1
|
Fang J, Li Z, Wang P, Zhang X, Mao S, Li Y, Yu D, Li X, Xing Y, Shi H, Yin S. Inhibition of the NLRP3 inflammasome attenuates spiral ganglion neuron degeneration in aminoglycoside-induced hearing loss. Neural Regen Res 2025; 20:3025-3039. [PMID: 39610108 PMCID: PMC11826467 DOI: 10.4103/nrr.nrr-d-23-01879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/08/2024] [Accepted: 03/28/2024] [Indexed: 11/30/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202510000-00031/figure1/v/2024-11-26T163120Z/r/image-tiff Aminoglycosides are a widely used class of antibacterials renowned for their effectiveness and broad antimicrobial spectrum. However, their use leads to irreversible hearing damage by causing apoptosis of hair cells as their direct target. In addition, the hearing damage caused by aminoglycosides involves damage of spiral ganglion neurons upon exposure. To investigate the mechanisms underlying spiral ganglion neuron degeneration induced by aminoglycosides, we used a C57BL/6J mouse model treated with kanamycin. We found that the mice exhibited auditory deficits following the acute loss of outer hair cells. Spiral ganglion neurons displayed hallmarks of pyroptosis and exhibited progressive degeneration over time. Transcriptomic profiling of these neurons showed significant upregulation of genes associated with inflammation and immune response, particularly those related to the NLRP3 inflammasome. Activation of the canonical pyroptotic pathway in spiral ganglion neurons was observed, accompanied by infiltration of macrophages and the release of proinflammatory cytokines. Pharmacological intervention targeting NLRP3 using Mcc950 and genetic intervention using NLRP3 knockout ameliorated spiral ganglion neuron degeneration in the injury model. These findings suggest that NLRP3 inflammasome-mediated pyroptosis plays a role in aminoglycoside-induced spiral ganglion neuron degeneration. Inhibition of this pathway may offer a potential therapeutic strategy for treating sensorineural hearing loss by reducing spiral ganglion neuron degeneration.
Collapse
Affiliation(s)
- Jia Fang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuangzhuang Li
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Pengjun Wang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Xiaoxu Zhang
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Song Mao
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yini Li
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Dongzhen Yu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Xiaoyan Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yazhi Xing
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Haibo Shi
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Otolaryngology Institute of Shanghai Jiao Tong University; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
2
|
Yi Y, Wu MY, Chen KT, Chen AH, Li LQ, Xiong Q, Wang XR, Lei WB, Xiong GX, Fang SB. LDHA-mediated glycolysis in stria vascularis endothelial cells regulates macrophages function through CX3CL1-CX3CR1 pathway in noise-induced oxidative stress. Cell Death Dis 2025; 16:65. [PMID: 39900910 PMCID: PMC11791080 DOI: 10.1038/s41419-025-07394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 01/06/2025] [Accepted: 01/24/2025] [Indexed: 02/05/2025]
Abstract
According to the World Health Organization, more than 12% of the world's population suffers from noise-induced hearing loss (NIHL). Oxidative stress-mediated damage to the stria vascularis (SV) is one of the pathogenic mechanisms of NIHL. Recent studies indicate that glycolysis plays a critical role in endothelial cells (ECs)-related diseases. However, the specific role of glycolysis in dysfunction of SV-ECs remain largely unknown. In this study, we investigated the effects of glycolysis on SV-ECs in vitro and on the SV in vivo. Our previous research identified the glycolysis pathway as a potential mechanism underlying the SV-ECs injuries induced by oxidative stress. We further examined the expression levels of glycolytic genes in SV-ECs under H2O2 stimulation and in noise-exposed mice. We found that the gene and protein expression levels of glycolytic-related enzyme LDHA significantly decreased at early phase after oxidative stress injury both in vitro and in vivo, and exhibited anti-inflammatory effects on macrophages (Mφ). Moreover, we analyzed the differential secretomes of SV-ECs with and without inhibition of LDHA using LC-MS/MS technology, identifying CX3CL1 as a candidate mediator for cellular communication between SV-ECs and Mφ. We found that CX3CL1 secretion from SV-ECs was decreased following LDHA inhibition and exhibited anti-inflammatory effects on Mφ via the CX3CR1 pathway. Similarly, the pro-inflammatory effect of LDHA-overexpressing SV-ECs was attenuated following inhibition of CX3CL1. In conclusion, our study revealed that glycolysis-related LDHA was reduced in oxidative stress-induced SV-ECs, and that LDHA inhibition in SV-ECs elicited anti-inflammatory effects on Mφ, at least partially through the CX3CL1-CX3CR1 pathway. These findings suggest that LDHA represent a novel therapeutic strategy for the treatment of NIHL.
Collapse
Affiliation(s)
- Ying Yi
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Min-Yu Wu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Kai-Tian Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - An-Hai Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Lin-Qiu Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Qin Xiong
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Xian-Ren Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China
| | - Wen-Bin Lei
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China.
| | - Guan-Xia Xiong
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China.
| | - Shu-Bin Fang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
3
|
Samara P, Athanasopoulos M, Markatos N, Athanasopoulos I. From sound waves to molecular and cellular mechanisms: Understanding noise‑induced hearing loss and pioneering preventive approaches (Review). MEDICINE INTERNATIONAL 2024; 4:60. [PMID: 39114262 PMCID: PMC11304036 DOI: 10.3892/mi.2024.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 07/22/2024] [Indexed: 08/10/2024]
Abstract
Noise-induced hearing loss (NIHL) is a significant and urgent global public health concern, arising from prolonged exposure to elevated levels of noise. This auditory impairment harms delicate inner ear structures, particularly the essential hair cells transmitting auditory signals to the brain. Recognized by the World Health Organization as a major contributor to worldwide hearing loss, NIHL requires a comprehensive examination of its molecular and cellular mechanisms. Animal models emerge as indispensable tools for unraveling these intricacies, allowing researchers to simulate and study the impact of noise exposure on auditory structures, shedding light on the interplay of oxidative stress, inflammation and immune responses-crucial factors in NIHL progression. The present review focuses on elucidating the molecular mechanisms of NIHL, with a specific emphasis on findings derived from animal models, alongside the exploration of thorough preventive strategies, including protective measures and probing potential interventions. Understanding the molecular underpinnings not only provides insight into targeted treatment approaches, but also unlocks pathways for exploring and implementing preventive actions. This approach not only deepens the current comprehension of NIHL, but also has the potential to influence the shaping of public health policies, offering a nuanced perspective on this prevalent auditory disorder.
Collapse
Affiliation(s)
- Pinelopi Samara
- Children's Oncology Unit ‘Marianna V. Vardinoyannis-ELPIDA’, Aghia Sophia Children's Hospital, 11527 Athens, Greece
| | | | - Nikolaos Markatos
- Otolaryngology-Head and Neck Surgery, Athens Pediatric Center, 15125 Athens, Greece
| | | |
Collapse
|
4
|
Jiang Y, Zheng Z, Zhu J, Zhang P, Li S, Fu Y, Wang F, Zhang Z, Chang T, Zhang M, Ruan B, Wang X. The role of GDF15 in attenuating noise-induced hidden hearing loss by alleviating oxidative stress. Cell Biol Toxicol 2024; 40:79. [PMID: 39289208 PMCID: PMC11408584 DOI: 10.1007/s10565-024-09912-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024]
Abstract
Noise-induced hidden hearing loss (HHL) is a newly uncovered form of hearing impairment that causes hidden damage to the cochlea. Patients with HHL do not have significant abnormalities in their hearing thresholds, but they experience impaired speech recognition in noisy environments. However, the mechanisms underlying HHL remain unclear. In this study, we developed single-cell transcriptome profiles of the cochlea of mice with HHL, detailing changes in individual cell types. Our study revealed a transient threshold shift, reduced auditory brainstem response wave I amplitude, and decreased number of ribbon synapses in HHL mice. Our findings suggest elevated oxidative stress and GDF15 expression in cochlear hair cells of HHL mice. Notably, the upregulation of GDF15 attenuated oxidative stress and auditory impairment in the cochlea of HHL mice. This suggests that a therapeutic strategy targeting GDF15 may be efficacious against HHL.
Collapse
Affiliation(s)
- Yihong Jiang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China
- Department of Aviation Medicine, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Zeyu Zheng
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China
- Department of Aviation Medicine, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Jing Zhu
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China
- Department of Aviation Medicine, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Peng Zhang
- Department of Otolaryngology, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Shaoheng Li
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Yang Fu
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China
- Department of Aviation Medicine, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Fei Wang
- Department of Aerospace Hygiene, School of Aerospace Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhuoru Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China
- Department of Aviation Medicine, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Tong Chang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China
- Department of Aviation Medicine, Xijing Hospital, Xi'an, 710032, Shaanxi, China
| | - Min Zhang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
- Department of Aviation Medicine, Xijing Hospital, Xi'an, 710032, Shaanxi, China.
- Department of Otolaryngology, Xijing Hospital, Xi'an, 710032, Shaanxi, China.
| | - Bai Ruan
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
- Department of Aviation Medicine, Xijing Hospital, Xi'an, 710032, Shaanxi, China.
| | - Xiaocheng Wang
- Center of Clinical Aerospace Medicine, School of Aerospace Medicine, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
- Department of Aviation Medicine, Xijing Hospital, Xi'an, 710032, Shaanxi, China.
- Department of Otolaryngology, Xijing Hospital, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
5
|
Karayay B, Olze H, Szczepek AJ. Mammalian Inner Ear-Resident Immune Cells-A Scoping Review. Cells 2024; 13:1528. [PMID: 39329712 PMCID: PMC11430779 DOI: 10.3390/cells13181528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Several studies have demonstrated the presence of resident immune cells in the healthy inner ear. AIM This scoping review aimed to systematize this knowledge by collecting the data on resident immune cells in the inner ear of different species under steady-state conditions. METHODS The databases PubMed, MEDLINE (Ovid), CINAHL (EBSCO), and LIVIVO were used to identify articles. Systematic reviews, experimental studies, and clinical data in English and German were included without time limitations. RESULTS The search yielded 49 eligible articles published between 1979 and 2022. Resident immune cells, including macrophages, lymphocytes, leukocytes, and mast cells, have been observed in various mammalian inner ear structures under steady-state conditions. However, the physiological function of these cells in the healthy cochlea remains unclear, providing an opportunity for basic research in inner ear biology. CONCLUSIONS This review highlights the need for further investigation into the role of these cells, which is crucial for advancing the development of therapeutic methods for treating inner ear disorders, potentially transforming the field of otolaryngology and immunology.
Collapse
Affiliation(s)
- Betül Karayay
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (B.K.); (H.O.)
| | - Heidi Olze
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (B.K.); (H.O.)
| | - Agnieszka J. Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (B.K.); (H.O.)
- Faculty of Medicine and Health Sciences, University of Zielona Góra, 65-046 Zielona Góra, Poland
| |
Collapse
|
6
|
Wu D, Zhu B, Yang X, Sun D, Zhu J, Jiang K, Shen N, Yang X, Huang X. Histamine deficiency exacerbates cisplatin-induced ferroptosis in cochlea hair cells of HDC knockout mice. Int Immunopharmacol 2024; 138:112639. [PMID: 38972209 DOI: 10.1016/j.intimp.2024.112639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Cisplatin (CDDP) is extensively utilized in the management of diverse types of cancers, but its ototoxicity cannot be ignored, and clinical interventions are not ideal. Histidine decarboxylase (HDC) is the exclusive enzyme for histamine synthesis. Anti-histamine receptor drugs are ubiquitously employed in the therapeutics of allergies and gastrointestinal diseases. Yet, the specific role of histamine and its signaling in the inner ear is not fully understood. This study utilized cisplatin treated mice and HEI-OC1 auditory hair cell line to establish a cisplatin-induced ototoxicity (CIO) model. Histidine decarboxylase knockout (HDC-/-) mice and histamine receptor 1 (H1R) antagonist were utilized to investigate the influence of HDC/histamine/H1R signaling on ototoxicity. The results identified HDC and H1R expression in mouse hair cells. Transcriptomics indicated that the expression levels of oxidative stress-related genes in the cochlea of HDC-/- mice increased. Furthermore, histamine deficiency or suppression of H1R signaling accelerated HC ferroptosis, a pivotal factor underlying the aggravation of CIO in vivo and in vitro, conversely, the supplementation of exogenous histamine reversed these deleterious effects. Mechanistically, this study revealed that the malfunction of HDC/histamine/H1R signaling induced upregulation of NRF2 expression, accompanied by the upregulation of ACSL4 and downregulation of GPX4 expression, which are major regulatory factors of ferroptosis. In summary, histamine deficiency may induce hair cell death by regulating the H1R pathway and exacerbate CIO. Our findings have indicated a potential therapeutic target for CIO.
Collapse
Affiliation(s)
- Daquan Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Baoling Zhu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Shandong 266071, China
| | - Xiyang Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital & Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dili Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital & Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jianfu Zhu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital & Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Kanglun Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Na Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Xiangdong Yang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital & Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Xinsheng Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
7
|
Lutze RD, Ingersoll MA, Thotam A, Joseph A, Fernandes J, Teitz T. ERK1/2 Inhibition via the Oral Administration of Tizaterkib Alleviates Noise-Induced Hearing Loss While Tempering down the Immune Response. Int J Mol Sci 2024; 25:6305. [PMID: 38928015 PMCID: PMC11204379 DOI: 10.3390/ijms25126305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Noise-induced hearing loss (NIHL) is a major cause of hearing impairment and is linked to dementia and mental health conditions, yet no FDA-approved drugs exist to prevent it. Downregulating the mitogen-activated protein kinase (MAPK) cellular pathway has emerged as a promising approach to attenuate NIHL, but the molecular targets and the mechanism of protection are not fully understood. Here, we tested specifically the role of the kinases ERK1/2 in noise otoprotection using a newly developed, highly specific ERK1/2 inhibitor, tizaterkib, in preclinical animal models. Tizaterkib is currently being tested in phase 1 clinical trials for cancer treatment and has high oral bioavailability and low predicted systemic toxicity in mice and humans. In this study, we performed dose-response measurements of tizaterkib's efficacy against permanent NIHL in adult FVB/NJ mice, and its minimum effective dose (0.5 mg/kg/bw), therapeutic index (>50), and window of opportunity (<48 h) were determined. The drug, administered orally twice daily for 3 days, 24 h after 2 h of 100 dB or 106 dB SPL noise exposure, at a dose equivalent to what is prescribed currently for humans in clinical trials, conferred an average protection of 20-25 dB SPL in both female and male mice. The drug shielded mice from the noise-induced synaptic damage which occurs following loud noise exposure. Equally interesting, tizaterkib was shown to decrease the number of CD45- and CD68-positive immune cells in the mouse cochlea following noise exposure. This study suggests that repurposing tizaterkib and the ERK1/2 kinases' inhibition could be a promising strategy for the treatment of NIHL.
Collapse
Affiliation(s)
- Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (A.T.); (A.J.); (J.F.)
| | - Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (A.T.); (A.J.); (J.F.)
| | - Alena Thotam
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (A.T.); (A.J.); (J.F.)
| | - Anjali Joseph
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (A.T.); (A.J.); (J.F.)
| | - Joshua Fernandes
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (A.T.); (A.J.); (J.F.)
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (A.T.); (A.J.); (J.F.)
- The Scintillon Research Institute, San Diego, CA 92121, USA
| |
Collapse
|
8
|
Fleet A, Nikookam Y, Radotra A, Gowrishankar S, Metcalfe C, Muzaffar J, Smith ME, Monksfield P, Bance M. Outcomes following cochlear implantation with eluting electrodes: A systematic review. Laryngoscope Investig Otolaryngol 2024; 9:e1263. [PMID: 38855776 PMCID: PMC11160184 DOI: 10.1002/lio2.1263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/22/2024] [Accepted: 04/25/2024] [Indexed: 06/11/2024] Open
Abstract
Objectives To establish audiological and other outcomes following cochlear implantation in humans and animals with eluting electrodes. Methods Systematic review and narrative synthesis. Databases searched (April 2023): MEDLINE, EMBASE, CENTRAL, ClinicalTrials.gov, and Web of Science. Studies reporting outcomes in either humans or animals following cochlear implantation with a drug-eluting electrode were included. No limits were placed on language or year of publication. Risk of bias assessment was performed on all included studies using either the Brazzelli or Systematic Review Centre for Laboratory animal Experimentation (SYRCLE) assessment tools. The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 statement. Results Searches identified 146 abstracts and 108 full texts. Of these, 18 studies met the inclusion criteria, reporting outcomes in 523 animals (17 studies) and 24 humans (1 study). Eluting electrodes included dexamethasone (16 studies), aracytine (1 study), nicotinamide adenine dinucleotide (1 study), the growth factors insulin-like growth factor 1 (IGF1) and hepatocyte growth factor (HGF) (1 study), and neurotrophin-3 (1 study). All included studies compare outcomes following implantation with an eluting electrode with a control non-eluting electrode. In the majority of studies, audiological outcomes (e.g., auditory brainstem response threshold) were superior following implantation with an eluting electrode compared with a standard electrode. Most studies which investigated post-implantation impedance reported lower impedance following implantation with an eluting electrode. The influence of eluting electrodes on other reported outcomes (including post-implantation cochlear fibrosis and the survival of hair cells and spiral ganglion neurons) was more varied across the included studies. Conclusions Eluting electrodes have shown promise in animal studies in preserving residual hearing following cochlear implantation and in reducing impedance, though data from human studies remain lacking. Further in-human studies will be required to determine the clinical usefulness of drug-eluting cochlear implants as a future treatment for sensorineural hearing loss.
Collapse
Affiliation(s)
- Alex Fleet
- Department of Clinical Neurosciences, Addenbrooke's Health CampusUniversity of CambridgeCambridgeUK
| | - Yasmin Nikookam
- Department of Ear, Nose and Throat SurgeryUniversity Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn WayEdgbastonBirminghamUK
| | - Anshul Radotra
- The Royal Wolverhampton NHS Trust New Cross HospitalWolverhamptonUK
| | - Shravan Gowrishankar
- Department of Clinical Neurosciences, Addenbrooke's Health CampusUniversity of CambridgeCambridgeUK
| | | | - Jameel Muzaffar
- Department of Clinical Neurosciences, Addenbrooke's Health CampusUniversity of CambridgeCambridgeUK
- Department of Ear, Nose and Throat SurgeryUniversity Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn WayEdgbastonBirminghamUK
| | - Matthew E. Smith
- Department of Clinical Neurosciences, Addenbrooke's Health CampusUniversity of CambridgeCambridgeUK
| | - Peter Monksfield
- Department of Ear, Nose and Throat SurgeryUniversity Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn WayEdgbastonBirminghamUK
| | - Manohar Bance
- Department of Clinical Neurosciences, Addenbrooke's Health CampusUniversity of CambridgeCambridgeUK
| |
Collapse
|
9
|
Liu W, Li H, Kämpfe Nordström C, Danckwardt-Lillieström N, Agrawal S, Ladak HM, Rask-Andersen H. Immuno-surveillance and protection of the human cochlea. Front Neurol 2024; 15:1355785. [PMID: 38817543 PMCID: PMC11137295 DOI: 10.3389/fneur.2024.1355785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/21/2024] [Indexed: 06/01/2024] Open
Abstract
Background Despite its location near infection-prone areas, the human inner ear demonstrates remarkable resilience. This suggests that there are inherent instruments deterring the invasion and spread of pathogens into the inner ear. Here, we combined high-resolution light microscopy, super-resolution immunohistochemistry (SR-SIM) and synchrotron phase contrast imaging (SR-PCI) to identify the protection and barrier systems in the various parts of the human inner ear, focusing on the lateral wall, spiral ganglion, and endolymphatic sac. Materials and methods Light microscopy was conducted on mid-modiolar, semi-thin sections, after direct glutaraldehyde/osmium tetroxide fixation. The tonotopic locations were estimated using SR-PCI and 3D reconstruction in cadaveric specimens. The sections were analyzed for leucocyte and macrophage activity, and the results were correlated with immunohistochemistry using confocal microscopy and SR-SIM. Results Light microscopy revealed unprecedented preservation of cell anatomy and several macrophage-like cells that were localized in the cochlea. Immunohistochemistry demonstrated IBA1 cells frequently co-expressing MHC II in the spiral ganglion, nerve fibers, lateral wall, spiral limbus, and tympanic covering layer at all cochlear turns as well as in the endolymphatic sac. RNAscope assays revealed extensive expression of fractalkine gene transcripts in type I spiral ganglion cells. CD4 and CD8 cells occasionally surrounded blood vessels in the modiolus and lateral wall. TMEM119 and P2Y12 were not expressed, indicating that the cells labeled with IBA1 were not microglia. The round window niche, compact basilar membrane, and secondary spiral lamina may form protective shields in the cochlear base. Discussion The results suggest that the human cochlea is surveilled by dwelling and circulating immune cells. Resident and blood-borne macrophages may initiate protective immune responses via chemokine signaling in the lateral wall, spiral lamina, and spiral ganglion at different frequency locations. Synchrotron imaging revealed intriguing protective barriers in the base of the cochlea. The role of the endolymphatic sac in human inner ear innate and adaptive immunity is discussed.
Collapse
Affiliation(s)
- Wei Liu
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Hao Li
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Charlotta Kämpfe Nordström
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | | | - Sumit Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Department of Electrical and Computer Engineering, Western University, London, ON, Canada
| | - Hanif M. Ladak
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
- Department of Electrical and Computer Engineering, Western University, London, ON, Canada
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Nitta Y, Kurioka T, Mogi S, Sano H, Yamashita T. Suppression of the TGF-β signaling exacerbates degeneration of auditory neurons in kanamycin-induced ototoxicity in mice. Sci Rep 2024; 14:10910. [PMID: 38740884 PMCID: PMC11091189 DOI: 10.1038/s41598-024-61630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Transforming growth factor-β (TGF-β) signaling plays a significant role in multiple biological processes, including inflammation, immunity, and cell death. However, its specific impact on the cochlea remains unclear. In this study, we aimed to investigate the effects of TGF-β signaling suppression on auditory function and cochlear pathology in mice with kanamycin-induced ototoxicity. Kanamycin and furosemide (KM-FS) were systemically administered to 8-week-old C57/BL6 mice, followed by immediate topical application of a TGF-β receptor inhibitor (TGF-βRI) onto the round window membrane. Results showed significant TGF-β receptor upregulation in spiral ganglion neurons (SGNs) after KM-FA ototoxicity, whereas expression levels in the TGF-βRI treated group remained unchanged. Interestingly, despite no significant change in cochlear TGF-β expression after KM-FS ototoxicity, TGF-βRI treatment resulted in a significant decrease in TGF-β signaling. Regarding auditory function, TGF-βRI treatment offered no therapeutic effects on hearing thresholds and hair cell survival following KM-FS ototoxicity. However, SGN loss and macrophage infiltration were significantly increased with TGF-βRI treatment. These results imply that inhibition of TGF-β signaling after KM-FS ototoxicity promotes cochlear inflammation and SGN degeneration.
Collapse
Affiliation(s)
- Yoshihiro Nitta
- Department of Otorhinolaryngology and Head and Neck Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Takaomi Kurioka
- Department of Otorhinolaryngology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Sachiyo Mogi
- Department of Otorhinolaryngology and Head and Neck Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Hajime Sano
- School of Allied Health Sciences, Kitasato University, Kanagawa, Japan
| | - Taku Yamashita
- Department of Otorhinolaryngology and Head and Neck Surgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| |
Collapse
|
11
|
Sailor-Longsworth E, Lutze RD, Ingersoll MA, Kelmann RG, Ly K, Currier D, Chen T, Zuo J, Teitz T. Oseltamivir (Tamiflu), a Commonly Prescribed Antiviral Drug, Mitigates Hearing Loss in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592815. [PMID: 38765999 PMCID: PMC11100672 DOI: 10.1101/2024.05.06.592815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Hearing loss affects up to 10% of all people worldwide, but currently there is only one FDA-approved drug for its prevention in a subgroup of cisplatin-treated pediatric patients. Here, we performed an unbiased screen of 1,300 FDA-approved drugs for protection against cisplatin-induced cell death in an inner ear cell line, and identified oseltamivir phosphate (brand name Tamiflu), a common influenza antiviral drug, as a top candidate. Oseltamivir phosphate was found to be otoprotective by oral delivery in multiple established cisplatin and noise exposure mouse models. The drug conferred permanent hearing protection of 15-25 dB SPL for both female and male mice. Oseltamivir treatment reduced in mice outer hair cells death after cisplatin treatment and mitigated cochlear synaptopathy after noise exposure. A potential binding protein, ERK1/2, associated with inflammation, was shown to be activated with cisplatin treatment and reduced by oseltamivir cotreatment in cochlear explants. Importantly, the number of infiltrating immune cells to the cochleae in mice post noise exposure, were significantly reduced with oseltamivir treatment, suggesting an anti-inflammatory mechanism of action. Our results support oseltamivir, a widespread drug for influenza with low side effects, as a promising otoprotective therapeutic candidate in both cisplatin chemotherapy and traumatic noise exposure.
Collapse
Affiliation(s)
- Emma Sailor-Longsworth
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Regina G. Kelmann
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Kristina Ly
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Duane Currier
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, 38105, USA
| | - Jian Zuo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
12
|
Ingersoll MA, Lutze RD, Kelmann RG, Kresock DF, Marsh JD, Quevedo RV, Zuo J, Teitz T. KSR1 Knockout Mouse Model Demonstrates MAPK Pathway's Key Role in Cisplatin- and Noise-induced Hearing Loss. J Neurosci 2024; 44:e2174232024. [PMID: 38548338 PMCID: PMC11063821 DOI: 10.1523/jneurosci.2174-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Hearing loss is a major disability in everyday life and therapeutic interventions to protect hearing would benefit a large portion of the world population. Here we found that mice devoid of the protein kinase suppressor of RAS 1 (KSR1) in their tissues (germline KO mice) exhibit resistance to both cisplatin- and noise-induced permanent hearing loss compared with their wild-type KSR1 littermates. KSR1 is a scaffold protein that brings in proximity the mitogen-activated protein kinase (MAPK) proteins BRAF, MEK1/2 and ERK1/2 and assists in their activation through a phosphorylation cascade induced by both cisplatin and noise insults in the cochlear cells. KSR1, BRAF, MEK1/2, and ERK1/2 are all ubiquitously expressed in the cochlea. Deleting the KSR1 protein tempered down the MAPK phosphorylation cascade in the cochlear cells following both cisplatin and noise insults and conferred hearing protection of up to 30 dB SPL in three tested frequencies in male and female mice. Treatment with dabrafenib, an FDA-approved oral BRAF inhibitor, protected male and female KSR1 wild-type mice from both cisplatin- and noise-induced hearing loss. Dabrafenib treatment did not enhance the protection of KO KSR1 mice, providing evidence dabrafenib works primarily through the MAPK pathway. Thus, either elimination of the KSR1 gene expression or drug inhibition of the MAPK cellular pathway in mice resulted in profound protection from both cisplatin- and noise-induced hearing loss. Inhibition of the MAPK pathway, a cellular pathway that responds to damage in the cochlear cells, can prove a valuable strategy to protect and treat hearing loss.
Collapse
Affiliation(s)
- Matthew A Ingersoll
- Departments of Pharmacology and Neuroscience, Creighton University, Omaha, Nebraska 68178
| | - Richard D Lutze
- Departments of Pharmacology and Neuroscience, Creighton University, Omaha, Nebraska 68178
| | - Regina G Kelmann
- Departments of Pharmacology and Neuroscience, Creighton University, Omaha, Nebraska 68178
| | - Daniel F Kresock
- Departments of Pharmacology and Neuroscience, Creighton University, Omaha, Nebraska 68178
| | - Jordan D Marsh
- Departments of Pharmacology and Neuroscience, Creighton University, Omaha, Nebraska 68178
| | - Rene V Quevedo
- Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178
| | - Jian Zuo
- Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178
| | - Tal Teitz
- Departments of Pharmacology and Neuroscience, Creighton University, Omaha, Nebraska 68178
| |
Collapse
|
13
|
McBurney MI, Tintle NL, Westra J, Harris WS, Curhan SE. Cross-sectional analysis of plasma n-3 fatty acid levels and self-reported hearing difficulty in the UK Biobank Cohort. Prostaglandins Leukot Essent Fatty Acids 2024; 203:102654. [PMID: 39504918 DOI: 10.1016/j.plefa.2024.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Disabling hearing loss affects ∼430 million people globally. Fish consumption and long-chain n-3 polyunsaturated fatty acid (PUFA) intake were inversely associated with risk of hearing loss, but the association of plasma n-3 PUFAs and hearing loss is unclear. OBJECTIVE To examine the associations between plasma n-3 PUFA fractions (as % of total fatty acids), i.e., DHA % and Other n-3 PUFA % (defined as total n-3 PUFA minus DHA), with self-reported hearing difficulty in a population-based cohort in the UK. METHODS Our study includes 175,177 UK Biobank participants (40-69y, 54 % women) with data on plasma n-3 PUFA and hearing status. Baseline plasma PUFA levels were analyzed by nuclear magnetic resonance, and self-reported hearing difficulty was obtained by questionnaire between 2007 and 2010. Logistic regression was used to estimate age-adjusted odds ratios (ORs), multivariable-adjusted odds ratios (MVORs) by adjusting for 14 demographic, behavioral, biomarker and health-related potential confounders, and 95 % confidence intervals (CIs). RESULTS Hearing difficulty was reported by 26.7 % of participants. Higher plasma n-3 PUFA levels were independently associated with lower odds of self-reported hearing difficulty. The prevalence of hearing difficulty rose across age strata (40-49y, 15.8 %; 50-59y, 24.9 % and 60+y, 34.4 %; p < 0.0001) and overall was higher in males (33.2 %) than females (21.3 %). Compared with those in the lowest quintile of plasma DHA % or Other n-3 PUFA %, the MVOR (95 % CI) for hearing difficulty was 0.88 (0.85, 0.92) in highest quintile of plasma DHA %, and 0.91 (0.87, 0.94) in the highest quintile of Other n-3 PUFA %. The associations with DHA % did not differ by age or sex (p-for-interaction 0.83 and 0.58, respectively). MVORs for DHA % and Other n-3 PUFA % were similar among the 44,486 individuals with data on noise exposure at work. CONCLUSIONS Higher plasma n-3 PUFA levels were independently associated with lower odds of hearing difficulty.
Collapse
Affiliation(s)
- Michael I McBurney
- Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Nutritional Sciences & Human Health, University of Guelph, Guelph, ON; Friedman School of Nutrition Science & Policy, Tufts University, Boston, MA, USA.
| | - Nathan L Tintle
- Fatty Acid Research Institute, Sioux Falls, SD, USA; Department of Population Health Nursing Science, University of Illinois, Chicago, IL, USA
| | - Jason Westra
- Fatty Acid Research Institute, Sioux Falls, SD, USA
| | - William S Harris
- Fatty Acid Research Institute, Sioux Falls, SD, USA; Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Sharon E Curhan
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
14
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
15
|
Ingersoll MA, Lutze RD, Pushpan CK, Kelmann RG, Liu H, May MT, Hunter WJ, He DZ, Teitz T. Dabrafenib protects from cisplatin-induced hearing loss in a clinically relevant mouse model. JCI Insight 2023; 8:e171140. [PMID: 37934596 PMCID: PMC10807719 DOI: 10.1172/jci.insight.171140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
The widely used chemotherapy cisplatin causes permanent hearing loss in 40%-60% of patients with cancer. One drug, sodium thiosulfate, is approved by the FDA for use in pediatric patients with localized solid tumors for preventing cisplatin-induced hearing loss, but more drugs are desperately needed. Here, we tested dabrafenib, an FDA-approved BRAF kinase inhibitor and anticancer drug, in a clinically relevant multidose cisplatin mouse model. The protective effects of dabrafenib, given orally twice daily with cisplatin, were determined by functional hearing tests and cochlear outer hair cell counts. Toxicity of the drug cotreatment was evaluated, and levels of phosphorylated ERK were measured. A dabrafenib dose of 3 mg/kg BW, twice daily, in mice, was determined to be the minimum effective dose, and it is equivalent to one-tenth of the daily FDA-approved dose for human cancer treatment. The levels of hearing protection acquired, 20-25 dB at the 3 frequencies tested, in both female and male mice, persisted for 4 months after completion of treatments. Moreover, dabrafenib exhibited a good in vivo therapeutic index (> 25), protected hearing in 2 mouse strains, and diminished cisplatin-induced weight loss. This study demonstrates that dabrafenib is a promising candidate drug for protection from cisplatin-induced hearing loss.
Collapse
Affiliation(s)
| | | | | | | | | | | | - William J. Hunter
- Department of Pathology, School of Medicine, Creighton University, Omaha, Nebraska, USA
| | | | - Tal Teitz
- Department of Pharmacology and Neuroscience
| |
Collapse
|
16
|
Seicol BJ, Guo Z, Garrity K, Xie R. Potential uses of auditory nerve stimulation to modulate immune responses in the inner ear and auditory brainstem. Front Integr Neurosci 2023; 17:1294525. [PMID: 38162822 PMCID: PMC10755874 DOI: 10.3389/fnint.2023.1294525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
Bioelectronic medicine uses electrical stimulation of the nervous system to improve health outcomes throughout the body primarily by regulating immune responses. This concept, however, has yet to be applied systematically to the auditory system. There is growing interest in how cochlear damage and associated neuroinflammation may contribute to hearing loss. In conjunction with recent findings, we propose here a new perspective, which could be applied alongside advancing technologies, to use auditory nerve (AN) stimulation to modulate immune responses in hearing health disorders and following surgeries for auditory implants. In this article we will: (1) review the mechanisms of inflammation in the auditory system in relation to various forms of hearing loss, (2) explore nerve stimulation to reduce inflammation throughout the body and how similar neural-immune circuits likely exist in the auditory system (3) summarize current methods for stimulating the auditory system, particularly the AN, and (4) propose future directions to use bioelectronic medicine to ameliorate harmful immune responses in the inner ear and auditory brainstem to treat refractory conditions. We will illustrate how current knowledge from bioelectronic medicine can be applied to AN stimulation to resolve inflammation associated with implantation and disease. Further, we suggest the necessary steps to get discoveries in this emerging field from bench to bedside. Our vision is a future for AN stimulation that includes additional protocols as well as advances in devices to target and engage neural-immune circuitry for therapeutic benefits.
Collapse
Affiliation(s)
- Benjamin J. Seicol
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Zixu Guo
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Katy Garrity
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Ruili Xie
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
17
|
Tan WJT, Vlajkovic SM. Molecular Characteristics of Cisplatin-Induced Ototoxicity and Therapeutic Interventions. Int J Mol Sci 2023; 24:16545. [PMID: 38003734 PMCID: PMC10671929 DOI: 10.3390/ijms242216545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cisplatin is a commonly used chemotherapeutic agent with proven efficacy in treating various malignancies, including testicular, ovarian, cervical, breast, bladder, head and neck, and lung cancer. Cisplatin is also used to treat tumors in children, such as neuroblastoma, osteosarcoma, and hepatoblastoma. However, its clinical use is limited by severe side effects, including ototoxicity, nephrotoxicity, neurotoxicity, hepatotoxicity, gastrointestinal toxicity, and retinal toxicity. Cisplatin-induced ototoxicity manifests as irreversible, bilateral, high-frequency sensorineural hearing loss in 40-60% of adults and in up to 60% of children. Hearing loss can lead to social isolation, depression, and cognitive decline in adults, and speech and language developmental delays in children. Cisplatin causes hair cell death by forming DNA adducts, mitochondrial dysfunction, oxidative stress, and inflammation, culminating in programmed cell death by apoptosis, necroptosis, pyroptosis, or ferroptosis. Contemporary medical interventions for cisplatin ototoxicity are limited to prosthetic devices, such as hearing aids, but these have significant limitations because the cochlea remains damaged. Recently, the U.S. Food and Drug Administration (FDA) approved the first therapy, sodium thiosulfate, to prevent cisplatin-induced hearing loss in pediatric patients with localized, non-metastatic solid tumors. Other pharmacological treatments for cisplatin ototoxicity are in various stages of preclinical and clinical development. This narrative review aims to highlight the molecular mechanisms involved in cisplatin-induced ototoxicity, focusing on cochlear inflammation, and shed light on potential antioxidant and anti-inflammatory therapeutic interventions to prevent or mitigate the ototoxic effects of cisplatin. We conducted a comprehensive literature search (Google Scholar, PubMed) focusing on publications in the last five years.
Collapse
Affiliation(s)
- Winston J. T. Tan
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
- Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Srdjan M. Vlajkovic
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand;
- Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| |
Collapse
|
18
|
Ingersoll MA, Lutze RD, Kelmann RG, Kresock DF, Marsh JD, Quevedo RV, Zuo J, Teitz T. KSR1 knockout mouse model demonstrates MAPK pathway's key role in cisplatin- and noise-induced hearing loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566316. [PMID: 38014104 PMCID: PMC10680565 DOI: 10.1101/2023.11.08.566316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Hearing loss is a major disability in everyday life and therapeutic interventions to protect hearing would benefit a large portion of the world population. Here we found that mice devoid of the protein kinase suppressor of RAS 1 (KSR1) in their tissues (germline KO mice) exhibit resistance to both cisplatin- and noise-induced permanent hearing loss compared to their wild-type KSR1 littermates. KSR1 is expressed in the cochlea and is a scaffold protein that brings in proximity the mitogen-activated protein kinase (MAPK) proteins BRAF, MEK and ERK and assists in their activation through a phosphorylation cascade induced by both cisplatin and noise insults in the cochlear cells. Deleting the KSR1 protein tempered down the MAPK phosphorylation cascade in the cochlear cells following both cisplatin and noise insults and conferred hearing protection of up to 30 dB SPL in three tested frequencies in mice. Treatment with dabrafenib, an FDA-approved oral BRAF inhibitor, downregulated the MAPK kinase cascade and protected the KSR1 wild-type mice from both cisplatin- and noise-induced hearing loss. Dabrafenib treatment did not enhance the protection of KO KSR1 mice, as excepted, providing evidence dabrafenib works primarily through the MAPK pathway. Thus, either elimination of the KSR1 gene expression or drug inhibition of the MAPK cellular pathway in mice resulted in profound protection from both cisplatin- and noise-induce hearing loss. Inhibition of the MAPK pathway, a cellular pathway that responds to damage in the cochlear cells, can prove a valuable strategy to protect and treat hearing loss.
Collapse
Affiliation(s)
- Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Regina G. Kelmann
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Daniel F. Kresock
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Jordan D. Marsh
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Rene V. Quevedo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Jian Zuo
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
19
|
Lutze RD, Ingersoll MA, Thotam A, Joseph A, Fernandes J, Teitz T. ERK1/2 Inhibition Alleviates Noise-Induced Hearing Loss While Tempering Down the Immune Response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.563007. [PMID: 37905140 PMCID: PMC10614960 DOI: 10.1101/2023.10.18.563007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Noise-induced hearing loss (NIHL) is a major cause of hearing impairment, yet no FDA-approved drugs exist to prevent it. Targeting the mitogen activated protein kinase (MAPK) cellular pathway has emerged as a promising approach to attenuate NIHL. Tizaterkib is an orally bioavailable, highly specific ERK1/2 inhibitor, currently in Phase-1 anticancer clinical trials. Here, we tested tizaterkib's efficacy against permanent NIHL in mice at doses equivalent to what humans are currently prescribed in clinical trials. The drug given orally 24 hours after noise exposure, protected an average of 20-25 dB SPL in three frequencies, in female and male mice, had a therapeutic window >50, and did not confer additional protection to KSR1 genetic knockout mice, showing the drug works through the MAPK pathway. Tizaterkib shielded from noise-induced cochlear synaptopathy, and a 3-day, twice daily, treatment with the drug was the optimal determined regimen. Importantly, tizaterkib was shown to decrease the number of CD45 and CD68 positive immune cells in the cochlea following noise exposure, which could be part of the protective mechanism of MAPK inhibition.
Collapse
Affiliation(s)
- Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Alena Thotam
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Anjali Joseph
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Joshua Fernandes
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
20
|
Jindal DA, Leier HC, Salazar G, Foden AJ, Seitz EA, Wilkov AJ, Coutinho-Budd JC, Broihier HT. Early Draper-mediated glial refinement of neuropil architecture and synapse number in the Drosophila antennal lobe. Front Cell Neurosci 2023; 17:1166199. [PMID: 37333889 PMCID: PMC10272751 DOI: 10.3389/fncel.2023.1166199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Glial phagocytic activity refines connectivity, though molecular mechanisms regulating this exquisitely sensitive process are incompletely defined. We developed the Drosophila antennal lobe as a model for identifying molecular mechanisms underlying glial refinement of neural circuits in the absence of injury. Antennal lobe organization is stereotyped and characterized by individual glomeruli comprised of unique olfactory receptor neuronal (ORN) populations. The antennal lobe interacts extensively with two glial subtypes: ensheathing glia wrap individual glomeruli, while astrocytes ramify considerably within them. Phagocytic roles for glia in the uninjured antennal lobe are largely unknown. Thus, we tested whether Draper regulates ORN terminal arbor size, shape, or presynaptic content in two representative glomeruli: VC1 and VM7. We find that glial Draper limits the size of individual glomeruli and restrains their presynaptic content. Moreover, glial refinement is apparent in young adults, a period of rapid terminal arbor and synapse growth, indicating that synapse addition and elimination occur simultaneously. Draper has been shown to be expressed in ensheathing glia; unexpectedly, we find it expressed at high levels in late pupal antennal lobe astrocytes. Surprisingly, Draper plays differential roles in ensheathing glia and astrocytes in VC1 and VM7. In VC1, ensheathing glial Draper plays a more significant role in shaping glomerular size and presynaptic content; while in VM7, astrocytic Draper plays the larger role. Together, these data indicate that astrocytes and ensheathing glia employ Draper to refine circuitry in the antennal lobe before the terminal arbors reach their mature form and argue for local heterogeneity of neuron-glia interactions.
Collapse
Affiliation(s)
- Darren A. Jindal
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Hans C. Leier
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Gabriela Salazar
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Alexander J. Foden
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Elizabeth A. Seitz
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Abigail J. Wilkov
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Jaeda C. Coutinho-Budd
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Heather T. Broihier
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
21
|
Jones M, Kovacevic B, Ionescu CM, Wagle SR, Quintas C, Wong EYM, Mikov M, Mooranian A, Al-Salami H. The applications of Targeted Delivery for Gene Therapies in Hearing Loss. J Drug Target 2023:1-22. [PMID: 37211674 DOI: 10.1080/1061186x.2023.2216900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/07/2022] [Accepted: 04/09/2023] [Indexed: 05/23/2023]
Abstract
Gene therapies are becoming more abundantly researched for use in a multitude of potential treatments, including for hearing loss. Hearing loss is a condition which impacts an increasing number of the population each year, with significant burdens associated. As such, this review will present the concept that delivering a gene effectively to the inner ear may assist in expanding novel treatment options and improving patient outcomes. Historically, several drawbacks have been associated with the use of gene therapies, some of which may be overcome via targeted delivery. Targeted delivery has the potential to alleviate off-target effects and permit a safer delivery profile. Viral vectors have often been described as a delivery method, however, there is an emerging depiction of the potential for nanotechnology to be used. Resulting nanoparticles may also be tuned to allow for targeted delivery. Therefore, this review will focus on hearing loss, gene delivery techniques and inner ear targets, including highlighting promising research. Targeted delivery is a key concept to permitting gene delivery in a safe effective manner, however, further research is required, both in the determination of genes to use in functional hearing recovery and formulating nanoparticles for targeted delivery.
Collapse
Affiliation(s)
- Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Christina Quintas
- School of human sciences, University of Western Australia, Crawley 6009, Perth, Western Australia, Australia
| | - Elaine Y M Wong
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21101 Novi Sad, Serbia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
22
|
Chen MB, Li MH, Wu LY, Wang R, Long X, Zhang L, Sun W, Guo WW, Pan Y, Zhang YS, Lin C, Shi X, Yang SM. Oridonin employs interleukin 1 receptor type 2 to treat noise-induced hearing loss by blocking inner ear inflammation. Biochem Pharmacol 2023; 210:115457. [PMID: 36806583 DOI: 10.1016/j.bcp.2023.115457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
NOD-like receptor protein 3 (NLRP3) inflammasomes trigger the inflammatory cascades and participate in various inflammatory diseases, including noise-induced hearing loss (NIHL) caused by oxidative stress. Recently, the anti-inflammatory traditional medicine oridonin (Ori) has been reported to provide hearing protection in mice after noise exposure by blocking the NLRP3-never in mitosis gene A-related kinase 7 (NEK7)-inflammasome complex assembly. Using RNA sequencing analysis, we further elucidated that interleukin 1 receptor type 2 (IL1R2) may be another crucial factor regulated by Ori to protect NIHL. We observed that IL1R2 expression was localized in spiral ganglion neurons, inner and outer hair cells, in Ori-treated mouse cochleae. Additionally, we confirmed that ectopic overexpression of IL1R2 in the inner ears of healthy mice using an adeno-associated virus delivery system significantly reduced noise-induced ribbon synapse lesions and hearing loss by blocking the "cytokine storm" in the inner ear. This study provides a novel theoretical foundation for guiding the clinical treatment of NIHL.
Collapse
Affiliation(s)
- Meng-Bing Chen
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China; College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China; Ankang People's Hospital, Ankang 725000, Shanxi, China
| | - Meng-Hua Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, China; Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, Hainan, China; Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Li-Yuan Wu
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China; The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, Zhejiang, China
| | - Rong Wang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China; College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Xi Long
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Liang Zhang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Wei Sun
- Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, the State University of New York at Buffalo, Buffalo 14200, NY, USA
| | - Wei-Wei Guo
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Yong Pan
- Xuzhou Infectious Diseases Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Yun-Shi Zhang
- Xuzhou Infectious Diseases Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Chang Lin
- The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, Fujian, China.
| | - Xi Shi
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, Hainan, China; Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, Hainan, China; Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China.
| | - Shi-Ming Yang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
23
|
Al Aameri RFH, Alanisi EMA, Oluwatosin A, Al Sallami D, Sheth S, Alberts I, Patel S, Rybak LP, Ramkumar V. Targeting CXCL1 chemokine signaling for treating cisplatin ototoxicity. Front Immunol 2023; 14:1125948. [PMID: 37063917 PMCID: PMC10102581 DOI: 10.3389/fimmu.2023.1125948] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/17/2023] [Indexed: 04/03/2023] Open
Abstract
Cisplatin is chemotherapy used for solid tumor treatment like lung, bladder, head and neck, ovarian and testicular cancers. However, cisplatin-induced ototoxicity limits the utility of this agent in cancer patients, especially when dose escalations are needed. Ototoxicity is associated with cochlear cell death through DNA damage, the generation of reactive oxygen species (ROS) and the consequent activation of caspase, glutamate excitotoxicity, inflammation, apoptosis and/or necrosis. Previous studies have demonstrated a role of CXC chemokines in cisplatin ototoxicity. In this study, we investigated the role of CXCL1, a cytokine which increased in the serum and cochlea by 24 h following cisplatin administration. Adult male Wistar rats treated with cisplatin demonstrated significant hearing loss, assessed by auditory brainstem responses (ABRs), hair cell loss and loss of ribbon synapse. Immunohistochemical studies evaluated the levels of CXCL1 along with increased presence of CD68 and CD45-positive immune cells in cochlea. Increases in CXCL1 was time-dependent in the spiral ganglion neurons and organ of Corti and was associated with progressive increases in CD45, CD68 and IBA1-positive immune cells. Trans-tympanic administration of SB225002, a chemical inhibitor of CXCR2 (receptor target for CXCL1) reduced immune cell migration, protected against cisplatin-induced hearing loss and preserved hair cell integrity. We show that SB225002 reduced the expression of CXCL1, NOX3, iNOS, TNF-α, IL-6 and COX-2. Similarly, knockdown of CXCR2 by trans-tympanic administration of CXCR2 siRNA protected against hearing loss and loss of outer hair cells and reduced ribbon synapses. In addition, SB225002 reduced the expression of inflammatory mediators induced by cisplatin. These results implicate the CXCL1 chemokine as an early player in cisplatin ototoxicity, possibly by initiating the immune cascade, and indicate that CXCR2 is a relevant target for treating cisplatin ototoxicity.
Collapse
Affiliation(s)
- Raheem F. H. Al Aameri
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Entkhab M. A. Alanisi
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, FL, United States
| | - Adu Oluwatosin
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Dheyaa Al Sallami
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Sandeep Sheth
- Department of Pharmaceutical Sciences, Larkin University College of Pharmacy, Miami, FL, United States
| | - Ian Alberts
- Medical Microbiology, Immunology and Cell Biology (MMICB), Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Shree Patel
- Medical Microbiology, Immunology and Cell Biology (MMICB), Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Leonard P. Rybak
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, United States
| | - Vickram Ramkumar
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, United States
- *Correspondence: Vickram Ramkumar,
| |
Collapse
|
24
|
Identification and Characterization of TMEM119-Positive Cells in the Postnatal and Adult Murine Cochlea. Brain Sci 2023; 13:brainsci13030516. [PMID: 36979326 PMCID: PMC10046579 DOI: 10.3390/brainsci13030516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/09/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
Transmembrane protein 119 (TMEM119) is expressed in a subset of resident macrophage cells of the brain and was proposed as a marker for native brain microglia. The presence of cells expressing TMEM119 in the cochlea has not yet been described. Thus, the present study aimed to characterize the TMEM119-expressing cells of the postnatal and adult cochlea, the latter also after noise exposure. Immunofluorescent staining of cochlear cryosections detected TMEM119 protein in the spiral limbus fibrocytes and the developing stria vascularis at postnatal Day 3. Applying the macrophage marker Iba1 revealed that TMEM119 is not a marker of cochlear macrophages or a subset of them. In the adult murine cochlea, TMEM119 expression was detected in the basal cells of the stria vascularis and the dark mesenchymal cells of the supralimbal zone. Exposure to noise trauma was not associated with a qualitative change in the types or distributions of the TMEM119-expressing cells of the adult cochlea. Western blot analysis indicated a similar TMEM119 protein expression level in the postnatal cochlea and brain tissues. The findings do not support using TMEM119 as a specific microglial or macrophage marker in the cochlea. The precise role of TMEM119 in the cochlea remains to be investigated through functional experiments. TMEM119 expression in the basal cells of the stria vascularis implies a possible role in the gap junction system of the blood–labyrinth barrier and merits further research.
Collapse
|
25
|
Rahman MT, Bailey EM, Gansemer BM, Pieper AA, Manak JR, Green SH. Anti-inflammatory Therapy Protects Spiral Ganglion Neurons After Aminoglycoside Antibiotic-Induced Hair Cell Loss. Neurotherapeutics 2023; 20:578-601. [PMID: 36697994 PMCID: PMC10121993 DOI: 10.1007/s13311-022-01336-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 01/26/2023] Open
Abstract
Destruction of cochlear hair cells by aminoglycoside antibiotics leads to gradual death of the spiral ganglion neurons (SGNs) that relay auditory information to the brain, potentially limiting the efficacy of cochlear implants. Because the reasons for this cochlear neurodegeneration are unknown, there are no neuroprotective strategies for patients. To investigate this problem, we assessed transcriptomic changes in the rat spiral ganglion following aminoglycoside antibiotic (kanamycin)-induced hair cell destruction. We observed selectively increased expression of immune and inflammatory response genes and increased abundance of activated macrophages in spiral ganglia by postnatal day 32 in kanamycin-deafened rats, preceding significant SGN degeneration. Treatment with the anti-inflammatory medications dexamethasone and ibuprofen diminished long-term SGN degeneration. Ibuprofen and dexamethasone also diminished macrophage activation. Efficacy of ibuprofen treatment was augmented by co-administration of the nicotinamide adenine dinucleotide-stabilizing agent P7C3-A20. Our results support a critical role of neuroinflammation in SGN degeneration after aminoglycoside antibiotic-mediated cochlear hair cell loss, as well as a neuroprotective strategy that could improve cochlear implant efficacy.
Collapse
Affiliation(s)
- Muhammad T Rahman
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Erin M Bailey
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH, 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - J Robert Manak
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA
| | - Steven H Green
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
26
|
Claussen AD, Quevedo RV, Kirk JR, Higgins T, Mostaert B, Rahman MT, Oleson J, Hernandez R, Hirose K, Hansen MR. Chronic cochlear implantation with and without electric stimulation in a mouse model induces robust cochlear influx of CX3CR1 +/GFP macrophages. Hear Res 2022; 426:108510. [PMID: 35527124 PMCID: PMC9596618 DOI: 10.1016/j.heares.2022.108510] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 03/27/2022] [Accepted: 04/23/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cochlear implantation is an effective auditory rehabilitation strategy for those with profound hearing loss, including those with residual low frequency hearing through use of hybrid cochlear implantation techniques. Post-mortem studies demonstrate the nearly ubiquitous presence of intracochlear fibrosis and neo-ossification following cochlear implantation. Current evidence suggests post-implantation intracochlear fibrosis is associated with delayed loss of residual acoustic hearing in hybrid cochlear implant (CI) recipients and may also negatively influence outcomes in traditional CI recipients. This study examined the contributions of surgical trauma, foreign body response and electric stimulation to intracochlear fibrosis and the innate immune response to cochlear implantation and the hierarchy of these contributions. METHODS Normal hearing CX3CR1+/GFP mice underwent either round window opening (sham), acute CI insertion or chronic CI insertion with no, low- or high-level electric stimulation. Electric stimulation levels were based on neural response telemetry (NRT), beginning post-operative day 7 for 5 h per day. Subjects (n=3 per timepoint) were sacrificed at 4 h, 1,4,7,8,11,14 and 21 days. An unoperated group (n=3) served as controls. Cochleae were harvested at each time-point and prepared for immunohistochemistry with confocal imaging. The images were analyzed to obtain CX3CR1+ macrophage cell number and density in the lateral wall (LW), scala tympani (ST) and Rosenthal's canal (RC). RESULTS A ST peri-implant cellular infiltrate and fibrosis occurred exclusively in the chronically implanted groups starting on day 7 with a concurrent infiltration of CX3CR1+ macrophages not seen in the other groups. CX3CR1+ macrophage infiltration was seen in the LW and RC in all experimental groups within the first week, being most prominent in the 3 chronically implanted groups during the second and third week. CONCLUSIONS The cochlear immune response was most prominent in the presence of chronic cochlear implantation, regardless of electric stimulation level. Further, the development of intracochlear ST fibrosis was dependent on the presence of the indwelling CI foreign body. An innate immune response was evoked by surgical trauma alone (sham and acute CI groups) to a lesser degree. These data suggest that cochlear inflammation and intrascalar fibrosis after cochlear implantation are largely dependent on the presence of a chronic indwelling foreign body and are not critically dependent on electrical stimulation. Also, these data support a role for surgical trauma in inciting the initial innate immune response.
Collapse
Affiliation(s)
- Alexander D Claussen
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, United States; Department of Otolaryngology Head and Neck Surgery, University of California San Diego, San Diego, CA 92103, United States.
| | - René Vielman Quevedo
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, United States; Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, United States
| | | | - Timon Higgins
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, United States
| | - Brian Mostaert
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, United States
| | - Muhammad Taifur Rahman
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, United States
| | - Jacob Oleson
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 52242, United States
| | - Reyna Hernandez
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA 52242, United States
| | - Keiko Hirose
- Department of Otolaryngology Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Marlan R Hansen
- Department of Otolaryngology Head and Neck Surgery, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
27
|
Zhang X, Li N, Cui Y, Wu H, Jiao J, Yu Y, Gu G, Chen G, Zhang H, Yu S. Plasma metabolomics analyses highlight the multifaceted effects of noise exposure and the diagnostic power of dysregulated metabolites for noise-induced hearing loss in steel workers. Front Mol Biosci 2022; 9:907832. [PMID: 36060246 PMCID: PMC9437629 DOI: 10.3389/fmolb.2022.907832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Noise exposure can lead to various kinds of disorders. Noise-induced hearing loss (NIHL) is one of the leading disorders confusing the noise-exposed workers. It is essential to identify NIHL markers for its early diagnosis and new therapeutic targets for its treatment. In this study, a total of 90 plasma samples from 60 noise-exposed steel factory male workers (the noise group) with (NIHL group, n = 30) and without NIHL (non-NIHL group, n = 30) and 30 male controls without noise exposure (control group) were collected. Untargeted human plasma metabolomic profiles were determined with HPLC-MS/MS. The levels of the metabolites in the samples were normalized to total peak intensity, and the processed data were subjected to multivariate data analysis. The Wilcoxon test and orthogonal partial least square-discriminant analysis (OPLS-DA) were performed. With the threshold of p < 0.05 and the variable importance of projection (VIP) value >1, 469 differential plasma metabolites associated with noise exposure (DMs-NE) were identified, and their associated 58 KEGG pathways were indicated. In total, 33 differential metabolites associated with NIHL (DMs-NIHL) and their associated 12 KEGG pathways were identified. There were six common pathways associated with both noise exposure and NIHL. Through multiple comparisons, seven metabolites were shown to be dysregulated in the NIHL group compared with the other two groups. Through LASSO regression analysis, two risk models were constructed for NIHL status predication which could discriminate NIHL from non-NIHL workers with the area under the curve (AUC) values of 0.840 and 0.872, respectively, indicating their efficiency in NIHL diagnosis. To validate the results of the metabolomics, cochlear gene expression comparisons between susceptible and resistant mice in the GSE8342 dataset from Gene Expression Omnibus (GEO) were performed. The immune response and cell death-related processes were highlighted for their close relations with noise exposure, indicating their critical roles in noise-induced disorders. We concluded that there was a significant difference between the metabolite’s profiles between NIHL cases and non-NIHL individuals. Noise exposure could lead to dysregulations of a variety of biological pathways, especially immune response and cell death-related processes. Our results might provide new clues for noise exposure studies and NIHL diagnosis.
Collapse
Affiliation(s)
- Xiuzhi Zhang
- Department of Pathology, Henan Medical College, Zhengzhou, Henan, China
| | - Ningning Li
- Department of Scientific Research and Foreign Affairs, Henan Medical College, Zhengzhou, Henan, China
| | - Yanan Cui
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Wu
- Henan Institute for Occupational Health, Zhengzhou, Henan, China
| | - Jie Jiao
- Henan Institute for Occupational Health, Zhengzhou, Henan, China
| | - Yue Yu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guizhen Gu
- Henan Institute for Occupational Health, Zhengzhou, Henan, China
| | - Guoshun Chen
- Wugang Institute for Occupational Health, Wugang, Henan, China
| | - Huanling Zhang
- Wugang Institute for Occupational Health, Wugang, Henan, China
| | - Shanfa Yu
- School of Public Health, Henan Medical College, Zhengzhou, Henan, China
- *Correspondence: Shanfa Yu,
| |
Collapse
|
28
|
Sargsyan L, Swisher AR, Hetrick AP, Li H. Effects of Combined Gentamicin and Furosemide Treatment on Cochlear Macrophages. Int J Mol Sci 2022; 23:ijms23137343. [PMID: 35806348 PMCID: PMC9266920 DOI: 10.3390/ijms23137343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
Combining aminoglycosides and loop diuretics often serves as an effective ototoxic approach to deafen experimental animals. The treatment results in rapid hair cell loss with extended macrophage presence in the cochlea, creating a sterile inflammatory environment. Although the early recruitment of macrophages is typically neuroprotective, the delay in the resolution of macrophage activity can be a complication if the damaged cochlea is used as a model to study subsequent therapeutic strategies. Here, we applied a high dose combination of systemic gentamicin and furosemide in C57 BL/6 and CBA/CaJ mice and studied the ototoxic consequences in the cochlea, including hair cell survival, ribbon synaptic integrity, and macrophage activation up to 15-day posttreatment. The activity of macrophages in the basilar membrane was correlated to the severity of cochlear damage, particularly the hair cell damage. Comparatively, C57 BL/6 cochleae were more vulnerable to the ototoxic challenge with escalated macrophage activation. In addition, the ribbon synaptic deterioration was disproportionately limited when compared to the degree of outer hair cell loss in CBA/CaJ mice. The innate and differential otoprotection in CBA/CaJ mice appears to be associated with the rapid activation of cochlear macrophages and a certain level of synaptogenesis after the combined gentamicin and furosemide treatment.
Collapse
Affiliation(s)
- Liana Sargsyan
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (L.S.); (A.R.S.); (A.P.H.)
| | - Austin R. Swisher
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (L.S.); (A.R.S.); (A.P.H.)
| | - Alisa P. Hetrick
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (L.S.); (A.R.S.); (A.P.H.)
| | - Hongzhe Li
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92357, USA; (L.S.); (A.R.S.); (A.P.H.)
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Health, Loma Linda, CA 92354, USA
- Correspondence: or ; Tel.: +1-(909)-825-7084 (ext. 2816); Fax: +1-(909)-796-4508
| |
Collapse
|
29
|
The protective effects of systemic dexamethasone on sensory epithelial damage and hearing loss in targeted Cx26-null mice. Cell Death Dis 2022; 13:545. [PMID: 35688810 PMCID: PMC9187686 DOI: 10.1038/s41419-022-04987-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 01/21/2023]
Abstract
Mutations in the GJB2 gene (encoding Connexin26(Cx26)) are the most common cause of hereditary deafness, accounting for about a quarter of all cases. Sensory epithelial damage is considered to be one of the main causes of deafness caused by GJB2 gene mutation. Dexamethasone (DEX) is widely used in the treatment of a variety of inner ear diseases including sudden sensorineural hearing loss (SSNHL), noise-induced hearing loss (NIHL), and deafness caused by ototoxic drugs. Whether DEX has a direct therapeutic effect on hereditary deafness, especially GJB2-related deafness, remains unclear. In this study, we revealed that DEX can effectively prevent hair cell death caused by oxidative stress in cochlear explants. Additionally, two distinct Cx26-null mouse models were established to investigate whether systemic administration of DEX alleviate the cochlear sensory epithelial injury or deafness in these models. In a specific longitudinally Cx26-null model that does not cause deafness, systemic administration of DEX prevents the degeneration of outer hair cells (OHCs) induced by Cx26 knockout. Similarly, in a targeted-Deiter's cells (DCs) Cx26-null mouse model that causes deafness, treatment with DEX can almost completely prevent OHCs loss and alleviates auditory threshold shifts at some frequencies. Additionally, we observed that DEX inhibited the recruitment of CD45-positive cells in the targeted-DCs Cx26-null mice. Taken together, our results suggest that the protective effect of dexamethasone on cochlear sensory epithelial damage and partially rescue auditory function may be related to the regulation of inner ear immune response in Cx26 deficiency mouse models.
Collapse
|
30
|
Chan J, Telang R, Kociszewska D, Thorne PR, Vlajkovic SM. A High-Fat Diet Induces Low-Grade Cochlear Inflammation in CD-1 Mice. Int J Mol Sci 2022; 23:5179. [PMID: 35563572 PMCID: PMC9101486 DOI: 10.3390/ijms23095179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
There is growing evidence for a relationship between gut dysbiosis and hearing loss. Inflammatory bowel disease, diet-induced obesity (DIO), and type 2 diabetes have all been linked to hearing loss. Here, we investigated the effect of a chronic high-fat diet (HFD) on the development of inner ear inflammation using a rodent model. Three-week-old CD-1 (Swiss) mice were fed an HFD or a control diet for ten weeks. After ten weeks, mouse cochleae were harvested, and markers of cochlear inflammation were assessed at the protein level using immunohistochemistry and at the gene expression level using quantitative real-time RT-PCR. We identified increased immunoexpression of pro-inflammatory biomarkers in animals on an HFD, including intracellular adhesion molecule 1 (ICAM1), interleukin 6 receptor α (IL6Rα), and toll-like-receptor 2 (TLR2). In addition, increased numbers of ionized calcium-binding adapter molecule 1 (Iba1) positive macrophages were found in the cochlear lateral wall in mice on an HFD. In contrast, gene expression levels of inflammatory markers were not affected by an HFD. The recruitment of macrophages to the cochlea and increased immunoexpression of inflammatory markers in mice fed an HFD provide direct evidence for the association between HFD and cochlear inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Srdjan M. Vlajkovic
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (J.C.); (R.T.); (D.K.); (P.R.T.)
| |
Collapse
|
31
|
Keithley EM. Inner ear immunity. Hear Res 2022; 419:108518. [DOI: 10.1016/j.heares.2022.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
|
32
|
Janesick AS, Scheibinger M, Benkafadar N, Kirti S, Heller S. Avian auditory hair cell regeneration is accompanied by JAK/STAT-dependent expression of immune-related genes in supporting cells. Development 2022; 149:dev200113. [PMID: 35420675 PMCID: PMC10656459 DOI: 10.1242/dev.200113] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/31/2022] [Indexed: 11/20/2023]
Abstract
The avian hearing organ is the basilar papilla that, in sharp contrast to the mammalian cochlea, can regenerate sensory hair cells and thereby recover from deafness within weeks. The mechanisms that trigger, sustain and terminate the regenerative response in vivo are largely unknown. Here, we profile the changes in gene expression in the chicken basilar papilla after aminoglycoside antibiotic-induced hair cell loss using RNA-sequencing. We identified changes in gene expression of a group of immune-related genes and confirmed with single-cell RNA-sequencing that these changes occur in supporting cells. In situ hybridization was used to further validate these findings. We determined that the JAK/STAT signaling pathway is essential for upregulation of the damage-response genes in supporting cells during the second day after induction of hair cell loss. Four days after ototoxic damage, we identified newly regenerated, nascent auditory hair cells that express genes linked to termination of the JAK/STAT signaling response. The robust, transient expression of immune-related genes in supporting cells suggests a potential functional involvement of JAK/STAT signaling in sensory hair cell regeneration.
Collapse
Affiliation(s)
- Amanda S. Janesick
- Department of Otolaryngology – Head & Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Mirko Scheibinger
- Department of Otolaryngology – Head & Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Nesrine Benkafadar
- Department of Otolaryngology – Head & Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Sakin Kirti
- Department of Otolaryngology – Head & Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Stefan Heller
- Department of Otolaryngology – Head & Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94305, USA
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| |
Collapse
|
33
|
Shin SH, Jung J, Park HR, Sim NS, Choi JY, Bae SH. The Time Course of Monocytes Infiltration After Acoustic Overstimulation. Front Cell Neurosci 2022; 16:844480. [PMID: 35496904 PMCID: PMC9039292 DOI: 10.3389/fncel.2022.844480] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
Cochlea macrophages regulate cochlea inflammation and may harbors the potentials to protect hearing function from injury, including acoustic overstimulation. Cochlea macrophage numbers increase at 3–7 days after acoustic stimulation. However, the exact timing of macrophage infiltration and maturation from inflammatory monocytes is unclear. Furthermore, neutrophils may also be involved in this process. Therefore, in this study, we investigated time-dependent immune cell infiltration, macrophage transformation, and neutrophil involvement following acoustic stimulation. Flow cytometry and immunofluorescence were conducted in C-X3-C motif chemokine receptor 1 (CX3CR1)+/GFP mice after acoustic overstimulation (at baseline and at 1, 2, 3, and 5 days after exposure to 120 dB for 1 h) to identify inflammatory monocytes in the cochlea. RNA-sequencing and quantitative polymerase chain reaction were performed to identify differentially expressed genes. Inflammatory monocytes infiltrated into the lower portion of the lateral wall within 2 days after acoustic overstimulation (dpn), followed by transformation into macrophages at 3–5 dpn via CX3CR1 upregulation and Ly6C downregulation. In addition, inflammatory monocytes were aggregated inside the collecting venule only at 1 dpn. Neutrophils were not a major type of phagocyte during this response. The gene encoding C-C motif chemokine ligand 2 gene was significantly upregulated as early as 3 h after acoustic overstimulation. Given these results, treatment to control immune response after a noise-induced hearing loss should be applied as soon as possible.
Collapse
Affiliation(s)
- Seung Ho Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | - Jinsei Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Haeng Ran Park
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Nam Suk Sim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Seong Hoon Bae
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, South Korea
- *Correspondence: Seong Hoon Bae,
| |
Collapse
|
34
|
Miwa T, Okano T. Role of Inner Ear Macrophages and Autoimmune/Autoinflammatory Mechanisms in the Pathophysiology of Inner Ear Disease. Front Neurol 2022; 13:861992. [PMID: 35463143 PMCID: PMC9019483 DOI: 10.3389/fneur.2022.861992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/02/2022] [Indexed: 12/02/2022] Open
Abstract
Macrophages play important roles in tissue homeostasis and inflammation. Recent studies have revealed that macrophages are dispersed in the inner ear and may play essential roles in eliciting an immune response. Autoinflammatory diseases comprise a family of immune-mediated diseases, some of which involve sensorineural hearing loss, indicating that similar mechanisms may underlie the pathogenesis of immune-mediated hearing loss. Autoimmune inner ear disease (AIED) is an idiopathic disorder characterized by unexpected hearing loss. Tissue macrophages in the inner ear represent a potential target for modulation of the local immune response in patients with AIED/autoinflammatory diseases. In this review, we describe the relationship between cochlear macrophages and the pathophysiology of AIED/autoinflammatory disease.
Collapse
Affiliation(s)
- Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Otolaryngology-Head and Neck Surgery, Tazuke Kofukai Medical Research Institute Kitano Hospital, Osaka, Japan
- *Correspondence: Toru Miwa
| | - Takayuki Okano
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
35
|
Seicol BJ, Lin S, Xie R. Age-Related Hearing Loss Is Accompanied by Chronic Inflammation in the Cochlea and the Cochlear Nucleus. Front Aging Neurosci 2022; 14:846804. [PMID: 35418849 PMCID: PMC8995794 DOI: 10.3389/fnagi.2022.846804] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/07/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related hearing loss (ARHL) is a major hearing impairment characterized by pathological changes in both the peripheral and central auditory systems. Low-grade inflammation was observed in the cochlea of deceased human subjects with ARHL and animal models of early onset ARHL, which suggests that inflammation contributes to the development of ARHL. However, it remains elusive how chronic inflammation progresses during normal aging in the cochlea, and especially the accompanying changes of neuroinflammation in the central auditory system. To address this, we investigated chronic inflammation in both the cochlea and the cochlear nucleus (CN) of CBA/CaJ mice, an inbred mouse strain that undergoes normal aging and develops human, like-late-onset ARHL. Using immunohistochemistry, confocal microscopy, and quantitative image processing, we measured the accumulation and activation of macrophages in the cochlea and microglia in the CN using their shared markers: ionized calcium binding adaptor molecule 1 (Iba1) and CD68-a marker of phagocytic activity. We found progressive increases in the area covered by Iba1-labeled macrophages and enhanced CD68 staining in the osseous spiral lamina of the cochlea that correlated with elevated ABR threshold across the lifespan. During the process, we further identified significant increases in microglial activation and C1q deposition in the CN, indicating increased neuroinflammation and complement activation in the central auditory system. Our study suggests that during normal aging, chronic inflammation occurs in both the peripheral and the central auditory system, which may contribute in coordination to the development of ARHL.
Collapse
Affiliation(s)
- Benjamin J. Seicol
- Department of Otolaryngology—Head and Neck Surgery, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Shengyin Lin
- Department of Otolaryngology—Head and Neck Surgery, The Ohio State University, Columbus, OH, United States
| | - Ruili Xie
- Department of Otolaryngology—Head and Neck Surgery, The Ohio State University, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
36
|
Shin SH, Bae SH, Yoo JE, Jung J, Choi JY. Inflammatory monocytes infiltrate the spiral ligament and migrate to the basilar membrane after noise exposure. Clin Exp Otorhinolaryngol 2022; 15:153-159. [PMID: 35255664 PMCID: PMC9149233 DOI: 10.21053/ceo.2021.00857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/06/2021] [Indexed: 11/22/2022] Open
Abstract
Objectives Noise exposure leads to an increase in the macrophage population. This increment is thought to be caused by the transformation of infiltrated monocytes into macrophages rather than by proliferation of the cochlear resident macrophages. However, studies on infiltrated monocytes in the cochlea are scarce. Thus, we aimed to investigate the infiltration of monocytes and their transformation into macrophages after noise exposure. Methods In wild-type and CX3CR1+/GFP C57/B6 mice, inflammatory monocytes were identified by immunofluorescence of mouse cochlear cells. The findings were confirmed and quantitated by flow cytometry. Results One day after noise exposure, monocytes were identified in the spiral ligament. Flow cytometric analysis confirmed that the monocyte population peaked on post-noise exposure day 1 and decreased thereafter. On day 3 after noise exposure, amoeboid-type macrophages increased in the crista basilaris, and on day 5, they spread to the basilar membrane. Conclusion Infiltrated monocytes were successfully observed 1 day after noise exposure, preceding the increase in the macrophage population. This finding supports the proposal that infiltrated monocytes transform into macrophages.
Collapse
|
37
|
Noble K, Brown L, Elvis P, Lang H. Cochlear Immune Response in Presbyacusis: a Focus on Dysregulation of Macrophage Activity. J Assoc Res Otolaryngol 2022; 23:1-16. [PMID: 34642854 PMCID: PMC8782976 DOI: 10.1007/s10162-021-00819-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/25/2021] [Indexed: 02/03/2023] Open
Abstract
Age-related hearing loss, or presbyacusis, is a prominent chronic degenerative disorder that affects many older people. Based on presbyacusis pathology, the degeneration occurs in both sensory and non-sensory cells, along with changes in the cochlear microenvironment. The progression of age-related neurodegenerative diseases is associated with an altered microenvironment that reflects chronic inflammatory signaling. Under these conditions, resident and recruited immune cells, such as microglia/macrophages, have aberrant activity that contributes to chronic neuroinflammation and neural cell degeneration. Recently, researchers identified and characterized macrophages in human cochleae (including those from older donors). Along with the age-related changes in cochlear macrophages in animal models, these studies revealed that macrophages, an underappreciated group of immune cells, may play a critical role in maintaining the functional integrity of the cochlea. Although several studies deciphered the molecular mechanisms that regulate microglia/macrophage dysfunction in multiple neurodegenerative diseases, limited studies have assessed the mechanisms underlying macrophage dysfunction in aged cochleae. In this review, we highlight the age-related changes in cochlear macrophage activities in mouse and human temporal bones. We focus on how complement dysregulation and the nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 inflammasome could affect macrophage activity in the aged peripheral auditory system. By understanding the molecular mechanisms that underlie these regulatory systems, we may uncover therapeutic strategies to treat presbyacusis and other forms of sensorineural hearing loss.
Collapse
Affiliation(s)
- Kenyaria Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
- Akouos, Inc, Boston, MA, 02210, USA
| | - LaShardai Brown
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Biology, Winthrop University, Rock Hill, SD, 29733, USA
| | - Phillip Elvis
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
38
|
Kociszewska D, Chan J, Thorne PR, Vlajkovic SM. The Link between Gut Dysbiosis Caused by a High-Fat Diet and Hearing Loss. Int J Mol Sci 2021; 22:13177. [PMID: 34947974 PMCID: PMC8708400 DOI: 10.3390/ijms222413177] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
This review aims to provide a conceptual and theoretical overview of the association between gut dysbiosis and hearing loss. Hearing loss is a global health issue; the World Health Organisation (WHO) estimates that 2.5 billion people will be living with some degree of hearing loss by 2050. The aetiology of sensorineural hearing loss (SNHL) is complex and multifactorial, arising from congenital and acquired causes. Recent evidence suggests that impaired gut health may also be a risk factor for SNHL. Inflammatory bowel disease (IBD), type 2 diabetes, diet-induced obesity (DIO), and high-fat diet (HFD) all show links to hearing loss. Previous studies have shown that a HFD can result in microangiopathy, impaired insulin signalling, and oxidative stress in the inner ear. A HFD can also induce pathological shifts in gut microbiota and affect intestinal barrier (IB) integrity, leading to a leaky gut. A leaky gut can result in chronic systemic inflammation, which may affect extraintestinal organs. Here, we postulate that changes in gut microbiota resulting from a chronic HFD and DIO may cause a systemic inflammatory response that can compromise the permeability of the blood-labyrinth barrier (BLB) in the inner ear, thus inducing cochlear inflammation and hearing deficits.
Collapse
Affiliation(s)
| | | | | | - Srdjan M. Vlajkovic
- Department of Physiology and The Eisdell Moore Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag, Auckland 1142, New Zealand; (D.K.); (J.C.); (P.R.T.)
| |
Collapse
|
39
|
Yu C, Gao HM, Wan G. Macrophages Are Dispensable for Postnatal Pruning of the Cochlear Ribbon Synapses. Front Cell Neurosci 2021; 15:736120. [PMID: 34744631 PMCID: PMC8566810 DOI: 10.3389/fncel.2021.736120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/05/2021] [Indexed: 11/15/2022] Open
Abstract
Ribbon synapses of cochlear hair cells undergo pruning and maturation before the hearing onset. In the central nervous system (CNS), synaptic pruning was mediated by microglia, the brain-resident macrophages, via activation of the complement system. Whether a similar mechanism regulates ribbon synapse pruning is currently unknown. In this study, we report that the densities of cochlear macrophages surrounding hair cells were highest at around P8, corresponding well to the completion of ribbon synaptic pruning by P8–P9. Surprisingly, using multiple genetic mouse models, we found that postnatal pruning of the ribbon synapses and auditory functions were unaffected by the knockout of the complement receptor 3 (CR3) or by ablations of macrophages expressing either LysM or Cx3cr1. Our results suggest that unlike microglia in the CNS, macrophages in the cochlea do not mediate pruning of the cochlear ribbon synapses.
Collapse
Affiliation(s)
- Chaorong Yu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Hui-Ming Gao
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.,Institute for Brain Sciences, Nanjing University, Nanjing, China.,Research Institute of Otolaryngology, Nanjing, China
| |
Collapse
|
40
|
Bae SH, Yoo JE, Hong JW, Park HR, Noh B, Kim H, Kang M, Hyun YM, Gee HY, Choi JY, Jung J. LCCL peptide cleavage after noise exposure exacerbates hearing loss and is associated with the monocyte infiltration in the cochlea. Hear Res 2021; 412:108378. [PMID: 34735822 DOI: 10.1016/j.heares.2021.108378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/30/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022]
Abstract
Acoustic trauma induces an inflammatory response in the cochlea, resulting in debilitating hearing function. Clinically, amelioration of inflammation substantially prevents noise-induced hearing loss. The Limulus factor C, Cochlin, and Lgl1 (LCCL) peptide plays an important role in innate immunity during bacteria-induced inflammation in the cochlea. We aimed to investigate the LCCL-induced innate immune response to noise exposure and its impact on hearing function. METHODS We used Coch (encodes cochlin harboring LCCL peptide) knock-out and p.G88E knock-in mice to compare the immune responses before and after noise exposure. We explored their hearing function and hair cell degeneration. Moreover, we investigated distinct characteristics of immune responses upon noise exposure using flow cytometry and RNA sequencing. RESULTS One day after noise exposure, the LCCL peptide cleaved from cochlin increased over time in the perilymph space. Both Coch-/- and CochG88E/G88E mutant mice revealed more preserved hearing following acoustic trauma compared to wild-type mice. The outer hair cells were more preserved in Coch-/- than in wild-type mice upon noise exposure. The RNA sequencing data demonstrated significantly upregulated cell migration gene ontology in wild-type mice than in Coch-/- mice following noise exposure, indicating that the infiltration of immune cells was dependent on cochlin. Notably, infiltrated monocytes from blood (C11b+/Ly6G-/Ly6C+) were remarkably higher in wild-type mice than in Coch-/- mice at 1 day after noise exposure. CONCLUSIONS Noise-induced hearing loss was attributed to over-stimulated cochlin, and led to the cleavage and secretion of LCCL peptide in the cochlea. The LCCL peptide recruited more monocytes from the blood vessels upon noise stimulation, thus highlighting a novel therapeutic target for noise-induced hearing loss.
Collapse
Key Words
- AIED, Autoimmune Inner Ear Disease
- Acoustic trauma, animal study, inflammatory response, LCCL peptide, noise-induced hearing loss, Abbreviations, ABR, auditory brainstem response
- CCL2, C-C motif chemokine ligand 2
- DEGs, differentially expressed genes
- EDTA, ethylenediaminetetraacetic acid
- IL-1β, interleukin-1β
- IL-6, interleukin-6
- KO, knock-out
- LCCL, Limulus factor C, Cochlin, and Lgl1
- NIHL, noise-induced hearing loss
- RNA-seq, RNA sequencing
- RT-PCR, real-time polymerase chain reaction
- SDS, sodium dodecyl sulfate
- SPL, sound pressure level
- Tnf-α, tumor necrosis factor alpha
Collapse
Affiliation(s)
- Seong Hoon Bae
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jee Eun Yoo
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji Won Hong
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Haeng Ran Park
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byunghwa Noh
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyoyeol Kim
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minjin Kang
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Min Hyun
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Young Choi
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jinsei Jung
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
41
|
Longenecker RJ, Gu R, Homan J, Kil J. Development of Tinnitus and Hyperacusis in a Mouse Model of Tobramycin Cochleotoxicity. Front Mol Neurosci 2021; 14:715952. [PMID: 34539342 PMCID: PMC8440845 DOI: 10.3389/fnmol.2021.715952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Aminoglycosides (AG) antibiotics are a common treatment for recurrent infections in cystic fibrosis (CF) patients. AGs are highly ototoxic, resulting in a range of auditory dysfunctions. It was recently shown that the acoustic startle reflex (ASR) can assess behavioral evidence of hyperacusis and tinnitus in an amikacin cochleotoxicity mouse model. The goal of this study was to establish if tobramycin treatment led to similar changes in ASR behavior and to establish whether ebselen can prevent the development of these maladaptive neuroplastic symptoms. CBA/Ca mice were divided into three groups: Group 1 served as a control and did not receive tobramycin or ebselen, Group 2 received tobramycin (200 mg/kg/s.c.) and the vehicle (DMSO/saline/i.p.) daily for 14 continuous days, and Group 3 received the same dose/schedule of tobramycin as Group 2 and ebselen at (20 mg/kg/i.p.). Auditory brainstem response (ABR) and ASR hearing assessments were collected at baseline and 2, 6, 10, 14, and 18 weeks from the start of treatment. ASR tests included input/output (I/O) functions which assess general hearing and hyperacusis, and Gap-induced prepulse inhibition of the acoustic startle (GPIAS) to assess tinnitus. At 18 weeks, histologic analysis showed predominantly normal appearing hair cells and spiral ganglion neuron (SGN) synapses. Following 14 days of tobramycin injections, 16 kHz thresholds increased from baseline and fluctuated over the 18-week recovery period. I/O functions revealed exaggerated startle response magnitudes in 50% of mice over the same period. Gap detection deficits, representing behavioral evidence of tinnitus, were observed in a smaller subset (36%) of animals. Interestingly, increases in ABR wave III/wave I amplitude ratios were observed. These tobramycin data corroborate previous findings that AGs can result in hearing dysfunctions. We show that a 14-day course of tobramycin treatment can cause similar levels of hearing loss and tinnitus, when compared to a 14-day course of amikacin, but less hyperacusis. Evidence suggests that tinnitus and hyperacusis might be common side effects of AG antibiotics.
Collapse
Affiliation(s)
| | - Rende Gu
- Sound Pharmaceuticals Inc., Seattle, WA, United States
| | | | - Jonathan Kil
- Sound Pharmaceuticals Inc., Seattle, WA, United States
| |
Collapse
|
42
|
Zhang C, Frye MD, Riordan J, Sharma A, Manohar S, Salvi R, Sun W, Hu BH. Loss of CX3CR1 augments neutrophil infiltration into cochlear tissues after acoustic overstimulation. J Neurosci Res 2021; 99:2999-3020. [PMID: 34520571 DOI: 10.1002/jnr.24925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 06/16/2021] [Accepted: 07/02/2021] [Indexed: 12/20/2022]
Abstract
The cochlea, the sensory organ for hearing, has a protected immune environment, segregated from the systemic immune system by the blood-labyrinth barrier. Previous studies have revealed that acute acoustic injury causes the infiltration of circulating leukocytes into the cochlea. However, the molecular mechanisms controlling immune cell trafficking are poorly understood. Here, we report the role of CX3CR1 in regulating the entry of neutrophils into the cochlea after acoustic trauma. We employed B6.129P-Cx3cr1tm1Litt /J mice, a transgenic strain that lacks the gene, Cx3cr1, for coding the fractalkine receptor. Our results demonstrate that lack of Cx3cr1 results in the augmentation of neutrophil infiltration into cochlear tissues after exposure to an intense noise of 120 dB SPL for 1 hr. Neutrophil distribution in the cochlea is site specific, and the infiltration level is positively associated with noise intensity. Moreover, neutrophils are short lived and macrophage phagocytosis plays a role in neutrophil clearance, consistent with typical neutrophil dynamics in inflamed non-cochlear tissues. Importantly, our study reveals the potentiation of noise-induced hearing loss and sensory cell loss in Cx3cr1-/- mice. In wild-type control mice (Cx3cr1+/+ ) exposed to the same noise, we also found neutrophils. However, neutrophils were present primarily inside the microvessels of the cochlea, with only a few in the cochlear tissues. Collectively, our data implicate CX3CR1-mediated signaling in controlling neutrophil migration from the circulation into cochlear tissues and provide a better understanding of the impacts of neutrophils on cochlear responses to acoustic injury.
Collapse
Affiliation(s)
- Celia Zhang
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA.,Department of Audiology, School of Health Sciences, University of the Pacific, San Francisco, CA, USA
| | - Mitchell D Frye
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA
| | - Juliana Riordan
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA
| | - Ashu Sharma
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, The State University of New York, Buffalo, NY, USA
| | | | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA
| | - Wei Sun
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA
| | - Bo Hua Hu
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
43
|
Stothert AR, Kaur T. Innate Immunity to Spiral Ganglion Neuron Loss: A Neuroprotective Role of Fractalkine Signaling in Injured Cochlea. Front Cell Neurosci 2021; 15:694292. [PMID: 34408629 PMCID: PMC8365835 DOI: 10.3389/fncel.2021.694292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Immune system dysregulation is increasingly being attributed to the development of a multitude of neurodegenerative diseases. This, in large part, is due to the delicate relationship that exists between neurons in the central nervous system (CNS) and peripheral nervous system (PNS), and the resident immune cells that aid in homeostasis and immune surveillance within a tissue. Classically, the inner ear was thought to be immune privileged due to the presence of a blood-labyrinth barrier. However, it is now well-established that both vestibular and auditory end organs in the inner ear contain a resident (local) population of macrophages which are the phagocytic cells of the innate-immune system. Upon cochlear sterile injury or infection, there is robust activation of these resident macrophages and a predominant increase in the numbers of macrophages as well as other types of leukocytes. Despite this, the source, nature, fate, and functions of these immune cells during cochlear physiology and pathology remains unclear. Migration of local macrophages and infiltration of bone-marrow-derived peripheral blood macrophages into the damaged cochlea occur through various signaling cascades, mediated by the release of specific chemical signals from damaged sensory and non-sensory cells of the cochlea. One such signaling pathway is CX3CL1-CX3CR1, or fractalkine (FKN) signaling, a direct line of communication between macrophages and sensory inner hair cells (IHCs) and spiral ganglion neurons (SGNs) of the cochlea. Despite the known importance of this neuron-immune axis in CNS function and pathology, until recently it was not clear whether this signaling axis played a role in macrophage chemotaxis and SGN survival following cochlear injury. In this review, we will explore the importance of innate immunity in neurodegenerative disease development, specifically focusing on the regulation of the CX3CL1-CX3CR1 axis, and present evidence for a role of FKN signaling in cochlear neuroprotection.
Collapse
Affiliation(s)
- Andrew Rigel Stothert
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Tejbeer Kaur
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| |
Collapse
|
44
|
Luo SD, Chiu TJ, Chen WC, Wang CS. Sex Differences in Otolaryngology: Focus on the Emerging Role of Estrogens in Inflammatory and Pro-Resolving Responses. Int J Mol Sci 2021; 22:ijms22168768. [PMID: 34445474 PMCID: PMC8395901 DOI: 10.3390/ijms22168768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/02/2022] Open
Abstract
Otolaryngology (also known as ear, nose, and throat (ENT)) diseases can be significantly affected by the level of sex hormones, which indicates that sex differences affect the manifestation, pathophysiology, and outcomes of these diseases. Recently, increasing evidence has suggested that proinflammatory responses in ENT diseases are linked to the level of sex hormones. The sex hormone receptors are present on a wide variety of immune cells; therefore, it is evident that they play crucial roles in regulating the immune system and hence affect the disease progression of ENT diseases. In this review, we focus on how sex hormones, particularly estrogens, regulate ENT diseases, such as chronic rhinosinusitis, vocal fold polyps, thyroid cancer, Sjögren’s syndrome, and head and neck cancers, from the perspectives of inflammatory responses and specialized proresolving mediator-driven resolution. This paper aims to clarify why considering sex differences in the field of basic and medical research on otolaryngology is a key component to successful therapy for both males and females in the future.
Collapse
Affiliation(s)
- Sheng-Dean Luo
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (S.-D.L.); (W.-C.C.)
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Tai-Jan Chiu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Hematology-Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Wei-Chih Chen
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan; (S.-D.L.); (W.-C.C.)
| | - Ching-Shuen Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-227-361-661 (ext. 5166)
| |
Collapse
|
45
|
Díaz I, Colmenárez-Raga AC, Pérez-González D, Carmona VG, Plaza Lopez I, Merchán MA. Effects of Multisession Anodal Electrical Stimulation of the Auditory Cortex on Temporary Noise-Induced Hearing Loss in the Rat. Front Neurosci 2021; 15:642047. [PMID: 34393701 PMCID: PMC8358804 DOI: 10.3389/fnins.2021.642047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/30/2021] [Indexed: 11/13/2022] Open
Abstract
The protective effect of the efferent system against acoustic trauma (AT) has been shown by several experimental approaches, including damage to one ear, sectioning of the olivocochlear bundle (OCB) in the floor of the IV ventricle, and knock-in mice overexpressing outer hair cell (OHC) cholinergic receptors, among others. Such effects have been related to changes in the regulation of the cholinergic efferent system and in cochlear amplification, which ultimately reverse upon protective hearing suppression. In addition to well-known circuits of the brainstem, the descending corticofugal pathway also regulates efferent neurons of the olivary complex. In this study, we applied our recently developed experimental paradigm of multiple sessions of electrical stimulation (ES) to activate the efferent system in combination with noise overstimulation. ABR thresholds increased 1 and 2 days after AT (8-16 kHz bandpass noise at 107 dB for 90 min) recovering at AT + 14 days. However, after multiple sessions of epidural anodal stimulation, no changes in thresholds were observed following AT. Although an inflammatory response was also observed 1 day after AT in both groups, the counts of reactive macrophages in both experimental conditions suggest decreased inflammation in the epidural stimulation group. Quantitative immunocytochemistry for choline acetyltransferase (ChAT) showed a significant decrease in the size and optical density of the efferent terminals 1 day after AT and a rebound at 14 days, suggesting depletion of the terminals followed by a long-term compensatory response. Such a synthesis recovery was significantly higher upon cortical stimulation. No significant correlation was found between ChAT optical density and size of the buttons in sham controls (SC) and ES/AT + 1day animals; however, significant negative correlations were shown in all other experimental conditions. Therefore, our comparative analysis suggests that cochleotopic cholinergic neurotransmission is also better preserved after multisession epidural stimulation.
Collapse
Affiliation(s)
| | | | | | | | | | - Miguel A. Merchán
- Instituto de Neurociencias de Castilla y León (INCYL), Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
46
|
Li M, Zhang Y, Qiu S, Zhuang W, Jiang W, Wang C, Zhang S, Zhou Z, Sun T, Ke Z, Guo W, Qiao Y, Shi X. Oridonin ameliorates noise-induced hearing loss by blocking NLRP3 - NEK7 mediated inflammasome activation. Int Immunopharmacol 2021; 95:107576. [PMID: 33770730 DOI: 10.1016/j.intimp.2021.107576] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/26/2022]
Abstract
Inflammation is involved in noise-induced hearing loss (NIHL), but the mechanism is still unknown. The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, which triggers the inflammatory cascade, has been implicated in several inflammatory diseases in response to oxidative stress. However, whether the NLRP3 inflammasome is a key factor for permanent NIHL is still unknown. In this study, quantitative real-time polymerase chain reaction (qPCR), western blot, and enzyme-linked immunosorbent assays (ELISAs) demonstrated that the expression levels of activated caspase-1, interleukin (IL)-1β, IL-18, and NLRP3 were significantly increased in the cochleae of mice exposed to broadband noise (120 dB) for 4 h, compared with the control group. These results indicate that the activation of inflammasomes in the cochleae of mice during the pathological process of NIHL as well as NLRP3, a sensor protein of reactive oxygen species (ROS), may be key factors for inflammasome assembly and subsequent inflammation in cochleae. Moreover, many recent studies have revealed that NEK7 is an important component and regulator of NLRP3 inflammasomes by interacting with NLRP3 directly and that these interactions can be interrupted by oridonin. Here, we further determined that treatment with oridonin could indeed interrupt the interaction between NLRP3 and NEK7 as well as inhibit the downstream inflammasome activation in mouse cochleae after noise exposure. Furthermore, we tested anakinra, another inflammatory inhibitor, and it was shown to partially alleviate the degree of hearing impairment in some frequencies in an NIHL mouse model. These discoveries suggest that inhibiting NLRP3 inflammasomes and the downstream signaling pathway may provide a new strategy for the clinical treatment of NIHL.
Collapse
Affiliation(s)
- Menghua Li
- Department of Otolaryngology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China; The Institute of Audiology and Balance Science of Xu zhou Medical University, Xuzhou 221004, China
| | - Yan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Shiwei Qiu
- The Institute of Audiology and Balance Science of Xu zhou Medical University, Xuzhou 221004, China; Department of Otolaryngology-Head & Neck Surgery, Institute of Otolaryngology of PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Wei Zhuang
- The Institute of Audiology and Balance Science of Xu zhou Medical University, Xuzhou 221004, China
| | - Wen Jiang
- The Institute of Audiology and Balance Science of Xu zhou Medical University, Xuzhou 221004, China
| | - Caiji Wang
- The Institute of Audiology and Balance Science of Xu zhou Medical University, Xuzhou 221004, China
| | - Shili Zhang
- The Institute of Audiology and Balance Science of Xu zhou Medical University, Xuzhou 221004, China
| | - Zijun Zhou
- The Institute of Audiology and Balance Science of Xu zhou Medical University, Xuzhou 221004, China
| | - Tiantian Sun
- The Institute of Audiology and Balance Science of Xu zhou Medical University, Xuzhou 221004, China
| | - Zhaoyang Ke
- Department of Otolaryngology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Weiwei Guo
- Department of Otolaryngology-Head & Neck Surgery, Institute of Otolaryngology of PLA, Chinese PLA General Hospital, Beijing 100853, China.
| | - Yuehua Qiao
- The Institute of Audiology and Balance Science of Xu zhou Medical University, Xuzhou 221004, China; Artificial Auditory Laboratory of Jiangsu Province, Xu zhou Medical University, Xuzhou 221002, China.
| | - Xi Shi
- The Institute of Audiology and Balance Science of Xu zhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
47
|
Fransson AE, Videhult Pierre P, Risling M, Laurell GFE. Inhalation of Molecular Hydrogen, a Rescue Treatment for Noise-Induced Hearing Loss. Front Cell Neurosci 2021; 15:658662. [PMID: 34140880 PMCID: PMC8205059 DOI: 10.3389/fncel.2021.658662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022] Open
Abstract
Noise exposure is the most important external factor causing acquired hearing loss in humans, and it is strongly associated with the production of reactive oxygen species (ROS) in the cochlea. Several studies reported that the administration of various compounds with antioxidant effects can treat oxidative stress-induced hearing loss. However, traditional systemic drug administration to the human inner ear is problematic and has not been successful in a clinical setting. Thus, there is an urgent need to develop rescue treatment for patients with acute acoustic injuries. Hydrogen gas has antioxidant effects, rapid distribution, and distributes systemically after inhalation.The purpose of this study was to determine the protective efficacy of a single dose of molecular hydrogen (H2) on cochlear structures. Guinea pigs were divided into six groups and sacrificed immediately after or at 1 or 2 weeks. The animals were exposed to broadband noise for 2 h directly followed by 1-h inhalation of 2% H2 or room air. Electrophysiological hearing thresholds using frequency-specific auditory brainstem response (ABR) were measured prior to noise exposure and before sacrifice. ABR thresholds were significantly lower in H2-treated animals at 2 weeks after exposure, with significant preservation of outer hair cells in the entire cochlea. Quantification of synaptophysin immunoreactivity revealed that H2 inhalation protected the cochlear inner hair cell synaptic structures containing synaptophysin. The inflammatory response was greater in the stria vascularis, showing increased Iba1 due to H2 inhalation.Repeated administration of H2 inhalation may further improve the therapeutic effect. This animal model does not reproduce conditions in humans, highlighting the need for additional real-life studies in humans.
Collapse
Affiliation(s)
- Anette Elisabeth Fransson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.,Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Pernilla Videhult Pierre
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
48
|
Ding D, Jiang H, Manohar S, Liu X, Li L, Chen GD, Salvi R. Spatiotemporal Developmental Upregulation of Prestin Correlates With the Severity and Location of Cyclodextrin-Induced Outer Hair Cell Loss and Hearing Loss. Front Cell Dev Biol 2021; 9:643709. [PMID: 34109172 PMCID: PMC8181405 DOI: 10.3389/fcell.2021.643709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
2-Hyroxypropyl-beta-cyclodextrin (HPβCD) is being used to treat Niemann-Pick C1, a fatal neurodegenerative disease caused by abnormal cholesterol metabolism. HPβCD slows disease progression, but unfortunately causes severe, rapid onset hearing loss by destroying the outer hair cells (OHC). HPβCD-induced damage is believed to be related to the expression of prestin in OHCs. Because prestin is postnatally upregulated from the cochlear base toward the apex, we hypothesized that HPβCD ototoxicity would spread from the high-frequency base toward the low-frequency apex of the cochlea. Consistent with this hypothesis, cochlear hearing impairments and OHC loss rapidly spread from the high-frequency base toward the low-frequency apex of the cochlea when HPβCD administration shifted from postnatal day 3 (P3) to P28. HPβCD-induced histopathologies were initially confined to the OHCs, but between 4- and 6-weeks post-treatment, there was an unexpected, rapid and massive expansion of the lesion to include most inner hair cells (IHC), pillar cells (PC), peripheral auditory nerve fibers, and spiral ganglion neurons at location where OHCs were missing. The magnitude and spatial extent of HPβCD-induced OHC death was tightly correlated with the postnatal day when HPβCD was administered which coincided with the spatiotemporal upregulation of prestin in OHCs. A second, massive wave of degeneration involving IHCs, PC, auditory nerve fibers and spiral ganglion neurons abruptly emerged 4–6 weeks post-HPβCD treatment. This secondary wave of degeneration combined with the initial OHC loss results in a profound, irreversible hearing loss.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Xiaopeng Liu
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Li Li
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Guang-Di Chen
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
49
|
Peters CW, Maguire CA, Hanlon KS. Delivering AAV to the Central Nervous and Sensory Systems. Trends Pharmacol Sci 2021; 42:461-474. [PMID: 33863599 DOI: 10.1016/j.tips.2021.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
As gene therapy enters mainstream medicine, it is more important than ever to have a grasp of exactly how to leverage it for maximum benefit. The development of new targeting strategies and tools makes treating patients with genetic diseases possible. Many Mendelian disorders are amenable to gene replacement or correction. These often affect post-mitotic tissues, meaning that a single stably expressing therapy can be applied. Recent years have seen the development of a large number of novel viral vectors for delivering specific therapies. These new vectors - predominately recombinant adeno-associated virus (AAV) variants - target nervous tissues with differing efficiencies. This review gives an overview of current gene therapies in the brain, ear, and eye, and describes the optimal approaches, depending on cell type and transgene. Overall, this work aims to serve as a primer for gene therapy in the central nervous and sensory systems.
Collapse
Affiliation(s)
- Cole W Peters
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Casey A Maguire
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Killian S Hanlon
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| |
Collapse
|
50
|
Gao J, Yi H. Molecular mechanisms and roles of inflammatory responses on low-frequency residual hearing after cochlear implantation. J Otol 2021; 17:54-58. [PMID: 35140760 PMCID: PMC8811416 DOI: 10.1016/j.joto.2021.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 01/28/2023] Open
Abstract
Preservation of low-frequency residual hearing is very important for combined electro-acoustic stimulation after cochlear implantation. However, in clinical practice, loss of low-frequency residual hearing often occurs after cochlear implantation and its mechanisms remain unclear. Factors affecting low-frequency residual hearing after cochlear implantation are one of the hot spots in current research. Inflammation induced by injury associated with cochlear implantation is deemed to be significant, as it may give rise to low-frequency residual hearing loss by interfering with the blood labyrinth barrier and neural synapses. Pathological changes along the pathway for low-frequency auditory signals transmission may include latent factors such as damage to neuroepithelial structures, synapses, stria vascularis and other ultrastructures. In this review, current research on mechanisms of low-frequency residual hearing loss after cochlear implantation and possible roles of inflammatory responses are summarized.
Collapse
|