1
|
Talani G, Biggio F, Mostallino MC, Batzu E, Biggio G, Sanna E. Sex-specific changes in voluntary alcohol consumption and nucleus accumbens synaptic plasticity in C57BL/6J mice exposed to neonatal maternal separation. Neuropharmacology 2025; 262:110212. [PMID: 39521040 DOI: 10.1016/j.neuropharm.2024.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The long-term influence of early-life stress on brain neurophysiology has been extensively investigated using different animal models. Among these, repeated maternal separation (RMS) in rodents is one of the most commonly adopted. In this study, we elucidated the long-lasting effects of exposure to postnatal RMS in C57BL/6J adult mice on voluntary alcohol consumption and nucleus accumbens (NAc) neurophysiology. Mice were separated from their dam for 360 min daily from postnatal day 2 (PND2) to PND17, and experiments were then performed in adult (PND60) animals. In addition, as recent evidence showed that circulating estrogens may play a protective role against stress effects on brain function, including the organization and activation of neuronal structures, we also evaluated the effect of a single injection of β-estradiol 3-benzoate (EB) at PND2, which is known to disrupt male sex differentiation, in male RMS mice. The RMS exposure was associated with an increased voluntary alcohol consumption and preference in male mice, but not in female mice or male mice treated with a single injection of EB. Patch clamp experiments conducted in NAc medium spiny neurons (MSNs) revealed that excitatory but not inhibitory synaptic transmission and long-term plasticity of glutamatergic synapses were significantly impaired in male but not in female mice exposed to the RMS protocol. This effect was again prevented in RMS male mice treated with EB. Our findings strengthen the idea of a sex-dependent influence of early-life stress on long-lasting modifications in synaptic transmission and plasticity in brain areas involved in goal-directed behavior and alcohol intake.
Collapse
Affiliation(s)
- Giuseppe Talani
- CNR Institute of Neuroscience, National Research Council, 09042, Monserrato, CA, Italy.
| | - Francesca Biggio
- Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, 09042, Monserrato, CA, Italy
| | | | - Elisabetta Batzu
- CNR Institute of Neuroscience, National Research Council, 09042, Monserrato, CA, Italy
| | - Giovanni Biggio
- CNR Institute of Neuroscience, National Research Council, 09042, Monserrato, CA, Italy; Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Enrico Sanna
- CNR Institute of Neuroscience, National Research Council, 09042, Monserrato, CA, Italy; Department of Life and Environmental Sciences, Section of Neuroscience and Anthropology, University of Cagliari, 09042, Monserrato, CA, Italy
| |
Collapse
|
2
|
Ben-Azu B, Oritsemuelebi B, Oghorodi AM, Adebesin A, Isibor H, Eduviere AT, Otuacha OS, Akudo M, Ekereya S, Maidoh IF, Iyayi JO, Uzochukwu-Godfrey FC. Psychopharmacological interaction of alcohol and posttraumatic stress disorder: Effective action of naringin. Eur J Pharmacol 2024; 978:176791. [PMID: 38944175 DOI: 10.1016/j.ejphar.2024.176791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/09/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Posttraumatic stress disorder (PTSD) and alcohol use disorder (AUD) are prevalently co-occurring, important risk factors for a broad array of neuropsychiatric diseases. To date, how these two contrastive concomitant pairs increase the risk of neuropsychiatric states, notably exacerbating PTSD-related symptoms, remains unknown. Moreover, pharmacological interventions with agents that could reverse PTSD-AUD comorbidity, however, remained limited. Hence, we investigated the neuroprotective actions of naringin in mice comorbidly exposed to PTSD followed by repeated ethanol (EtOH)-induced AUD. Following a 7-day single-prolong-stress (SPS)-induced PTSD in mice, binge/heavy drinking, notably related to AUD, was induced in the PTSD mice with every-other-day ethanol (2 g/kg, p.o.) administration, followed by daily treatments with naringin (25 and 50 mg/kg) or fluoxetine (10 mg/kg), from days 8-21. PTSD-AUD-related behavioral changes, alcohol preference, hypothalamic-pituitary-adrenal (HPA)-axis dysfunction-induced neurochemical alterations, oxidative/nitrergic stress, and inflammation were examined in the prefrontal-cortex, striatum, and hippocampus. PTSD-AUD mice showed aggravated anxiety, spatial-cognitive, social impairments and EtOH intake, which were abated by naringin, similar to fluoxetine. Our assays on the HPA-axis showed exacerbated increased corticosterone release and adrenal hypertrophy, accompanied by marked dopamine and serotonin increase, with depleted glutamic acid decarboxylase enzyme in the three brain regions, which naringin, however, reversed, respectively. PTSD-AUD mice also showed increased TNF-α, IL-6, malondialdehyde and nitrite levels, with decreased antioxidant elements in the prefrontal-cortex, striatum, and hippocampus compared to SPS-EtOH-mice, mainly exacerbating catalase and glutathione decrease in the hippocampus relative SPS-mice. These findings suggest that AUD exacerbates PTSD pathologies in different brain regions, notably comprising neurochemical dysregulations, oxidative/nitrergic and cytokine-mediated inflammation, with HPA dysfunction, which were, however, revocable by naringin.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria.
| | - Benjamin Oritsemuelebi
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Akpobo M Oghorodi
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria; Department of Biomedical Engineering, Faculty of Technology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adaeze Adebesin
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, Obafemi Awolowo College of Health Sciences, Olabisi Onabanjo University, Sagamu Campus, Sagamu, Ogun State, Nigeria
| | - Happy Isibor
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Anthony T Eduviere
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Oghenemine S Otuacha
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Moses Akudo
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Surhirime Ekereya
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Isioma F Maidoh
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Joy O Iyayi
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| | - Faith C Uzochukwu-Godfrey
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, Delta State University, Abraka, Nigeria
| |
Collapse
|
3
|
Biggio F, Talani G, Asuni GP, Bassareo V, Boi M, Dazzi L, Pisu MG, Porcu P, Sanna E, Sanna F, Serra M, Serra MP, Siddi C, Acquas E, Follesa P, Quartu M. Mixing energy drinks and alcohol during adolescence impairs brain function: A study of rat hippocampal plasticity. Neuropharmacology 2024; 254:109993. [PMID: 38735368 DOI: 10.1016/j.neuropharm.2024.109993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/20/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
In the last decades, the consumption of energy drinks has risen dramatically, especially among young people, adolescents and athletes, driven by the constant search for ergogenic effects, such as the increase in physical and cognitive performance. In parallel, mixed consumption of energy drinks and ethanol, under a binge drinking modality, under a binge drinking modality, has similarly grown among adolescents. However, little is known whether the combined consumption of these drinks, during adolescence, may have long-term effects on central function, raising the question of the risks of this habit on brain maturation. Our study was designed to evaluate, by behavioral, electrophysiological and molecular approaches, the long-term effects on hippocampal plasticity of ethanol (EtOH), energy drinks (EDs), or alcohol mixed with energy drinks (AMED) in a rat model of binge-like drinking adolescent administration. The results show that AMED binge-like administration produces adaptive hippocampal changes at the molecular level, associated with electrophysiological and behavioral alterations, which develop during the adolescence and are still detectable in adult animals. Overall, the study indicates that binge-like drinking AMED adolescent exposure represents a habit that may affect permanently hippocampal plasticity.
Collapse
Affiliation(s)
- Francesca Biggio
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy
| | - Giuseppe Talani
- Institute of Neurosciences, National Research Council (C.N.R.), Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Gino Paolo Asuni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy
| | - Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy
| | - Marianna Boi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy
| | - Laura Dazzi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy
| | - Maria Giuseppina Pisu
- Institute of Neurosciences, National Research Council (C.N.R.), Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Patrizia Porcu
- Institute of Neurosciences, National Research Council (C.N.R.), Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Enrico Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy; Institute of Neurosciences, National Research Council (C.N.R.), Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Fabrizio Sanna
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy
| | - Mariangela Serra
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy
| | - Maria Pina Serra
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy
| | - Carlotta Siddi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy
| | - Paolo Follesa
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy.
| | - Marina Quartu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy
| |
Collapse
|
4
|
Lodha J, Brocato ER, Nash M, Marcus MM, Pais AC, Pais AB, Miles MF, Wolstenholme JT. Adolescent social housing protects against adult emotional and cognitive deficits and alters the PFC and NAc transcriptome in male and female C57BL/6J mice. Front Neurosci 2023; 17:1287584. [PMID: 38130694 PMCID: PMC10733512 DOI: 10.3389/fnins.2023.1287584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Adolescence is a critical period in cognitive and emotional development, characterized by high levels of social interaction and increases in risk-taking behavior including binge drinking. Adolescent exposure to social stress and binge ethanol have individually been associated with the development of social, emotional, and cognitive deficits, as well as increased risk for alcohol use disorder. Disruption of cortical development by early life social stress and/or binge drinking may partly underlie these enduring emotional, cognitive, and behavioral effects. The study goal is to implement a novel neighbor housing environment to identify the effects of adolescent neighbor housing and/or binge ethanol drinking on (1) a battery of emotional and cognitive tasks (2) adult ethanol drinking behavior, and (3) the nucleus accumbens and prefrontal cortex transcriptome. Methods Adolescent male and female C57BL/6J mice were single or neighbor housed with or without access to intermittent ethanol. One cohort underwent behavioral testing during adulthood to determine social preference, expression of anxiety-like behavior, cognitive performance, and patterns of ethanol intake. The second cohort was sacrificed in late adolescence and brain tissue was used for transcriptomics analysis. Results As adults, single housed mice displayed decreased social interaction, deficits in the novel object recognition task, and increased anxiety-like behavior, relative to neighbor-housed mice. There was no effect of housing condition on adolescent or adult ethanol consumption. Adolescent ethanol exposure did not alter adult ethanol intake. Transcriptomics analysis revealed that adolescent housing condition and ethanol exposure resulted in differential expression of genes related to synaptic plasticity in the nucleus accumbens and genes related to methylation, the extracellular matrix and inflammation in the prefrontal cortex. Discussion The behavioral results indicate that social interaction during adolescence via the neighbor housing model may protect against emotional, social, and cognitive deficits. In addition, the transcriptomics results suggest that these behavioral alterations may be mediated in part by dysregulation of transcription in the frontal cortex or the nucleus accumbens.
Collapse
Affiliation(s)
- Jyoti Lodha
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
| | - Emily R. Brocato
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
| | - McKenzie Nash
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
| | - Madison M. Marcus
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
| | - A. Chris Pais
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Alex B. Pais
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael F. Miles
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer Theresa Wolstenholme
- Pharmacology and Toxicology Department, Virginia Commonwealth University, Richmond, VA, United States
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
5
|
Shi MM, Xu XF, Sun QM, Luo M, Liu DD, Guo DM, Chen L, Zhong XL, Xu Y, Cao WY. Betaine prevents cognitive dysfunction by suppressing hippocampal microglial activation in chronic social isolated male mice. Phytother Res 2023; 37:4755-4770. [PMID: 37846157 DOI: 10.1002/ptr.7944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 10/18/2023]
Abstract
Chronic social isolation (SI) stress, which became more prevalent during the COVID-19 pandemic, contributes to abnormal behavior, including mood changes and cognitive impairment. Known as a functional nutrient, betaine has potent antioxidant and anti-inflammatory properties in vivo. However, whether betaine can alleviate the abnormal behavior induced by chronic SI in mice remains unknown. In this study, we investigated the efficacy of betaine in the treatment of behavioral changes and its underlying mechanism. Three-week-old male mice were randomly housed for 8 weeks in either group housing (GH) or SI. The animals were divided into normal saline-treated GH, normal saline-treated SI, and betaine-treated SI groups in the sixth week. The cognitive and depression-like behavior was determined in the eighth week. We found that long-term betaine administration improved cognitive behavior in SI mice but failed to prevent depression-like behavior. Moreover, long-term betaine administration inhibited hippocampal microglia over-activation and polarized microglia toward the M2 phenotype, which effectively inhibited the expression of inflammatory factors in SI mice. Finally, the protective effect of betaine treatment in SI mice might not be due to altered activity of the hypothalamic-pituitary-adrenal axis. Collectively, our findings reveal that betaine can improve SI-induced cognitive impairment, thus providing an alternative natural source for the prevention of memory loss caused by SI or loneliness.
Collapse
Affiliation(s)
- Meng Meng Shi
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiao Fan Xu
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qiu Min Sun
- Department of Nursing, Yiyang Medical College, Yiyang, Hunan, China
| | - Mingying Luo
- Department of Anatomy and Histology and Embryology, Kunming Medical University, Kunming, Yunnan, China
| | - Dan Dan Liu
- Institute of Clinical Medicine, The First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Dong Min Guo
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ling Chen
- Institute of Clinical Medicine, The First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Xiao Lin Zhong
- Institute of Clinical Medicine, The First Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - Yang Xu
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wen Yu Cao
- Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
6
|
Zhan B, Zhu Y, Xia J, Li W, Tang Y, Beesetty A, Ye JH, Fu R. Comorbidity of Post-Traumatic Stress Disorder and Alcohol Use Disorder: Animal Models and Associated Neurocircuitry. Int J Mol Sci 2022; 24:ijms24010388. [PMID: 36613829 PMCID: PMC9820348 DOI: 10.3390/ijms24010388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) are prevalent neuropsychiatric disorders and frequently co-occur concomitantly. Individuals suffering from this dual diagnosis often exhibit increased symptom severity and poorer treatment outcomes than those with only one of these diseases. Lacking standard preclinical models limited the exploration of neurobiological mechanisms underlying PTSD and AUD comorbidity. In this review, we summarize well-accepted preclinical model paradigms and criteria for developing successful models of comorbidity. We also outline how PTSD and AUD affect each other bidirectionally in the nervous nuclei have been heatedly discussed recently. We hope to provide potential recommendations for future research.
Collapse
Affiliation(s)
- Bo Zhan
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Yingxin Zhu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Jianxun Xia
- Department of Basic Medical Sciences, Yunkang School of Medicine and Health, Nanfang College, Guangzhou 510970, China
| | - Wenfu Li
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
| | - Ying Tang
- Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Anju Beesetty
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ 07103, USA
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, New Jersey Medical School, The State University of New Jersey, Newark, NJ 07103, USA
- Correspondence: (J.-H.Y.); (R.F.)
| | - Rao Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China
- Correspondence: (J.-H.Y.); (R.F.)
| |
Collapse
|
7
|
Lodha J, Brocato E, Wolstenholme JT. Areas of Convergence and Divergence in Adolescent Social Isolation and Binge Drinking: A Review. Front Behav Neurosci 2022; 16:859239. [PMID: 35431830 PMCID: PMC9009335 DOI: 10.3389/fnbeh.2022.859239] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Adolescence is a critical developmental period characterized by enhanced social interactions, ongoing development of the frontal cortex and maturation of synaptic connections throughout the brain. Adolescents spend more time interacting with peers than any other age group and display heightened reward sensitivity, impulsivity and diminished inhibitory self-control, which contribute to increased risky behaviors, including the initiation and progression of alcohol use. Compared to adults, adolescents are less susceptible to the negative effects of ethanol, but are more susceptible to the negative effects of stress, particularly social stress. Juvenile exposure to social isolation or binge ethanol disrupts synaptic connections, dendritic spine morphology, and myelin remodeling in the frontal cortex. These structural effects may underlie the behavioral and cognitive deficits seen later in life, including social and memory deficits, increased anxiety-like behavior and risk for alcohol use disorders (AUD). Although the alcohol and social stress fields are actively investigating the mechanisms through which these effects occur, significant gaps in our understanding exist, particularly in the intersection of the two fields. This review will highlight the areas of convergence and divergence in the fields of adolescent social stress and ethanol exposure. We will focus on how ethanol exposure or social isolation stress can impact the development of the frontal cortex and lead to lasting behavioral changes in adulthood. We call attention to the need for more mechanistic studies and the inclusion of the evaluation of sex differences in these molecular, structural, and behavioral responses.
Collapse
Affiliation(s)
- Jyoti Lodha
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Emily Brocato
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Jennifer T. Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
8
|
Li W, Niu L, Liu Z, Xu X, Shi M, Zhang Y, Deng Y, He J, Xu Y, Wan W, Sun Q, Zhong X, Cao W. Inhibition of the NLRP3 inflammasome with MCC950 prevents chronic social isolation-induced depression-like behavior in male mice. Neurosci Lett 2021; 765:136290. [PMID: 34644625 DOI: 10.1016/j.neulet.2021.136290] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/20/2022]
Affiliation(s)
- Wei Li
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Lei Niu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; Liuyang Traditional Chinese Medicine Hospital, 410300 Liuyang, Hunan, China
| | - Zhenghai Liu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Xuan Xu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Mengmeng Shi
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yuan Zhang
- Department of Pathology, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yingcheng Deng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Jie He
- Department of Pathology, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Yang Xu
- Institute of Neuroscience, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Wei Wan
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China; China Key Laboratory Of Brain Science Research & Transformation In Tropical Environment Of Hainan Province, Hainan Medical University, 571199 Haikou, China
| | - Qiumin Sun
- Department of Nursing, Yiyang Medical College, 413000 Yiyang, Hunan, China
| | - Xiaolin Zhong
- The First Affiliated Hospital, Department of Endocrinology and Metabolism, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.
| | - Wenyu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.
| |
Collapse
|
9
|
Marti M, Talani G, Miliano C, Bilel S, Biggio F, Bratzu J, Diana M, De Luca MA, Fattore L. New insights into methoxetamine mechanisms of action: Focus on serotonergic 5-HT 2 receptors in pharmacological and behavioral effects in the rat. Exp Neurol 2021; 345:113836. [PMID: 34384790 DOI: 10.1016/j.expneurol.2021.113836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/14/2021] [Accepted: 08/05/2021] [Indexed: 01/25/2023]
Abstract
Methoxetamine (MXE) is a dissociative substance of the arylcyclohexylamine class that has been present on the designer drug market as a ketamine-substitute since 2010. We have previously shown that MXE (i) possesses ketamine-like discriminative and positive rewarding effects in rats, (ii) affects brain processing involved in cognition and emotional responses, (iii) causes long-lasting behavioral abnormalities and neurotoxicity in rats and (iv) induces neurological, sensorimotor and cardiorespiratory alterations in mice. To shed light on the mechanisms through which MXE exerts its effects, we conducted a multidisciplinary study to evaluate the various neurotransmitter systems presumably involved in its actions on the brain. In vivo microdialysis study first showed that a single administration of MXE (0.25 and 0.5 mg/kg, i.v.) is able to significantly alter serotonin levels in the rat medial prefrontal cortex (mPFC) and nucleus accumbens. Then, we observed that blockade of the serotonin 5-HT2 receptors through two selective antagonists, ketanserin (0.1 mg/kg, i.p.) and MDL 100907 (0.03 mg/kg, i.p.), at doses not affecting animals behavior per se, attenuated the facilitatory motor effect and the inhibition on visual sensory responses induced by MXE (3 mg/kg, i.p.) and ketamine (3 mg/kg, i.p.), and prevented MXE-induced reduction of the prepulse inhibition in rats, pointing to the 5-HT2 receptors as a key target for the recently described MXE-induced sensorimotor effects. Finally, in-vitro electrophysiological studies revealed that the GABAergic and glutamatergic systems are also likely involved in the mechanisms through which MXE exerts its central effects since MXE inhibits, in a concentration-dependent manner, NMDA-mediated field postsynaptic potentials and GABA-mediated spontaneous currents. Conversely, MXE failed to alter both the AMPA component of field potentials and presynaptic glutamate release, and seems not to interfere with the endocannabinoid-mediated effects on mPFC GABAergic synapses. Altogether, our results support the notion of MXE as a NMDA receptor antagonist and shed further lights into the central mechanisms of action of this ketamine-substitute by pointing to serotonin 5-HT2 receptors as crucial players in the expression of its sensorimotor altering effects and to the NMDA and GABA receptors as potential further important targets of action.
Collapse
Affiliation(s)
- Matteo Marti
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy; Collaborative Center for the Italian National Early Warning System, Department of Anti-Drug Policies, Presidency of the Council of Ministers, Italy
| | - Giuseppe Talani
- CNR Institute of Neuroscience-Cagliari, National Research Council, Italy
| | - Cristina Miliano
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Sabrine Bilel
- Department of Translational Medicine, Section of Legal Medicine and LTTA Centre, University of Ferrara, Ferrara, Italy
| | - Francesca Biggio
- Department of Life and Environmental Sciences, University of Cagliari, Monserrato, Italy
| | - Jessica Bratzu
- CNR Institute of Neuroscience-Cagliari, National Research Council, Italy
| | - Marco Diana
- Department of Chemistry and Pharmacy, University of Sassari, Italy
| | | | - Liana Fattore
- CNR Institute of Neuroscience-Cagliari, National Research Council, Italy.
| |
Collapse
|
10
|
Pais AB, Pais AC, Elmisurati G, Park SH, Miles MF, Wolstenholme JT. A Novel Neighbor Housing Environment Enhances Social Interaction and Rescues Cognitive Deficits from Social Isolation in Adolescence. Brain Sci 2019; 9:E336. [PMID: 31766669 PMCID: PMC6956193 DOI: 10.3390/brainsci9120336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 11/17/2022] Open
Abstract
Adolescence is characterized by high levels of playful social interaction, cognitive development, and increased risk-taking behavior. Juvenile exposure to social isolation or social stress can reduce myelin content in the frontal cortex, alter neuronal excitability, and disrupt hypothalamic pituitary adrenal (HPA) axis function. As compared to group housed animals, social isolation increases anxiety-like phenotypes and reduces social and cognitive performance in adulthood. We designed a neighbor housing environment to alleviate issues related to social isolation that still allowed individual homecages. Neighbor housing consists of four standard mouse cages fused together with semi-permeable ports that allow visual, olfactory, and limited social contact between mice. Adolescent C57BL/6J males and females were group housed (4/cage), single housed (1/cage), or neighbor housed (4/complex). As adults, mice were tested for social, anxiety-like, and cognitive behaviors. Living in this neighbor environment reduced anxiety-like behavior in the social interaction task and in the light-dark task. It also rescued cognitive deficits from single housing in the novel object recognition task. These data suggest that neighbor housing may partially ameliorate the social anxiety and cognitive deficits induced by social isolation. These neighbor cage environments may serve as a conduit by which researchers can house mice in individual cages while still enabling limited social interactions to better model typical adolescent development.
Collapse
Affiliation(s)
- Alexander B. Pais
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, VA 23298-0613, USA; (A.B.P.); (A.C.P.); (G.E.); (M.F.M.)
| | - Anthony C. Pais
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, VA 23298-0613, USA; (A.B.P.); (A.C.P.); (G.E.); (M.F.M.)
| | - Gabriel Elmisurati
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, VA 23298-0613, USA; (A.B.P.); (A.C.P.); (G.E.); (M.F.M.)
| | - So Hyun Park
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, USA;
| | - Michael F. Miles
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, VA 23298-0613, USA; (A.B.P.); (A.C.P.); (G.E.); (M.F.M.)
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, USA;
| | - Jennifer T. Wolstenholme
- VCU-Alcohol Research Center, Virginia Commonwealth University, Richmond, VA 23298-0613, USA; (A.B.P.); (A.C.P.); (G.E.); (M.F.M.)
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, USA;
| |
Collapse
|
11
|
Gulinello M, Mitchell HA, Chang Q, Timothy O'Brien W, Zhou Z, Abel T, Wang L, Corbin JG, Veeraragavan S, Samaco RC, Andrews NA, Fagiolini M, Cole TB, Burbacher TM, Crawley JN. Rigor and reproducibility in rodent behavioral research. Neurobiol Learn Mem 2019; 165:106780. [PMID: 29307548 PMCID: PMC6034984 DOI: 10.1016/j.nlm.2018.01.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/22/2017] [Accepted: 01/03/2018] [Indexed: 01/08/2023]
Abstract
Behavioral neuroscience research incorporates the identical high level of meticulous methodologies and exacting attention to detail as all other scientific disciplines. To achieve maximal rigor and reproducibility of findings, well-trained investigators employ a variety of established best practices. Here we explicate some of the requirements for rigorous experimental design and accurate data analysis in conducting mouse and rat behavioral tests. Novel object recognition is used as an example of a cognitive assay which has been conducted successfully with a range of methods, all based on common principles of appropriate procedures, controls, and statistics. Directors of Rodent Core facilities within Intellectual and Developmental Disabilities Research Centers contribute key aspects of their own novel object recognition protocols, offering insights into essential similarities and less-critical differences. Literature cited in this review article will lead the interested reader to source papers that provide step-by-step protocols which illustrate optimized methods for many standard rodent behavioral assays. Adhering to best practices in behavioral neuroscience will enhance the value of animal models for the multiple goals of understanding biological mechanisms, evaluating consequences of genetic mutations, and discovering efficacious therapeutics.
Collapse
Affiliation(s)
- Maria Gulinello
- IDDRC Behavioral Core Facility, Neuroscience Department, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Heather A Mitchell
- IDD Models Core, Waisman Center, University of Wisconsin Madison, Madison, WI 53705, USA
| | - Qiang Chang
- IDD Models Core, Waisman Center, University of Wisconsin Madison, Madison, WI 53705, USA
| | - W Timothy O'Brien
- IDDRC Preclinical Models Core, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zhaolan Zhou
- IDDRC Preclinical Models Core, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ted Abel
- IDDRC Preclinical Models Core, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Current affiliation: Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Li Wang
- IDDRC Neurobehavioral Core, Center for Neuroscience Research, Children's National Health System, Washington, DC 20010, USA
| | - Joshua G Corbin
- IDDRC Neurobehavioral Core, Center for Neuroscience Research, Children's National Health System, Washington, DC 20010, USA
| | - Surabi Veeraragavan
- IDDRC Neurobehavioral Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rodney C Samaco
- IDDRC Neurobehavioral Core, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nick A Andrews
- IDDRC Neurodevelopmental Behavior Core, Boston Children's Hospital, Boston, MA 02115, USA
| | - Michela Fagiolini
- IDDRC Neurodevelopmental Behavior Core, Boston Children's Hospital, Boston, MA 02115, USA
| | - Toby B Cole
- IDDRC Rodent Behavior Laboratory, Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA
| | - Thomas M Burbacher
- IDDRC Rodent Behavior Laboratory, Center on Human Development and Disability, University of Washington, Seattle, WA 98195, USA
| | - Jacqueline N Crawley
- IDDRC Rodent Behavior Core, MIND Institute, University of California Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
12
|
Pinna G. Animal Models of PTSD: The Socially Isolated Mouse and the Biomarker Role of Allopregnanolone. Front Behav Neurosci 2019; 13:114. [PMID: 31244621 PMCID: PMC6579844 DOI: 10.3389/fnbeh.2019.00114] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating undertreated condition that affects 8%-13% of the general population and 20%-30% of military personnel. Currently, there are no specific medications that reduce PTSD symptoms or biomarkers that facilitate diagnosis, inform treatment selection or allow monitoring drug efficacy. PTSD animal models rely on stress-induced behavioral deficits that only partially reproduce PTSD neurobiology. PTSD heterogeneity, including comorbidity and symptoms overlap with other mental disorders, makes this attempt even more complicated. Allopregnanolone, a neurosteroid that positively, potently and allosterically modulates GABAA receptors and, by this mechanism, regulates emotional behaviors, is mainly synthesized in brain corticolimbic glutamatergic neurons. In PTSD patients, allopregnanolone down-regulation correlates with increased PTSD re-experiencing and comorbid depressive symptoms, CAPS-IV scores and Simms dysphoria cluster scores. In PTSD rodent models, including the socially isolated mouse, decrease in corticolimbic allopregnanolone biosynthesis is associated with enhanced contextual fear memory and impaired fear extinction. Allopregnanolone, its analogs or agents that stimulate its synthesis offer treatment approaches for facilitating fear extinction and, in general, for neuropsychopathologies characterized by a neurosteroid biosynthesis downregulation. The socially isolated mouse model reproduces several other deficits previously observed in PTSD patients, including altered GABAA receptor subunit subtypes and lack of benzodiazepines pharmacological efficacy. Transdiagnostic behavioral features, including expression of anxiety-like behavior, increased aggression, a behavioral component to reproduce behavioral traits of suicidal behavior in humans, as well as alcohol consumption are heightened in socially isolated rodents. Potentials for assessing novel biomarkers to predict, diagnose, and treat PTSD more efficiently are discussed in view of developing a precision medicine for improved PTSD pharmacological treatments.
Collapse
Affiliation(s)
- Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
13
|
Sonar VP, Fois B, Distinto S, Maccioni E, Meleddu R, Cottiglia F, Acquas E, Kasture S, Floris C, Colombo D, Sissi C, Sanna E, Talani G. Ferulic Acid Esters and Withanolides: In Search of Withania somnifera GABA A Receptor Modulators. JOURNAL OF NATURAL PRODUCTS 2019; 82:1250-1257. [PMID: 30998355 DOI: 10.1021/acs.jnatprod.8b01023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nine compounds, including two undescribed withanolides, withasomniferolides A and B (1 and 2), three known withanolides (3-5), a ferulic acid dimeric ester (6), and an inseparable mixture of three long alkyl chain ferulic acid esters (7-9), were isolated from a GABAA receptor positive activator methanol extract of the roots of Withania somnifera. The structures of the isolated compounds were elucidated based on NMR, MS, and ECD data analysis. In order to bioassay the single ferulic acid derivatives, compounds 6-9 were also synthesized. The most active compound, docosanyl ferulate (9), was able to enhance the GABAA receptor inhibitory postsynaptic currents with an IC50 value of 7.9 μM. These results, by showing an ability to modulate the GABAA receptor function, cast fresh light on the biological activities of the secondary metabolites of W. somnifera roots.
Collapse
Affiliation(s)
- Vijay P Sonar
- Department of Life and Environmental Sciences , University of Cagliari , 09124 Cagliari , Italy
- R. C. Patel Institute of Pharmaceutical Education and Research , Shirpur , 425404 India
| | - Benedetta Fois
- Department of Life and Environmental Sciences , University of Cagliari , 09124 Cagliari , Italy
| | - Simona Distinto
- Department of Life and Environmental Sciences , University of Cagliari , 09124 Cagliari , Italy
| | - Elias Maccioni
- Department of Life and Environmental Sciences , University of Cagliari , 09124 Cagliari , Italy
| | - Rita Meleddu
- Department of Life and Environmental Sciences , University of Cagliari , 09124 Cagliari , Italy
| | - Filippo Cottiglia
- Department of Life and Environmental Sciences , University of Cagliari , 09124 Cagliari , Italy
| | - Elio Acquas
- Department of Life and Environmental Sciences , University of Cagliari , 09124 Cagliari , Italy
- Centre of Excellence on Neurobiology of Addiction , University of Cagliari , 09042 Cagliari , Italy
| | - Sanjay Kasture
- Department of Pharmacology , Sanjivani College of Pharmaceutical Education & Research , Kopargaon , 423603 India
| | - Costantino Floris
- Department of Chemical and Geological Sciences , University of Cagliari , 09042 Monserrato , Italy
| | - Daniele Colombo
- Department of Life and Environmental Sciences , University of Cagliari , 09124 Cagliari , Italy
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences , University of Padova , 35131 Padova , Italy
| | - Enrico Sanna
- Department of Life and Environmental Sciences , University of Cagliari , 09124 Cagliari , Italy
- Centre of Excellence on Neurobiology of Addiction , University of Cagliari , 09042 Cagliari , Italy
| | - Giuseppe Talani
- National Research Council (CNR) , Institute of Neuroscience , 09042 Monserrato , Italy
| |
Collapse
|
14
|
Famitafreshi H, Karimian M. Social Isolation Rearing Induces Neuropsychiatric Diseases: Updated Overview. MOLECULAR NEUROPSYCHIATRY 2019; 4:190-195. [PMID: 30815454 DOI: 10.1159/000495659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022]
Abstract
Neuropsychiatric and neurologic diseases cause a great burden for individuals, families, and societies. Social isolation rearing can trigger a variety of psychiatric diseases. New advances suggest that epigenetic factors along with other neurochemical changes can be an important topic in neuropsychiatric diseases. It is thought that the prevention of social isolation rearing that occurs around birth can reduce the occurrence of neuropsychiatric diseases. It has been suggested that the environment can induce epigenetic alternation. So, for the diagnosis of a proportion of neuropsychiatric diseases, assessing epigenetic factors may be helpful. Also, apart from epigenetic factors, new advances have been made about new mechanisms of and treatments for such a disorder.
Collapse
Affiliation(s)
- Hamidreza Famitafreshi
- Physiology Department, Tehran University of Medical Sciences - International Campus, Tehran, Iran
| | - Morteza Karimian
- Physiology Department, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Locci A, Porcu P, Talani G, Santoru F, Berretti R, Giunti E, Licheri V, Sanna E, Concas A. Neonatal estradiol exposure to female rats changes GABA A receptor expression and function, and spatial learning during adulthood. Horm Behav 2017; 87:35-46. [PMID: 27769760 DOI: 10.1016/j.yhbeh.2016.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 10/04/2016] [Accepted: 10/14/2016] [Indexed: 12/27/2022]
Abstract
Exposure of female rats to estradiol during the perinatal period has profound effects on GABAergic neurotransmission that are crucial to establish sexually dimorphic brain characteristics. We previously showed that neonatal β-estradiol 3-benzoate (EB) treatment decreases brain concentrations of the neurosteroid allopregnanolone, a potent positive modulator of extrasynaptic GABAA receptors (GABAAR). We thus evaluated whether neonatal EB treatment affects GABAAR expression and function in the hippocampus of adult female rats. Neonatal EB administration increased the expression of extrasynaptic α4/δ subunit-containing GABAARs and the modulatory action of THIP on tonic currents mediated by these receptors. The same treatment decreased the expression of synaptic α1/α4/γ2 subunit-containing receptors, as well as phasic currents. These effects of neonatal EB treatment are not related to ambient allopregnanolone concentrations per se, given that vehicle-treated rats in diestrus, which have opposite neurosteroid levels than EB-treated rats, show similar changes in GABAARs. Rather, these changes may represent a compensatory mechanism to counteract the long-term reduction in allopregnanolone concentrations, induced by neonatal EB. Given that both α4/δ receptors and allopregnanolone are involved in memory consolidation, we evaluated whether neonatal EB treatment alters performance in the Morris water maze test during adulthood. Neonatal EB treatment decreased the latency and the cumulative search error to reach the platform, as well as thigmotaxis, suggesting improved learning, and also enhanced memory performance during the probe trial. These enduring changes in GABAAR plasticity may be relevant for the regulation of neuronal excitability in the hippocampus and for the etiology of psychiatric disorders that originate in development and show sex differences.
Collapse
Affiliation(s)
- Andrea Locci
- Department of Life and Environment Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Patrizia Porcu
- Neuroscience Institute, National Research Council of Italy (CNR), Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Giuseppe Talani
- Neuroscience Institute, National Research Council of Italy (CNR), Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Francesca Santoru
- Department of Life and Environment Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Roberta Berretti
- Department of Life and Environment Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Elisa Giunti
- Department of Life and Environment Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Valentina Licheri
- Department of Life and Environment Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Enrico Sanna
- Department of Life and Environment Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy; Neuroscience Institute, National Research Council of Italy (CNR), Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy
| | - Alessandra Concas
- Department of Life and Environment Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy; Neuroscience Institute, National Research Council of Italy (CNR), Cittadella Universitaria, 09042 Monserrato, Cagliari, Italy.
| |
Collapse
|
16
|
Gilpin NW, Weiner JL. Neurobiology of comorbid post-traumatic stress disorder and alcohol-use disorder. GENES BRAIN AND BEHAVIOR 2016; 16:15-43. [PMID: 27749004 DOI: 10.1111/gbb.12349] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/03/2016] [Accepted: 10/07/2016] [Indexed: 12/12/2022]
Abstract
Post-traumatic stress disorder (PTSD) and alcohol-use disorder (AUD) are highly comorbid in humans. Although we have some understanding of the structural and functional brain changes that define each of these disorders, and how those changes contribute to the behavioral symptoms that define them, little is known about the neurobiology of comorbid PTSD and AUD, which may be due in part to a scarcity of adequate animal models for examining this research question. The goal of this review is to summarize the current state-of-the-science on comorbid PTSD and AUD. We summarize epidemiological data documenting the prevalence of this comorbidity, review what is known about the potential neurobiological basis for the frequent co-occurrence of PTSD and AUD and discuss successes and failures of past and current treatment strategies. We also review animal models that aim to examine comorbid PTSD and AUD, highlighting where the models parallel the human condition, and we discuss the strengths and weaknesses of each model. We conclude by discussing key gaps in our knowledge and strategies for addressing them: in particular, we (1) highlight the need for better animal models of the comorbid condition and better clinical trial design, (2) emphasize the need for examination of subpopulation effects and individual differences and (3) urge cross-talk between basic and clinical researchers that is reflected in collaborative work with forward and reverse translational impact.
Collapse
Affiliation(s)
- N W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA.,Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA
| | - J L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|