène-École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain
- Bellvitge University Hospital-IDIBELL, Barcelona, Spain
- CIBERNED, Barcelona, Spain
- Hospitalet de Llobregat, Barcelona, Spain
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen and the German Center for Neurodegenerative Diseases (DZNE), Robert-Koch-Straße 40, 37075, Göttingen, Germany.
| |
Collapse
|
50
|
Camporesi E, Nilsson J, Brinkmalm A, Becker B, Ashton NJ, Blennow K, Zetterberg H. Fluid Biomarkers for Synaptic Dysfunction and Loss. Biomark Insights 2020; 15:1177271920950319. [PMID: 32913390 PMCID: PMC7444114 DOI: 10.1177/1177271920950319] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Synapses are the site for brain communication where information is transmitted between neurons and stored for memory formation. Synaptic degeneration is a global and early pathogenic event in neurodegenerative disorders with reduced levels of pre- and postsynaptic proteins being recognized as a core feature of Alzheimer's disease (AD) pathophysiology. Together with AD, other neurodegenerative and neurodevelopmental disorders show altered synaptic homeostasis as an important pathogenic event, and due to that, they are commonly referred to as synaptopathies. The exact mechanisms of synapse dysfunction in the different diseases are not well understood and their study would help understanding the pathogenic role of synaptic degeneration, as well as differences and commonalities among them and highlight candidate synaptic biomarkers for specific disorders. The assessment of synaptic proteins in cerebrospinal fluid (CSF), which can reflect synaptic dysfunction in patients with cognitive disorders, is a keen area of interest. Substantial research efforts are now directed toward the investigation of CSF synaptic pathology to improve the diagnosis of neurodegenerative disorders at an early stage as well as to monitor clinical progression. In this review, we will first summarize the pathological events that lead to synapse loss and then discuss the available data on established (eg, neurogranin, SNAP-25, synaptotagmin-1, GAP-43, and α-syn) and emerging (eg, synaptic vesicle glycoprotein 2A and neuronal pentraxins) CSF biomarkers for synapse dysfunction, while highlighting possible utilities, disease specificity, and technical challenges for their detection.
Collapse
Affiliation(s)
- Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Nilsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bruno Becker
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|