1
|
Han J, Zhang J, Yao X, Meng M, Wan Y, Cheng Y. Mechanism of HDAC1 Regulating Iron Overload-Induced Neuronal Oxidative Damage After Cerebral Hemorrhage. Mol Neurobiol 2024; 61:7549-7566. [PMID: 38403721 DOI: 10.1007/s12035-024-04000-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Iron overload is associated with brain edema in the context of intracerebral hemorrhage (ICH). Here, we investigated the role of histone deacetylase 1 (HDAC1) in mediating oxidative damage induced by iron overload after ICH. Utilizing ICH mouse models and FeCl2-induced HT-22 cell models, we assessed HDAC1 expression and its impact on iron overload and oxidative damage. We examined the levels of Kruppel like factor 4 (KLF4), RAN binding protein 9 (RANBP9), as well as the acetylation levels of HDAC1 and histones H3 and H4 in the KLF4 promoter, and the KLF4 level in the RANBP9 promoter. Additionally, we investigated the binding relationships between KLF4 and the RANBP9 promoter, HDAC1 and miR-129-5p. Our results demonstrated elevated HDAC1 expression in ICH mice and FeCl2-induced HT-22 cells. HDAC1 silencing improved neurological function in mice, reduced brain edema, and alleviated iron overload and oxidative damage in vitro. HDAC1 downregulated KLF4 expression by reducing acetylation levels in the KLF4 promoter, leading to decreased KLF4 enrichment in the RANBP9 promoter and increased RANBP9 expression. Furthermore, upstream miR-129-5p inhibited HDAC1, and the downregulation of miR-129-5p mitigated the protective effect of HDAC1 silencing. Collectively, our findings highlight the significant role of HDAC1 in exacerbating iron overload-induced oxidative damage following ICH and its regulation by miR-129-5p.
Collapse
Affiliation(s)
- Jing Han
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Jinnan Zhang
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Xiaojuan Yao
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Meng Meng
- Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, 300000, China
| | - Yahui Wan
- Department of Neurology, Tianjin Medical University General Hospital Airport Hospital, Tianjin, 300000, China
| | - Yan Cheng
- Department of Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
2
|
Zhang J, Gu Y, Sun W, Yu L, Li T. Tetrahydrocurcumin Protects Against GSK3β/PTEN/PI3K/Akt-Mediated Neuroinflammatory Responses and Microglial Polarization Following Traumatic Brain Injury. Mol Neurobiol 2024; 61:7026-7036. [PMID: 38368289 DOI: 10.1007/s12035-024-04034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Tetrahydrocurcumin (THC) and microglial polarization play crucial roles in neuroprotection during traumatic brain injury (TBI). However, whether THC regulates microglial polarization in TBI is unknown. Thus, we intended to analyze the functions and mechanism of THC in nerve injury after TBI via the regulation of microglial polarization. A TBI rat model was established, and modified neurological function score (mNSS), brain water content, Nissl staining, and Fluoro-Jade B (FJB) staining were used to evaluate neurological function. The expression of the M1-linked markers CD16 and CD86, as well as the M2-associated markers CD206 and YM-1, was analyzed via qRT-PCR, western blotting, and immunofluorescence. The levels of inflammatory cytokines were assessed via ELISA. Primary microglia were isolated from the brain and treated with lipopolysaccharide (LPS) to induce injury. TUNEL staining was used to measure primary microglial apoptosis. The expression of GSK3β, PTEN, and PI3K/Akt pathway proteins was detected via western blotting. TBI induced nerve injury, while THC improved neurological function recovery after TBI. Further analysis indicated that THC enhanced M2 microglial polarization and attenuated the inflammatory reaction mediated by microglia both in vitro and in vivo. Moreover, we found that THC promoted the M2 microglial phenotype through upregulating GSK3β expression. Additionally, we proved that GSK3β activated the PI3K/Akt pathway by phosphorylating PTEN. In conclusion, we demonstrated that THC protected against nerve injury after TBI via microglial polarization via the GSK3B/PTEN/PI3K/Akt signaling axis, suggesting the potential of THC for TBI treatment by promoting microglial M2 polarization.
Collapse
Affiliation(s)
- Jie Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou, 215500, People's Republic of China
| | - Yue Gu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Wenxue Sun
- Jining First People's Hospital, Jining Medical University, Jining, 272000, People's Republic of China
| | - Lisha Yu
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou, 215500, People's Republic of China
| | - Tushuai Li
- Wuxi School of Medicine, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, 214122, People's Republic of China.
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, 214013, People's Republic of China.
| |
Collapse
|
3
|
Zhang Q, Dai J, Lin Y, Li M. Isobavachalcone alleviates ischemic stroke by suppressing HDAC1 expression and improving M2 polarization. Brain Res Bull 2024; 211:110944. [PMID: 38604377 DOI: 10.1016/j.brainresbull.2024.110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Ischemic stroke is a serious cerebrovascular condition. Isobavachalcone (ISO) has been documented to exhibit an anti-inflammatory effect across a variety of diseases; however, its protective impact on ischemic stroke remains unexplored. In this study, we evaluated the influence of ISO in both transient middle cerebral artery occlusion/reperfusion (tMCAO/R) rat models and oxygen-glucose deprivation/reperfusion (OGD/R) cell models. We observed that pretreatment with 50 mg/kg ISO diminished the volume of brain infarction, reduced brain edema, and ameliorated neurological deficits in rats. A reduction in Nissl bodies was noted in the tMCAO/R group, which was reversed following treatment with 50 mg/kg ISO. TUNEL/NeuN double staining revealed a decrease in TUNEL-positive cells in tMCAO/R rats treated with ISO. Furthermore, ISO treatment suppressed the expression of cleaved caspase-3 and BAX, while elevating the expression of BCL-2 in tMCAO/R rats. The levels of CD86 and iNOS were elevated in tMCAO/R rats; conversely, ISO treatment enhanced the expression of CD206 and Arg-1. Additionally, the expression of TNF-α, IL-6, and IL-1β was elevated in tMCAO/R rats, whereas ISO treatment counteracted this effect. ISO treatment also increased the expression of TGF-β and IL-10 in the ischemic penumbra of tMCAO/R rats. It was found that ISO treatment hindered microglial M1 polarization and favored M2 polarization. Histone Deacetylase 1 (HDAC1) is the downstream target protein of ISO, with ISO treatment resulting in decreased HDAC1 expression in both tMCAO/R rats and OGD/R-induced cells. Overexpression of HDAC1 was shown to promote microglial M1 polarization and inhibit M2 polarization in OGD/R+ISO cells. Overall, ISO treatment mitigated brain damage following ischemic stroke by promoting M2 polarization and attenuated ischemic injury by repressing HDAC1 expression.
Collapse
Affiliation(s)
- Qiannan Zhang
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Junting Dai
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yongzhong Lin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China.
| | - Miao Li
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China.
| |
Collapse
|
4
|
Davis CK, Arruri V, Joshi P, Vemuganti R. Non-pharmacological interventions for traumatic brain injury. J Cereb Blood Flow Metab 2024; 44:641-659. [PMID: 38388365 PMCID: PMC11197135 DOI: 10.1177/0271678x241234770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Heterogeneity and variability of symptoms due to the type, site, age, sex, and severity of injury make each case of traumatic brain injury (TBI) unique. Considering this, a universal treatment strategy may not be fruitful in managing outcomes after TBI. Most of the pharmacological therapies for TBI aim at modifying a particular pathway or molecular process in the sequelae of secondary injury rather than a holistic approach. On the other hand, non-pharmacological interventions such as hypothermia, hyperbaric oxygen, preconditioning with dietary adaptations, exercise, environmental enrichment, deep brain stimulation, decompressive craniectomy, probiotic use, gene therapy, music therapy, and stem cell therapy can promote healing by modulating multiple neuroprotective mechanisms. In this review, we discussed the major non-pharmacological interventions that are being tested in animal models of TBI as well as in clinical trials. We evaluated the functional outcomes of various interventions with an emphasis on the links between molecular mechanisms and outcomes after TBI.
Collapse
Affiliation(s)
- Charles K Davis
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Pallavi Joshi
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| |
Collapse
|
5
|
Wang D, Wang S, Zhu Q, Shen Z, Yang G, Chen Y, Luo C, Du Y, Hu Y, Wang W, Yang J. Prospects for Nerve Regeneration and Gene Therapy in the Treatment of Traumatic Brain Injury. J Mol Neurosci 2023; 73:578-586. [PMID: 37458921 DOI: 10.1007/s12031-023-02144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/12/2023] [Indexed: 09/24/2023]
Abstract
Traumatic brain injury (TBI) is a prevalent neurological disorder and a leading cause of death and disability worldwide. The high mortality rates result in a tremendous burden on society and families in terms of public health and economic costs. Despite advances in biomedical research, treatment options for TBI still remain limited, and there is no effective therapy to restore the structure and function of the injured brain. Regrettably, due to the excessive heterogeneity of TBI and the lack of objective and reliable efficacy evaluation indicators, no proven therapeutic drugs or drugs with clear benefits on functional outcomes have been successfully developed to date. Therefore, it is urgent to explore new therapeutic approaches to protect or regenerate the injured brain from different perspectives. In this review, we first provide a brief overview of the causes and current status of TBI and then summarize the preclinical and clinical research status of cutting-edge treatment methods, including nerve regeneration therapy and gene therapy, with the aim of providing valuable references for effective therapeutic strategies for TBI.
Collapse
Affiliation(s)
- Daliang Wang
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China
| | - Shengguo Wang
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China
| | - Qunchao Zhu
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China
| | - Zhe Shen
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China
| | - Guohuan Yang
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China
| | - Yanfei Chen
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China
| | - Chen Luo
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China
| | - Yanglin Du
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China
| | - Yelang Hu
- Biological Medicine Research and Development Center, Yangtze Delta of Zhejiang, Hangzhou, 314006, Zhejiang, China
| | - Wenmin Wang
- Biological Medicine Research and Development Center, Yangtze Delta of Zhejiang, Hangzhou, 314006, Zhejiang, China
| | - Jie Yang
- Department of Critical Care Medicine, The First People Hospital of Jiashan, Jiaxing, 314199, Zhejiang, China.
| |
Collapse
|
6
|
Zeng CW. Macrophage–Neuroglia Interactions in Promoting Neuronal Regeneration in Zebrafish. Int J Mol Sci 2023; 24:ijms24076483. [PMID: 37047456 PMCID: PMC10094936 DOI: 10.3390/ijms24076483] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
The human nervous system exhibits limited regenerative capabilities following damage to the central nervous system (CNS), leading to a scarcity of effective treatments for nerve function recovery. In contrast, zebrafish demonstrate remarkable regenerative abilities, making them an ideal model for studying the modulation of inflammatory processes after injury. Such research holds significant translational potential to enhance our understanding of recovery from damage and disease. Macrophages play a crucial role in tissue repair and regeneration, with their subpopulations indirectly promoting axonal regeneration through developmental signals. The AP-1 signaling pathway, mediated by TNF/Tnfrsf1a, can elevate HDAC1 expression and facilitate regeneration. Furthermore, following spinal cord injury (SCI), pMN progenitors have been observed to switch between oligodendrocyte and motor neuron fates, with macrophage-secreted TNF-α potentially regulating the differentiation of ependymal–radial glia progenitors and oligodendrocytes. Radial glial cells (RGs) are also essential for CNS regeneration in zebrafish, as they perform neurogenesis and gliogenesis, with specific RG subpopulations potentially existing for the generation of neurons and oligodendrocytes. This review article underscores the critical role of macrophages and their subpopulations in tissue repair and regeneration, focusing on their secretion of TNF-α, which promotes axonal regeneration in zebrafish. We also offer insights into the molecular mechanisms underlying TNF-α’s ability to facilitate axonal regeneration and explore the potential of pMN progenitor cells and RGs following SCI in zebrafish. The review concludes with a discussion of various unresolved questions in the field, and ideas are suggested for future research. Studying innate immune cell interactions with neuroglia following injury may lead to the development of novel strategies for treating the inflammatory processes associated with regenerative medicine, which are commonly observed in injury and disease.
Collapse
|
7
|
Wang D, Zhang S, Ge X, Yin Z, Li M, Guo M, Hu T, Han Z, Kong X, Li D, Zhao J, Wang L, Liu Q, Chen F, Lei P. Mesenchymal stromal cell treatment attenuates repetitive mild traumatic brain injury-induced persistent cognitive deficits via suppressing ferroptosis. J Neuroinflammation 2022; 19:185. [PMID: 35836233 PMCID: PMC9281149 DOI: 10.1186/s12974-022-02550-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
The incidence of repetitive mild traumatic brain injury (rmTBI), one of the main risk factors for predicting neurodegenerative disorders, is increasing; however, its underlying mechanism remains unclear. As suggested by several studies, ferroptosis is possibly related to TBI pathophysiology, but its effect on rmTBI is rarely studied. Mesenchymal stromal cells (MSCs), the most studied experimental cells in stem cell therapy, exert many beneficial effects on diseases of the central nervous system, yet evidence regarding the role of MSCs in ferroptosis and post-rmTBI neurodegeneration is unavailable. Our study showed that rmTBI resulted in time-dependent alterations in ferroptosis-related biomarker levels, such as abnormal iron metabolism, glutathione peroxidase (GPx) inactivation, decrease in GPx4 levels, and increase in lipid peroxidation. Furthermore, MSC treatment markedly decreased the aforementioned rmTBI-mediated alterations, neuronal damage, pathological protein deposition, and improved cognitive function compared with vehicle control. Similarly, liproxstatin-1, a ferroptosis inhibitor, showed similar effects. Collectively, based on the above observations, MSCs ameliorate cognitive impairment following rmTBI, partially via suppressing ferroptosis, which could be a therapeutic target for rmTBI.
Collapse
Affiliation(s)
- Dong Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shishuang Zhang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xintong Ge
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yin
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Meimei Li
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengtian Guo
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Tianpeng Hu
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoli Han
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaodong Kong
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Dai Li
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Zhao
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Wang
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiang Liu
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Fanglian Chen
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Lei
- Haihe Laboratory of Cell Ecosystem, Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China. .,Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
8
|
Ma S, Zhou X, Wang Y, Li Z, Wang Y, Shi J, Guan F. MG53 protein rejuvenates hUC-MSCs and facilitates their therapeutic effects in AD mice by activating Nrf2 signaling pathway. Redox Biol 2022; 53:102325. [PMID: 35525026 PMCID: PMC9079718 DOI: 10.1016/j.redox.2022.102325] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/18/2022] Open
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) transplantation is a promising therapy for Alzheimer's disease (AD). However, hUC-MSCs cultured in vitro easily exhibit replicative senescence, which restricts their application. Although MG53 protein demonstrates multiple roles for a variety of cells and tissues repair, it remains unknown whether MG53 could rejuvenate senescent hUC-MSCs and enhance their efficacy in AD model. Here, we firstly presented that MG53 reinstated senescent hUC-MSCs via the activation of the Nrf2 signaling pathway by increasing cell proliferation and migration, ameliorating senescence and oxidative stress, and decreasing the release of senescence-associated secretory phenotype. In vivo studies showed that MG53 treatment improved the therapeutic effect of senescent hUC-MSCs in AD mice. Furthermore, MG53 combined with young hUC-MSCs transplantation alleviated cognitive deficit and depression-like behavior in AD mice, reduced Aβ deposition and Tau phosphorylation, promoted neurogenesis, and inhibited glia cells activation and oxidative stress by activating the Nrf2 signaling. Moreover, these neuroprotective effects mediated by MG53 and hUC-MSCs were partly reversed by Brusatol, a specific inhibitor of Nrf2 signaling. Taken together, our study revealed that MG53 could rejuvenate senescent hUC-MSCs and facilitate their efficacy in AD mice at least partly through activating Nrf2 signaling pathway, which suggest that the combined therapy of MG53 and hUC-MSCs may be a novel and effective strategy for AD.
Collapse
Affiliation(s)
- Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China; NHC Key Laboratory of Birth Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450002, Henan, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052, China.
| | - Xinkui Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yaping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zhe Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yingying Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jijing Shi
- Key Medical Laboratory of Stem Cell Transformation and Application, The First People's Hospital of Zhengzhou, Zhengzhou, 450000, Henan, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China; NHC Key Laboratory of Birth Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450002, Henan, China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, 450052, China; Key Medical Laboratory of Stem Cell Transformation and Application, The First People's Hospital of Zhengzhou, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
9
|
Mesenchymal Stem Cell Therapy: A Potential Treatment Targeting Pathological Manifestations of Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4645021. [PMID: 35757508 PMCID: PMC9217616 DOI: 10.1155/2022/4645021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/30/2022] [Indexed: 01/02/2023]
Abstract
Traumatic brain injury (TBI) makes up a large proportion of acute brain injuries and is a major cause of disability globally. Its complicated etiology and pathogenesis mainly include primary injury and secondary injury over time, which can cause cognitive deficits, physical disabilities, mood changes, and impaired verbal communication. Recently, mesenchymal stromal cell- (MSC-) based therapy has shown significant therapeutic potential to target TBI-induced pathological processes, such as oxidative stress, neuroinflammation, apoptosis, and mitochondrial dysfunction. In this review, we discuss the main pathological processes of TBI and summarize the underlying mechanisms of MSC-based TBI treatment. We also discuss research progress in the field of MSC therapy in TBI as well as major shortcomings and the great potential shown.
Collapse
|
10
|
Pischiutta F, Caruso E, Lugo A, Cavaleiro H, Stocchetti N, Citerio G, Salgado A, Gallus S, Zanier ER. Systematic review and meta-analysis of preclinical studies testing mesenchymal stromal cells for traumatic brain injury. NPJ Regen Med 2021; 6:71. [PMID: 34716332 PMCID: PMC8556393 DOI: 10.1038/s41536-021-00182-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are widely used in preclinical models of traumatic brain injury (TBI). Results are promising in terms of neurological improvement but are hampered by wide variability in treatment responses. We made a systematic review and meta-analysis: (1) to assess the quality of evidence for MSC treatment in TBI rodent models; (2) to determine the effect size of MSCs on sensorimotor function, cognitive function, and anatomical damage; (3) to identify MSC-related and protocol-related variables associated with greater efficacy; (4) to understand whether MSC manipulations boost therapeutic efficacy. The meta-analysis included 80 studies. After TBI, MSCs improved sensorimotor and cognitive deficits and reduced anatomical damage. Stratified meta-analysis on sensorimotor outcome showed similar efficacy for different MSC sources and for syngeneic or xenogenic transplants. Efficacy was greater when MSCs were delivered in the first-week post-injury, and when implanted directly into the lesion cavity. The greatest effect size was for cells embedded in matrices or for MSC-derivatives. MSC therapy is effective in preclinical TBI models, improving sensorimotor, cognitive, and anatomical outcomes, with large effect sizes. These findings support clinical studies in TBI.
Collapse
Affiliation(s)
- Francesca Pischiutta
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Enrico Caruso
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Lugo
- Laboratory of Lifestyle Epidemiology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Helena Cavaleiro
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Stemmatters, Biotechnology and Regenerative Medicine, Guimarães, Portugal
| | - Nino Stocchetti
- Neuroscience Intensive Care Unit, Department of Anesthesia and Critical Care, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplants, University of Milan, Milan, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - António Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Silvano Gallus
- Laboratory of Lifestyle Epidemiology, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elisa R Zanier
- Laboratory of Acute Brain Injury and Therapeutic Strategies, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
11
|
Ma S, Zhou J, Huang T, Zhang Z, Xing Q, Zhou X, Zhang K, Yao M, Cheng T, Wang X, Wen X, Guan F. Sodium alginate/collagen/stromal cell-derived factor-1 neural scaffold loaded with BMSCs promotes neurological function recovery after traumatic brain injury. Acta Biomater 2021; 131:185-197. [PMID: 34217903 DOI: 10.1016/j.actbio.2021.06.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 12/16/2022]
Abstract
Stem cell therapy is promising for neural repair in devastating traumatic brain injury (TBI). However, the low survival and differentiation rates of transplanted stem cells are main obstacles to efficient stem cell therapy in TBI. Stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4 are key factors that regulate the survival, recruitment, and differentiation of stem cells. Herein, we synthesized a sodium alginate (SA)/collagen type I (Col)/SDF-1 hydrogel and investigated whether the SA/Col/SDF-1 hydrogel loaded with bone marrow-derived mesenchymal stem cells (BMSCs) had therapeutic effects on a TBI model. Our results showed that the SA/Col/SDF-1 scaffold could stably release SDF-1 and provide biocompatible and biodegradable microenvironment for the survival, migration, and neuronal differentiation of BMSCs in vitro. In a rat model of TBI, the SA/Col/SDF-1 hydrogel loaded with BMSCs significantly ameliorated motor and cognition dysfunction and relieved anxiety and depressive-like behaviors. In addition, the BMSCs/SA/Col/SDF-1 scaffold reduced brain lesions and neuronal cell death and mitigated neuroinflammation. Further studies demonstrated that the BMSCs/SA/Col/SDF-1 hydrogel promoted the migration of BMSCs in the lesions and partly enhanced neurogenesis by activating the SDF-1/CXCR4-mediated FAK/PI3K/AKT pathway. Taken together, our results indicate that the SA/Col/SDF-1 scaffold loaded with BMSCs exerts neuroreparative effects in a TBI rat model, and thus, it may serve as an alternative neural regeneration scaffold for brain injury repair. STATEMENT OF SIGNIFICANCE: Hydrogel facilitates the biological behaviors of transplanted stem cells for tissue regeneration. In this study, we synthesized sodium alginate (SA)/collagen type I (Col)/ scaffold to simultaneously deliver stromal cell derived factor-1 (SDF-1) and bone marrow mesenchymal stem cells (BMSCs) in a rat model of traumatic brain injury (TBI). We found that the SA/Col/SDF-1 hydrogel could continuously release SDF-1 and was conducive to the survival, migration and neuronal differentiation of BMSCs in vitro. In addition, the SA/Col/SDF-1 hydrogel loaded with BMSCs significantly ameliorated neurological deficits, mitigated neuroinflammation, promoted the recruitment of BMSCs and enhanced neurogenesis in TBI partly by activating the SDF-1/CXCR4-mediated FAK/PI3K/AKT pathway. Our results may serve as an alternative neural regeneration strategy for brain injury.
Collapse
|
12
|
Toutonji A, Mandava M, Guglietta S, Tomlinson S. Chronic complement dysregulation drives neuroinflammation after traumatic brain injury: a transcriptomic study. Acta Neuropathol Commun 2021; 9:126. [PMID: 34281628 PMCID: PMC8287781 DOI: 10.1186/s40478-021-01226-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Activation of the complement system propagates neuroinflammation and brain damage early and chronically after traumatic brain injury (TBI). The complement system is complex and comprises more than 50 components, many of which remain to be characterized in the normal and injured brain. Moreover, complement therapeutic studies have focused on a limited number of histopathological outcomes, which while informative, do not assess the effect of complement inhibition on neuroprotection and inflammation in a comprehensive manner. Using high throughput gene expression technology (NanoString), we simultaneously analyzed complement gene expression profiles with other neuroinflammatory pathway genes at different time points after TBI. We additionally assessed the effects of complement inhibition on neuropathological processes. Analyses of neuroinflammatory genes were performed at days 3, 7, and 28 post injury in male C57BL/6 mice following a controlled cortical impact injury. We also characterized the expression of 59 complement genes at similar time points, and also at 1- and 2-years post injury. Overall, TBI upregulated the expression of markers of astrogliosis, immune cell activation, and cellular stress, and downregulated the expression of neuronal and synaptic markers from day 3 through 28 post injury. Moreover, TBI upregulated gene expression across most complement activation and effector pathways, with an early emphasis on classical pathway genes and with continued upregulation of C2, C3 and C4 expression 2 years post injury. Treatment using the targeted complement inhibitor, CR2-Crry, significantly ameliorated TBI-induced transcriptomic changes at all time points. Nevertheless, some immune and synaptic genes remained dysregulated with CR2-Crry treatment, suggesting adjuvant anti-inflammatory and neurotropic therapy may confer additional neuroprotection. In addition to characterizing complement gene expression in the normal and aging brain, our results demonstrate broad and chronic dysregulation of the complement system after TBI, and strengthen the view that the complement system is an attractive target for TBI therapy.
Collapse
Affiliation(s)
- Amer Toutonji
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, BSB 204, MSC 504, Charleston, SC 29425 USA
| | - Mamatha Mandava
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, BSB 204, MSC 504, Charleston, SC 29425 USA
| | - Silvia Guglietta
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, BSB 204, MSC 504, Charleston, SC 29425 USA
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, BSB 204, MSC 504, Charleston, SC 29425 USA
- Ralph Johnson VA Medical Center, Charleston, SC 29401 USA
| |
Collapse
|
13
|
Han J, Yang S, Hao X, Zhang B, Zhang H, Xin C, Hao Y. Extracellular Vesicle-Derived microRNA-410 From Mesenchymal Stem Cells Protects Against Neonatal Hypoxia-Ischemia Brain Damage Through an HDAC1-Dependent EGR2/Bcl2 Axis. Front Cell Dev Biol 2021; 8:579236. [PMID: 33505958 PMCID: PMC7829500 DOI: 10.3389/fcell.2020.579236] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxia-ischemia brain damage (HIBD) is a neurological disorder occring in neonates, which is exacerbated by neuronal apoptosis. Mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) have been proposed as a promising strategy for treating or preventing ischemia-related diseases. However, their mechanisms in HIBD remain unclear. Thus, we aimed to address the role of EV-derived microRNA (miR)-410 in HIBD. Neonatal HIBD mouse model was constructed using HI insult, from which neurons were isolated, followed by exposure to oxygen glucose deprivation (OGD). EVs were isolated from human umbilical cord (hUC)-derived MSCs. In silico analyses, dual-luciferase reporter gene and chromatin immunoprecipitation assays were adopted to determine relationships among miR-410, histone deacetylase 1 (HDAC1), early growth response protein 2 (EGR2), and B cell lymphoma/leukemia 2 (Bcl2). The functional roles of EV-derived miR-410 were determined using loss- and gain-of functions experiments, and by evaluating neuronal viability, cell-cycle distribution and neuronal apoptosis in vitro as well as modified neurological severity score (mNSS), edema formation, and cerebral infarction volume in vivo. hUC-MSCs-derived EVs protected against HIBD in vivo and inhibited the OGD-induced neuronal apoptosis in vitro. miR-410 was successfully delivered to neurons by hUC-MSCs-EVs and negatively targeted HDAC1, which inversely mediated the expression of EGR2/Bcl2. Upregulation of EV-derived miR-410 promoted the viability but inhibited apoptosis of neurons, which was reversed by HDAC1 overexpression. EV-derived miR-410 elevation reduced mNSS, edema formation, and cerebral infarction volume by increasing EGR2/Bcl2 expression through downregulating HDAC1 expression in vivo. In summary, EV-derived miR-410 impeded neuronal apoptosis by elevating the expression of EGR2/Bcl2 via HDAC1 downregulation, thereby providing a potential strategy for treating or preventing HIBD.
Collapse
Affiliation(s)
- Jun Han
- Department of Neonatology, The First Hospital of Jilin University, Changchun, China
| | - Si Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xiaosheng Hao
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Bo Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Hongbo Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Cuijuan Xin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yunpeng Hao
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
Hao T, Gan YH. ΔNp63α promotes the expression and nuclear translocation of PTEN, leading to cisplatin resistance in oral cancer cells. Am J Transl Res 2020; 12:6187-6203. [PMID: 33194023 PMCID: PMC7653557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Pan-histone deacetylase (HDAC) inhibitors can induce the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) protein. However, the underlying mechanism by which this occurs remains unclear. In this study, we show that pan-HDAC inhibitors, including trichostatin A, suberoylanilide hydroxamic acid, and sodium butyrate, were able to induce PTEN mRNA and protein expression via the acetylation of the transcription factor ΔNp63α by inhibiting HDAC1 and HDAC3. ΔNp63α enhanced PTEN promoter activity by binding two newly identified recognition sites on it. Unfortunately, the inhibition of HDAC1 or HDAC3 failed to activate PTEN, as knockdown of HDAC1 inhibited both membrane-bound and nuclear PTEN, and knockdown of HDAC3 only induced cytoplasmic PTEN. Furthermore, the overexpression of ΔNp63α downregulated membrane-bound PTEN but enhanced the nuclear translocation of PTEN, leading to the cisplatin resistance of oral cancer cells. PTEN accumulated in the nuclei of cancerous cells and normal cells when ΔNp63α was highly expressed in specimens from patients with squamous cell carcinoma of the tongue. However, inhibiting either HDAC1 or HDAC6 prevented the nuclear translocation of PTEN and attenuated cisplatin resistance. These results suggest that chemotherapeutic inhibitors of HDAC1 or HDAC6, together with cisplatin, might improve outcomes for patients with squamous cell carcinoma of the tongue.
Collapse
Affiliation(s)
- Ting Hao
- Central Laboratory, Peking University School and Hospital of Stomatology22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
- Department of Oral & Maxillofacial, Peking University School and Hospital of Stomatology22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| | - Ye-Hua Gan
- Central Laboratory, Peking University School and Hospital of Stomatology22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
- Department of Oral & Maxillofacial, Peking University School and Hospital of Stomatology22 Zhongguancun Avenue South, Haidian District, Beijing 100081, China
| |
Collapse
|
15
|
Chen G, Fan XY, Zheng XP, Jin YL, Liu Y, Liu SC. Human umbilical cord-derived mesenchymal stem cells ameliorate insulin resistance via PTEN-mediated crosstalk between the PI3K/Akt and Erk/MAPKs signaling pathways in the skeletal muscles of db/db mice. Stem Cell Res Ther 2020; 11:401. [PMID: 32938466 PMCID: PMC7493876 DOI: 10.1186/s13287-020-01865-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022] Open
Abstract
Background Globally, 1 in 11 adults have diabetes mellitus, and 90% of the cases are type 2 diabetes mellitus. Insulin resistance is a central defect in type 2 diabetes mellitus, and although multiple drugs have been developed to ameliorate insulin resistance, the limitations and accompanying side effects cannot be ignored. Thus, more effective methods are required to improve insulin resistance. Methods In the current study, db/m and db/db mice were injected with human umbilical cord-derived mesenchymal stem cells (HUC-MSCs) via tail vein injection, intraperitoneal injection, and skeletal muscle injection. Body weight, fasting blood glucose, and the survival rates were monitored. Furthermore, the anti-insulin resistance effects and potential mechanisms of transplanted HUC-MSCs were investigated in db/db mice in vivo. Results The results showed that HUC-MSC transplantation by skeletal muscle injection was safer compared with tail vein injection and intraperitoneal injection, and the survival rate reached 100% in the skeletal muscle injection transplanted mice. HUC-MSCs can stabilize localization and differentiation in skeletal muscle tissue and significantly ameliorate insulin resistance. Potential regulatory mechanisms are associated with downregulation of inflammation, regulating the balance between PI3K/Akt and ERK/MAPK signaling pathway via PTEN, but was not associated with the IGF-1/IGF-1R signaling pathway. Conclusions These results suggest HUC-MSC transplantation may be a novel therapeutic direction to prevent insulin resistance and increase insulin sensitivity, and skeletal muscle injection was the safest and most effective way.
Collapse
Affiliation(s)
- Guang Chen
- Department of Basic Medical Sciences, Taizhou University Hospital, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou, 318000, China.,Department of Basic Medical Sciences, Jiamusi University, No 148 Xuefu road, Xiangyang District, Jiamusi, 154007, China
| | - Xiao-Yan Fan
- Department of Basic Medical Sciences, Taizhou University Hospital, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou, 318000, China
| | - Xiao-Peng Zheng
- Department of Basic Medical Sciences, Taizhou University Hospital, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou, 318000, China
| | - Yue-Lei Jin
- Department of Basic Medical Sciences, Taizhou University Hospital, Taizhou University, No 1139 Shifu Road, Jiaojiang District, Taizhou, 318000, China
| | - Ying Liu
- Jilin Tuhua Bioengineering Company Limited, Shiling Town, Tiedong District, Siping, Jilin, 136000, China
| | - Shuang-Chun Liu
- Municipal Hospital Affiliated to Medical School of Taizhou University, No 381, Zhongshan east road, Jiaojiang district, Taizhou, 318000, China.
| |
Collapse
|
16
|
Gujral P, Mahajan V, Lissaman AC, Ponnampalam AP. Histone acetylation and the role of histone deacetylases in normal cyclic endometrium. Reprod Biol Endocrinol 2020; 18:84. [PMID: 32791974 PMCID: PMC7425564 DOI: 10.1186/s12958-020-00637-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022] Open
Abstract
Histone acetylation is a critical epigenetic modification that changes chromatin architecture and regulates gene expression by opening or closing the chromatin structure. It plays an essential role in cell cycle progression and differentiation. The human endometrium goes through cycles of regeneration, proliferation, differentiation, and degradation each month; each phase requiring strict epigenetic regulation for the proper functioning of the endometrium. Aberrant histone acetylation and alterations in levels of two acetylation modulators - histone acetylases (HATs) and histone deacetylases (HDACs) - have been associated with endometrial pathologies such as endometrial cancer, implantation failures, and endometriosis. Thus, histone acetylation is likely to have an essential role in the regulation of endometrial remodelling throughout the menstrual cycle.
Collapse
Affiliation(s)
- Palak Gujral
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Vishakha Mahajan
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Abbey C Lissaman
- The Liggins Institute, The University of Auckland, Auckland, New Zealand
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Anna P Ponnampalam
- The Liggins Institute, The University of Auckland, Auckland, New Zealand.
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
17
|
Zhou D, Liu J, Hang Y, Li T, Li P, Guo S, Liu T, Xia Z, Wang Y. TMT-based proteomics analysis reveals the protective effects of Xuefu Zhuyu decoction in a rat model of traumatic brain injury. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112826. [PMID: 32298754 DOI: 10.1016/j.jep.2020.112826] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuefu Zhuyu decoction (XFZYD) is a traditional Chinese herbal prescription. It is effective in treating traumatic brain injury (TBI). However, the underlying molecular mechanisms remain unclear. AIM OF THE STUDY This study aimed to reveal the possible mechanisms of XFZYD in treating acute TBI through proteomics clues. MATERIALS AND METHODS Controlled Cortical Impact (CCI) rats were given gavage administration of XFZYD (9 g/kg/d) or distilled water (equal volume) for three days. The Modified Neurological Severity Score (mNSS), brain water content, HE staining, Nissl staining and immunohistochemistry were performed to assess the effects of XFZYD for TBI treatment. Additionally, tandem mass tag-based (TMT) quantitative proteomics technology was applied to detect proteins of brain cortex. Bioinformatics analysis including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and Protein-protein interaction (PPI) networks were used to analyze differentially expressed proteins (DEPs). Bioinformatics Analysis Tool for Molecular mechanism of TCM (BATMAN-TCM) was conducted to anchor diseases and pathways. Besides, western blotting and immunofluorescence were exerted to verify related proteins. RESULTS XFZYD improved neurologic functions, reduced encephaledema and ameliorated cell morphology around the injured area in CCI rats. A total of 6099 proteins were identified with false discovery rate (FDR) < 1%. Overlapping DEPs (105 DEPs) were identified (295 DEPs and 804 DEPs in CCI/Sham or XFZYD/CCI group, respectively). Of these DEPs, 17 were regulated by XFZYD. Bioinformatics analysis showed that the 17 DEPs were predominantly related to platelet activation and PI3K-Akt signaling pathway. Next, PLG and CD34 were verified with molecular biotechnology. CONCLUSIONS XFZYD exerts therapeutic effects through multi-pathways regulation in the treatment of TBI. This work may provide proteomics clues for the continuation of research on TBI treatment with XFZYD.
Collapse
Affiliation(s)
- Dan Zhou
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008, Changsha, PR China
| | - Jiamiao Liu
- Xiangya School of Medicine, Central South University, 410013, Changsha, China
| | - Yang Hang
- Xiangya School of Medicine, Central South University, 410013, Changsha, China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008, Changsha, PR China
| | - Pengfei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Shichao Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University. Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University. Zhengzhou, Henan, 450052, Zhengzhou, China
| | - Tao Liu
- Department of Gerontology, Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, 830000, Urumqi, China
| | - Zian Xia
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008, Changsha, PR China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, 410008, Changsha, PR China.
| |
Collapse
|
18
|
Sun L, Wang C, Yuan Y, Guo Z, He Y, Ma W, Zhang J. Downregulation of HDAC1 suppresses media degeneration by inhibiting the migration and phenotypic switch of aortic vascular smooth muscle cells in aortic dissection. J Cell Physiol 2020; 235:8747-8756. [PMID: 32324261 DOI: 10.1002/jcp.29718] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/28/2020] [Accepted: 03/30/2020] [Indexed: 01/27/2023]
Abstract
Although much progress has been made in the diagnosis and treatment of thoracic aortic dissection (TAD), the overall morbidity and mortality rates of TAD are still high. Therefore, the molecular pathogenesis and etiology of TAD need to be elucidated. In this study, we found that histone deacetylase 1 (HDAC1) expression is dramatically higher in the aortic wall of patients with TAD (than that in a normal group) and negatively correlates with the levels of the vascular smooth muscle cell (SMC) contractile-phenotype markers. Knockdown of HDAC1 upregulated both smooth muscle 22 α (SM22α) and α-smooth muscle actin (α-SMA) in platelet-derived growth factor (PDGF)-BB-treated and -untreated SMCs. In addition, the knockdown of HDAC1 markedly decreased SMC viability and migration in contrast to the control group under the conditions of quiescence and PDGF-BB treatment. We also showed that the expression of polycystic kidney disease 1 (PKD1) is decreased in the aortic wall of patients with TAD and negatively correlates with HDAC1 expression. Overexpressed PKD1 obviously increased SM22α and α-SMA expression and reduced the viability and migration of SMCs, but these effects were attenuated by HDAC1. Furthermore, we demonstrated that HDAC1 serves as an important modulator of the migration and phenotypic switch of SMCs by suppressing the PKD1- mammalian target of the rapamycin signaling pathway. HDAC1 downregulation inhibited media degeneration and attenuated the loss of elastic-fiber integrity in a mouse model of TAD. Our results suggest that HDAC1 might be a new target for the treatment of a macrovascular disease such as TAD.
Collapse
Affiliation(s)
- Lin Sun
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chunping Wang
- Department of Thoracic-cardiovascular Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ye Yuan
- Department of Vascular Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Zhen Guo
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yubin He
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Cardiovascular Surgery, Huashan Hospital North Affiliated to Fudan University, Shanghai, China
| | - Wenrui Ma
- Department of Cardiothoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Zhang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Liu T, Guan F, Wang Y, Zhang Z, Li Y, Cui Y, Li Z, Liu H, Zhang Y, Wang Y, Ma S. MS-275 combined with cisplatin exerts synergistic antitumor effects in human esophageal squamous cell carcinoma cells. Toxicol Appl Pharmacol 2020; 395:114971. [PMID: 32217144 DOI: 10.1016/j.taap.2020.114971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/21/2020] [Indexed: 12/11/2022]
Abstract
MS-275 has been demonstrated to inhibit the growth of esophageal squamous cell carcinoma (ESCC) cells in our previous study, but its role in ESCC remains to be further explored. Cisplatin (cis-diamminedichloroplatinum II, DDP) is the first-line chemotherapeutic drug widely used in clinic for ESCC patients. However, the side effects of nephrotoxicity and drug resistance limit its clinical use. This study aimed to evaluate the anticancer effects of MS-275 combined with DDP on ESCC cell line EC9706 both in vitro and in vivo, and to investigate the possible mechanisms that mediate these effects. We found that MS-275 combined with DDP showed synergistic antitumor effects on EC9706 cells in vitro by decreasing cell proliferation, increasing apoptosis and oxidative damage, and inhibiting migration and stemness. The combination of MS-275 and DDP triggered pro-survival autophagy in EC9706. Moreover, MS-275 combined with DDP suppressed EC9706 xenografts growth and promoted apoptosis in vivo. Further study displayed that MS-275 combined with DDP suppressed Wnt/β-catenin signaling in EC9706 cells and xenografts. These results indicate that MS-275 combined with DDP exerts synergistic antitumor effects by enhancing the chemosensitivity of EC9706 cells to DDP, which may be a potential therapeutic strategy for the treatment of patients with ESCC.
Collapse
Affiliation(s)
- Tengfei Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China; Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yaping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhenkun Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ya Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuanbo Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhe Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Hongtao Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanting Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuming Wang
- Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
20
|
Willing AE, Das M, Howell M, Mohapatra SS, Mohapatra S. Potential of mesenchymal stem cells alone, or in combination, to treat traumatic brain injury. CNS Neurosci Ther 2020; 26:616-627. [PMID: 32157822 PMCID: PMC7248546 DOI: 10.1111/cns.13300] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/17/2020] [Accepted: 02/23/2020] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) causes death and disability in the United States and around the world. The traumatic insult causes the mechanical injury of the brain and primary cellular death. While a comprehensive pathological mechanism of TBI is still lacking, the focus of the TBI research is concentrated on understanding the pathophysiology and developing suitable therapeutic approaches. Given the complexities in pathophysiology involving interconnected immunologic, inflammatory, and neurological cascades occurring after TBI, the therapies directed to a single mechanism fail in the clinical trials. This has led to the development of the paradigm of a combination therapeutic approach against TBI. While there are no drugs available for the treatment of TBI, stem cell therapy has shown promising results in preclinical studies. But, the success of the therapy depends on the survival of the stem cells, which are limited by several factors including route of administration, health of the administered cells, and inflammatory microenvironment of the injured brain. Reducing the inflammation prior to cell administration may provide a better outcome of cell therapy following TBI. This review is focused on different therapeutic approaches of TBI and the present status of the clinical trials.
Collapse
Affiliation(s)
- Alison E Willing
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Mahasweta Das
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,James A. Haley Veterans Hospital, Tampa, FL, USA
| | - Mark Howell
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,James A. Haley Veterans Hospital, Tampa, FL, USA
| | - Shyam S Mohapatra
- James A. Haley Veterans Hospital, Tampa, FL, USA.,Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, FL, USA.,James A. Haley Veterans Hospital, Tampa, FL, USA
| |
Collapse
|
21
|
Ren J, Huang D, Li R, Wang W, Zhou C. Control of mesenchymal stem cell biology by histone modifications. Cell Biosci 2020; 10:11. [PMID: 32025282 PMCID: PMC6996187 DOI: 10.1186/s13578-020-0378-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are considered the most promising seed cells for regenerative medicine because of their considerable therapeutic properties and accessibility. Fine-tuning of cell biological processes, including differentiation and senescence, is essential for achievement of the expected regenerative efficacy. Researchers have recently made great advances in understanding the spatiotemporal gene expression dynamics that occur during osteogenic, adipogenic and chondrogenic differentiation of MSCs and the intrinsic and environmental factors that affect these processes. In this context, histone modifications have been intensively studied in recent years and have already been indicated to play significant and universal roles in MSC fate determination and differentiation. In this review, we summarize recent discoveries regarding the effects of histone modifications on MSC biology. Moreover, we also provide our insights and perspectives for future applications.
Collapse
Affiliation(s)
- Jianhan Ren
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| | - Delan Huang
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| | - Runze Li
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| | - Weicai Wang
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| | - Chen Zhou
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, 56 Lingyuanxi Road, Guangzhou, 510055 China
| |
Collapse
|
22
|
Guan F, Zhou X, Li P, Wang Y, Liu M, Li F, Cui Y, Huang T, Yao M, Zhang Y, Ma J, Ma S. MG53 attenuates lipopolysaccharide-induced neurotoxicity and neuroinflammation via inhibiting TLR4/NF-κB pathway in vitro and in vivo. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109684. [PMID: 31260721 PMCID: PMC6708450 DOI: 10.1016/j.pnpbp.2019.109684] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/19/2019] [Accepted: 06/27/2019] [Indexed: 01/06/2023]
Abstract
Neuroinflammation plays important roles in the pathogenesis and development of neurodegenerative disorders. Lipopolysaccharide (LPS) induces neuroinflammation and causes neurotoxicity, which results in cell damage or memory impairment in different cells and animals. In the present study, we investigated the neuroprotective effects of MG53, a member of the TRIM family proteins, against LPS-induced neuroinflammation and neurotoxicity in vitro and in vivo. MG53 significantly protected HT22 cells against LPS-induced cell apoptosis and cell cycle arrest by inhibiting TNF-α, IL-6 and IL-1β expression. In addition, MG53 ameliorated LPS-induced memory impairment and neuronal cell death in mice. Interestingly, MG53 significantly promoted newborn cell survival, improved neurogenesis, and mitigated neuroinflammation evidenced by lower production of IL-1β and IL-6, less activation of microglia in the hippocampus of LPS treated mice. Further studies demonstrated that MG53 significantly inhibited TLR4 expression and nuclear factor-κB (NF-κB) phosphorylation in LPS treated HT22 cells and mice. Taken together, our results suggested that MG53 attenuated LPS-induced neurotoxicity and neuroinflammation partly by inhibiting TLR4/NF-κB pathway in vitro and in vivo.
Collapse
Affiliation(s)
- Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Henan Provincial People's Hospital, Zhengzhou 450003, Henan, China
| | - Xinkui Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Peng Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China; Clinical Laboratory, Zhumadian Hospital of Traditional Chinese Medicine, Zhumadian 463000, Henan, China
| | - Yaping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ming Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Fangfang Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yuanbo Cui
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Tuanjie Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Minghao Yao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Yanting Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China.
| |
Collapse
|
23
|
Li Z, Xu R, Zhu X, Li Y, Wang Y, Xu W. MicroRNA-23a-3p improves traumatic brain injury through modulating the neurological apoptosis and inflammation response in mice. Cell Cycle 2019; 19:24-38. [PMID: 31818176 DOI: 10.1080/15384101.2019.1691763] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Secondary brain damage plays an important role in Traumatic brain injury (TBI) and inhibition of this damage has benefit for TBI treatment. However, the pathogenesis of secondary brain damage remains largely unknown. Here, we tried to explore the influence of microRNAs (miRNAs) on neuron apoptosis and inflammatory response after TBI. Firstly, the miRNA expression profiles were analyzed in the cerebral cortex tissues from the TBI mice model (controlled cortical impact) using miRNA microarray. miR-23a-3p (miR-23a) attracted our attention as its suppressive effects on apoptosis and inflammation. The further results showed that miR-23a upregulation improved long-term neurological function, the neuron apoptosis, and inhibited neuroinflammation, whereas knockdown of miR-23a had an opposite result. Using etoposide-induced primary cortical neurons injury model, we found that miR-23a was decreased in this cell model and miR-23a overexpression-suppressed etoposide induced the activity of caspase 3 and the releases of inflammatory mediators in primary cortical neurons. Phosphatase and tensin homolog (PTEN), a well‑known regulator of the AKT/mTOR pathway, was found to be a direct target of miR‑23a in the primary cortical neurons. Most importantly, it was found that miR-23a overexpression reactivated the AKT/mTOR pathway in TBI mice model, as demonstrated by the upregulation of phosphorylated (p‑)AKT and p‑mTOR. Taken together, these data indicate that miR-23a may serve as a therapeutic target for the treatment of TBI.
Collapse
Affiliation(s)
- Zhikun Li
- Department of Orthopedic Surgery, TongRen Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ruijun Xu
- Department of Orthopedic Surgery, TongRen Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xiaodong Zhu
- Department of Orthopedic Surgery, TongRen Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yifan Li
- Department of Orthopedic Surgery, TongRen Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yi Wang
- Department of Orthopedic Surgery, TongRen Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Wei Xu
- Department of Orthopedic Surgery, TongRen Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Muhammad SA. Mesenchymal stromal cell secretome as a therapeutic strategy for traumatic brain injury. Biofactors 2019; 45:880-891. [PMID: 31498511 DOI: 10.1002/biof.1563] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) is a global health problem that is a common cause of disability and mortality. Despite the availability of many treatment options, none is capable of restoring functional and structural recovery of the damaged brain. Both the results of preclinical and clinical studies suggest the use of mesenchymal stromal cells (MSCs) as a therapeutic strategy for structural and functional recovery in TBI. However, recent evidence shows that the neuroprotective potential of MSCs is due to multiple secretions of bioactive molecules that modulate tissue microenvironment for tissue repair and regeneration. The results of preclinical studies indicate the therapeutic benefits of MSC secretome in TBI. Soluble bioactive molecules and extracellular vesicles are the various factors secreted by MSCs that can induce neurogenesis, angiogenesis, neovascularization, and anti-inflammatory activities. This review highlights the neuroprotective effect of MSC secretome for the treatment of TBI. In addition, the possible challenges of secretome as biotherapeutics are identified and how some of the issues raised could be overcome for effective clinical application are also discussed.
Collapse
|
25
|
Saha P, Gupta R, Sen T, Sen N. Histone Deacetylase 4 Downregulation Elicits Post-Traumatic Psychiatric Disorders through Impairment of Neurogenesis. J Neurotrauma 2019; 36:3284-3296. [PMID: 31169064 DOI: 10.1089/neu.2019.6373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
An enduring deficit in neurogenesis largely contributes to the development of severe post-traumatic psychiatric disorders such as anxiety, depression, and memory impairment following traumatic brain injury (TBI); however, the mechanism remains obscure. Here we have shown that an imbalance in the generation of γ-aminobutyric acid (GABA)ergic and glutamatergic neurons due to aberrant induction of vesicular glutamate transporter 1 (vGlut1)-positive glutamatergic cells is responsible for impaired neuronal differentiation in the hippocampus following TBI. To elucidate the molecular mechanism, we found that TBI activates a transcription factor, Pax3, by increasing its acetylation status, and subsequently induces Ngn2 transcription. This event, in turn, augments the vGlut1-expressing glutamatergic neurons and accumulation of excess glutamate in the hippocampus that can affect neuronal differentiation. In our study the acetylation of Pax3 was increased due to loss of its interaction with a deacetylase, histone deacetylase 4 (HDAC4), which was downregulated after TBI. TBI-induced activation of GSK3β was responsible for the degradation of HDAC4. We also showed that overexpression of HDAC4 before TBI reduces Pax3 acetylation by restoring an interaction between HDAC4 and Pax3 in the hippocampus. This event prevents the aberrant induction of vGlut1-positive glutamatergic neurons by decreasing the Ngn2 level and subsequently reinforces the balance between GABAergic and glutamatergic neurons following TBI. Further, we found that overexpression of HDAC4 in the hippocampus improves anxiety, depressive-like behavior, and memory functions following TBI.
Collapse
Affiliation(s)
- Pampa Saha
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rajaneesh Gupta
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tanusree Sen
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nilkantha Sen
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
Li Y, Ma S, Zhang Y, Yao M, Zhu X, Guan F. (−)-Epicatechin mitigates radiation-induced intestinal injury and promotes intestinal regeneration via suppressing oxidative stress. Free Radic Res 2019; 53:851-864. [PMID: 31234659 DOI: 10.1080/10715762.2019.1635692] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ya Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial People’s Hospital, Zhengzhou, China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial People’s Hospital, Zhengzhou, China
| | - Yanting Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Minghao Yao
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiangzhan Zhu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Henan Provincial People’s Hospital, Zhengzhou, China
| |
Collapse
|
27
|
Xiong Y, Cao F, Hu L, Yan C, Chen L, Panayi AC, Sun Y, Zhou W, Zhang P, Wu Q, Xue H, Liu M, Liu Y, Liu J, Abududilibaier A, Mi B, Liu G. miRNA-26a-5p Accelerates Healing via Downregulation of PTEN in Fracture Patients with Traumatic Brain Injury. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 17:223-234. [PMID: 31272072 PMCID: PMC6610686 DOI: 10.1016/j.omtn.2019.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/25/2019] [Accepted: 06/01/2019] [Indexed: 01/11/2023]
Abstract
Patients who sustain a traumatic brain injury (TBI) are known to have a significantly quicker fracture healing time than patients with isolated fractures, but the underlying mechanism has yet to be identified. In this study, we found that the upregulation of miRNA-26a-5p induced by TBI correlated with a decrease in phosphatase and tensin homolog (PTEN) in callus formation. In vitro, overexpressing miRNA-26a-5p inhibited PTEN expression and accelerated osteoblast differentiation, whereas silencing of miRNA-26a-5p inhibited osteoblast activity. Reduction of PTEN facilitated osteoblast differentiation via the PI3K/AKT signaling pathway. Through luciferase assays, we found evidence that PTEN is a miRNA-26a-5p target gene that negatively regulates the differentiation of osteoblasts. Moreover, the present study confirmed that preinjection of agomiR-26a-5p leads to increased bone formation. Collectively, these results indicate that miRNA-26a-5p overexpression may be a key factor governing the improved fracture healing observed in TBI patients after the downregulation of PTEN and PI3K/AKT signaling. Upregulation of miRNA-26a-5p may therefore be a promising therapeutic strategy for promoting fracture healing.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Faqi Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liangcong Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chenchen Yan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Yun Sun
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peng Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Qipeng Wu
- Department of Orthopaedics, Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hang Xue
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengfei Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yi Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Abudula Abududilibaier
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|