1
|
Tonelli F, Iannello L, Gustincich S, Di Garbo A, Pandolfini L, Cremisi F. Dual inhibition of MAPK/ERK and BMP signaling induces entorhinal-like identity in mouse ESC-derived pallial progenitors. Stem Cell Reports 2025; 20:102387. [PMID: 39793576 DOI: 10.1016/j.stemcr.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/13/2025] Open
Abstract
The mechanisms that determine distinct embryonic pallial identities remain elusive. The central role of Wnt signaling in directing dorsal telencephalic progenitors to the isocortex or hippocampus has been elucidated. Here, we show that timely inhibition of MAPK/ERK and BMP signaling in neuralized mouse embryonic stem cells (ESCs) specifies a cell identity characteristic of the allocortex. Comparison of the global gene expression profiles of neural cells generated by MAPK/ERK and BMP inhibition (MiBi cells) with those of cells from early postnatal encephalic regions reveals a pallial identity of MiBi cells, distinct from isocortical and hippocampal cells. MiBi cells display a unique pattern of gene expression and connectivity, and share molecular and electrophysiological features with the entorhinal cortex. Our results suggest that early changes in cell signaling can specify distinct pallial fates that are maintained by specific neuronal lineages independent of subsequent embryonic morphogenetic interactions and can determine their functional connectivity.
Collapse
Affiliation(s)
- Fabrizio Tonelli
- Laboratorio di Biologia, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Ludovico Iannello
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 56124 Pisa, Italy
| | - Stefano Gustincich
- Center for Human Technologies, Central RNA Lab, Istituto Italiano di Tecnologia, 16152 Genova, Italy
| | - Angelo Di Garbo
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 56124 Pisa, Italy; Dipartimento di Fisica, Università di Pisa, 56127 Pisa, Italy
| | - Luca Pandolfini
- Center for Human Technologies, Central RNA Lab, Istituto Italiano di Tecnologia, 16152 Genova, Italy.
| | - Federico Cremisi
- Laboratorio di Biologia, Scuola Normale Superiore, 56126 Pisa, Italy; Istituto di Biofisica, Consiglio Nazionale delle Ricerche, 56124 Pisa, Italy.
| |
Collapse
|
2
|
Lakhera S, Herbert E, Gjorgjieva J. Modeling the Emergence of Circuit Organization and Function during Development. Cold Spring Harb Perspect Biol 2025; 17:a041511. [PMID: 38858072 DOI: 10.1101/cshperspect.a041511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Developing neural circuits show unique patterns of spontaneous activity and structured network connectivity shaped by diverse activity-dependent plasticity mechanisms. Based on extensive experimental work characterizing patterns of spontaneous activity in different brain regions over development, theoretical and computational models have played an important role in delineating the generation and function of individual features of spontaneous activity and their role in the plasticity-driven formation of circuit connectivity. Here, we review recent modeling efforts that explore how the developing cortex and hippocampus generate spontaneous activity, focusing on specific connectivity profiles and the gradual strengthening of inhibition as the key drivers behind the observed developmental changes in spontaneous activity. We then discuss computational models that mechanistically explore how different plasticity mechanisms use this spontaneous activity to instruct the formation and refinement of circuit connectivity, from the formation of single neuron receptive fields to sensory feature maps and recurrent architectures. We end by highlighting several open challenges regarding the functional implications of the discussed circuit changes, wherein models could provide the missing step linking immature developmental and mature adult information processing capabilities.
Collapse
Affiliation(s)
- Shreya Lakhera
- School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Elizabeth Herbert
- School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Julijana Gjorgjieva
- School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
3
|
Cellot G, Di Mauro G, Ricci C, Tiribelli C, Bellarosa C, Ballerini L. Bilirubin Triggers Calcium Elevations and Dysregulates Giant Depolarizing Potentials During Rat Hippocampus Maturation. Cells 2025; 14:172. [PMID: 39936964 DOI: 10.3390/cells14030172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 01/22/2025] [Indexed: 02/13/2025] Open
Abstract
Neonatal hyperbilirubinemia may result in long-lasting motor, auditory and learning impairments. The mechanisms responsible for the localization of unconjugated bilirubin (UCB) to specific brain areas as well as those involved in potentially permanent central nervous system (CNS) dysfunctions are far from being clear. One area of investigation includes exploring how hyperbilirubinemia determines neuronal alterations predisposing to neurodevelopmental disorders. We focused on the hippocampus and pyramidal cell dysregulation of calcium homeostasis and synaptic activity, with a particular focus on early forms of correlated network activity, i.e., giant depolarizing potentials (GDPs), crucially involved in shaping mature synaptic networks. We performed live calcium imaging and patch clamp recordings from acute hippocampal slices isolated from wild-type rats exposed to exogenous high bilirubin concentration. We then explored the impact of endogenous bilirubin accumulation in hippocampal slices isolated from a genetic model of hyperbilirubinemia, i.e., Gunn rats. Our data show in both models an age-dependent dysregulation of calcium dynamics accompanied by severe alterations in GDPs, which were strongly reduced in hippocampal slices of hyperbilirubinemic rats, where the expression of GABAergic neurotransmission markers was also altered. We propose that hyperbilirubinemia damages neurons and affects the refinement of GABAergic synaptic circuitry during a critical period of hippocampal development.
Collapse
Affiliation(s)
- Giada Cellot
- International School for Advanced Studies (SISSA), Neuroscience Area, Via Bonomea, 265, 34136 Trieste, Italy
| | - Giuseppe Di Mauro
- International School for Advanced Studies (SISSA), Neuroscience Area, Via Bonomea, 265, 34136 Trieste, Italy
| | - Chiara Ricci
- International School for Advanced Studies (SISSA), Neuroscience Area, Via Bonomea, 265, 34136 Trieste, Italy
| | - Claudio Tiribelli
- Fondazione Italiana Fegato ONLUS-Italian Liver Foundation, Bldg Q-AREA Science Park Basovizza, SS14 Km 163.5, 34149 Trieste, Italy
| | - Cristina Bellarosa
- Fondazione Italiana Fegato ONLUS-Italian Liver Foundation, Bldg Q-AREA Science Park Basovizza, SS14 Km 163.5, 34149 Trieste, Italy
| | - Laura Ballerini
- International School for Advanced Studies (SISSA), Neuroscience Area, Via Bonomea, 265, 34136 Trieste, Italy
| |
Collapse
|
4
|
Hanssen KS, Winter-Hjelm N, Niethammer SN, Kobro-Flatmoen A, Witter MP, Sandvig A, Sandvig I. Reverse engineering of feedforward cortical-Hippocampal microcircuits for modelling neural network function and dysfunction. Sci Rep 2024; 14:26021. [PMID: 39472479 PMCID: PMC11522409 DOI: 10.1038/s41598-024-77157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
Engineered biological neural networks are indispensable models for investigation of neural function and dysfunction from the subcellular to the network level. Notably, advanced neuroengineering approaches are of significant interest for their potential to replicate the topological and functional organization of brain networks. In this study, we reverse engineered feedforward neural networks of primary cortical and hippocampal neurons, using a custom-designed multinodal microfluidic device with Tesla valve inspired microtunnels. By interfacing this device with nanoporous microelectrodes, we show that the reverse engineered multinodal neural networks exhibit capacity for both segregated and integrated functional activity, mimicking brain network dynamics. To advocate the broader applicability of our model system, we induced localized perturbations with amyloid beta to study the impact of pathology on network functionality. Additionally, we demonstrate long-term culturing of subregion- and layer specific neurons extracted from the entorhinal cortex and hippocampus of adult Alzheimer's-model mice and rats. Our results thus highlight the potential of our approach for reverse engineering of anatomically relevant multinodal neural networks to study dynamic structure-function relationships in both healthy and pathological conditions.
Collapse
Affiliation(s)
- Katrine Sjaastad Hanssen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Nicolai Winter-Hjelm
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Salome Nora Niethammer
- Division of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Asgeir Kobro-Flatmoen
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- K.G. Jebsen Centre for Alzheimer's Disease, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Centre for Neural Computation, Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- K.G. Jebsen Centre for Alzheimer's Disease, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Axel Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St Olav's University Hospital, Trondheim, Norway
| | - Ioanna Sandvig
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| |
Collapse
|
5
|
Shipkov D, Nasretdinov A, Khazipov R, Valeeva G. Synchronous excitation in the superficial and deep layers of the medial entorhinal cortex precedes early sharp waves in the neonatal rat hippocampus. Front Cell Neurosci 2024; 18:1403073. [PMID: 38737704 PMCID: PMC11082381 DOI: 10.3389/fncel.2024.1403073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Early Sharp Waves (eSPWs) are the earliest pattern of network activity in the developing hippocampus of neonatal rodents. eSPWs were originally considered to be an immature prototype of adult SPWs, which are spontaneous top-down hippocampal events that are self-generated in the hippocampal circuitry. However, recent studies have shifted this paradigm to a bottom-up model of eSPW genesis, in which eSPWs are primarily driven by the inputs from the layers 2/3 of the medial entorhinal cortex (MEC). A hallmark of the adult SPWs is the relay of information from the CA1 hippocampus to target structures, including deep layers of the EC. Whether and how deep layers of the MEC are activated during eSPWs in the neonates remains elusive. In this study, we investigated activity in layer 5 of the MEC of neonatal rat pups during eSPWs using silicone probe recordings from the MEC and CA1 hippocampus. We found that neurons in deep and superficial layers of the MEC fire synchronously during MEC sharp potentials, and that neuronal firing in both superficial and deep layers of the MEC precedes the activation of CA1 neurons during eSPWs. Thus, the sequence of activation of CA1 hippocampal neurons and deep EC neurons during sharp waves reverses during development, from a lead of deep EC neurons during eSPWs in neonates to a lead of CA1 neurons during adult SPWs. These findings suggest another important difference in the generative mechanisms and possible functional roles of eSPWs compared to adult SPWs.
Collapse
Affiliation(s)
- Dmitrii Shipkov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Azat Nasretdinov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Roustem Khazipov
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
- INMED - INSERM, Aix-Marseille University, Marseille, France
| | - Guzel Valeeva
- Laboratory of Neurobiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
6
|
Luu P, Tucker DM. Continuity and change in neural plasticity through embryonic morphogenesis, fetal activity-dependent synaptogenesis, and infant memory consolidation. Dev Psychobiol 2023; 65:e22439. [PMID: 38010309 DOI: 10.1002/dev.22439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/09/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023]
Abstract
There is an apparent continuity in human neural development that can be traced to venerable themes of vertebrate morphogenesis that have shaped the evolution of the reptilian telencephalon (including both primitive three-layered cortex and basal ganglia) and then the subsequent evolution of the mammalian six-layered neocortex. In this theoretical analysis, we propose that an evolutionary-developmental analysis of these general morphogenetic themes can help to explain the embryonic development of the dual divisions of the limbic system that control the dorsal and ventral networks of the human neocortex. These include the archicortical (dorsal limbic) Papez circuits regulated by the hippocampus that organize spatial, contextual memory, as well as the paleocortical (ventral limbic) circuits that organize object memory. We review evidence that these dorsal and ventral limbic divisions are controlled by the differential actions of brainstem lemnothalamic and midbrain collothalamic arousal control systems, respectively, thereby traversing the vertebrate subcortical neuraxis. These dual control systems are first seen shaping the phyletic morphogenesis of the archicortical and paleocortical foundations of the forebrain in embryogenesis. They then provide dual modes of activity-dependent synaptic organization in the active (lemnothalamic) and quiet (collothalamic) stages of fetal sleep. Finally, these regulatory systems mature to form the major systems of memory consolidation of postnatal development, including the rapid eye movement (lemnothalamic) consolidation of implicit memory and social attachment in the first year, and then-in a subsequent stage-the non-REM (collothalamic) consolidation of explicit memory that is integral to the autonomy and individuation of the second year of life.
Collapse
Affiliation(s)
- Phan Luu
- Brain Electrophysiology Laboratory Company, Eugene, Oregon, USA
- Department of Psychology, University of Oregon, Eugene, Oregon, USA
| | - Don M Tucker
- Brain Electrophysiology Laboratory Company, Eugene, Oregon, USA
- Department of Psychology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
7
|
Pompeiano M, Colonnese MT. cFOS as a biomarker of activity maturation in the hippocampal formation. Front Neurosci 2023; 17:929461. [PMID: 37521697 PMCID: PMC10374841 DOI: 10.3389/fnins.2023.929461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
We explored the potential for cFOS expression as a marker of functional development of "resting-state" waking activity in the extended network of the hippocampus and entorhinal cortex. We examined sleeping and awake mice at (P)ostnatal days 5, 9, 13, and 17 as well as in adulthood. We find that cFOS expression is state-dependent even at 5 days old, with reliable staining occurring only in the awake mice. Even during waking, cFOS expression was rare and weak at P5. The septal nuclei, entorhinal cortex layer (L)2, and anterodorsal thalamus were exceptional in that they had robust cFOS expression at P5 that was similar to or greater than in adulthood. Significant P5 expression was also observed in the dentate gyrus, entorhinal cortex L6, postsubiculum L4-6, ventral subiculum, supramammillary nucleus, and posterior hypothalamic nucleus. The expression in these regions grew stronger with age, and the expression in new regions was added progressively at P9 and P13 by which point the overall expression pattern in many regions was qualitatively similar to the adult. Six regions-CA1, dorsal subiculum, postsubiculum L2-3, reuniens nucleus, and perirhinal and postrhinal cortices-were very late developing, mostly achieving adult levels only after P17. Our findings support a number of developmental principles. First, early spontaneous activity patterns induced by muscle twitches during sleep do not induce robust cFOS expression in the extended hippocampal network. Second, the development of cFOS expression follows the progressive activation along the trisynaptic circuit, rather than birth date or cellular maturation. Third, we reveal components of the egocentric head-direction and theta-rhythm circuits as the earliest cFOS active circuits in the forebrain. Our results suggest that cFOS staining may provide a reliable and sensitive biomarker for hippocampal formation activity development, particularly in regard to the attainment of a normal waking state and synchronizing rhythms such as theta and gamma.
Collapse
Affiliation(s)
- Maria Pompeiano
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, United States
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain
| | - Matthew T. Colonnese
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, United States
| |
Collapse
|
8
|
Gao C, Cao Y, He M, Zhang X, Zhong Q, Tang L, Chen T, Zhang Z. SAG treatment ameliorates memory impairment related to sleep loss by upregulating synaptic plasticity in adolescent mice. Behav Brain Res 2023; 450:114468. [PMID: 37148913 DOI: 10.1016/j.bbr.2023.114468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
Adequate sleep during the developmental stage can promote learning and memory functions because synaptic protein synthesis at primed synapses during sleep profoundly affects neurological function. The Sonic hedgehog (Shh) signaling pathway affects neuroplasticity in the hippocampus during the development of the central nervous system. In this study, the changes in synaptic morphology and function induced by sleep deprivation and the potential therapeutic effect of a Shh agonist (SAG) on these changes were investigated in adolescent mice. Adolescent mice were subjected to sleep deprivation for 20 hrs (2pm to 10 am the next day) and were free to sleep for the remaining 4 hrs per day for 10 consecutive days. Sleep-deprived mice were injected with SAG (10mg/kg body weight, i.p.) or saline (i.p.) every day 5min before the onset of the 20h sleep deprivation period. Chronic sleep deprivation impaired recognition and spatial memory, decreased the number of dendritic spines and mEPSCs of hippocampal CA1 pyramidal neurons, decreased the postsynaptic density, and reduced Shh and glioma-associated oncogene homolog 1 (Gli1) expression. SAG significantly protected against sleep deprivation-induced memory dysfunction, increased the CA1 pyramidal neuronal dendritic spine number and mEPSC frequency, and increased Gli1 expression. In conclusion, sleep deprivation induces memory impairment in adolescent mice, and SAG treatment prevents this impairment, probably by enhancing synaptic function in the hippocampal CA1 region.
Collapse
Affiliation(s)
- Chenyi Gao
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yue Cao
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Mengying He
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xuemin Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qi Zhong
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lijuan Tang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ting Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
9
|
Robert V, Butola T, Basu J. Cortical and thalamic inputs drive distinct hippocampal microcircuits to modulate synchronized activity during development. Neuron 2023; 111:761-763. [PMID: 36924761 DOI: 10.1016/j.neuron.2023.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Synchronized activity, a hallmark of hippocampal network dynamics, appears early during development. Whether extrinsic inputs drive such activity remains unknown. In this issue of Neuron, Leprince et al.1 show that synchronized activity, while modulated by both cortical and thalamic inputs ex vivo, depends solely on cortical inputs in vivo.
Collapse
Affiliation(s)
- Vincent Robert
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Tanvi Butola
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA
| | - Jayeeta Basu
- Neuroscience Institute, New York University Langone Health, New York, NY 10016, USA; Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA; Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
10
|
Sibilska S, Mofleh R, Kocsis B. Development of network oscillations through adolescence in male and female rats. Front Cell Neurosci 2023; 17:1135154. [PMID: 37213214 PMCID: PMC10196069 DOI: 10.3389/fncel.2023.1135154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/19/2023] [Indexed: 05/23/2023] Open
Abstract
The primary aim of this research was to study the developmental trajectory of oscillatory synchronization in neural networks of normal healthy rats during adolescence, corresponding to the vulnerable age of schizophrenia prodrome in human. To monitor the development of oscillatory networks through adolescence we used a "pseudo-longitudinal" design. Recordings were performed in terminal experiments under urethane anesthesia, every day from PN32 to PN52 using rats-siblings from the same mother, to reduce individual innate differences between subjects. We found that hippocampal theta power decreased and delta power in prefrontal cortex increased through adolescence, indicating that the oscillations in the two different frequency bands follow distinct developmental trajectories to reach the characteristic oscillatory activity found in adults. Perhaps even more importantly, theta rhythm showed age-dependent stabilization toward late adolescence. Furthermore, sex differences was found in both networks, more prominent in the prefrontal cortex compared with hippocampus. Delta increase was stronger in females and theta stabilization was completed earlier in females, in postnatal days PN41-47, while in males it was only completed in late adolescence. Our finding of a protracted maturation of theta-generating networks in late adolescence is overall consistent with the findings of longitudinal studies in human adolescents, in which oscillatory networks demonstrated a similar pattern of maturation.
Collapse
|
11
|
Kleschevnikov AM. Enhanced GIRK2 channel signaling in Down syndrome: A feasible role in the development of abnormal nascent neural circuits. Front Genet 2022; 13:1006068. [PMID: 36171878 PMCID: PMC9510977 DOI: 10.3389/fgene.2022.1006068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
The most distinctive feature of Down syndrome (DS) is moderate to severe cognitive impairment. Genetic, molecular, and neuronal mechanisms of this complex DS phenotype are currently under intensive investigation. It is becoming increasingly clear that the abnormalities arise from a combination of initial changes caused by triplication of genes on human chromosome 21 (HSA21) and later compensatory adaptations affecting multiple brain systems. Consequently, relatively mild initial cognitive deficits become pronounced with age. This pattern of changes suggests that one approach to improving cognitive function in DS is to target the earliest critical changes, the prevention of which can change the ‘trajectory’ of the brain development and reduce the destructive effects of the secondary alterations. Here, we review the experimental data on the role of KCNJ6 in DS-specific brain abnormalities, focusing on a putative role of this gene in the development of abnormal neural circuits in the hippocampus of genetic mouse models of DS. It is suggested that the prevention of these early abnormalities with pharmacological or genetic means can ameliorate cognitive impairment in DS.
Collapse
|
12
|
Vazetdinova A, Valiullina-Rakhmatullina F, Rozov A, Evstifeev A, Khazipov R, Nasretdinov A. On the accuracy of cell-attached current-clamp recordings from cortical neurons. Front Mol Neurosci 2022; 15:979479. [PMID: 36034500 PMCID: PMC9405422 DOI: 10.3389/fnmol.2022.979479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-attached current-clamp (CA/CC) recordings have been proposed to measure resting membrane potential and synaptic/agonist responses in neurons without disrupting the cell membrane, thus avoiding the intracellular dialysis that occurs in conventional whole-cell recordings (WC). However, the accuracy of CA/CC recordings in neurons has not been directly assessed. Here, we used concomitant CA and WC current clamp recordings from cortical neurons in brain slices. Resting membrane potential values and slow voltage shifts showed variability and were typically attenuated during CA/CC recordings by ~10–20% relative to WC values. Fast signals were slowed down and their amplitude was greatly reduced: synaptic potentials by nearly 2-fold, and action potentials by nearly 10-fold in CA/CC mode compared to WC. The polarity of GABAergic postsynaptic responses in CA/CC mode matched the responses in WC, and depolarising GABAergic potentials were predominantly observed during CA/CC recordings of intact neonatal CA3 hippocampal pyramidal neurons. Similarly, CA/CC recordings reliably detected neuronal depolarization and excitation during network-induced giant depolarizing potentials in the neonatal CA3 hippocampus, and revealed variable changes, from depolarization to hyperpolarization, in CA1 pyramidal cells during sharp wave ripples in the adult hippocampus. Thus, CA/CC recordings are suitable for assessing membrane potential but signal distortion, probably caused by leakage via the seal contact and RC filtering should be considered.
Collapse
Affiliation(s)
| | | | - Andrei Rozov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
- Institut für Physiologie und Pathophysiologie, Heidelberg, Germany
- Federal Center of Brain Research and Neurotechnologies, Moscow, Russia
| | | | - Roustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
- INMED - INSERM, Aix-Marseille University, Marseille, France
- *Correspondence: Roustem Khazipov
| | - Azat Nasretdinov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
13
|
Hui KK, Chater TE, Goda Y, Tanaka M. How Staying Negative Is Good for the (Adult) Brain: Maintaining Chloride Homeostasis and the GABA-Shift in Neurological Disorders. Front Mol Neurosci 2022; 15:893111. [PMID: 35875665 PMCID: PMC9305173 DOI: 10.3389/fnmol.2022.893111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Excitatory-inhibitory (E-I) imbalance has been shown to contribute to the pathogenesis of a wide range of neurodevelopmental disorders including autism spectrum disorders, epilepsy, and schizophrenia. GABA neurotransmission, the principal inhibitory signal in the mature brain, is critically coupled to proper regulation of chloride homeostasis. During brain maturation, changes in the transport of chloride ions across neuronal cell membranes act to gradually change the majority of GABA signaling from excitatory to inhibitory for neuronal activation, and dysregulation of this GABA-shift likely contributes to multiple neurodevelopmental abnormalities that are associated with circuit dysfunction. Whilst traditionally viewed as a phenomenon which occurs during brain development, recent evidence suggests that this GABA-shift may also be involved in neuropsychiatric disorders due to the "dematuration" of affected neurons. In this review, we will discuss the cell signaling and regulatory mechanisms underlying the GABA-shift phenomenon in the context of the latest findings in the field, in particular the role of chloride cotransporters NKCC1 and KCC2, and furthermore how these regulatory processes are altered in neurodevelopmental and neuropsychiatric disorders. We will also explore the interactions between GABAergic interneurons and other cell types in the developing brain that may influence the GABA-shift. Finally, with a greater understanding of how the GABA-shift is altered in pathological conditions, we will briefly outline recent progress on targeting NKCC1 and KCC2 as a therapeutic strategy against neurodevelopmental and neuropsychiatric disorders associated with improper chloride homeostasis and GABA-shift abnormalities.
Collapse
Affiliation(s)
- Kelvin K. Hui
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, United States
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas E. Chater
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
| | - Yukiko Goda
- Laboratory for Synaptic Plasticity and Connectivity, RIKEN Center for Brain Science, Wako, Japan
- Synapse Biology Unit, Okinawa Institute for Science and Technology Graduate University, Onna, Japan
| | - Motomasa Tanaka
- Laboratory for Protein Conformation Diseases, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
14
|
Méndez-Salcido FA, Torres-Flores MI, Ordaz B, Peña-Ortega F. Abnormal innate and learned behavior induced by neuron-microglia miscommunication is related to CA3 reconfiguration. Glia 2022; 70:1630-1651. [PMID: 35535571 DOI: 10.1002/glia.24185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/15/2022]
Abstract
Neuron-microglia communication through the Cx3cr1-Cx3cl1 axis is essential for the development and refinement of neural circuits, which determine their function into adulthood. In the present work we set out to extend the behavioral characterization of Cx3cr1-/- mice evaluating innate behaviors and spatial navigation, both dependent on hippocampal function. Our results show that Cx3cr1-deficient mice, which show some changes in microglial and synaptic terminals morphology and density, exhibit alterations in activities of daily living and in the rapid encoding of novel spatial information that, nonetheless, improves with training. A neural substrate for these cognitive deficiencies was found in the form of synaptic dysfunction in the CA3 region of the hippocampus, with a marked impact on the mossy fiber (MF) pathway. A network analysis of the CA3 microcircuit reveals the effect of these synaptic alterations on the functional connectivity among CA3 neurons with diminished strength and topological reorganization in Cx3cr1-deficient mice. Neonatal population activity of the CA3 region in Cx3cr1-deficient mice shows a marked reorganization around the giant depolarizing potentials, the first form of network-driven activity of the hippocampus, suggesting that alterations found in adult subjects arise early on in postnatal development, a critical period of microglia-dependent neural circuit refinement. Our results show that interruption of the Cx3cr1-Cx3cl1/neuron-microglia axis leads to changes in CA3 configuration that affect innate and learned behaviors.
Collapse
Affiliation(s)
- Felipe Antonio Méndez-Salcido
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Mayra Itzel Torres-Flores
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Benito Ordaz
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| |
Collapse
|
15
|
Biba N, Becq H, Pallesi-Pocachard E, Sarno S, Granjeaud S, Montheil A, Kurz M, Villard L, Milh M, Santini PPL, Aniksztejn L. Time-limited alterations in cortical activity of a knock-in mice model of KCNQ2-related developmental and epileptic encephalopathy. J Physiol 2022; 600:2429-2460. [PMID: 35389519 DOI: 10.1113/jp282536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/10/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The electrophysiological impact of the pathogenic c.821C>T mutation of the KCNQ2 gene (p.T274M variant in Kv7.2 subunit) related to Developmental and Epileptic Encephalopathy has been analyzed both in vivo and ex-vivo in layers II/III and V of motor cortical slice from a knock-in mice model during development at neonatal, post-weaning and juvenile stages. M current density and conductance are decreased and excitability of layers II/III pyramidal cells is increased in slices from neonatal and post-weaning KI mice but not from juvenile KI mice. M current and excitability of layer V pyramidal cells are impacted in KI mice only at post-weaning stage. Spontaneous GABAergic network-driven events are recorded until post-weaning stage and their frequency are increased in layers II/III of the KI mice. KI mice displayed spontaneous seizures preferentially at post-weaning rather than at juvenile stages. ABSTRACT De novo missense variants in the KCNQ2 gene encoding the Kv7.2 subunit of the voltage-gated potassium Kv7/M channels are the main cause of Developmental and Epileptic Encephalopathy (DEE) with neonatal onset. While seizures usually resolve during development, cognitive/motor deficits persist. To better understand the cellular mechanisms underlying network dysfunction and their progression over time, we investigated in vivo, using local field potential recordings of freely moving animals, and ex-vivo in layers II/III and V of motor cortical slices, using patch-clamp recordings, the electrophysiological properties of pyramidal cells from a heterozygous knock-in (KI) mouse model carrying the Kv7.2 p.T274M pathogenic variant during neonatal, post-weaning and juvenile developmental stages. We found that KI mice displayed spontaneous seizures preferentially at post-weaning rather than at juvenile stages. At the cellular level, the variant led to a reduction in M current density/conductance and to neuronal hyperexcitability. These alterations were observed during the neonatal period in pyramidal cells of layers II /III and during post-weaning stage in pyramidal cells of layer V. Moreover, there was an increase in the frequency of spontaneous network driven events mediated by GABA receptors suggesting that the excitability of interneurons was also increased. However, all these alterations were no more observed in layers II/III and V of juvenile mice. Thus, our data indicate that the action of the variant is developmentally regulated. This raises the possibility that the age related seizure remission observed in KCNQ2-related DEE patient results from a time limited alteration of Kv7 channels activity and neuronal excitability. Abstract figure legend Knock-in mice harboring the heterozygous pathogenic p.T274M variant in the Kv7.2 subunit (c.821C>T mutation of the KCNQ2 gene) related to Developmental and Epileptic Encephalopathy displayed epileptic seizures preferentially at post-weaning rather than at juvenile developmental stages. At cellular level, in motor cortical slices the variant led to a reduction in M current density, to a hyperexcitability of pyramidal cells and to an increase in the frequency of spontaneous network driven events mediated by GABA receptors. All these alterations are time limited and are observed in pyramidal cells of neonatal mice until post-weaning but not of juvenile mice in which the pyramidal cells have electrophysiological properties similar to those of wild-type mice. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Najoua Biba
- INSERM, INMED (U1249), Aix-Marseille University, Turing centre for living system, Marseille, France
| | - Hélène Becq
- INSERM, INMED (U1249), Aix-Marseille University, Turing centre for living system, Marseille, France
| | - Emilie Pallesi-Pocachard
- INSERM, INMED (U1249), Aix-Marseille University, Turing centre for living system, Marseille, France
| | - Stefania Sarno
- INSERM, INMED (U1249), Aix-Marseille University, Turing centre for living system, Marseille, France
| | - Samuel Granjeaud
- Centre de Recherche en Cancérologie de Marseille, INSERM, U1068, Institut Paoli Calmettes, CNRS, UMR7258, Aix-Marseille University UM 105, Marseille, France
| | - Aurélie Montheil
- INSERM, INMED (U1249), Aix-Marseille University, Turing centre for living system, Marseille, France
| | - Marie Kurz
- INSERM, INMED (U1249), Aix-Marseille University, Turing centre for living system, Marseille, France
| | - Laurent Villard
- Aix-Marseille University, INSERM, MMG, Marseille, France.,Department of Medical Genetics, La Timone Childrens's Hospital, Marseille, France
| | - Mathieu Milh
- Aix-Marseille University, INSERM, MMG, Marseille, France.,Department of Pediatric Neurology, La Timone Children's Hospital, Marseille, France
| | | | - Laurent Aniksztejn
- INSERM, INMED (U1249), Aix-Marseille University, Turing centre for living system, Marseille, France
| |
Collapse
|
16
|
Keeping the Balance: GABAB Receptors in the Developing Brain and Beyond. Brain Sci 2022; 12:brainsci12040419. [PMID: 35447949 PMCID: PMC9031223 DOI: 10.3390/brainsci12040419] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 12/16/2022] Open
Abstract
The main neurotransmitter in the brain responsible for the inhibition of neuronal activity is γ-aminobutyric acid (GABA). It plays a crucial role in circuit formation during development, both via its primary effects as a neurotransmitter and also as a trophic factor. The GABAB receptors (GABABRs) are G protein-coupled metabotropic receptors; on one hand, they can influence proliferation and migration; and, on the other, they can inhibit cells by modulating the function of K+ and Ca2+ channels, doing so on a slower time scale and with a longer-lasting effect compared to ionotropic GABAA receptors. GABABRs are expressed pre- and post-synaptically, at both glutamatergic and GABAergic terminals, thus being able to shape neuronal activity, plasticity, and the balance between excitatory and inhibitory synaptic transmission in response to varying levels of extracellular GABA concentration. Furthermore, given their subunit composition and their ability to form complexes with several associated proteins, GABABRs display heterogeneity with regard to their function, which makes them a promising target for pharmacological interventions. This review will describe (i) the latest results concerning GABABRs/GABABR-complex structures, their function, and the developmental time course of their appearance and functional integration in the brain, (ii) their involvement in manifestation of various pathophysiological conditions, and (iii) the current status of preclinical and clinical studies involving GABABR-targeting drugs.
Collapse
|
17
|
Zavalin K, Hassan A, Fu C, Delpire E, Lagrange AH. Loss of KCC2 in GABAergic Neurons Causes Seizures and an Imbalance of Cortical Interneurons. Front Mol Neurosci 2022; 15:826427. [PMID: 35370549 PMCID: PMC8966887 DOI: 10.3389/fnmol.2022.826427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
K-Cl transporter KCC2 is an important regulator of neuronal development and neuronal function at maturity. Through its canonical transporter role, KCC2 maintains inhibitory responses mediated by γ-aminobutyric acid (GABA) type A receptors. During development, late onset of KCC2 transporter activity defines the period when depolarizing GABAergic signals promote a wealth of developmental processes. In addition to its transporter function, KCC2 directly interacts with a number of proteins to regulate dendritic spine formation, cell survival, synaptic plasticity, neuronal excitability, and other processes. Either overexpression or loss of KCC2 can lead to abnormal circuit formation, seizures, or even perinatal death. GABA has been reported to be especially important for driving migration and development of cortical interneurons (IN), and we hypothesized that properly timed onset of KCC2 expression is vital to this process. To test this hypothesis, we created a mouse with conditional knockout of KCC2 in Dlx5-lineage neurons (Dlx5 KCC2 cKO), which targets INs and other post-mitotic GABAergic neurons in the forebrain starting during embryonic development. While KCC2 was first expressed in the INs of layer 5 cortex, perinatal IN migrations and laminar localization appeared to be unaffected by the loss of KCC2. Nonetheless, the mice had early seizures, failure to thrive, and premature death in the second and third weeks of life. At this age, we found an underlying change in IN distribution, including an excess number of somatostatin neurons in layer 5 and a decrease in parvalbumin-expressing neurons in layer 2/3 and layer 6. Our research suggests that while KCC2 expression may not be entirely necessary for early IN migration, loss of KCC2 causes an imbalance in cortical interneuron subtypes, seizures, and early death. More work will be needed to define the specific cellular basis for these findings, including whether they are due to abnormal circuit formation versus the sequela of defective IN inhibition.
Collapse
Affiliation(s)
- Kirill Zavalin
- Department of Neurology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Anjana Hassan
- Department of Neurology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Cary Fu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Eric Delpire
- Department of Anesthesiology, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Andre H. Lagrange
- Department of Neurology, School of Medicine, Vanderbilt University, Nashville, TN, United States,Department of Neurology, Tennessee Valley Healthcare – Veterans Affairs (TVH VA), Medical Center, Nashville, TN, United States,*Correspondence: Andre H. Lagrange,
| |
Collapse
|
18
|
Cherubini E, Di Cristo G, Avoli M. Dysregulation of GABAergic Signaling in Neurodevelomental Disorders: Targeting Cation-Chloride Co-transporters to Re-establish a Proper E/I Balance. Front Cell Neurosci 2022; 15:813441. [PMID: 35069119 PMCID: PMC8766311 DOI: 10.3389/fncel.2021.813441] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 11/30/2021] [Indexed: 01/01/2023] Open
Abstract
The construction of the brain relies on a series of well-defined genetically and experience- or activity -dependent mechanisms which allow to adapt to the external environment. Disruption of these processes leads to neurological and psychiatric disorders, which in many cases are manifest already early in postnatal life. GABA, the main inhibitory neurotransmitter in the adult brain is one of the major players in the early assembly and formation of neuronal circuits. In the prenatal and immediate postnatal period GABA, acting on GABAA receptors, depolarizes and excites targeted cells via an outwardly directed flux of chloride. In this way it activates NMDA receptors and voltage-dependent calcium channels contributing, through intracellular calcium rise, to shape neuronal activity and to establish, through the formation of new synapses and elimination of others, adult neuronal circuits. The direction of GABAA-mediated neurotransmission (depolarizing or hyperpolarizing) depends on the intracellular levels of chloride [Cl−]i, which in turn are maintained by the activity of the cation-chloride importer and exporter KCC2 and NKCC1, respectively. Thus, the premature hyperpolarizing action of GABA or its persistent depolarizing effect beyond the postnatal period, leads to behavioral deficits associated with morphological alterations and an excitatory (E)/inhibitory (I) imbalance in selective brain areas. The aim of this review is to summarize recent data concerning the functional role of GABAergic transmission in building up and refining neuronal circuits early in development and its dysfunction in neurodevelopmental disorders such as Autism Spectrum Disorders (ASDs), schizophrenia and epilepsy. In particular, we focus on novel information concerning the mechanisms by which alterations in cation-chloride co-transporters (CCC) generate behavioral and cognitive impairment in these diseases. We discuss also the possibility to re-establish a proper GABAA-mediated neurotransmission and excitatory (E)/inhibitory (I) balance within selective brain areas acting on CCC.
Collapse
Affiliation(s)
- Enrico Cherubini
- European Brain Research Institute (EBRI)-Rita Levi-Montalcini, Roma, Italy
- *Correspondence: Enrico Cherubini
| | - Graziella Di Cristo
- Neurosciences Department, Université de Montréal and CHU Sainte-Justine Research Center, Montreal, QC, Canada
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology and Neurosurgery and of Physiology, McGill University, Montreal, QC, Canada
| |
Collapse
|
19
|
Hamze M, Medina I, Delmotte Q, Porcher C. Contribution of Smoothened Receptor Signaling in GABAergic Neurotransmission and Chloride Homeostasis in the Developing Rodent Brain. Front Physiol 2021; 12:798066. [PMID: 34955901 PMCID: PMC8703190 DOI: 10.3389/fphys.2021.798066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
In the early stages of the central nervous system growth and development, γ-aminobutyric acid (GABA) plays an instructive trophic role for key events including neurogenesis, migration, synaptogenesis, and network formation. These actions are associated with increased concentration of chloride ions in immature neurons [(Cl−)i] that determines the depolarizing strength of ion currents mediated by GABAA receptors, a ligand-gated Cl− permeable ion channel. During neuron maturation the (Cl−)i progressively decreases leading to weakening of GABA induced depolarization and enforcing GABA function as principal inhibitory neurotransmitter. A neuron restricted potassium-chloride co-transporter KCC2 is a key molecule governing Cl− extrusion and determining the resting level of (Cl−)i in developing and mature mammalian neurons. Among factors controlling the functioning of KCC2 and the maturation of inhibitory circuits, is Smoothened (Smo), the transducer in the receptor complex of the developmental protein Sonic Hedgehog (Shh). Too much or too little Shh-Smo action will have mirror effects on KCC2 stability at the neuron membrane, the GABA inhibitory strength, and ultimately on the newborn susceptibility to neurodevelopmental disorders. Both canonical and non-canonical Shh-Smo signal transduction pathways contribute to the regulation of KCC2 and GABAergic synaptic activity. In this review, we discuss the recent findings of the action of Shh-Smo signaling pathways on chloride ions homeostasis through the control of KCC2 membrane trafficking, and consequently on inhibitory neurotransmission and network activity during postnatal development.
Collapse
Affiliation(s)
- Mira Hamze
- Aix-Marseille University, INSERM, INMED, Parc Scientifique de Luminy, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité, Parc Scientifique de Luminy, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Igor Medina
- Aix-Marseille University, INSERM, INMED, Parc Scientifique de Luminy, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité, Parc Scientifique de Luminy, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Quentin Delmotte
- Aix-Marseille University, INSERM, INMED, Parc Scientifique de Luminy, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité, Parc Scientifique de Luminy, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Christophe Porcher
- Aix-Marseille University, INSERM, INMED, Parc Scientifique de Luminy, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité, Parc Scientifique de Luminy, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| |
Collapse
|
20
|
Verma V, Kumar MJV, Sharma K, Rajaram S, Muddashetty R, Manjithaya R, Behnisch T, Clement JP. Pharmacological intervention in young adolescents rescues synaptic physiology and behavioural deficits in Syngap1 +/- mice. Exp Brain Res 2021; 240:289-309. [PMID: 34739555 DOI: 10.1007/s00221-021-06254-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/21/2021] [Indexed: 01/04/2023]
Abstract
Haploinsufficiency in SYNGAP1 is implicated in intellectual disability (ID) and autism spectrum disorder (ASD) and affects the maturation of dendritic spines. The abnormal spine development has been suggested to cause a disbalance of excitatory and inhibitory (E/I) neurotransmission at distinct developmental periods. In addition, E/I imbalances in Syngap1+/- mice might be due to abnormalities in K+-Cl- co-transporter function (NKCC1, KCC2), in a maner similar to the murine models of Fragile-X and Rett syndromes. To study whether an altered intracellular chloride ion concentration represents an underlying mechanism of modified function of GABAergic synapses in Dentate Gyrus Granule Cells of Syngap1+/- recordings were performed at different developmental stages of the mice. We observed depolarised neurons at P14-15 as illustrated by decreased Cl- reversal potential in Syngap1+/- mice. The KCC2 expression was decreased compared to Wild-type (WT) mice at P14-15. The GSK-3β inhibitor, 6-bromoindirubin-3'-oxime (6BIO) that crosses the blood-brain barrier, was tested to restore the function of GABAergic synapses. We discovered that the intraperitoneal administration of 6BIO during the critical period or young adolescents [P30 to P80 (4-week to 10-week)] normalised an altered E/I balance, the deficits of synaptic plasticity, and behavioural performance like social novelty, anxiety, and memory of the Syngap1+/- mice. In summary, altered GABAergic function in Syngap1+/- mice is due to reduced KCC2 expression leading to an increase in the intracellular chloride concentration that can be counteracted by the 6BIO, which restored cognitive, emotional, and social symptoms by pharmacological intervention, particularly in adulthood.
Collapse
Affiliation(s)
- Vijaya Verma
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - M J Vijay Kumar
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Kavita Sharma
- International Centre for Material Sciences, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Sridhar Rajaram
- International Centre for Material Sciences, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Ravi Muddashetty
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, 560065, India
| | - Ravi Manjithaya
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India.,Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Thomas Behnisch
- Institutes of Brain Sciences, Fudan University, Shanghai, 200032, China
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India.
| |
Collapse
|
21
|
Antrobus S, Pressly B, Nik AM, Wulff H, Pessah IN. Structure-Activity Relationship of Neuroactive Steroids, Midazolam, and Perampanel Toward Mitigating Tetramine-Triggered Activity in Murine Hippocampal Neuronal Networks. Toxicol Sci 2021; 180:325-341. [PMID: 33483729 PMCID: PMC8599726 DOI: 10.1093/toxsci/kfab007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tetramethylenedisulfotetramine (tetramine or TETS), a potent convulsant, triggers abnormal electrical spike activity (ESA) and synchronous Ca2+ oscillation (SCO) patterns in cultured neuronal networks by blocking gamma-aminobutyric acid (GABAA) receptors. Murine hippocampal neuronal/glial cocultures develop extensive dendritic connectivity between glutamatergic and GABAergic inputs and display two distinct SCO patterns when imaged with the Ca2+ indicator Fluo-4: Low amplitude SCO events (LASE) and High amplitude SCO events (HASE) that are dependent on TTX-sensitive network electrical spike activity (ESA). Acute TETS (3.0 µM) increased overall network SCO amplitude and decreased SCO frequency by stabilizing HASE and suppressing LASE while increasing ESA. In multielectrode arrays, TETS also increased burst frequency and synchronicity. In the presence of TETS (3.0 µM), the clinically used anticonvulsive perampanel (0.1-3.0 µM), a noncompetitive AMPAR antagonist, suppressed all SCO activity, whereas the GABAA receptor potentiator midazolam (1.0-30 µM), the current standard of care, reciprocally suppressed HASE and stabilized LASE. The neuroactive steroid (NAS) allopregnanolone (0.1-3.0 µM) normalized TETS-triggered patterns by selectively suppressing HASE and increasing LASE, a pharmacological pattern distinct from its epimeric form eltanolone, ganaxolone, alphaxolone, and XJ-42, which significantly potentiated TETS-triggered HASE in a biphasic manner. Cortisol failed to mitigate TETS-triggered patterns and at >1 µM augmented them. Combinations of allopregnanolone and midazolam were significantly more effective at normalizing TETS-triggered SCO patterns, ESA patterns, and more potently enhanced GABA-activated Cl- current, than either drug alone.
Collapse
Affiliation(s)
- Shane Antrobus
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, USA
| | - Brandon Pressly
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, California 95616, USA
| | - Atefeh Mousavi Nik
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, USA
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, California 95616, USA
| | - Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California 95616, USA
| |
Collapse
|
22
|
Perez C, Felix L, Durry S, Rose CR, Ullah G. On the origin of ultraslow spontaneous Na + fluctuations in neurons of the neonatal forebrain. J Neurophysiol 2021; 125:408-425. [PMID: 33236936 PMCID: PMC7948148 DOI: 10.1152/jn.00373.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 11/22/2022] Open
Abstract
Spontaneous neuronal and astrocytic activity in the neonate forebrain is believed to drive the maturation of individual cells and their integration into complex brain-region-specific networks. The previously reported forms include bursts of electrical activity and oscillations in intracellular Ca2+ concentration. Here, we use ratiometric Na+ imaging to demonstrate spontaneous fluctuations in the intracellular Na+ concentration of CA1 pyramidal neurons and astrocytes in tissue slices obtained from the hippocampus of mice at postnatal days 2-4 (P2-4). These occur at very low frequency (∼2/h), can last minutes with amplitudes up to several millimolar, and mostly disappear after the first postnatal week. To further investigate their mechanisms, we model a network consisting of pyramidal neurons and interneurons. Experimentally observed Na+ fluctuations are mimicked when GABAergic inhibition in the simulated network is made depolarizing. Both our experiments and computational model show that blocking voltage-gated Na+ channels or GABAergic signaling significantly diminish the neuronal Na+ fluctuations. On the other hand, blocking a variety of other ion channels, receptors, or transporters including glutamatergic pathways does not have significant effects. Our model also shows that the amplitude and duration of Na+ fluctuations decrease as we increase the strength of glial K+ uptake. Furthermore, neurons with smaller somatic volumes exhibit fluctuations with higher frequency and amplitude. As opposed to this, larger extracellular to intracellular volume ratio observed in neonatal brain exerts a dampening effect. Finally, our model predicts that these periods of spontaneous Na+ influx leave neonatal neuronal networks more vulnerable to seizure-like states when compared with mature brain.NEW & NOTEWORTHY Spontaneous activity in the neonate forebrain plays a key role in cell maturation and brain development. We report spontaneous, ultraslow, asynchronous fluctuations in the intracellular Na+ concentration of neurons and astrocytes. We show that this activity is not correlated with the previously reported synchronous neuronal population bursting or Ca2+ oscillations, both of which occur at much faster timescales. Furthermore, extracellular K+ concentration remains nearly constant. The spontaneous Na+ fluctuations disappear after the first postnatal week.
Collapse
Affiliation(s)
- Carlos Perez
- Department of Physics, University of South Florida, Tampa, Florida
| | - Lisa Felix
- Faculty of Mathematics and Natural Sciences, Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simone Durry
- Faculty of Mathematics and Natural Sciences, Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christine R Rose
- Faculty of Mathematics and Natural Sciences, Institute of Neurobiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, Florida
| |
Collapse
|
23
|
Lombardi A, Jedlicka P, Luhmann HJ, Kilb W. Coincident glutamatergic depolarizations enhance GABAA receptor-dependent Cl- influx in mature and suppress Cl- efflux in immature neurons. PLoS Comput Biol 2021; 17:e1008573. [PMID: 33465082 PMCID: PMC7845986 DOI: 10.1371/journal.pcbi.1008573] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/29/2021] [Accepted: 11/30/2020] [Indexed: 11/19/2022] Open
Abstract
The impact of GABAergic transmission on neuronal excitability depends on the Cl--gradient across membranes. However, the Cl--fluxes through GABAA receptors alter the intracellular Cl- concentration ([Cl-]i) and in turn attenuate GABAergic responses, a process termed ionic plasticity. Recently it has been shown that coincident glutamatergic inputs significantly affect ionic plasticity. Yet how the [Cl-]i changes depend on the properties of glutamatergic inputs and their spatiotemporal relation to GABAergic stimuli is unknown. To investigate this issue, we used compartmental biophysical models of Cl- dynamics simulating either a simple ball-and-stick topology or a reconstructed CA3 neuron. These computational experiments demonstrated that glutamatergic co-stimulation enhances GABA receptor-mediated Cl- influx at low and attenuates or reverses the Cl- efflux at high initial [Cl-]i. The size of glutamatergic influence on GABAergic Cl--fluxes depends on the conductance, decay kinetics, and localization of glutamatergic inputs. Surprisingly, the glutamatergic shift in GABAergic Cl--fluxes is invariant to latencies between GABAergic and glutamatergic inputs over a substantial interval. In agreement with experimental data, simulations in a reconstructed CA3 pyramidal neuron with physiological patterns of correlated activity revealed that coincident glutamatergic synaptic inputs contribute significantly to the activity-dependent [Cl-]i changes. Whereas the influence of spatial correlation between distributed glutamatergic and GABAergic inputs was negligible, their temporal correlation played a significant role. In summary, our results demonstrate that glutamatergic co-stimulation had a substantial impact on ionic plasticity of GABAergic responses, enhancing the attenuation of GABAergic inhibition in the mature nervous systems, but suppressing GABAergic [Cl-]i changes in the immature brain. Therefore, glutamatergic shift in GABAergic Cl--fluxes should be considered as a relevant factor of short-term plasticity. Information processing in the brain requires that excitation and inhibition are balanced. The main inhibitory neurotransmitter in the brain is gamma-amino-butyric acid (GABA). GABA actions depend on the Cl--gradient, but activation of ionotropic GABA receptors causes Cl--fluxes and thus reduces GABAergic inhibition. Here, we investigated how a coincident membrane depolarization by excitatory glutamatergic synapses influences GABA-induced Cl--fluxes using a biophysical compartmental model of Cl- dynamics, simulating either simple or realistic neuron topologies. We demonstrate that glutamatergic co-stimulation directly affects GABA-induced Cl--fluxes, with the size of glutamatergic effects depending on the conductance, the decay kinetics, and localization of glutamatergic inputs. We also show that the glutamatergic shift in GABAergic Cl--fluxes is surprisingly stable over a substantial range of latencies between glutamatergic and GABAergic inputs. We conclude from these results that glutamatergic co-stimulation alters GABAergic Cl--fluxes and in turn affects the strength of GABAergic inhibition. These coincidence-dependent ionic changes should be considered as a relevant factor of short-term plasticity in the CNS.
Collapse
Affiliation(s)
- Aniello Lombardi
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Peter Jedlicka
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University, Frankfurt/Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| | - Heiko J. Luhmann
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany
- * E-mail:
| |
Collapse
|
24
|
Kolbaev SN, Mohapatra N, Chen R, Lombardi A, Staiger JF, Luhmann HJ, Jedlicka P, Kilb W. NKCC-1 mediated Cl - uptake in immature CA3 pyramidal neurons is sufficient to compensate phasic GABAergic inputs. Sci Rep 2020; 10:18399. [PMID: 33110147 PMCID: PMC7591924 DOI: 10.1038/s41598-020-75382-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Activation of GABAA receptors causes in immature neurons a functionally relevant decrease in the intracellular Cl- concentration ([Cl-]i), a process termed ionic plasticity. Amount and duration of ionic plasticity depends on kinetic properties of [Cl-]i homeostasis. In order to characterize the capacity of Cl- accumulation and to quantify the effect of persistent GABAergic activity on [Cl-]i, we performed gramicidin-perforated patch-clamp recordings from CA3 pyramidal neurons of immature (postnatal day 4-7) rat hippocampal slices. These experiments revealed that inhibition of NKCC1 decreased [Cl-]i toward passive distribution with a time constant of 381 s. In contrast, active Cl- accumulation occurred with a time constant of 155 s, corresponding to a rate of 15.4 µM/s. Inhibition of phasic GABAergic activity had no significant effect on steady state [Cl-]i. Inhibition of tonic GABAergic currents induced a significant [Cl-]i increase by 1.6 mM, while activation of tonic extrasynaptic GABAA receptors with THIP significantly reduced [Cl-]i.. Simulations of neuronal [Cl-]i homeostasis supported the observation, that basal levels of synaptic GABAergic activation do not affect [Cl-]i. In summary, these results indicate that active Cl--uptake in immature hippocampal neurons is sufficient to maintain stable [Cl-]i at basal levels of phasic and to some extent also to compensate tonic GABAergic activity.
Collapse
Affiliation(s)
- Sergey N Kolbaev
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.,Research Center of Neurology, Volokolamskoyeshosse, 80, Moscow, Russia, 125367
| | - Namrata Mohapatra
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Rongqing Chen
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.,Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Aniello Lombardi
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Jochen F Staiger
- Institute of Neuroanatomy, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Kreuzbergring 36, 37075, Göttingen, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany
| | - Peter Jedlicka
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.,ICAR3R-Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus-Liebig-University, Rudolf-Buchheim-Str. 6, 35392, Giessen, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University, Duesbergweg 6, 55128, Mainz, Germany.
| |
Collapse
|
25
|
Lee JW. Protonic conductor: better understanding neural resting and action potential. J Neurophysiol 2020; 124:1029-1044. [PMID: 32816602 DOI: 10.1152/jn.00281.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
With the employment of the transmembrane electrostatic proton localization theory with a new membrane potential equation, neural resting and action potential is now much better understood as the voltage contributed by the localized protons/cations at a neural liquid- membrane interface. Accordingly, the neural resting/action potential is essentially a protonic/cationic membrane capacitor behavior. It is now understood with a newly formulated action potential equation: when action potential is <0 (negative number), the localized protons/cations charge density at the liquid-membrane interface along the periplasmic side is >0 (positive number); when the action potential is >0, the concentration of the localized protons and localized nonproton cations is <0, indicating a "depolarization" state. The nonlinear curve of the localized protons/cations charge density in the real-time domain of an action potential spike appears as an inverse mirror image to the action potential. The newly formulated action potential equation provides biophysical insights for neuron electrophysiology, which may represent a complementary development to the classic Goldman-Hodgkin-Katz equation. With the use of the action potential equation, the biological significance of axon myelination is now also elucidated as to provide protonic insulation and prevent any ions both inside and outside of the neuron from interfering with the action potential signal, so that the action potential can quickly propagate along the axon with minimal (e.g., 40 times less) energy requirement.NEW & NOTEWORTHY The newly formulated action potential equation provides biophysical insights for neuron electrophysiology, which may represent a complementary development to the classic Goldman-Hodgkin-Katz equation. The nonlinear curve of the localized protons/cations charge density in the real-time domain of an action potential spike appears as an inverse mirror image to the action potential. The biological significance of axon myelination is now elucidated as to provide protonic insulation and prevent any ions from interfering with action potential signal.
Collapse
Affiliation(s)
- James Weifu Lee
- Department of Chemistry & Biochemistry, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
26
|
Paracrine Role for Somatostatin Interneurons in the Assembly of Perisomatic Inhibitory Synapses. J Neurosci 2020; 40:7421-7435. [PMID: 32847968 DOI: 10.1523/jneurosci.0613-20.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/24/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
GABAergic interneurons represent a heterogenous group of cell types in neocortex that can be clustered based on developmental origin, morphology, physiology, and connectivity. Two abundant populations of cortical GABAergic interneurons include the low-threshold, somatostatin (SST)-expressing cells and the fast-spiking, parvalbumin (PV)-expressing cells. While SST+ and PV+ interneurons are both early born and migrate into the developing neocortex at similar times, SST+ cells are incorporated into functional circuits prior to PV+ cells. During this early period of neural development, SST+ cells play critical roles in the assembly and maturation of other cortical circuits; however, the mechanisms underlying this process remain poorly understood. Here, using both sexes of conditional mutant mice, we discovered that SST+ interneuron-derived Collagen XIX, a synaptogenic extracellular matrix protein, is required for the formation of GABAergic, perisomatic synapses by PV+ cells. These results, therefore, identify a paracrine mechanism by which early-born SST+ cells orchestrate inhibitory circuit formation in the developing neocortex.SIGNIFICANCE STATEMENT Inhibitory interneurons in the cerebral cortex represent a heterogenous group of cells that generate the inhibitory neurotransmitter GABA. One such interneuron type is the low-threshold, somatostatin (SST)-expressing cell, which is one of the first types of interneurons to migrate into the cerebral cortex and become incorporated into functional circuits. In addition, to contributing important roles in controlling the flow of information in the adult cerebral cortex, SST+ cells play important roles in the development of other neural circuits in the developing brain. Here, we identified an extracellular matrix protein that is released by these early-born SST+ neurons to orchestrate inhibitory circuit formation in the developing cerebral cortex.
Collapse
|
27
|
Felix L, Stephan J, Rose CR. Astrocytes of the early postnatal brain. Eur J Neurosci 2020; 54:5649-5672. [PMID: 32406559 DOI: 10.1111/ejn.14780] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022]
Abstract
In the rodent forebrain, the majority of astrocytes are generated during the early postnatal phase. Following differentiation, astrocytes undergo maturation which accompanies the development of the neuronal network. Neonate astrocytes exhibit a distinct morphology and domain size which differs to their mature counterparts. Moreover, many of the plasma membrane proteins prototypical for fully developed astrocytes are only expressed at low levels at neonatal stages. These include connexins and Kir4.1, which define the low membrane resistance and highly negative membrane potential of mature astrocytes. Newborn astrocytes moreover express only low amounts of GLT-1, a glutamate transporter critical later in development. Furthermore, they show specific differences in the properties and spatio-temporal pattern of intracellular calcium signals, resulting from differences in their repertoire of receptors and signalling pathways. Therefore, roles fulfilled by mature astrocytes, including ion and transmitter homeostasis, are underdeveloped in the young brain. Similarly, astrocytic ion signalling in response to neuronal activity, a process central to neuron-glia interaction, differs between the neonate and mature brain. This review describes the unique functional properties of astrocytes in the first weeks after birth and compares them to later stages of development. We conclude that with an immature neuronal network and wider extracellular space, astrocytic support might not be as demanding and critical compared to the mature brain. The delayed differentiation and maturation of astrocytes in the first postnatal weeks might thus reflect a reduced need for active, energy-consuming regulation of the extracellular space and a less tight control of glial feedback onto synaptic transmission.
Collapse
Affiliation(s)
- Lisa Felix
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Jonathan Stephan
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
28
|
Badurek S, Griguoli M, Asif-Malik A, Zonta B, Guo F, Middei S, Lagostena L, Jurado-Parras MT, Gillingwater TH, Gruart A, Delgado-García JM, Cherubini E, Minichiello L. Immature Dentate Granule Cells Require Ntrk2/Trkb for the Formation of Functional Hippocampal Circuitry. iScience 2020; 23:101078. [PMID: 32361506 PMCID: PMC7200316 DOI: 10.1016/j.isci.2020.101078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/23/2020] [Accepted: 04/14/2020] [Indexed: 01/14/2023] Open
Abstract
Early in brain development, impaired neuronal signaling during time-sensitive windows triggers the onset of neurodevelopmental disorders. GABA, through its depolarizing and excitatory actions, drives early developmental events including neuronal circuit formation and refinement. BDNF/TrkB signaling cooperates with GABA actions. How these developmental processes influence the formation of neural circuits and affect adult brain function is unknown. Here, we show that early deletion of Ntrk2/Trkb from immature mouse hippocampal dentate granule cells (DGCs) affects the integration and maturation of newly formed DGCs in the hippocampal circuitry and drives a premature shift from depolarizing to hyperpolarizing GABAergic actions in the target of DGCs, the CA3 principal cells of the hippocampus, by reducing the expression of the cation-chloride importer Nkcc1. These changes lead to the disruption of early synchronized neuronal activity at the network level and impaired morphological maturation of CA3 pyramidal neurons, ultimately contributing to altered adult hippocampal synaptic plasticity and cognitive processes.
Collapse
Affiliation(s)
- Sylvia Badurek
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom; European Molecular Biology Laboratory, Mouse Biology Unit, Monterotondo, Rome, Italy
| | | | - Aman Asif-Malik
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Barbara Zonta
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Fei Guo
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Silvia Middei
- Institute of Cell Biology and Neurobiology, National Research Council, Monterotondo, Rome, Italy
| | - Laura Lagostena
- International School for Advanced Studies (SISSA), Department of Neuroscience, Trieste, Italy
| | | | - Thomas H Gillingwater
- Biomedical Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Agnès Gruart
- Division of Neurosciences, University Pablo de Olavide, Seville, Spain
| | | | - Enrico Cherubini
- European Brain Research Institute, Rome, Italy; International School for Advanced Studies (SISSA), Department of Neuroscience, Trieste, Italy
| | - Liliana Minichiello
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom; Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom; European Molecular Biology Laboratory, Mouse Biology Unit, Monterotondo, Rome, Italy.
| |
Collapse
|
29
|
Delmotte Q, Diabira D, Belaidouni Y, Hamze M, Kochmann M, Montheil A, Gaiarsa JL, Porcher C, Belgacem YH. Sonic Hedgehog Signaling Agonist (SAG) Triggers BDNF Secretion and Promotes the Maturation of GABAergic Networks in the Postnatal Rat Hippocampus. Front Cell Neurosci 2020; 14:98. [PMID: 32425757 PMCID: PMC7212340 DOI: 10.3389/fncel.2020.00098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Sonic hedgehog (Shh) signaling plays critical roles during early central nervous system development, such as neural cell proliferation, patterning of the neural tube and neuronal differentiation. While Shh signaling is still present in the postnatal brain, the roles it may play are, however, largely unknown. In particular, Shh signaling components are found at the synaptic junction in the maturing hippocampus during the first two postnatal weeks. This period is characterized by the presence of ongoing spontaneous synaptic activity at the cellular and network levels thought to play important roles in the onset of neuronal circuit formation and synaptic plasticity. Here, we demonstrate that non-canonical Shh signaling increases the frequency of the synchronized electrical activity called Giant Depolarizing Potentials (GDP) and enhances spontaneous GABA post-synaptic currents in the rodent hippocampus during the early postnatal period. This effect is mediated specifically through the Shh co-receptor Smoothened via intracellular Ca2+ signal and the activation of the BDNF-TrkB signaling pathway. Given the importance of these spontaneous events on neuronal network maturation and refinement, this study opens new perspectives for Shh signaling on the control of early stages of postnatal brain maturation and physiology.
Collapse
Affiliation(s)
- Quentin Delmotte
- Aix-Marseille Univ, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Diabe Diabira
- INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Yasmine Belaidouni
- Aix-Marseille Univ, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Mira Hamze
- Aix-Marseille Univ, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Marine Kochmann
- Aix-Marseille Univ, Marseille, France.,Institut des Neurosciences de La Timone, Marseille, France
| | - Aurélie Montheil
- Aix-Marseille Univ, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Jean-Luc Gaiarsa
- Aix-Marseille Univ, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Christophe Porcher
- Aix-Marseille Univ, Marseille, France.,INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| | - Yesser H Belgacem
- INSERM (Institut National de la Santé et de la Recherche Médicale) Unité 1249, Marseille, France.,INMED (Institut de Neurobiologie de la Méditerranée), Parc Scientifique de Luminy, Marseille, France
| |
Collapse
|
30
|
Salmon CK, Pribiag H, Gizowski C, Farmer WT, Cameron S, Jones EV, Mahadevan V, Bourque CW, Stellwagen D, Woodin MA, Murai KK. Depolarizing GABA Transmission Restrains Activity-Dependent Glutamatergic Synapse Formation in the Developing Hippocampal Circuit. Front Cell Neurosci 2020; 14:36. [PMID: 32161521 PMCID: PMC7053538 DOI: 10.3389/fncel.2020.00036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/05/2020] [Indexed: 12/27/2022] Open
Abstract
γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mature brain but has the paradoxical property of depolarizing neurons during early development. Depolarization provided by GABAA transmission during this early phase regulates neural stem cell proliferation, neural migration, neurite outgrowth, synapse formation, and circuit refinement, making GABA a key factor in neural circuit development. Importantly, depending on the context, depolarizing GABAA transmission can either drive neural activity or inhibit it through shunting inhibition. The varying roles of depolarizing GABAA transmission during development, and its ability to both drive and inhibit neural activity, makes it a difficult developmental cue to study. This is particularly true in the later stages of development when the majority of synapses form and GABAA transmission switches from depolarizing to hyperpolarizing. Here, we addressed the importance of depolarizing but inhibitory (or shunting) GABAA transmission in glutamatergic synapse formation in hippocampal CA1 pyramidal neurons. We first showed that the developmental depolarizing-to-hyperpolarizing switch in GABAA transmission is recapitulated in organotypic hippocampal slice cultures. Based on the expression profile of K+−Cl− co-transporter 2 (KCC2) and changes in the GABA reversal potential, we pinpointed the timing of the switch from depolarizing to hyperpolarizing GABAA transmission in CA1 neurons. We found that blocking depolarizing but shunting GABAA transmission increased excitatory synapse number and strength, indicating that depolarizing GABAA transmission can restrain glutamatergic synapse formation. The increase in glutamatergic synapses was activity-dependent but independent of BDNF signaling. Importantly, the elevated number of synapses was stable for more than a week after GABAA inhibitors were washed out. Together these findings point to the ability of immature GABAergic transmission to restrain glutamatergic synapse formation and suggest an unexpected role for depolarizing GABAA transmission in shaping excitatory connectivity during neural circuit development.
Collapse
Affiliation(s)
- Christopher K Salmon
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Horia Pribiag
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Claire Gizowski
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - W Todd Farmer
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Scott Cameron
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Emma V Jones
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Vivek Mahadevan
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Charles W Bourque
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - David Stellwagen
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Melanie A Woodin
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
31
|
Auer T, Schreppel P, Erker T, Schwarzer C. Impaired chloride homeostasis in epilepsy: Molecular basis, impact on treatment, and current treatment approaches. Pharmacol Ther 2020; 205:107422. [DOI: 10.1016/j.pharmthera.2019.107422] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022]
|
32
|
Spontaneous Ultraslow Na + Fluctuations in the Neonatal Mouse Brain. Cells 2019; 9:cells9010102. [PMID: 31906100 PMCID: PMC7016939 DOI: 10.3390/cells9010102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
In the neonate forebrain, network formation is driven by the spontaneous synchronized activity of pyramidal cells and interneurons, consisting of bursts of electrical activity and intracellular Ca2+ oscillations. By employing ratiometric Na+ imaging in tissue slices obtained from animals at postnatal day 2-4 (P2-4), we found that 20% of pyramidal neurons and 44% of astrocytes in neonatal mouse hippocampus also exhibit transient fluctuations in intracellular Na+. These occurred at very low frequencies (~2/h), were exceptionally long (~8 min), and strongly declined after the first postnatal week. Similar Na+ fluctuations were also observed in the neonate neocortex. In the hippocampus, Na+ elevations in both cell types were diminished when blocking action potential generation with tetrodotoxin. Neuronal Na+ fluctuations were significantly reduced by bicuculline, suggesting the involvement of GABAA-receptors in their generation. Astrocytic signals, by contrast, were neither blocked by inhibition of receptors and/or transporters for different transmitters including GABA and glutamate, nor of various Na+-dependent transporters or Na+-permeable channels. In summary, our results demonstrate for the first time that neonatal astrocytes and neurons display spontaneous ultraslow Na+ fluctuations. While neuronal Na+ signals apparently largely rely on suprathreshold GABAergic excitation, astrocytic Na+ signals, albeit being dependent on neuronal action potentials, appear to have a separate trigger and mechanism, the source of which remains unclear at present.
Collapse
|
33
|
Harvey RE, Berkowitz LE, Hamilton DA, Clark BJ. The effects of developmental alcohol exposure on the neurobiology of spatial processing. Neurosci Biobehav Rev 2019; 107:775-794. [PMID: 31526818 PMCID: PMC6876993 DOI: 10.1016/j.neubiorev.2019.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/02/2019] [Accepted: 09/11/2019] [Indexed: 01/20/2023]
Abstract
The consumption of alcohol during gestation is detrimental to the developing central nervous system. One functional outcome of this exposure is impaired spatial processing, defined as sensing and integrating information pertaining to spatial navigation and spatial memory. The hippocampus, entorhinal cortex, and anterior thalamus are brain regions implicated in spatial processing and are highly susceptible to the effects of developmental alcohol exposure. Some of the observed effects of alcohol on spatial processing may be attributed to changes at the synaptic to circuit level. In this review, we first describe the impact of developmental alcohol exposure on spatial behavior followed by a summary of the development of brain areas involved in spatial processing. We then provide an examination of the consequences of prenatal and early postnatal alcohol exposure in rodents on hippocampal, anterior thalamus, and entorhinal cortex-dependent spatial processing from the cellular to behavioral level. We conclude by highlighting several unanswered questions which may provide a framework for future investigation.
Collapse
Affiliation(s)
- Ryan E Harvey
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Laura E Berkowitz
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Derek A Hamilton
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| | - Benjamin J Clark
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
34
|
Slow-Wave Activity in the S1HL Cortex Is Contributed by Different Layer-Specific Field Potential Sources during Development. J Neurosci 2019; 39:8900-8915. [PMID: 31548234 PMCID: PMC6832678 DOI: 10.1523/jneurosci.1212-19.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/06/2019] [Accepted: 08/27/2019] [Indexed: 01/12/2023] Open
Abstract
Spontaneous correlated activity in cortical columns is critical for postnatal circuit refinement. We used spatial discrimination techniques to explore the late maturation of synaptic pathways through the laminar distribution of the field potential (FP) generators underlying spontaneous and evoked activities of the S1HL cortex in juvenile (P14-P16) and adult anesthetized rats. Juveniles exhibit an intermittent FP pattern resembling Up/Down states in adults, but with much reduced power and different laminar distribution. Whereas FPs in active periods are dominated by a layer VI generator in juveniles, in adults a developing multipart generator takes over, displaying current sinks in middle layers (III-V). The blockade of excitatory transmission in upper and middle layers of adults recovered the juvenile-like FP profiles. In addition to the layer VI generator, a gamma-specific generator in supragranular layers was the same in both age groups. While searching for dynamical coupling among generators in juveniles we found significant cross-correlation in ∼one-half of the tested pairs, whereas excessive coherence hindered their efficient separation in adults. Also, potentials evoked by tactile and electrical stimuli showed different short-latency dipoles between the two age groups, and the juveniles lacked the characteristic long latency UP state currents in middle layers. In addition, the mean firing rate of neurons was lower in juveniles. Thus, cortical FPs originate from different intra-columnar segments as they become active postnatally. We suggest that although some cortical segments are active early postnatally, a functional sensory-motor control relies on a delayed maturation and network integration of synaptic connections in middle layers.SIGNIFICANCE STATEMENT Early postnatal activity in the rodent cortex is mostly endogenous, whereas it becomes driven by peripheral input at later stages. The precise schedule for the maturation of synaptic pathways is largely unknown. We explored this in the somatosensory hindlimb cortex at an age when animals begin to use their limbs by uncovering the laminar distribution of the field potential generators underlying the dominant delta waves in juveniles and adults. Our results suggest that field potentials are mostly generated by a pathway in deep layers, whereas other pathways mature later in middle layers and take over in adults. We suggest that a functional sensory-motor control relies on a delayed maturation and network integration of synaptic connections in middle layers.
Collapse
|
35
|
Wang CZ, Ma J, Xu YQ, Jiang SN, Chen TQ, Yuan ZL, Mao XY, Zhang SQ, Liu LY, Fu Y, Yu YC. Early-generated interneurons regulate neuronal circuit formation during early postnatal development. eLife 2019; 8:44649. [PMID: 31120418 PMCID: PMC6533056 DOI: 10.7554/elife.44649] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/07/2019] [Indexed: 01/01/2023] Open
Abstract
A small subset of interneurons that are generated earliest as pioneer neurons are the first cohort of neurons that enter the neocortex. However, it remains largely unclear whether these early-generated interneurons (EGIns) predominantly regulate neocortical circuit formation. Using inducible genetic fate mapping to selectively label EGIns and pseudo-random interneurons (pRIns), we found that EGIns exhibited more mature electrophysiological and morphological properties and higher synaptic connectivity than pRIns in the somatosensory cortex at early postnatal stages. In addition, when stimulating one cell, the proportion of EGIns that influence spontaneous network synchronization is significantly higher than that of pRIns. Importantly, toxin-mediated ablation of EGIns after birth significantly reduce spontaneous network synchronization and decrease inhibitory synaptic formation during the first postnatal week. These results suggest that EGIns can shape developing networks and may contribute to the refinement of neuronal connectivity before the establishment of the adult neuronal circuit.
Collapse
Affiliation(s)
- Chang-Zheng Wang
- Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jian Ma
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Ye-Qian Xu
- Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shao-Na Jiang
- Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Tian-Qi Chen
- Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zu-Liang Yuan
- Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiao-Yi Mao
- Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shu-Qing Zhang
- Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lin-Yun Liu
- Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yinghui Fu
- Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yong-Chun Yu
- Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Carrasco M, Stafstrom CE. How Early Can a Seizure Happen? Pathophysiological Considerations of Extremely Premature Infant Brain Development. Dev Neurosci 2019; 40:417-436. [PMID: 30947192 DOI: 10.1159/000497471] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/04/2019] [Indexed: 11/19/2022] Open
Abstract
Seizures in neonates represent a neurologic emergency requiring prompt recognition, determination of etiology, and treatment. Yet, the definition and identification of neonatal seizures remain challenging and controversial, in part due to the unique physiology of brain development at this life stage. These issues are compounded when considering seizures in premature infants, in whom the complexities of brain development may engender different clinical and electrographic seizure features at different points in neuronal maturation. In extremely premature infants (< 28 weeks gestational age), seizure pathophysiology has not been explored in detail. This review discusses the physiological and structural development of the brain in this developmental window, focusing on factors that may lead to seizures and their consequences at this early time point. We hypothesize that the clinical and electrographic phenomenology of seizures in extremely preterm infants reflects the specific pathophysiology of brain development in that age window.
Collapse
Affiliation(s)
- Melisa Carrasco
- Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,
| |
Collapse
|
37
|
Bertot C, Groc L, Avignone E. Role of CX3CR1 Signaling on the Maturation of GABAergic Transmission and Neuronal Network Activity in the Neonate Hippocampus. Neuroscience 2019; 406:186-201. [PMID: 30872165 DOI: 10.1016/j.neuroscience.2019.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 12/21/2022]
Abstract
In the developing brain, microglial cells play an important role in shaping neuronal circuits. These immune cells communicate with neurons through fractalkine (CX3CL1), a neuronal cytokine that acts on microglial CX3CR1 receptor. Among various functions, this signaling pathway has been implicated in the postnatal maturation of glutamatergic synapses. Although microglial cells are present in the neonate hippocampus when GABA receptor-mediated synaptic transmission and synchronized oscillatory events take place, it remains unknown whether microglial cells tune the establishment of these activities. Using CX3CR1-deficient mice and electrophysiological means, we investigated in CA3 pyramidal neurons the role of the fractalkine signaling in the maturation of GABAA receptor-mediated synaptic currents and giant depolarizing potentials (GDPs), a network activity important for shaping synaptic connections. In CX3CR1-deficient mice, GABAergic currents were slightly altered, whereas the developmental changes of these currents were comparable with wild-type animals. Despite these minor changes in GABAergic transmission, the GDP frequency was strikingly reduced in CX3CR1-deficient mice compared to wild-type, with no change in the GDP shape and ending period. Collectively, it emerges that, in the neonate hippocampus, the fractalkine signaling pathway tunes GDP activities and is marginally involved in the maturation of GABAergic synapses, suggesting that microglial cells have distinct impact on maturing GABAergic, glutamatergic, and network functions.
Collapse
Affiliation(s)
- Charlotte Bertot
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Centre Broca Nouvelle-Aquitaine, 146 rue Léo Saignat, CS 61292 Case 130, 33076 Bordeaux Cedex, France; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Centre Broca Nouvelle-Aquitaine, 146 rue Léo Saignat, CS 61292 Case 130, 33076 Bordeaux Cedex, France
| | - Laurent Groc
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Centre Broca Nouvelle-Aquitaine, 146 rue Léo Saignat, CS 61292 Case 130, 33076 Bordeaux Cedex, France; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Centre Broca Nouvelle-Aquitaine, 146 rue Léo Saignat, CS 61292 Case 130, 33076 Bordeaux Cedex, France
| | - Elena Avignone
- Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Centre Broca Nouvelle-Aquitaine, 146 rue Léo Saignat, CS 61292 Case 130, 33076 Bordeaux Cedex, France; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Centre Broca Nouvelle-Aquitaine, 146 rue Léo Saignat, CS 61292 Case 130, 33076 Bordeaux Cedex, France.
| |
Collapse
|
38
|
Spoljaric I, Spoljaric A, Mavrovic M, Seja P, Puskarjov M, Kaila K. KCC2-Mediated Cl - Extrusion Modulates Spontaneous Hippocampal Network Events in Perinatal Rats and Mice. Cell Rep 2019; 26:1073-1081.e3. [PMID: 30699338 PMCID: PMC6352714 DOI: 10.1016/j.celrep.2019.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/30/2018] [Accepted: 01/02/2019] [Indexed: 01/22/2023] Open
Abstract
It is generally thought that hippocampal neurons of perinatal rats and mice lack transport-functional K-Cl cotransporter KCC2, and that Cl- regulation is dominated by Cl- uptake via the Na-K-2Cl cotransporter NKCC1. Here, we demonstrate a robust enhancement of spontaneous hippocampal network events (giant depolarizing potentials [GDPs]) by the KCC2 inhibitor VU0463271 in neonatal rats and late-gestation, wild-type mouse embryos, but not in their KCC2-null littermates. VU0463271 increased the depolarizing GABAergic synaptic drive onto neonatal CA3 pyramidal neurons, increasing their spiking probability and synchrony during the rising phase of a GDP. Our data indicate that Cl- extrusion by KCC2 is involved in modulation of GDPs already at their developmental onset during the perinatal period in mice and rats.
Collapse
Affiliation(s)
- Inkeri Spoljaric
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Albert Spoljaric
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Martina Mavrovic
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Patricia Seja
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Martin Puskarjov
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, 00014 Helsinki, Finland
| | - Kai Kaila
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences and Neuroscience Center (HiLIFE), University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
39
|
Kubista H, Boehm S, Hotka M. The Paroxysmal Depolarization Shift: Reconsidering Its Role in Epilepsy, Epileptogenesis and Beyond. Int J Mol Sci 2019; 20:ijms20030577. [PMID: 30699993 PMCID: PMC6387313 DOI: 10.3390/ijms20030577] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 12/29/2022] Open
Abstract
Paroxysmal depolarization shifts (PDS) have been described by epileptologists for the first time several decades ago, but controversy still exists to date regarding their role in epilepsy. In addition to the initial view of a lack of such a role, seemingly opposing hypotheses on epileptogenic and anti-ictogenic effects of PDS have emerged. Hence, PDS may provide novel targets for epilepsy therapy. Evidence for the roles of PDS has often been obtained from investigations of the multi-unit correlate of PDS, an electrographic spike termed “interictal” because of its occurrence during seizure-free periods of epilepsy patients. Meanwhile, interictal spikes have been found to be associated with neuronal diseases other than epilepsy, e.g., Alzheimer’s disease, which may indicate a broader implication of PDS in neuropathologies. In this article, we give an introduction to PDS and review evidence that links PDS to pro- as well as anti-epileptic mechanisms, and to other types of neuronal dysfunction. The perturbation of neuronal membrane voltage and of intracellular Ca2+ that comes with PDS offers many conceivable pathomechanisms of neuronal dysfunction. Out of these, the operation of L-type voltage-gated calcium channels, which play a major role in coupling excitation to long-lasting neuronal changes, is addressed in detail.
Collapse
Affiliation(s)
- Helmut Kubista
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Stefan Boehm
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Matej Hotka
- Center of Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| |
Collapse
|
40
|
Lombardi A, Jedlicka P, Luhmann HJ, Kilb W. Giant Depolarizing Potentials Trigger Transient Changes in the Intracellular Cl - Concentration in CA3 Pyramidal Neurons of the Immature Mouse Hippocampus. Front Cell Neurosci 2018; 12:420. [PMID: 30515078 PMCID: PMC6255825 DOI: 10.3389/fncel.2018.00420] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/26/2018] [Indexed: 11/30/2022] Open
Abstract
Giant depolarizing potentials (GDPs) represent a typical spontaneous activity pattern in the immature hippocampus. GDPs are mediated by GABAergic and glutamatergic synaptic inputs and their initiation requires an excitatory GABAergic action, which is typical for immature neurons due to their elevated intracellular Cl- concentration ([Cl-]i). Because GABAA receptors are ligand-gated Cl- channels, activation of these receptors can potentially influence [Cl-]i. However, whether the GABAergic activity during GDPs influences [Cl-]i is unclear. To address this question we performed whole-cell and gramicidin-perforated patch-clamp recordings from visually identified CA3 pyramidal neurons in immature hippocampal slices of mice at postnatal days 4–7. These experiments revealed that the [Cl-]i of CA3 neurons displays a considerable heterogeneity, ranging from 13 to 70 mM (average 38.1 ± 3.2 mM, n = 36). In accordance with this diverse [Cl-]i, GDPs induced either Cl--effluxes or Cl--influxes. In high [Cl-]i neurons with a negative Cl--driving force (DFCl) the [Cl-]i decreased after a GDP by 12.4 ± 3.4 mM (n = 10), while in low [Cl-]i neurons with a positive DFCl [Cl-]i increased by 4.4 ± 0.9 mM (n = 6). Inhibition of GDP activity by application of the AMPA receptor antagonist CNQX led to a [Cl-]i decrease to 24.7 ± 2.9 mM (n = 8). We conclude from these results, that Cl--fluxes via GABAA receptors during GDPs induced substantial [Cl-]i changes and that this activity-dependent ionic plasticity in neuronal [Cl-]i contributes to the functional consequences of GABAergic responses, emphasizing the concept that [Cl-]i is a state- and compartment-dependent parameter of individual cells.
Collapse
Affiliation(s)
- Aniello Lombardi
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Peter Jedlicka
- Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany.,Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Werner Kilb
- Institute of Physiology, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
41
|
Cardin JA. Inhibitory Interneurons Regulate Temporal Precision and Correlations in Cortical Circuits. Trends Neurosci 2018; 41:689-700. [PMID: 30274604 PMCID: PMC6173199 DOI: 10.1016/j.tins.2018.07.015] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 01/16/2023]
Abstract
GABAergic interneurons, which are highly diverse, have long been thought to contribute to the timing of neural activity as well as to the generation and shaping of brain rhythms. GABAergic activity is crucial not only for entrainment of oscillatory activity across a neural population, but also for precise regulation of the timing of action potentials and the suppression of slow-timescale correlations. The diversity of inhibition provides the potential for flexible regulation of patterned activity, but also poses a challenge to identifying the elements of excitatory-inhibitory interactions underlying network engagement. This review highlights the key roles of inhibitory interneurons in spike correlations and brain rhythms, describes several scales on which GABAergic inhibition regulates timing in neural networks, and identifies potential consequences of inhibitory dysfunction.
Collapse
Affiliation(s)
- Jessica A Cardin
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA; Kavli Institute for Neuroscience, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
42
|
Reid CA, Rollo B, Petrou S, Berkovic SF. Can mutation‐mediated effects occurring early in development cause long‐term seizure susceptibility in genetic generalized epilepsies? Epilepsia 2018; 59:915-922. [DOI: 10.1111/epi.14077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Christopher Alan Reid
- The Florey Institute for Neuroscience and Mental Health The University of Melbourne Parkville Victoria Australia
| | - Ben Rollo
- The Florey Institute for Neuroscience and Mental Health The University of Melbourne Parkville Victoria Australia
| | - Steven Petrou
- The Florey Institute for Neuroscience and Mental Health The University of Melbourne Parkville Victoria Australia
| | - Samuel F. Berkovic
- Department of Medicine Epilepsy Research Centre Austin Health University of Melbourne Heidelberg Victoria Australia
| |
Collapse
|
43
|
Abstract
The muscarinic receptor agonist carbachol (CCh) can induce activity in the theta range (4-15 Hz) in the entorhinal cortex (EC), but the underlying network mechanisms remain unclear. Here, we investigated the interplay between interneurons and principal cells in the EC during CCh-induced theta-like field oscillations in an in vitro brain slice preparation using tetrodes. Field oscillations at 10.1 Hz (IQR = 9.5-10.9 Hz) occurred during bath application of CCh (100 μM; n = 32 experiments) and were associated with single-unit (n = 189) firing. Interneuron activity increased before principal cell activity at the onset of the oscillations and both interneurons and principal cells fired at specific oscillation phases with interneurons preceding principal cells, suggesting that interneurons modulate principal cell activity during such oscillations. The regularity of occurrence of CCh-induced oscillations was abolished by applying the GABAA receptor antagonist picrotoxin (100 μM; n = 13). These effects were accompanied by changes in firing with principal cells discharging action potentials before interneurons, along with a loss of preferred firing phase for principal cells in relation to the oscillation peaks. Blocking ionotropic glutamatergic transmission abolished CCh-induced field oscillations (n = 6), suggesting that ionotropic glutamatergic receptor signaling is necessary for their generation. Our results show that neuronal network interactions leading to CCh-induced theta-like field oscillations rest on the close interplay between interneurons and principal cells and that interneurons modulate principal cell activity during such oscillatory activity. Moreover, they underscore the role of ionotropic glutamatergic transmission in this type of oscillations.
Collapse
|