1
|
Peace ST, Johnson BC, Werth JC, Li G, Kaiser ME, Fukunaga I, Schaefer AT, Molnar AC, Cleland TA. Coherent olfactory bulb gamma oscillations arise from coupling independent columnar oscillators. J Neurophysiol 2024; 131:492-508. [PMID: 38264784 PMCID: PMC7615692 DOI: 10.1152/jn.00361.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/25/2024] Open
Abstract
Spike timing-based representations of sensory information depend on embedded dynamical frameworks within neuronal networks that establish the rules of local computation and interareal communication. Here, we investigated the dynamical properties of olfactory bulb circuitry in mice of both sexes using microelectrode array recordings from slice and in vivo preparations. Neurochemical activation or optogenetic stimulation of sensory afferents evoked persistent gamma oscillations in the local field potential. These oscillations arose from slower, GABA(A) receptor-independent intracolumnar oscillators coupled by GABA(A)-ergic synapses into a faster, broadly coherent network oscillation. Consistent with the theoretical properties of coupled-oscillator networks, the spatial extent of zero-phase coherence was bounded in slices by the reduced density of lateral interactions. The intact in vivo network, however, exhibited long-range lateral interactions that suffice in simulation to enable zero-phase gamma coherence across the olfactory bulb. The timing of action potentials in a subset of principal neurons was phase-constrained with respect to evoked gamma oscillations. Coupled-oscillator dynamics in olfactory bulb thereby enable a common clock, robust to biological heterogeneities, that is capable of supporting gamma-band spike synchronization and phase coding across the ensemble of activated principal neurons.NEW & NOTEWORTHY Odor stimulation evokes rhythmic gamma oscillations in the field potential of the olfactory bulb, but the dynamical mechanisms governing these oscillations have remained unclear. Establishing these mechanisms is important as they determine the biophysical capacities of the bulbar circuit to, for example, maintain zero-phase coherence across a spatially extended network, or coordinate the timing of action potentials in principal neurons. These properties in turn constrain and suggest hypotheses of sensory coding.
Collapse
Affiliation(s)
- Shane T Peace
- Department of Neurobiology & Behavior, Cornell University, Ithaca, New York, United States
| | - Benjamin C Johnson
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York, United States
| | - Jesse C Werth
- Department of Psychology, Cornell University, Ithaca, New York, United States
| | - Guoshi Li
- Department of Psychology, Cornell University, Ithaca, New York, United States
| | - Martin E Kaiser
- Behavioural Neurophysiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Izumi Fukunaga
- Behavioural Neurophysiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, London, United Kingdom
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
| | - Andreas T Schaefer
- Behavioural Neurophysiology, Max Planck Institute for Medical Research, Heidelberg, Germany
- Neurophysiology of Behaviour Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, United Kingdom
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Alyosha C Molnar
- Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York, United States
| | - Thomas A Cleland
- Department of Psychology, Cornell University, Ithaca, New York, United States
| |
Collapse
|
2
|
Prytkova I, Liu Y, Fernando M, Gameiro-Ros I, Popova D, Kamarajan C, Xuei X, Chorlian DB, Edenberg HJ, Tischfield JA, Porjesz B, Pang ZP, Hart RP, Goate A, Slesinger PA. Upregulated GIRK2 counteracts ethanol-induced changes in excitability & respiration in human neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.22.533236. [PMID: 36993693 PMCID: PMC10055374 DOI: 10.1101/2023.03.22.533236] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Genome-wide association analysis (GWAS) of electroencephalographic endophenotypes for alcohol use disorder (AUD) has identified non-coding polymorphisms within the KCNJ6 gene. KCNJ6 encodes GIRK2, a subunit of a G protein-coupled inwardly-rectifying potassium channel that regulates neuronal excitability. How changes in GIRK2 affect human neuronal excitability and the response to repeated ethanol exposure is poorly understood. Here, we studied the effect of upregulating KCNJ6 using an isogenic approach with human glutamatergic neurons derived from induced pluripotent stem cells (male and female donors). Using multi-electrode-arrays, population calcium imaging, single-cell patch-clamp electrophysiology, and mitochondrial stress tests, we find that elevated GIRK2 acts in concert with 7-21 days of ethanol exposure to inhibit neuronal activity, to counteract ethanol-induced increases in glutamate response, and to promote an increase intrinsic excitability. Furthermore, elevated GIRK2 prevented ethanol-dependent changes in basal and activity-dependent mitochondrial respiration. These data support a role for GIRK2 in mitigating the effects of ethanol and a previously unknown connection to mitochondrial function in human glutamatergic neurons. SIGNIFICANCE STATEMENT Alcohol use disorder (AUD) is a major health problem that has worsened since COVID, affecting over 100 million people worldwide. While it is known that heritability contributes to AUD, specific genes and their role in neuronal function remain poorly understood, especially in humans. In the current manuscript, we focused on the inwardly-rectifying potassium channel GIRK2, which has been identified in an AUD-endophenotype genome-wide association study. We used human excitatory neurons derived from healthy donors to study the impact of GIRK2 expression. Our results reveal that elevated GIRK2 counteracts ethanol-induced increases in glutamate response and intracellular calcium, as well as deficits in activity-dependent mitochondrial respiration. The role of GIRK2 in mitigating ethanol-induced hyper-glutamatergic and mitochondrial offers therapeutic promise for treating AUD.
Collapse
|
3
|
Moran AK, Eiting TP, Wachowiak M. Circuit Contributions to Sensory-Driven Glutamatergic Drive of Olfactory Bulb Mitral and Tufted Cells During Odorant Inhalation. Front Neural Circuits 2021; 15:779056. [PMID: 34776878 PMCID: PMC8578712 DOI: 10.3389/fncir.2021.779056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022] Open
Abstract
In the mammalian olfactory bulb (OB), mitral/tufted (MT) cells respond to odorant inhalation with diverse temporal patterns that are thought to encode odor information. Much of this diversity is already apparent at the level of glutamatergic input to MT cells, which receive direct, monosynaptic excitatory input from olfactory sensory neurons (OSNs) as well as a multisynaptic excitatory drive via glutamatergic interneurons. Both pathways are also subject to modulation by inhibitory circuits in the glomerular layer of the OB. To understand the role of direct OSN input vs. postsynaptic OB circuit mechanisms in shaping diverse dynamics of glutamatergic drive to MT cells, we imaged glutamate signaling onto MT cell dendrites in anesthetized mice while blocking multisynaptic excitatory drive with ionotropic glutamate receptor antagonists and blocking presynaptic modulation of glutamate release from OSNs with GABAB receptor antagonists. GABAB receptor blockade increased the magnitude of inhalation-linked glutamate transients onto MT cell apical dendrites without altering their inhalation-linked dynamics, confirming that presynaptic inhibition impacts the gain of OSN inputs to the OB. Surprisingly, blockade of multisynaptic excitation only modestly impacted glutamatergic input to MT cells, causing a slight reduction in the amplitude of inhalation-linked glutamate transients in response to low odorant concentrations and no change in the dynamics of each transient. The postsynaptic blockade also modestly impacted glutamate dynamics over a slower timescale, mainly by reducing adaptation of the glutamate response across multiple inhalations of odorant. These results suggest that direct glutamatergic input from OSNs provides the bulk of excitatory drive to MT cells, and that diversity in the dynamics of this input may be a primary determinant of the temporal diversity in MT cell responses that underlies odor representations at this stage.
Collapse
Affiliation(s)
- Andrew K. Moran
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, United States
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Thomas P. Eiting
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Matt Wachowiak
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, United States
- Department of Neurobiology, University of Utah School of Medicine, Salt Lake City, UT, United States
| |
Collapse
|
4
|
Lothmann K, Amunts K, Herold C. The Neurotransmitter Receptor Architecture of the Mouse Olfactory System. Front Neuroanat 2021; 15:632549. [PMID: 33967704 PMCID: PMC8102831 DOI: 10.3389/fnana.2021.632549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
The uptake, transmission and processing of sensory olfactory information is modulated by inhibitory and excitatory receptors in the olfactory system. Previous studies have focused on the function of individual receptors in distinct brain areas, but the receptor architecture of the whole system remains unclear. Here, we analyzed the receptor profiles of the whole olfactory system of adult male mice. We examined the distribution patterns of glutamatergic (AMPA, kainate, mGlu2/3, and NMDA), GABAergic (GABAA, GABAA(BZ), and GABAB), dopaminergic (D1/5) and noradrenergic (α1 and α2) neurotransmitter receptors by quantitative in vitro receptor autoradiography combined with an analysis of the cyto- and myelo-architecture. We observed that each subarea of the olfactory system is characterized by individual densities of distinct neurotransmitter receptor types, leading to a region- and layer-specific receptor profile. Thereby, the investigated receptors in the respective areas and strata showed a heterogeneous expression. Generally, we detected high densities of mGlu2/3Rs, GABAA(BZ)Rs and GABABRs. Noradrenergic receptors revealed a highly heterogenic distribution, while the dopaminergic receptor D1/5 displayed low concentrations, except in the olfactory tubercle and the dorsal endopiriform nucleus. The similarities and dissimilarities of the area-specific multireceptor profiles were analyzed by a hierarchical cluster analysis. A three-cluster solution was found that divided the areas into the (1) olfactory relay stations (main and accessory olfactory bulb), (2) the olfactory cortex (anterior olfactory cortex, dorsal peduncular cortex, taenia tecta, piriform cortex, endopiriform nucleus, entorhinal cortex, orbitofrontal cortex) and the (3) olfactory tubercle, constituting its own cluster. The multimodal receptor-architectonic analysis of each component of the olfactory system provides new insights into its neurochemical organization and future possibilities for pharmaceutic targeting.
Collapse
Affiliation(s)
- Kimberley Lothmann
- C. & O. Vogt-Institute of Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- C. & O. Vogt-Institute of Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine INM-1, Research Centre Jülich, Jülich, Germany
| | - Christina Herold
- C. & O. Vogt-Institute of Brain Research, Medical Faculty, University Hospital Düsseldorf, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Li Q, Jin R, Zhang S, Sun X, Wu J. Group II metabotropic glutamate receptor agonist promotes retinal ganglion cell survival by reducing neuronal excitotoxicity in a rat chronic ocular hypertension model. Neuropharmacology 2020; 170:108016. [PMID: 32101763 DOI: 10.1016/j.neuropharm.2020.108016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/24/2020] [Accepted: 02/21/2020] [Indexed: 02/06/2023]
Abstract
Glaucoma, the second leading cause of irreversible blindness worldwide, is characterized by the selective death of retinal ganglion cells (RGCs). The group II metabotropic glutamate receptor (mGluR II) activation has been linked to RGC survival, however, the mechanism by which it promotes neuronal survival remains poorly defined. In the present work, we show that extracellular application of LY341495, an mGluR II antagonist could increase the RGC firing frequency, suggesting that activation of mGluR II by endogenously released glutamate could modulate RGC excitability. LY354740, an mGluR II agonist, significantly decreased RGC excitability and the reduced presynaptic excitatory inputs and post-synaptic Ca2+-permeable currents mediated the LY354740-induced effects. By using a well-characterized in vivo male Sprague-Dawley rat glaucoma model, we further demonstrate that in the early stage of experimental glaucoma, the expression of mGluR II dimer-formed protein was significantly reduced, and pre-activation of mGluR II by intravitreal injection of LY354740 before establishment of the glaucoma model could effectively reduce excitatory inputs, thereby reversing hyperexcitability induced by elevated intraocular pressure. Furthermore, LY354740 could increase the expression level of brain-derived neurotrophic factor in the glaucomatous retinas, further protecting RGCs. Our study indicates that the abnormal expression of mGluR II may accelerate RGC apoptosis in glaucoma, and demonstrates that mGluR II agonist LY354740 can be used as a novel method to counter RGC apoptosis in glaucoma.
Collapse
Affiliation(s)
- Qian Li
- Eye Institute, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Ruiri Jin
- Department of Gastroenterology, Songjiang Central Hospital, Shanghai, 201600, China
| | - Shenghai Zhang
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China
| | - Xinghuai Sun
- Eye Institute, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| | - Jihong Wu
- Eye Institute, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
| |
Collapse
|
6
|
López-Cruz A, Sordillo A, Pokala N, Liu Q, McGrath PT, Bargmann CI. Parallel Multimodal Circuits Control an Innate Foraging Behavior. Neuron 2019; 102:407-419.e8. [PMID: 30824353 PMCID: PMC9161785 DOI: 10.1016/j.neuron.2019.01.053] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/27/2018] [Accepted: 01/25/2019] [Indexed: 11/20/2022]
Abstract
Foraging strategies emerge from genetically encoded programs that are similar across animal species. Here, we examine circuits that control a conserved foraging state, local search behavior after food removal, in Caenorhabditis elegans. We show that local search is triggered by two parallel groups of chemosensory and mechanosensory glutamatergic neurons that detect food-related cues. Each group of sensory neurons suppresses distinct integrating neurons through a G protein-coupled metabotropic glutamate receptor, MGL-1, to release local search. The chemosensory and mechanosensory modules are separate and redundant; glutamate release from either module can drive the full behavior. A transition from local search to global search over several minutes after food removal is associated with two changes in circuit function. First, the spontaneous activity of sensory neurons falls. Second, the motor pattern generator for local search becomes less responsive to sensory input. This multimodal, distributed short-term food memory provides robust control of an innate behavior.
Collapse
Affiliation(s)
- Alejandro López-Cruz
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Aylesse Sordillo
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Navin Pokala
- New York Institute of Technology, Old Westbury, NY 11568, USA
| | - Qiang Liu
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA
| | - Patrick T McGrath
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Cornelia I Bargmann
- Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, NY 10065, USA; Chan Zuckerberg Initiative, Redwood City, CA 94063, USA.
| |
Collapse
|
7
|
Laing BT, Li P, Schmidt CA, Bunner W, Yuan Y, Landry T, Prete A, McClung JM, Huang H. AgRP/NPY Neuron Excitability Is Modulated by Metabotropic Glutamate Receptor 1 During Fasting. Front Cell Neurosci 2018; 12:276. [PMID: 30233321 PMCID: PMC6129575 DOI: 10.3389/fncel.2018.00276] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022] Open
Abstract
The potential to control feeding behavior via hypothalamic AgRP/NPY neurons has led to many approaches to modulate their excitability—particularly by glutamatergic input. In the present study using NPY-hrGFP reporter mice, we visualize AgRP/NPY neuronal metabotropic glutamate receptor 1 (mGluR1) expression and test the effect of fasting on mGluR1 function. Using the pharmacological agonist dihydroxyphenylglycine (DHPG), we demonstrate the enhanced capacity of mGluR1 to drive firing of AgRP/NPY neurons after overnight fasting, while antagonist 3-MATIDA reduces firing. Further, under synaptic blockade we demonstrate that DHPG acts directly on AgRP/NPY neurons to create a slow inward current. Using an in vitro approach, we show that emulation of intracellular signals associated with fasting by forskolin enhances DHPG induced phosphorylation of extracellularly regulated-signal kinase (1/2) in GT1-7 cell culture. We show in vivo that blocking mGluR1 by antagonist 3-MATIDA lowers fasting induced refeeding. In summary, this study identifies a novel layer of regulation on AgRP/NPY neurons integrated with whole body energy balance.
Collapse
Affiliation(s)
- Brenton T Laing
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, NC, United States.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Peixin Li
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, NC, United States.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Cameron A Schmidt
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States.,Department of Physiology, East Carolina University, Greenville, NC, United States
| | - Wyatt Bunner
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, NC, United States.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Yuan Yuan
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, NC, United States.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Taylor Landry
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, NC, United States.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Amber Prete
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States
| | - Joseph M McClung
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States.,Department of Physiology, East Carolina University, Greenville, NC, United States
| | - Hu Huang
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, NC, United States.,East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, United States.,Department of Physiology, East Carolina University, Greenville, NC, United States
| |
Collapse
|