1
|
Pal C. Mitochondria-targeting by small molecules against Alzheimer's disease: A mechanistic perspective. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167617. [PMID: 39647244 DOI: 10.1016/j.bbadis.2024.167617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Alzheimer's disease (AD) poses a considerable worldwide health obstacle, marked by gradual cognitive deterioration and neuronal loss. While the molecular mechanisms underlying AD pathology have been elucidated to some extent, therapeutic options remain limited. Mitochondrial dysfunction has become recognized as a significant factor in the development of AD, with oxidative stress and disrupted energy metabolism being critical elements. This review explores the mechanistic aspects of small molecule targeting of mitochondria as a potential therapeutic approach for AD. The review explores the role of mitochondrial dysfunction in AD, including its involvement in the accumulation of β-amyloid plaques and neurofibrillary tangles, synaptic dysfunction, and neuronal death. Furthermore, the effects of oxidative stress on mitochondrial function were investigated, including the resulting damage to mitochondrial components. Mitochondrial-targeted therapies have attracted attention for their potential to restore mitochondrial function and reduce AD pathology. The review outlines the latest preclinical and clinical evidence supporting the effectiveness of small molecules in targeting mitochondrial dysfunction in AD. Additionally, it discusses the molecular pathways involved in mitochondrial dysfunction and examines how small molecules can intervene to address these abnormalities. By providing a comprehensive overview of the latest research in this field, this review aims to shed light on the therapeutic potential of small molecule targeting of mitochondria in AD and stimulate further research in this promising area of drug development.
Collapse
Affiliation(s)
- Chinmay Pal
- Department of Chemistry, Gobardanga Hindu College, North 24 Parganas, West Bengal 743273, India.
| |
Collapse
|
2
|
Skobeleva K, Wang G, Kaznacheyeva E. STIM Proteins: The Gas and Brake of Calcium Entry in Neurons. Neurosci Bull 2025; 41:305-325. [PMID: 39266936 PMCID: PMC11794855 DOI: 10.1007/s12264-024-01272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/22/2024] [Indexed: 09/14/2024] Open
Abstract
Stromal interaction molecules (STIM)s are Ca2+ sensors in internal Ca2+ stores of the endoplasmic reticulum. They activate the store-operated Ca2+ channels, which are the main source of Ca2+ entry in non-excitable cells. Moreover, STIM proteins interact with other Ca2+ channel subunits and active transporters, making STIMs an important intermediate molecule in orchestrating a wide variety of Ca2+ influxes into excitable cells. Nevertheless, little is known about the role of STIM proteins in brain functioning. Being involved in many signaling pathways, STIMs replenish internal Ca2+ stores in neurons and mediate synaptic transmission and neuronal excitability. Ca2+ dyshomeostasis is a signature of many pathological conditions of the brain, including neurodegenerative diseases, injuries, stroke, and epilepsy. STIMs play a role in these disturbances not only by supporting abnormal store-operated Ca2+ entry but also by regulating Ca2+ influx through other channels. Here, we review the present knowledge of STIMs in neurons and their involvement in brain pathology.
Collapse
Affiliation(s)
- Ksenia Skobeleva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Elena Kaznacheyeva
- Laboratory of Ion Channels of Cell Membranes, Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia, 194064.
| |
Collapse
|
3
|
Cartes-Saavedra B, Ghosh A, Hajnóczky G. The roles of mitochondria in global and local intracellular calcium signalling. Nat Rev Mol Cell Biol 2025:10.1038/s41580-024-00820-1. [PMID: 39870977 DOI: 10.1038/s41580-024-00820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 01/29/2025]
Abstract
Activation of Ca2+ channels in Ca2+ stores in organelles and the plasma membrane generates cytoplasmic calcium ([Ca2+]c) signals that control almost every aspect of cell function, including metabolism, vesicle fusion and contraction. Mitochondria have a high capacity for Ca2+ uptake and chelation, alongside efficient Ca2+ release mechanisms. Still, mitochondria do not store Ca2+ in a prolonged manner under physiological conditions and lack the capacity to generate global [Ca2+]c signals. However, mitochondria take up Ca2+ at high local [Ca2+]c signals that originate from neighbouring organelles, and also during sustained global elevations of [Ca2+]c. Accumulated Ca2+ in the mitochondria stimulates oxidative metabolism and upon return to the cytoplasm, can produce spatially confined rises in [Ca2+]c to exert control over processes that are sensitive to Ca2+. Thus, the mitochondrial handling of [Ca2+]c is of physiological relevance. Furthermore, dysregulation of mitochondrial Ca2+ handling can contribute to debilitating diseases. We discuss the mechanisms and relevance of mitochondria in local and global calcium signals.
Collapse
Affiliation(s)
- Benjamín Cartes-Saavedra
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Arijita Ghosh
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Özdemir AY, Hofbauerová K, Kopecký V, Novotný J, Rudajev V. Different amyloid β42 preparations induce different cell death pathways in the model of SH-SY5Y neuroblastoma cells. Cell Mol Biol Lett 2024; 29:143. [PMID: 39551742 PMCID: PMC11572474 DOI: 10.1186/s11658-024-00657-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
Amyloid β42 (Aβ42) plays a decisive role in the pathology of Alzheimer's disease. The Aβ42 peptide can aggregate into various supramolecular structures, with oligomers being the most toxic form. However, different Aβ species that cause different effects have been described. Many cell death pathways can be activated in connection with Aβ action, including apoptosis, necroptosis, pyroptosis, oxidative stress, ferroptosis, alterations in mitophagy, autophagy, and endo/lysosomal functions. In this study, we used a model of differentiated SH-SY5Y cells and applied two different Aβ42 preparations for 2 and 4 days. Although we found no difference in the shape and size of Aβ species prepared by two different methods (NaOH or NH4OH for Aβ solubilization), we observed strong differences in their effects. Treatment of cells with NaOH-Aβ42 mainly resulted in damage of mitochondrial function and increased production of reactive oxygen species, whereas application of NH4OH-Aβ42 induced necroptosis and first steps of apoptosis, but also caused an increase in protective Hsp27. Moreover, the two Aβ42 preparations differed in the mechanism of interaction with the cells, with the effect of NaOH-Aβ42 being dependent on monosialotetrahexosylganglioside (GM1) content, whereas the effect of NH4OH-Aβ42 was independent of GM1. This suggests that, although both preparations were similar in size, minor differences in secondary/tertiary structure are likely to strongly influence the resulting processes. Our work reveals, at least in part, one of the possible causes of the inconsistency in the data observed in different studies on Aβ-toxicity pathways.
Collapse
Affiliation(s)
- Alp Yigit Özdemir
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Kateřina Hofbauerová
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116, Prague 2, Czech Republic
| | - Vladimír Kopecký
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116, Prague 2, Czech Republic
| | - Jiří Novotný
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Vladimír Rudajev
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, 12844, Prague 2, Czech Republic.
| |
Collapse
|
5
|
Geigenmüller JN, Tari AR, Wisloff U, Walker TL. The relationship between adult hippocampal neurogenesis and cognitive impairment in Alzheimer's disease. Alzheimers Dement 2024; 20:7369-7383. [PMID: 39166771 PMCID: PMC11485317 DOI: 10.1002/alz.14179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Neurogenesis persists throughout adulthood in the hippocampus and contributes to specific cognitive functions. In Alzheimer's disease (AD), the hippocampus is affected by pathology and functional impairment early in the disease. Human AD patients have reduced adult hippocampal neurogenesis (AHN) levels compared to age-matched healthy controls. Similarly, rodent AD models show a decrease in AHN before the onset of the classical hallmarks of AD pathology. Conversely, enhancement of AHN can protect against AD pathology and ameliorate memory deficits in both rodents and humans. Therefore, impaired AHN may be a contributing factor of AD-associated cognitive decline, rather than an effect of it. In this review we outline the regulation and function of AHN in healthy individuals, and highlight the relationship between AHN dysfunction and cognitive impairments in AD. The existence of AHN in humans and its relevance in AD patients will also be discussed, with an outlook toward future research directions. HIGHLIGHTS: Adult hippocampal neurogenesis occurs in the brains of mammals including humans. Adult hippocampal neurogenesis is reduced in Alzheimer's disease in humans and animal models.
Collapse
Affiliation(s)
| | - Atefe R. Tari
- The Cardiac Exercise Research Group at Department of Circulation and Medical ImagingFaculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
- Department of Neurology and Clinical NeurophysiologySt. Olavs University Hospital, Trondheim University HospitalTrondheimNorway
| | - Ulrik Wisloff
- The Cardiac Exercise Research Group at Department of Circulation and Medical ImagingFaculty of Medicine and Health SciencesNorwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Tara L. Walker
- Clem Jones Centre for Ageing Dementia ResearchQueensland Brain InstituteThe University of QueenslandBrisbaneAustralia
| |
Collapse
|
6
|
Sivasinprasasn S, Tocharus J, Mahatheeranont S, Nakrat S, Tocharus C. Anthocyanin-Rich Fraction of Black Rice Bran Extract Protects against Amyloid β-Induced Oxidative Stress, Endoplasmic Reticulum Stress, and Neuronal Apoptosis in SK-N-SH Cells. Pharmaceuticals (Basel) 2024; 17:1039. [PMID: 39204144 PMCID: PMC11357448 DOI: 10.3390/ph17081039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder in the aging population. An accumulation of amyloid plaques and neurofibrillary tangles causes degeneration of neurons, leading to neuronal cell death. The anthocyanin-rich fraction of black rice (Oryza sativa L. variety "Luem Pua") bran (AFBRB), extracted using a solution of ethanol and water and fractionated using Amberlite XAD7HP column chromatography, contains a high anthocyanin content (585 mg of cyanidin-3-O-glucoside and 24 mg of peonidin-3-O-glucoside per gram of the rich extract), which has been found to reduce neurodegeneration. This study focused on the neuroprotective effects of AFBRB in Aβ25-35-induced toxicity in the human neuroblastoma cell line (SK-N-SH). SK-N-SH was exposed to Aβ25-35 (10 µM) to induce an AD cell model in vitro. Pretreatment with AFBRB (0.1, 1, or 10 µg/mL) or C3G (20 µM) was conducted for 2 h prior to the treatment with Aβ25-35 (10 µM) for an additional 24 h. The results indicate that AFBRB can protect against the cytotoxic effect of Aβ25-35 through attenuation of intracellular ROS production, downregulation of the expression of the proteins Bax, cytochrome c, cleaved caspase-9, and cleaved caspase-3, upregulation of the expression of Bcl-2 in the mitochondrial death pathway, and reduction in the expression of the three major markers of ER stress pathways in similar ways. Interestingly, we found that pretreatment with AFBRB significantly alleviated Aβ-induced oxidative stress, ER stress, and apoptosis in SK-N-SH cells. This suggests that AFBRB might be a potential therapeutic agent in preventing neurodegenerative diseases.
Collapse
Affiliation(s)
- Sivanan Sivasinprasasn
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sugunya Mahatheeranont
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (S.N.)
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sarun Nakrat
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.M.); (S.N.)
- Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
7
|
López-Vázquez S, Villalobos C, Núñez L. SARS-CoV-2 Viroporin E Induces Ca 2+ Release and Neuron Cell Death in Primary Cultures of Rat Hippocampal Cells Aged In Vitro. Int J Mol Sci 2024; 25:6304. [PMID: 38928009 PMCID: PMC11203731 DOI: 10.3390/ijms25126304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The COVID-19 pandemic was caused by infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which may lead to serious respiratory, vascular and neurological dysfunctions. The SARS-CoV-2 envelope protein (E protein) is a structural viroporin able to form ion channels in cell membranes, which is critical for viral replication. However, its effects in primary neurons have not been addressed. Here we used fluorescence microscopy and calcium imaging to study SARS-CoV-2 viroporin E localization and the effects on neuron damage and intracellular Ca2+ homeostasis in a model of rat hippocampal neurons aged in vitro. We found that the E protein quickly enters hippocampal neurons and colocalizes with the endoplasmic reticulum (ER) in both short-term (6-8 days in vitro, DIV) and long-term (20-22 DIV) cultures resembling young and aged neurons, respectively. Strikingly, E protein treatment induces apoptosis in aged neurons but not in young neurons. The E protein induces variable increases in cytosolic Ca2+ concentration in hippocampal neurons. Ca2+ responses to the E protein are due to Ca2+ release from intracellular stores at the ER. Moreover, E protein-induced Ca2+ release is very small in young neurons and increases dramatically in aged neurons, consistent with the enhanced Ca2+ store content in aged neurons. We conclude that the SARS-CoV-2 E protein quickly translocates to ER endomembranes of rat hippocampal neurons where it releases Ca2+, probably acting like a viroporin, thus producing Ca2+ store depletion and neuron apoptosis in aged neurons and likely contributing to neurological damage in COVID-19 patients.
Collapse
Affiliation(s)
- Sara López-Vázquez
- Excellence Unit, Institute of Biomedicine and Molecular Genetics of Valladolid (IBGM), University of Valladolid and Spanish National Research Council (CSIC), 47003 Valladolid, Spain; (S.L.-V.); (L.N.)
| | - Carlos Villalobos
- Excellence Unit, Institute of Biomedicine and Molecular Genetics of Valladolid (IBGM), University of Valladolid and Spanish National Research Council (CSIC), 47003 Valladolid, Spain; (S.L.-V.); (L.N.)
| | - Lucía Núñez
- Excellence Unit, Institute of Biomedicine and Molecular Genetics of Valladolid (IBGM), University of Valladolid and Spanish National Research Council (CSIC), 47003 Valladolid, Spain; (S.L.-V.); (L.N.)
- Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
8
|
Cheng D, Lei ZG, Chu K, Lam OJH, Chiang CY, Zhang ZJ. N, N-Dimethyltryptamine, a natural hallucinogen, ameliorates Alzheimer's disease by restoring neuronal Sigma-1 receptor-mediated endoplasmic reticulum-mitochondria crosstalk. Alzheimers Res Ther 2024; 16:95. [PMID: 38693554 PMCID: PMC11061967 DOI: 10.1186/s13195-024-01462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Aberrant neuronal Sigma-1 receptor (Sig-1r)-mediated endoplasmic reticulum (ER)- mitochondria signaling plays a key role in the neuronal cytopathology of Alzheimer's disease (AD). The natural psychedelic N, N-dimethyltryptamine (DMT) is a Sig-1r agonist that may have the anti-AD potential through protecting neuronal ER-mitochondrial interplay. METHODS 3×TG-AD transgenic mice were administered with chronic DMT (2 mg/kg) for 3 weeks and then performed water maze test. The Aβ accumulation in the mice brain were determined. The Sig-1r level upon DMT treatment was tested. The effect of DMT on the ER-mitochondrial contacts site and multiple mitochondria-associated membrane (MAM)-associated proteins were examined. The effect of DMT on calcium transport between ER and mitochondria and the mitochondrial function were also evaluated. RESULTS chronic DMT (2 mg/kg) markedly alleviated cognitive impairment of 3×TG-AD mice. In parallel, it largely diminished Aβ accumulation in the hippocampus and prefrontal cortex. DMT restored the decreased Sig-1r levels of 3×TG-AD transgenic mice. The hallucinogen reinstated the expression of multiple MAM-associated proteins in the brain of 3×TG-AD mice. DMT also prevented physical contact and calcium dynamic between the two organelles in in vitro and in vivo pathological circumstances. DMT modulated oxidative phosphorylation (OXPHOS) and ATP synthase in the in vitro model of AD. CONCLUSION The anti-AD effects of DMT are associated with its protection of neuronal ER-mitochondria crosstalk via the activation of Sig-1r. DMT has the potential to serve as a novel preventive and therapeutic agent against AD.
Collapse
Affiliation(s)
- Dan Cheng
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhuo-Gui Lei
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Kin Chu
- Department of Psychology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Oi Jin Honey Lam
- School of Biomedical Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Chun Yuan Chiang
- Digital Centre of State Key Laboratory of Quality Research in Chinese Medicine, Macau, China
| | - Zhang-Jin Zhang
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China.
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
9
|
Casciano F, Zauli E, Celeghini C, Caruso L, Gonelli A, Zauli G, Pignatelli A. Retinal Alterations Predict Early Prodromal Signs of Neurodegenerative Disease. Int J Mol Sci 2024; 25:1689. [PMID: 38338966 PMCID: PMC10855697 DOI: 10.3390/ijms25031689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Neurodegenerative diseases are an increasingly common group of diseases that occur late in life with a significant impact on personal, family, and economic life. Among these, Alzheimer's disease (AD) and Parkinson's disease (PD) are the major disorders that lead to mild to severe cognitive and physical impairment and dementia. Interestingly, those diseases may show onset of prodromal symptoms early after middle age. Commonly, the evaluation of these neurodegenerative diseases is based on the detection of biomarkers, where functional and structural magnetic resonance imaging (MRI) have shown a central role in revealing early or prodromal phases, although it can be expensive, time-consuming, and not always available. The aforementioned diseases have a common impact on the visual system due to the pathophysiological mechanisms shared between the eye and the brain. In Parkinson's disease, α-synuclein deposition in the retinal cells, as well as in dopaminergic neurons of the substantia nigra, alters the visual cortex and retinal function, resulting in modifications to the visual field. Similarly, the visual cortex is modified by the neurofibrillary tangles and neuritic amyloid β plaques typically seen in the Alzheimer's disease brain, and this may reflect the accumulation of these biomarkers in the retina during the early stages of the disease, as seen in postmortem retinas of AD patients. In this light, the ophthalmic evaluation of retinal neurodegeneration could become a cost-effective method for the early diagnosis of those diseases, overcoming the limitations of functional and structural imaging of the deep brain. This analysis is commonly used in ophthalmic practice, and interest in it has risen in recent years. This review will discuss the relationship between Alzheimer's disease and Parkinson's disease with retinal degeneration, highlighting how retinal analysis may represent a noninvasive and straightforward method for the early diagnosis of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Fabio Casciano
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Claudio Celeghini
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Lorenzo Caruso
- Department of Environment and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Arianna Gonelli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329, Saudi Arabia
| | - Angela Pignatelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44124 Ferrara, Italy
| |
Collapse
|
10
|
Rozumna NM, Hanzha VV, Lukyanetz EA. Memantine protects the cultured rat hippocampal neurons treated by NMDA and amyloid β1-42. Front Neurosci 2023; 17:1269664. [PMID: 38144212 PMCID: PMC10748420 DOI: 10.3389/fnins.2023.1269664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative condition with no effective treatments. Recent research highlights the role of NMDA receptors in AD development, as excessive activation of these receptors triggers excitotoxicity. Memantine, an NMDA receptor antagonist, shows promise in curbing excitotoxicity. What sets our study apart is our novel exploration of memantine's potential to protect hippocampal neurons from neurotoxicity induced by NMDA and amyloid β1-42, a hallmark of AD. To achieve this, we conducted a series of experiments using rat hippocampal cell cultures. We employed Hoechst and propidium iodide double staining to assess neuronal viability. Analyzing the viability of neurons in normal conditions compared to their status after 24 h of exposure to the respective agents revealed compelling results. The incubation of hippocampal neurons with NMDA or amyloid β1-42 led to a more than twofold increase in the number of apoptotic and necrotic neurons. However, when memantine was co-administered with NMDA or amyloid β1-42, we witnessed a notable augmentation in the number of viable cells. This unique approach not only suggests that memantine may act as a neuroprotective agent but also emphasizes the relevance of hippocampal neuron cultures as valuable models for investigating excitotoxicity and potential AD treatments.
Collapse
Affiliation(s)
- Nataliia M. Rozumna
- Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | | |
Collapse
|
11
|
Liu G, Yang C, Wang X, Chen X, Wang Y, Le W. Oxygen metabolism abnormality and Alzheimer's disease: An update. Redox Biol 2023; 68:102955. [PMID: 37956598 PMCID: PMC10665957 DOI: 10.1016/j.redox.2023.102955] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Oxygen metabolism abnormality plays a crucial role in the pathogenesis of Alzheimer's disease (AD) via several mechanisms, including hypoxia, oxidative stress, and mitochondrial dysfunction. Hypoxia condition usually results from living in a high-altitude habitat, cardiovascular and cerebrovascular diseases, and chronic obstructive sleep apnea. Chronic hypoxia has been identified as a significant risk factor for AD, showing an aggravation of various pathological components of AD, such as amyloid β-protein (Aβ) metabolism, tau phosphorylation, mitochondrial dysfunction, and neuroinflammation. It is known that hypoxia and excessive hyperoxia can both result in oxidative stress and mitochondrial dysfunction. Oxidative stress and mitochondrial dysfunction can increase Aβ and tau phosphorylation, and Aβ and tau proteins can lead to redox imbalance, thus forming a vicious cycle and exacerbating AD pathology. Hyperbaric oxygen therapy (HBOT) is a non-invasive intervention known for its capacity to significantly enhance cerebral oxygenation levels, which can significantly attenuate Aβ aggregation, tau phosphorylation, and neuroinflammation. However, further investigation is imperative to determine the optimal oxygen pressure, duration of exposure, and frequency of HBOT sessions. In this review, we explore the prospects of oxygen metabolism in AD, with the aim of enhancing our understanding of the underlying molecular mechanisms in AD. Current research aimed at attenuating abnormalities in oxygen metabolism holds promise for providing novel therapeutic approaches for AD.
Collapse
Affiliation(s)
- Guangdong Liu
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cui Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xin Wang
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xi Chen
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yanjiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Weidong Le
- Institute of Neurology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China; Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian, 116021, China.
| |
Collapse
|
12
|
Jin LW, Di Lucente J, Ruiz Mendiola U, Suthprasertporn N, Tomilov A, Cortopassi G, Kim K, Ramsey JJ, Maezawa I. The ketone body β-hydroxybutyrate shifts microglial metabolism and suppresses amyloid-β oligomer-induced inflammation in human microglia. FASEB J 2023; 37:e23261. [PMID: 37878335 DOI: 10.1096/fj.202301254r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/15/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023]
Abstract
Fatty acids are metabolized by β-oxidation within the "mitochondrial ketogenic pathway" (MKP) to generate β-hydroxybutyrate (BHB), a ketone body. BHB can be generated by most cells but largely by hepatocytes following exercise, fasting, or ketogenic diet consumption. BHB has been shown to modulate systemic and brain inflammation; however, its direct effects on microglia have been little studied. We investigated the impact of BHB on Aβ oligomer (AβO)-stimulated human iPS-derived microglia (hiMG), a model relevant to the pathogenesis of Alzheimer's disease (AD). HiMG responded to AβO with proinflammatory activation, which was mitigated by BHB at physiological concentrations of 0.1-2 mM. AβO stimulated glycolytic transcripts, suppressed genes in the β-oxidation pathway, and induced over-expression of AD-relevant p46Shc, an endogenous inhibitor of thiolase, actions that are expected to suppress MKP. AβO also triggered mitochondrial Ca2+ increase, mitochondrial reactive oxygen species production, and activation of the mitochondrial permeability transition pore. BHB potently ameliorated all the above mitochondrial changes and rectified the MKP, resulting in reduced inflammasome activation and recovery of the phagocytotic function impaired by AβO. These results indicate that microglia MKP can be induced to modulate microglia immunometabolism, and that BHB can remedy "keto-deficiency" resulting from MKP suppression and shift microglia away from proinflammatory mitochondrial metabolism. These effects of BHB may contribute to the beneficial effects of ketogenic diet intervention in aged mice and in human subjects with mild AD.
Collapse
Affiliation(s)
- Lee-Way Jin
- Department of Pathology and Laboratory Medicine and Medical Investigation of Neurodevelopmental Disorders, University of California Davis Medical Center, Sacramento, California, USA
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis Medical Center, Sacramento, California, USA
- Alzheimer's Disease Research Center, University of California Davis Medical Center, Sacramento, California, USA
| | - Jacopo Di Lucente
- Department of Pathology and Laboratory Medicine and Medical Investigation of Neurodevelopmental Disorders, University of California Davis Medical Center, Sacramento, California, USA
| | - Ulises Ruiz Mendiola
- Department of Pathology and Laboratory Medicine and Medical Investigation of Neurodevelopmental Disorders, University of California Davis Medical Center, Sacramento, California, USA
| | - Nopparat Suthprasertporn
- Department of Pathology and Laboratory Medicine and Medical Investigation of Neurodevelopmental Disorders, University of California Davis Medical Center, Sacramento, California, USA
| | - Alexey Tomilov
- Department of Molecular Biosciences, University of California, Davis, Davis, California, USA
| | - Gino Cortopassi
- Department of Molecular Biosciences, University of California, Davis, Davis, California, USA
| | - Kyoungmi Kim
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis Medical Center, Sacramento, California, USA
- Department of Public Health Sciences, University of California, Davis, Davis, California, USA
| | - Jon J Ramsey
- Department of Molecular Biosciences, University of California, Davis, Davis, California, USA
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine and Medical Investigation of Neurodevelopmental Disorders, University of California Davis Medical Center, Sacramento, California, USA
- Medical Investigation of Neurodevelopmental Disorders Institute, University of California Davis Medical Center, Sacramento, California, USA
- Alzheimer's Disease Research Center, University of California Davis Medical Center, Sacramento, California, USA
| |
Collapse
|
13
|
Jadiya P, Kolmetzky DW, Tomar D, Thomas M, Cohen HM, Khaledi S, Garbincius JF, Hildebrand AN, Elrod JW. Genetic ablation of neuronal mitochondrial calcium uptake halts Alzheimer's disease progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561889. [PMID: 37904949 PMCID: PMC10614731 DOI: 10.1101/2023.10.11.561889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Alzheimer's disease (AD) is characterized by the extracellular deposition of amyloid beta, intracellular neurofibrillary tangles, synaptic dysfunction, and neuronal cell death. These phenotypes correlate with and are linked to elevated neuronal intracellular calcium ( i Ca 2+ ) levels. Recently, our group reported that mitochondrial calcium ( m Ca 2+ ) overload, due to loss of m Ca 2+ efflux capacity, contributes to AD development and progression. We also noted proteomic remodeling of the mitochondrial calcium uniporter channel (mtCU) in sporadic AD brain samples, suggestive of altered m Ca 2+ uptake in AD. Since the mtCU is the primary mechanism for Ca 2+ uptake into the mitochondrial matrix, inhibition of the mtCU has the potential to reduce or prevent m Ca 2+ overload in AD. Here, we report that neuronal-specific loss of mtCU-dependent m Ca 2+ uptake in the 3xTg-AD mouse model of AD reduced Aβ and tau-pathology, synaptic dysfunction, and cognitive decline. Knockdown of Mcu in a cellular model of AD significantly decreased matrix Ca 2+ content, oxidative stress, and cell death. These results suggest that inhibition of neuronal m Ca 2+ uptake is a novel therapeutic target to impede AD progression.
Collapse
|
14
|
Lacham-Hartman S, Moshe R, Ben-Zichri S, Shmidov Y, Bitton R, Jelinek R, Papo N. APPI-Derived Cyclic Peptide Enhances Aβ42 Aggregation and Reduces Aβ42-Mediated Membrane Destabilization and Cytotoxicity. ACS Chem Neurosci 2023; 14:3385-3397. [PMID: 37579500 DOI: 10.1021/acschemneuro.3c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
An amyloid precursor protein inhibitor (APPI) and amyloid beta 42 (Aβ42) are both subdomains of the human transmembrane amyloid precursor protein (APP). In the brains of patients with Alzheimer's disease (AD), Aβ42 oligomerizes into aggregates of various sizes, with intermediate, low-molecular-weight Aβ42 oligomers currently being held to be the species responsible for the most neurotoxic effects associated with the disease. Strategies to ameliorate the toxicity of these intermediate Aβ42 oligomeric species include the use of short, Aβ42-interacting peptides that either inhibit the formation of the Aβ42 oligomeric species or promote their conversion to high-molecular-weight aggregates. We therefore designed such an Aβ42-interacting peptide that is based on the β-hairpin amino acid sequence of the APPI, which exhibits high similarity to the β-sheet-like aggregation site of Aβ42. Upon tight binding of this 20-mer cyclic peptide to Aβ42 (in a 1:1 molar ratio), the formation of Aβ42 aggregates was enhanced, and consequently, Aβ42-mediated cell toxicity was ameliorated. We showed that in the presence of the cyclic peptide, interactions of Aβ42 with both plasma and mitochondrial membranes and with phospholipid vesicles that mimic these membranes were inhibited. Specifically, the cyclic peptide inhibited Aβ42-mediated mitochondrial membrane depolarization and reduced Aβ42-mediated apoptosis and cell death. We suggest that the cyclic peptide modulates Aβ42 aggregation by enhancing the formation of large aggregates─as opposed to low-molecular-weight intermediates─and as such has the potential for further development as an AD therapeutic.
Collapse
Affiliation(s)
- Shiran Lacham-Hartman
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Reut Moshe
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Shani Ben-Zichri
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Yulia Shmidov
- Department of Chemical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Ronit Bitton
- Department of Chemical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science &Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Raz Jelinek
- Department of Chemistry, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science &Technology, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| | - Niv Papo
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105, Israel
| |
Collapse
|
15
|
Sammeta SS, Banarase TA, Rahangdale SR, Wankhede NL, Aglawe MM, Taksande BG, Mangrulkar SV, Upaganlawar AB, Koppula S, Kopalli SR, Umekar MJ, Kale MB. Molecular understanding of ER-MT communication dysfunction during neurodegeneration. Mitochondrion 2023; 72:59-71. [PMID: 37495165 DOI: 10.1016/j.mito.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Biological researchers are seeing organelles in a new light. These cellular entities have been believed to be singular and distinctive structures that performed specialized purposes for a very long time. But in recentpast years, scientists have learned that organelles become dynamic and make physical contact. Additionally, Biological processes are regulated by organelles interactions and its alteration play an important role in cell malfunctioning and several pathologies, including neurodegenerative diseases. Mitochondrial-ER contact sites (MERCS) have received considerable attention in the domain of cell homeostasis and dysfunction, specifically in the area of neurodegeneration. This is largely due to the significant role of this subcellular compartment in a diverse array of vital cellular functions, including Ca2+ homeostasis, transport, bioenergetics and turnover, mitochondrial dynamics, apoptotic signaling, ER stress, and inflammation. A significant number of disease-associated proteins were found to physically interact with the ER-Mitochondria (ER-MT) interface, causing structural and/or functional alterations in this compartment. In this review, we summarize current knowledge about the structure and functions of the ER-MT contact sites, as well as the possible repercussions of their alteration in notable neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and fronto-temporal dementia. The constraints and complexities in defining the nature and origin of the highlighted defects in ER-MT communication, as well as their concise contribution to the neurodegenerative process, are illustrated in particular. The possibility of using MERCS as a potential drug target to prevent neuronal damage and ultimately neurodegeneration is the topic of our final discussion.
Collapse
Affiliation(s)
- Shivkumar S Sammeta
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Trupti A Banarase
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Sandip R Rahangdale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Manish M Aglawe
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Shubhada V Mangrulkar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
16
|
Thammasart S, Namchaiw P, Pasuwat K, Tonsomboon K, Khantachawana A. Attenuation Aβ1-42-induced neurotoxicity in neuronal cell by 660nm and 810nm LED light irradiation. PLoS One 2023; 18:e0283976. [PMID: 37478089 PMCID: PMC10361470 DOI: 10.1371/journal.pone.0283976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/21/2023] [Indexed: 07/23/2023] Open
Abstract
Oligomeric amyloid-β 1-42 (Aβ1-42) has a close correlation with neurodegenerative disorder especially Alzheimer's disease (AD). It induces oxidative stress and mitochondrial damage in neurons. Therefore, it is used to generate AD-like in vitro model for studying neurotoxicity and neuroprotection against amyloid-β. A low-level light therapy (LLLT) is a non-invasive method that has been used to treat several neurodegenerative disorders. In this study, the red wavelength (660nm) and near infrared wavelength (810nm) at energy densities of 1, 3, and 5 J/cm2 were used to modulate biochemical processes in the neural cells. The exposure of Aβ1-42 resulted in cell death, increased intracellular reactive oxygen species (ROS), and retracted neurite outgrowth. We showed that both of LLLT wavelengths could protect neurons form Aβ1-42-induced neurotoxicity in a biphasic manner. The treatment of LLLT at 3 J/cm2 potentially alleviated cell death and recovered neurite outgrowth. In addition, the treatment of LLLT following Aβ1-42 exposure could attenuate the intracellular ROS generation and Ca2+ influx. Interestingly, both wavelengths could induce minimal level of ROS generation. However, they did not affect cell viability. In addition, LLLT also stimulated Ca2+ influx, but not altered mitochondrial membrane potential. This finding indicated LLLT may protect neurons through the stimulation of secondary signaling messengers such as ROS and Ca2+. The increase of these secondary messengers was in a functional level and did not harmful to the cells. These results suggested the use of LLLT as a tool to modulate the neuronal toxicity following Aβ1-42 accumulation in AD's brain.
Collapse
Affiliation(s)
- Siriluk Thammasart
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
| | - Poommaree Namchaiw
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
| | - Kwanchanok Pasuwat
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
| | - Khaow Tonsomboon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Anak Khantachawana
- Biological Engineering Program, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
- Department of Mechanical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi (KMUTT), Thung Kru, Bangkok, Thailand
| |
Collapse
|
17
|
Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduct Target Ther 2023; 8:248. [PMID: 37386015 PMCID: PMC10310781 DOI: 10.1038/s41392-023-01484-7] [Citation(s) in RCA: 246] [Impact Index Per Article: 123.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
Amyloid β protein (Aβ) is the main component of neuritic plaques in Alzheimer's disease (AD), and its accumulation has been considered as the molecular driver of Alzheimer's pathogenesis and progression. Aβ has been the prime target for the development of AD therapy. However, the repeated failures of Aβ-targeted clinical trials have cast considerable doubt on the amyloid cascade hypothesis and whether the development of Alzheimer's drug has followed the correct course. However, the recent successes of Aβ targeted trials have assuaged those doubts. In this review, we discussed the evolution of the amyloid cascade hypothesis over the last 30 years and summarized its application in Alzheimer's diagnosis and modification. In particular, we extensively discussed the pitfalls, promises and important unanswered questions regarding the current anti-Aβ therapy, as well as strategies for further study and development of more feasible Aβ-targeted approaches in the optimization of AD prevention and treatment.
Collapse
Affiliation(s)
- Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Huaqiu Chen
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| |
Collapse
|
18
|
Tapias V, González-Andrés P, Peña LF, Barbero A, Núñez L, Villalobos C. Therapeutic Potential of Heterocyclic Compounds Targeting Mitochondrial Calcium Homeostasis and Signaling in Alzheimer's Disease and Parkinson's Disease. Antioxidants (Basel) 2023; 12:1282. [PMID: 37372013 DOI: 10.3390/antiox12061282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative diseases in the elderly. The key histopathological features of these diseases are the presence of abnormal protein aggregates and the progressive and irreversible loss of neurons in specific brain regions. The exact mechanisms underlying the etiopathogenesis of AD or PD remain unknown, but there is extensive evidence indicating that excessive generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), along with a depleted antioxidant system, mitochondrial dysfunction, and intracellular Ca2+ dyshomeostasis, plays a vital role in the pathophysiology of these neurological disorders. Due to an improvement in life expectancy, the incidence of age-related neurodegenerative diseases has significantly increased. However, there is no effective protective treatment or therapy available but rather only very limited palliative treatment. Therefore, there is an urgent need for the development of preventive strategies and disease-modifying therapies to treat AD/PD. Because dysregulated Ca2+ metabolism drives oxidative damage and neuropathology in these diseases, the identification or development of compounds capable of restoring Ca2+ homeostasis and signaling may provide a neuroprotective avenue for the treatment of neurodegenerative diseases. In addition, a set of strategies to control mitochondrial Ca2+ homeostasis and signaling has been reported, including decreased Ca2+ uptake through voltage-operated Ca2+ channels (VOCCs). In this article, we review the modulatory effects of several heterocyclic compounds on Ca2+ homeostasis and trafficking, as well as their ability to regulate compromised mitochondrial function and associated free-radical production during the onset and progression of AD or PD. This comprehensive review also describes the chemical synthesis of the heterocycles and summarizes the clinical trial outcomes.
Collapse
Affiliation(s)
- Victor Tapias
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Paula González-Andrés
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Laura F Peña
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Asunción Barbero
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Lucía Núñez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47003 Valladolid, Spain
| | - Carlos Villalobos
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| |
Collapse
|
19
|
Panes-Fernandez J, Godoy PA, Gavilan J, Ramírez-Molina O, Burgos CF, Marileo A, Flores-Núñez O, Castro PA, Moraga-Cid G, Yévenes GE, Muñoz-Montesino C, Fuentealba J. TG2 promotes amyloid beta aggregates: Impact on ER-mitochondria crosstalk, calcium homeostasis and synaptic function in Alzheimer’s disease. Biomed Pharmacother 2023; 162:114596. [PMID: 36989728 DOI: 10.1016/j.biopha.2023.114596] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by cognitive impairment that increasingly affects the elderly. AD's main features have been related to cellular and molecular events, including the aberrant aggregation of the amyloid beta peptide (Aβ), Ca2+ dyshomeostasis, and increased mitochondria-associated membranes (MAMs). Transglutaminase type 2 (TG2) is a ubiquitous enzyme whose primary role is the Ca2+-dependent proteins transamidation, including the Aβ peptide. TG2 activity has been closely related to cellular damage and death. We detected increased TG2 levels in neuronal cells treated with Aβ oligomers (AβOs) and hippocampal slices from J20 mice using cellular and molecular approaches. In this work, we characterized the capacity of TG2 to interact and promote Aβ toxic aggregates (AβTG2). AβTG2 induced an acute increase in intracellular Ca2+, miniature currents, and hiperexcitability, consistent with an increased mitochondrial Ca2+ overload, IP3R-VDAC tethering, and mitochondria-endoplasmic reticulum contacts (MERCs). AβTG2 also decreased neuronal viability and excitatory postsynaptic currents, reinforcing the idea of synaptic failure associated with MAMs dysregulation mediated by TG2. Z-DON treatment, TG2 inhibitor, reduced calcium overload, mitochondrial membrane potential loss, and synaptic failure, indicating an involvement of TG2 in a toxic cycle which increases Aβ aggregation, Ca2+ overload, and MAMs upregulation. These data provide novel information regarding the role TG2 plays in synaptic function and contribute additional evidence to support the further development of TG2 inhibitors as a disease-modifying strategy for AD.
Collapse
|
20
|
Liu T, Wang L, Chen G, Tong L, Ye X, Yang H, Liu H, Zhang H, Lu W, Zhang S, Du D. PDZD8-mediated endoplasmic reticulum-mitochondria associations regulate sympathetic drive and blood pressure through the intervention of neuronal mitochondrial homeostasis in stress-induced hypertension. Neurobiol Dis 2023:106173. [PMID: 37247681 DOI: 10.1016/j.nbd.2023.106173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023] Open
Abstract
Neuronal hyperexcitation in the rostral ventrolateral medulla (RVLM) drives heightened sympathetic nerve activity and contributes to the etiology of stress-induced hypertension (SIH). Maintenance of mitochondrial functions is central to neuronal homeostasis. PDZD8, an endoplasmic reticulum (ER) transmembrane protein, tethers ER to mitochondria. However, the mechanisms of PDZD8-mediated ER-mitochondria associations regulating neuronal mitochondrial functions and thereby mediating blood pressure (BP) in the RVLM of SIH were largely unknown. SIH rats were subjected to intermittent electric foot shocks plus noise for 2 h twice daily for 15 consecutive days. The underlying mechanisms of PDZD8 were investigated through in vitro experiments by using small interfering RNA and through in vivo experiments, such as intra-RVLM microinjection and Western blot analysis. The function of PDZD8 on BP regulation in the RVLM was determined in vivo via the intra-RVLM microinjection of adeno-associated virus (AAV)2-r-Pdzd8. We found that the c-Fos-positive RVLM tyrosine hydroxylase (TH) neurons, renal sympathetic nerve activity (RSNA), plasma norepinephrine (NE) level, BP, and heart rate (HR) were elevated in SIH rats. ER-mitochondria associations in RVLM neurons were significantly reduced in SIH rats. PDZD8 was mainly expressed in RVLM neurons, and mRNA and protein levels were markedly decreased in SIH rats. In N2a cells, PDZD8 knockdown disrupted ER-mitochondria associations and mitochondrial structure, decreased mitochondrial membrane potential (MMP) and respiratory metabolism, enhanced ROS levels, and reduced catalase (CAT) activity. These effects suggested that PDZD8 dysregulation induced mitochondrial malfunction. By contrast, PDZD8 upregulation in the RVLM of SIH rats could rescue neuronal mitochondrial function, thereby suppressing c-Fos expression in TH neurons and decreasing RSNA, plasma NE, BP, and HR. Our results indicated that the dysregulation of PDZD8-mediated ER-mitochondria associations led to the loss of the activity homeostasis of RVLM neurons by disrupting mitochondrial functions, thereby participating in the regulation of SIH pathology.
Collapse
Affiliation(s)
- Tianfeng Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; College of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Linping Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; College of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Gaojun Chen
- College of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Lei Tong
- College of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xuanxuan Ye
- College of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hui Yang
- College of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Haisheng Liu
- College of Agriculture and Bioengineering, Heze University, Heze 274000, China
| | - Haili Zhang
- College of Agriculture and Bioengineering, Heze University, Heze 274000, China
| | - Wen Lu
- College of Agriculture and Bioengineering, Heze University, Heze 274000, China
| | - Shuai Zhang
- International Cooperation Laboratory of Molecular Medicine, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| | - Dongshu Du
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; College of Life Sciences, Shanghai University, Shanghai 200444, China; Shaoxing Institute of Shanghai University, Shaoxing, Zhejiang 312000, China; College of Agriculture and Bioengineering, Heze University, Heze 274000, China.
| |
Collapse
|
21
|
Garcia-Casas P, Rossini M, Filadi R, Pizzo P. Mitochondrial Ca 2+ signaling and Alzheimer's disease: Too much or too little? Cell Calcium 2023; 113:102757. [PMID: 37192560 DOI: 10.1016/j.ceca.2023.102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, caused by poorly known pathogenic mechanisms and aggravated by delayed therapeutic intervention, that still lacks an effective cure. However, it is clear that some important neurophysiological processes are altered years before the onset of clinical symptoms, offering the possibility of identifying biological targets useful for implementation of new therapies. Of note, evidence has been provided suggesting that mitochondria, pivotal organelles in sustaining neuronal energy demand and modulating synaptic activity, are dysfunctional in AD samples. In particular, alterations in mitochondrial Ca2+ signaling have been proposed as causal events for neurodegeneration, although the exact outcomes and molecular mechanisms of these defects, as well as their longitudinal progression, are not always clear. Here, we discuss the importance of a correct mitochondrial Ca2+ handling for neuronal physiology and summarize the latest findings on dysfunctional mitochondrial Ca2+ pathways in AD, analysing possible consequences contributing to the neurodegeneration that characterizes the disease.
Collapse
Affiliation(s)
- Paloma Garcia-Casas
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy; Department of Biochemistry and Molecular Biology and Physiology, School of Medicine, University of Valladolid, 47003 Valladolid, Spain
| | - Michela Rossini
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy; Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy.
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, 35131 Padua, Italy; Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Study Centre for Neurodegeneration (CESNE), University of Padova, 35131 Padua, Italy.
| |
Collapse
|
22
|
Pérez-Riesgo E, Hernando-Pérez E, Feijóo V, Tajada S, Núñez L, Villalobos C. Transcriptional Basis of Ca 2+ Remodeling Reversal Induced by Polyamine Synthesis Inhibition in Colorectal Cancer Cells. Cancers (Basel) 2023; 15:cancers15051600. [PMID: 36900391 PMCID: PMC10000432 DOI: 10.3390/cancers15051600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Colorectal cancer (CRC) is associated with mutations in APC/Wnt leading to c-myc activation and the overexpression of ODC1, the limiting step in polyamine synthesis. CRC cells also display a remodeling of intracellular Ca2+ homeostasis that contributes to cancer hallmarks. As polyamines may modulate Ca2+ homeostasis during epithelial tissue repair, we investigated whether polyamine synthesis inhibition may reverse Ca2+ remodeling in CRC cells and, if so, the molecular basis for this reversal. To this end, we used calcium imaging and transcriptomic analysis in normal and CRC cells treated with DFMO, an ODC1 suicide inhibitor. We found that polyamine synthesis inhibition partially reversed changes in Ca2+ homeostasis associated with CRC, including a decrease in resting Ca2+ and SOCE along with an increased Ca2+ store content. We also found that polyamine synthesis inhibition reversed transcriptomic changes in CRC cells without affecting normal cells. Specifically, DFMO treatment enhanced the transcription of SOCE modulators CRACR2A; ORMDL3; and SEPTINS 6, 7, 8, 9, and 11, whereas it decreased SPCA2, involved in store-independent Orai1 activation. Therefore, DFMO treatment probably decreased store-independent Ca2+ entry and enhanced SOCE control. Conversely, DFMO treatment decreased the transcription of the TRP channels TRPC1 and 5, TRPV6, and TRPP1 while increasing TRPP2, thus probably decreasing Ca2+ entry through TRP channels. Finally, DFMO treatment enhanced the transcription of the PMCA4 Ca2+ pump and mitochondrial channels MCU and VDAC3 for enhanced Ca2+ extrusion through the plasma membrane and mitochondria. Collectively, these findings suggested the critical role of polyamines in Ca2+ remodeling in colorectal cancer.
Collapse
Affiliation(s)
- Enrique Pérez-Riesgo
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
- Correspondence: (E.P.-R.); (C.V.); Tel.: +34-983-184822 (E.P.-R.); +34-983-184821 (C.V.)
| | - Elena Hernando-Pérez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | - Verónica Feijóo
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
| | - Sendoa Tajada
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Lucía Núñez
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, 47005 Valladolid, Spain
| | - Carlos Villalobos
- Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), 47003 Valladolid, Spain
- Correspondence: (E.P.-R.); (C.V.); Tel.: +34-983-184822 (E.P.-R.); +34-983-184821 (C.V.)
| |
Collapse
|
23
|
The interactions of amyloid β aggregates with phospholipid membranes and the implications for neurodegeneration. Biochem Soc Trans 2023; 51:147-159. [PMID: 36629697 DOI: 10.1042/bst20220434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023]
Abstract
Misfolding, aggregation and accumulation of Amyloid-β peptides (Aβ) in neuronal tissue and extracellular matrix are hallmark features of Alzheimer's disease (AD) pathology. Soluble Aβ oligomers are involved in neuronal toxicity by interacting with the lipid membrane, compromising its integrity, and affecting the function of receptors. These facts indicate that the interaction between Aβ oligomers and cell membranes may be one of the central molecular level factors responsible for the onset of neurodegeneration. The present review provides a structural understanding of Aβ neurotoxicity via membrane interactions and contributes to understanding early events in Alzheimer's disease.
Collapse
|
24
|
Wilkins HM. Interactions between amyloid, amyloid precursor protein, and mitochondria. Biochem Soc Trans 2023; 51:173-182. [PMID: 36688439 PMCID: PMC9987971 DOI: 10.1042/bst20220518] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/24/2023]
Abstract
Mitochondrial dysfunction and Aβ accumulation are hallmarks of Alzheimer's disease (AD). Decades of research describe a relationship between mitochondrial function and Aβ production. Amyloid precursor protein (APP), of which Aβ is generated from, is found within mitochondria. Studies suggest Aβ can be generated in mitochondria and imported into mitochondria. APP and Aβ alter mitochondrial function, while mitochondrial function alters Aβ production from APP. The role these interactions contribute to AD pathology and progression are unknown. Here, we discuss prior research, the rigor of those studies, and the critical knowledge gaps of relationships between APP, Aβ, and mitochondria.
Collapse
Affiliation(s)
- Heather M. Wilkins
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, U.S.A
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, U.S.A
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, U.S.A
| |
Collapse
|
25
|
Walters GC, Usachev YM. Mitochondrial calcium cycling in neuronal function and neurodegeneration. Front Cell Dev Biol 2023; 11:1094356. [PMID: 36760367 PMCID: PMC9902777 DOI: 10.3389/fcell.2023.1094356] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023] Open
Abstract
Mitochondria are essential for proper cellular function through their critical roles in ATP synthesis, reactive oxygen species production, calcium (Ca2+) buffering, and apoptotic signaling. In neurons, Ca2+ buffering is particularly important as it helps to shape Ca2+ signals and to regulate numerous Ca2+-dependent functions including neuronal excitability, synaptic transmission, gene expression, and neuronal toxicity. Over the past decade, identification of the mitochondrial Ca2+ uniporter (MCU) and other molecular components of mitochondrial Ca2+ transport has provided insight into the roles that mitochondrial Ca2+ regulation plays in neuronal function in health and disease. In this review, we discuss the many roles of mitochondrial Ca2+ uptake and release mechanisms in normal neuronal function and highlight new insights into the Ca2+-dependent mechanisms that drive mitochondrial dysfunction in neurologic diseases including epilepsy, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. We also consider how targeting Ca2+ uptake and release mechanisms could facilitate the development of novel therapeutic strategies for neurological diseases.
Collapse
Affiliation(s)
- Grant C. Walters
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| | - Yuriy M. Usachev
- Department of Neuroscience and Pharmacology, Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
26
|
Campos HC, Ribeiro DE, Hashiguchi D, Glaser T, Milanis MDS, Gimenes C, Suchecki D, Arida RM, Ulrich H, Monteiro Longo B. Neuroprotective effects of resistance physical exercise on the APP/PS1 mouse model of Alzheimer's disease. Front Neurosci 2023; 17:1132825. [PMID: 37090809 PMCID: PMC10116002 DOI: 10.3389/fnins.2023.1132825] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/16/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction Physical exercise has beneficial effects by providing neuroprotective and anti-inflammatory responses to AD. Most studies, however, have been conducted with aerobic exercises, and few have investigated the effects of other modalities that also show positive effects on AD, such as resistance exercise (RE). In addition to its benefits in developing muscle strength, balance and muscular endurance favoring improvements in the quality of life of the elderly, RE reduces amyloid load and local inflammation, promotes memory and cognitive improvements, and protects the cortex and hippocampus from the degeneration that occurs in AD. Similar to AD patients, double-transgenic APPswe/PS1dE9 (APP/PS1) mice exhibit Αβ plaques in the cortex and hippocampus, hyperlocomotion, memory deficits, and exacerbated inflammatory response. Therefore, the aim of this study was to investigate the effects of 4 weeks of RE intermittent training on the prevention and recovery from these AD-related neuropathological conditions in APP/PS1 mice. Methods For this purpose, 6-7-month-old male APP/PS1 transgenic mice and their littermates, negative for the mutations (CTRL), were distributed into three groups: CTRL, APP/PS1, APP/PS1+RE. RE training lasted four weeks and, at the end of the program, the animals were tested in the open field test for locomotor activity and in the object recognition test for recognition memory evaluation. The brains were collected for immunohistochemical analysis of Aβ plaques and microglia, and blood was collected for plasma corticosterone by ELISA assay. Results APP/PS1 transgenic sedentary mice showed increased hippocampal Aβ plaques and higher plasma corticosterone levels, as well as hyperlocomotion and reduced central crossings in the open field test, compared to APP/PS1 exercised and control animals. The intermittent program of RE was able to recover the behavioral, corticosterone and Aβ alterations to the CTRL levels. In addition, the RE protocol increased the number of microglial cells in the hippocampus of APP/PS1 mice. Despite these alterations, no memory impairment was observed in APP/PS1 mice in the novel object recognition test. Discussion Altogether, the present results suggest that RE plays a role in alleviating AD symptoms, and highlight the beneficial effects of RE training as a complementary treatment for AD.
Collapse
Affiliation(s)
- Henrique Correia Campos
- Laboratory of Neurophysiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Deidiane Elisa Ribeiro
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Debora Hashiguchi
- Laboratory of Neurophysiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
- Instituto do Cérebro - ICe, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Talita Glaser
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Milena da Silva Milanis
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Christiane Gimenes
- Laboratory of Neurophysiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Deborah Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo Mario Arida
- Laboratory of Neurophysiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
- *Correspondence: Henning Ulrich, ; Beatriz Monteiro Longo, ;
| | - Beatriz Monteiro Longo
- Laboratory of Neurophysiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Henning Ulrich, ; Beatriz Monteiro Longo, ;
| |
Collapse
|
27
|
Havranek T, Mihalj D, Bacova Z, Bakos J. Oxytocin action on components of endoplasmic reticulum in hippocampal neuronal cells. Neurosci Lett 2023; 792:136971. [PMID: 36414131 DOI: 10.1016/j.neulet.2022.136971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Despite the known importance of the endoplasmic reticulum (ER) in protein synthesis and vesicular transport, it is not clear whether neuropeptide and neuromodulator oxytocin can directly affect components of the ER in neuronal cells. Therefore, in the present study, we hypothesize that incubation of hippocampal neuronal cells in a presence of oxytocin 1) plays a role in the regulation of the expression of selected ER chaperone components and molecules involved in unfolded protein response pathway 2) affects distribution of the intracellular fluorescence signal highly selective for the ER. We found that oxytocin (1 μM) after 60 min significantly decreased the gene expression of oxidoreductase Ero1β, chaperone glucose-regulated proteins (Grp) 78 and Grp94. A significant decrease in GRP78 protein levels in response to oxytocin treatment occurred after 30, 60 and 120 min. We also observed a time-dependent increase in calreticulin protein levels with a statistically significant increase observed after 360 min. We found that the dynamics of the ER network changes significantly within 2 h of incubation under the influence of oxytocin. In conclusion we have shown that ER chaperones, oxidoreductases and trafficking molecules in neuronal cells are changing in response to oxytocin treatment in a short-term scenario potentially relevant for growth of dendrites and axons.
Collapse
Affiliation(s)
- T Havranek
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Faculty of Medicine, Comenius University in Bratislava, Slovakia
| | - D Mihalj
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Z Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - J Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Faculty of Medicine, Comenius University in Bratislava, Slovakia.
| |
Collapse
|
28
|
Tian J, Stucky CS, Wang T, Muma NA, Johnson M, Du H. Mitochondrial Dysfunction Links to Impaired Hippocampal Serotonin Release in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2023; 93:605-619. [PMID: 37066917 PMCID: PMC10416312 DOI: 10.3233/jad-230072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND Deprivation of extracellular serotonin has been linked to cognitive decline and neuropsychiatric disturbances in Alzheimer's disease (AD). However, despite degeneration of serotonin-producing neurons, whether serotonin release is affected in AD-sensitive brain regions is unknown. OBJECTIVE This study investigated the impact of mitochondrial dysfunction in decreased hippocampal serotonin release in AD amyloidosis mouse model 5xFAD mice. METHODS Electrochemical assays were applied to examine hippocampal serotonin release. We also employed multidisciplinary techniques to determine the role of oligomeric amyloid-β (Aβ) in hippocampal mitochondrial deficits and serotonin release deficiency. RESULTS 5xFAD mice exhibited serotonin release decrease and relatively moderate downregulation of serotonergic fiber density as well as serotonin content in the hippocampal region. Further experiments showed an inhibitory effect of oligomeric amyloid-β (Aβ) on hippocampal serotonin release without affecting the density of serotonergic fibers. Pharmaceutical uncoupling of mitochondrial oxidative phosphorylation (OXPHOS) disrupted hippocampal serotonin release in an ex vivo setting. This echoes the mitochondrial defects in serotonergic fibers in 5xFAD mice and oligomeric Aβ-challenged primary serotonergic neuron cultures and implicates a link between mitochondrial dysfunction and serotonin transmission defects in AD-relevant pathological settings. CONCLUSION The most parsimonious interpretation of our findings is that mitochondrial dysfunction is a phenotypic change of serotonergic neurons, which potentially plays a role in the development of serotonergic failure in AD-related conditions.
Collapse
Affiliation(s)
- Jing Tian
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | | | - Tienju Wang
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Nancy A. Muma
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Michael Johnson
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Heng Du
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
- Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA
- Alzheimer’s Disease Center, University of Kansas Medical Center, Lawrence, KS, USA
| |
Collapse
|
29
|
Elsworthy RJ, Dunleavy C, Whitham M, Aldred S. Exercise for the prevention of Alzheimer's disease: Multiple pathways to promote non-amyloidogenic AβPP processing. AGING AND HEALTH RESEARCH 2022. [DOI: 10.1016/j.ahr.2022.100093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
30
|
Dentoni G, Castro-Aldrete L, Naia L, Ankarcrona M. The Potential of Small Molecules to Modulate the Mitochondria-Endoplasmic Reticulum Interplay in Alzheimer's Disease. Front Cell Dev Biol 2022; 10:920228. [PMID: 36092728 PMCID: PMC9459385 DOI: 10.3389/fcell.2022.920228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease affecting a growing number of elderly individuals. No disease-modifying drugs have yet been identified despite over 30 years of research on the topic, showing the need for further research on this multifactorial disease. In addition to the accumulation of amyloid β-peptide (Aβ) and hyperphosphorylated tau (p-tau), several other alterations have been associated with AD such as calcium (Ca2+) signaling, glucose-, fatty acid-, cholesterol-, and phospholipid metabolism, inflammation, and mitochondrial dysfunction. Interestingly, all these processes have been associated with the mitochondria-endoplasmic reticulum (ER) contact site (MERCS) signaling hub. We and others have hypothesized that the dysregulated MERCS function may be one of the main pathogenic pathways driving AD pathology. Due to the variety of biological processes overseen at the MERCS, we believe that they constitute unique therapeutic targets to boost the neuronal function and recover neuronal homeostasis. Thus, developing molecules with the capacity to correct and/or modulate the MERCS interplay can unleash unique therapeutic opportunities for AD. The potential pharmacological intervention using MERCS modulators in different models of AD is currently under investigation. Here, we survey small molecules with the potential to modulate MERCS structures and functions and restore neuronal homeostasis in AD. We will focus on recently reported examples and provide an overview of the current challenges and future perspectives to develop MERCS modulators in the context of translational research.
Collapse
Affiliation(s)
| | | | | | - Maria Ankarcrona
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Science and Society (NVS), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Lee A, Kondapalli C, Virga DM, Lewis TL, Koo SY, Ashok A, Mairet-Coello G, Herzig S, Foretz M, Viollet B, Shaw R, Sproul A, Polleux F. Aβ42 oligomers trigger synaptic loss through CAMKK2-AMPK-dependent effectors coordinating mitochondrial fission and mitophagy. Nat Commun 2022; 13:4444. [PMID: 35915085 PMCID: PMC9343354 DOI: 10.1038/s41467-022-32130-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/18/2022] [Indexed: 12/23/2022] Open
Abstract
During the early stages of Alzheimer's disease (AD) in both mouse models and human patients, soluble forms of Amyloid-β 1-42 oligomers (Aβ42o) trigger loss of excitatory synapses (synaptotoxicity) in cortical and hippocampal pyramidal neurons (PNs) prior to the formation of insoluble amyloid plaques. In a transgenic AD mouse model, we observed a spatially restricted structural remodeling of mitochondria in the apical tufts of CA1 PNs dendrites corresponding to the dendritic domain where the earliest synaptic loss is detected in vivo. We also observed AMPK over-activation as well as increased fragmentation and loss of mitochondrial biomass in Ngn2-induced neurons derived from a new APPSwe/Swe knockin human ES cell line. We demonstrate that Aβ42o-dependent over-activation of the CAMKK2-AMPK kinase dyad mediates synaptic loss through coordinated phosphorylation of MFF-dependent mitochondrial fission and ULK2-dependent mitophagy. Our results uncover a unifying stress-response pathway causally linking Aβ42o-dependent structural remodeling of dendritic mitochondria to synaptic loss.
Collapse
Affiliation(s)
- Annie Lee
- Department of Neuroscience, Columbia University Medical Center New York, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA
- The Integrated Graduate Program in Cellular, Molecular, and Biomedical Studies, Columbia University Medical Center, New York, NY, USA
| | - Chandana Kondapalli
- Department of Neuroscience, Columbia University Medical Center New York, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA
| | - Daniel M Virga
- Department of Neuroscience, Columbia University Medical Center New York, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Tommy L Lewis
- Department of Neuroscience, Columbia University Medical Center New York, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - So Yeon Koo
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Archana Ashok
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | | | - Sebastien Herzig
- Molecular & Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Marc Foretz
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Benoit Viollet
- Institut Cochin, Université de Paris, CNRS, INSERM, Paris, France
| | - Reuben Shaw
- Molecular & Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Andrew Sproul
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center New York, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, USA.
- Kavli Institute for Brain Sciences, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
32
|
Amyloid Beta Oligomers-Induced Ca2+ Entry Pathways: Role of Neuronal Networks, NMDA Receptors and Amyloid Channel Formation. Biomedicines 2022; 10:biomedicines10051153. [PMID: 35625890 PMCID: PMC9138537 DOI: 10.3390/biomedicines10051153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 01/27/2023] Open
Abstract
The molecular basis of amyloid toxicity in Alzheimer’s disease (AD) remains controversial. Amyloid β (Aβ) oligomers promote Ca2+ influx, mitochondrial Ca2+ overload and apoptosis in hippocampal neurons in vivo and in vitro, but the primary Ca2+ entry pathways are unclear. We studied Ca2+ entry pathways induced by Aβ oligomers in rat hippocampal and cerebellar neurons. Aβ oligomers induce Ca2+ entry in neurons. Ca2+ responses to Aβ oligomers are large after synaptic networking and prevented by blockers of synaptic transmission. In contrast, in neurons devoid of synaptic connections, Ca2+ responses to Aβ oligomers are small and prevented only by blockers of amyloid channels (NA7) and NMDA receptors (MK801). A combination of NA7 and MK801 nearly abolished Ca2+ responses. Non-neuronal cells bearing NMDA receptors showed Ca2+ responses to oligomers, whereas cells without NMDA receptors did not exhibit Ca2+ responses. The expression of subunits of the NMDA receptor NR1/ NR2A and NR1/NR2B in HEK293 cells lacking endogenous NMDA receptors restored Ca2+ responses to NMDA but not to Aβ oligomers. We conclude that Aβ oligomers promote Ca2+ entry via amyloid channels and NMDA receptors. This may recruit distant neurons intertwisted by synaptic connections, spreading excitation and recruiting further NMDA receptors and voltage-gated Ca2+ channels, leading to excitotoxicity and neuron degeneration in AD.
Collapse
|
33
|
Liu H, Li Q, Zhang X, Shi Y, Li J. Effect of ginkgolide K on calcium channel activity in Alzheimer's disease. Exp Ther Med 2022; 23:426. [PMID: 35607377 PMCID: PMC9121205 DOI: 10.3892/etm.2022.11353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/12/2022] [Indexed: 11/06/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative dementia with the key pathological hallmark of amyloid deposits that may induce mitochondrial dysfunction. Ginkgolide K (GK) has been proven to have neuroprotective effects. The present study sought to explore the neuroprotective effect of GK through regulation of the expression of mitochondrial Ca2+ uniporter (MCU) in the pathology of AD. SH-SY5Y cells were cultured and the expression of MCU was enhanced by transfection of MCU recombinant vectors or knockdown by MCU small interfering RNA. The cells were treated with GK and amyloid β (Aβ). Thereafter, the effects of GK, MCU expression and Aβ on viability and apoptosis of SH-SY5Y cells were examined via a WST-1 assay, flow cytometry and Caspase-3/8 activity assays, respectively. The effects of GK, MCU expression and Aβ on the calcium levels in mitochondria were also examined. The regulatory effect of GK on MCU expression was examined by reverse transcription-quantitative PCR and western blot analysis. Furthermore, APP/PS1 mice received supplementation with GK and their cognitive ability was then examined through water maze tests, while the expression of MCU was examined using immunohistochemistry. The results indicated that enhancing the expression of MCU inhibited cell viability and promoted apoptosis. GK protected cells from amyloid-induced cytotoxicity by promoting cell viability and preventing cell apoptosis. The neuroprotective effect of GK was abolished when MCU expression was knocked down. GK decreased the expression of MCU in vitro and downregulation of MCU decreased the calcium level in mitochondria. Treatment with GK in APP/PS1 mice downregulated the expression of MCU in the brains and alleviated cognitive impairment. In conclusion, the present study demonstrated that the administration of GK protected neurons by preventing apoptosis. Furthermore, the neuroprotective effect of GK in neuronal cells was indicated to be related to the inhibition of MCU expression. Therefore, administration of GK may be a promising strategy for treating AD.
Collapse
Affiliation(s)
- Hongbin Liu
- No. 2 Department of Geriatrics, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| | - Qinyun Li
- No. 2 Department of Geriatrics, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| | - Xiaodan Zhang
- No. 2 Department of Geriatrics, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| | - Yun Shi
- No. 2 Department of Geriatrics, Beijing Geriatric Hospital, Beijing 100095, P.R. China
| | - Jinyi Li
- Dolu Health Consultant Co., Ltd., Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
34
|
Piccialli I, Tedeschi V, Caputo L, D’Errico S, Ciccone R, De Feo V, Secondo A, Pannaccione A. Exploring the Therapeutic Potential of Phytochemicals in Alzheimer’s Disease: Focus on Polyphenols and Monoterpenes. Front Pharmacol 2022; 13:876614. [PMID: 35600880 PMCID: PMC9114803 DOI: 10.3389/fphar.2022.876614] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/11/2022] [Indexed: 12/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a chronic, complex neurodegenerative disorder mainly characterized by the irreversible loss of memory and cognitive functions. Different hypotheses have been proposed thus far to explain the etiology of this devastating disorder, including those centered on the Amyloid-β (Aβ) peptide aggregation, Tau hyperphosphorylation, neuroinflammation and oxidative stress. Nonetheless, the therapeutic strategies conceived thus far to treat AD neurodegeneration have proven unsuccessful, probably due to the use of single-target drugs unable to arrest the progressive deterioration of brain functions. For this reason, the theoretical description of the AD etiology has recently switched from over-emphasizing a single deleterious process to considering AD neurodegeneration as the result of different pathogenic mechanisms and their interplay. Moreover, much relevance has recently been conferred to several comorbidities inducing insulin resistance and brain energy hypometabolism, including diabetes and obesity. As consequence, much interest is currently accorded in AD treatment to a multi-target approach interfering with different pathways at the same time, and to life-style interventions aimed at preventing the modifiable risk-factors strictly associated with aging. In this context, phytochemical compounds are emerging as an enormous source to draw on in the search for multi-target agents completing or assisting the traditional pharmacological medicine. Intriguingly, many plant-derived compounds have proven their efficacy in counteracting several pathogenic processes such as the Aβ aggregation, neuroinflammation, oxidative stress and insulin resistance. Many strategies have also been conceived to overcome the limitations of some promising phytochemicals related to their poor pharmacokinetic profiles, including nanotechnology and synthetic routes. Considering the emerging therapeutic potential of natural medicine, the aim of the present review is therefore to highlight the most promising phytochemical compounds belonging to two major classes, polyphenols and monoterpenes, and to report the main findings about their mechanisms of action relating to the AD pathogenesis.
Collapse
Affiliation(s)
- Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Lucia Caputo
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Stefano D’Errico
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Salerno, Italy
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, University of Naples “Federico II”, Naples, Italy
- *Correspondence: Anna Pannaccione,
| |
Collapse
|
35
|
Garbincius JF, Elrod JW. Mitochondrial calcium exchange in physiology and disease. Physiol Rev 2022; 102:893-992. [PMID: 34698550 PMCID: PMC8816638 DOI: 10.1152/physrev.00041.2020] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/16/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
The uptake of calcium into and extrusion of calcium from the mitochondrial matrix is a fundamental biological process that has critical effects on cellular metabolism, signaling, and survival. Disruption of mitochondrial calcium (mCa2+) cycling is implicated in numerous acquired diseases such as heart failure, stroke, neurodegeneration, diabetes, and cancer and is genetically linked to several inherited neuromuscular disorders. Understanding the mechanisms responsible for mCa2+ exchange therefore holds great promise for the treatment of these diseases. The past decade has seen the genetic identification of many of the key proteins that mediate mitochondrial calcium uptake and efflux. Here, we present an overview of the phenomenon of mCa2+ transport and a comprehensive examination of the molecular machinery that mediates calcium flux across the inner mitochondrial membrane: the mitochondrial uniporter complex (consisting of MCU, EMRE, MICU1, MICU2, MICU3, MCUB, and MCUR1), NCLX, LETM1, the mitochondrial ryanodine receptor, and the mitochondrial permeability transition pore. We then consider the physiological implications of mCa2+ flux and evaluate how alterations in mCa2+ homeostasis contribute to human disease. This review concludes by highlighting opportunities and challenges for therapeutic intervention in pathologies characterized by aberrant mCa2+ handling and by summarizing critical unanswered questions regarding the biology of mCa2+ flux.
Collapse
Affiliation(s)
- Joanne F Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
36
|
Serrat R, Oliveira-Pinto A, Marsicano G, Pouvreau S. Imaging mitochondrial calcium dynamics in the central nervous system. J Neurosci Methods 2022; 373:109560. [PMID: 35320763 DOI: 10.1016/j.jneumeth.2022.109560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/28/2022]
Abstract
Mitochondrial calcium handling is a particularly active research area in the neuroscience field, as it plays key roles in the regulation of several functions of the central nervous system, such as synaptic transmission and plasticity, astrocyte calcium signaling, neuronal activity… In the last few decades, a panel of techniques have been developed to measure mitochondrial calcium dynamics, relying mostly on photonic microscopy, and including synthetic sensors, hybrid sensors and genetically encoded calcium sensors. The goal of this review is to endow the reader with a deep knowledge of the historical and latest tools to monitor mitochondrial calcium events in the brain, as well as a comprehensive overview of the current state of the art in brain mitochondrial calcium signaling. We will discuss the main calcium probes used in the field, their mitochondrial targeting strategies, their key properties and major drawbacks. In addition, we will detail the main roles of mitochondrial calcium handling in neuronal tissues through an extended report of the recent studies using mitochondrial targeted calcium sensors in neuronal and astroglial cells, in vitro and in vivo.
Collapse
Affiliation(s)
- Roman Serrat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Alexandre Oliveira-Pinto
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Giovanni Marsicano
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Sandrine Pouvreau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France.
| |
Collapse
|
37
|
SOCE-mediated NFAT1–NOX2–NLRP1 inflammasome involves in lipopolysaccharide-induced neuronal damage and Aβ generation. Mol Neurobiol 2022; 59:3183-3205. [DOI: 10.1007/s12035-021-02717-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022]
|
38
|
Jiang YH, He JK, Li R, Chen ZH, Jia BH. Mechanisms of Acupuncture in Improving Alzheimer's Disease Caused by Mitochondrial Damage. Chin J Integr Med 2022; 28:272-280. [PMID: 35230607 DOI: 10.1007/s11655-022-3511-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases among the elderly and it accounts for nearly 80% of all dementias. The pathogenesis of AD is complicated and enigmatic thus far. The mitochondrial cascade hypothesis assumes that mitochondrial damage may mediate, drive, or contribute to a variety of AD pathologies and may be the main factor in late-onset AD. Currently, there are no widely recognized drugs able to attenuate mitochondrial damage in AD. Notably, increasing evidence supports the efficacy of acupuncture for improving the mitochondrial structure and protecting mitochondrial functions in AD. This review reports the mechanisms by which acupuncture regulates mitochondrial dynamics, energy metabolism, calcium homeostasis and apoptosis. In conclusion, these findings suggest that AD mitochondrial dysfunction represents a reasonable therapeutic target and acupuncture could play a significant role in preventing and treating AD.
Collapse
Affiliation(s)
- Yu-Hang Jiang
- Department of Acupuncture, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jia-Kai He
- Department of Acupuncture, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ran Li
- Department of Acupuncture, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ze-Hao Chen
- Department of Acupuncture, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Bao-Hui Jia
- Department of Acupuncture, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
39
|
Bahatyrevich-Kharitonik B, Medina-Guzman R, Flores-Cortes A, García-Cruzado M, Kavanagh E, Burguillos MA. Cell Death Related Proteins Beyond Apoptosis in the CNS. Front Cell Dev Biol 2022; 9:825747. [PMID: 35096845 PMCID: PMC8794922 DOI: 10.3389/fcell.2021.825747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Cell death related (CDR) proteins are a diverse group of proteins whose original function was ascribed to apoptotic cell death signaling. Recently, descriptions of non-apoptotic functions for CDR proteins have increased. In this minireview, we comment on recent studies of CDR proteins outside the field of apoptosis in the CNS, encompassing areas such as the inflammasome and non-apoptotic cell death, cytoskeleton reorganization, synaptic plasticity, mitophagy, neurodegeneration and calcium signaling among others. Furthermore, we discuss the evolution of proteomic techniques used to predict caspase substrates that could potentially explain their non-apoptotic roles. Finally, we address new concepts in the field of non-apoptotic functions of CDR proteins that require further research such the effect of sexual dimorphism on non-apoptotic CDR protein function and the emergence of zymogen-specific caspase functions.
Collapse
Affiliation(s)
- Bazhena Bahatyrevich-Kharitonik
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Rafael Medina-Guzman
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Alicia Flores-Cortes
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Marta García-Cruzado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Edel Kavanagh
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| | - Miguel Angel Burguillos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC, Seville, Spain
| |
Collapse
|
40
|
Kim CK, Sachdev PS, Braidy N. Recent Neurotherapeutic Strategies to Promote Healthy Brain Aging: Are we there yet? Aging Dis 2022; 13:175-214. [PMID: 35111369 PMCID: PMC8782556 DOI: 10.14336/ad.2021.0705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Owing to the global exponential increase in population ageing, there is an urgent unmet need to develop reliable strategies to slow down and delay the ageing process. Age-related neurodegenerative diseases are among the main causes of morbidity and mortality in our contemporary society and represent a major socio-economic burden. There are several controversial factors that are thought to play a causal role in brain ageing which are continuously being examined in experimental models. Among them are oxidative stress and brain inflammation which are empirical to brain ageing. Although some candidate drugs have been developed which reduce the ageing phenotype, their clinical translation is limited. There are several strategies currently in development to improve brain ageing. These include strategies such as caloric restriction, ketogenic diet, promotion of cellular nicotinamide adenine dinucleotide (NAD+) levels, removal of senescent cells, 'young blood' transfusions, enhancement of adult neurogenesis, stem cell therapy, vascular risk reduction, and non-pharmacological lifestyle strategies. Several studies have shown that these strategies can not only improve brain ageing by attenuating age-related neurodegenerative disease mechanisms, but also maintain cognitive function in a variety of pre-clinical experimental murine models. However, clinical evidence is limited and many of these strategies are awaiting findings from large-scale clinical trials which are nascent in the current literature. Further studies are needed to determine their long-term efficacy and lack of adverse effects in various tissues and organs to gain a greater understanding of their potential beneficial effects on brain ageing and health span in humans.
Collapse
Affiliation(s)
- Chul-Kyu Kim
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Perminder S Sachdev
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
41
|
Chanmanee T, Wongpun J, Tocharus C, Govitrapong P, Tocharus J. The effects of agomelatine on endoplasmic reticulum stress related to mitochondrial dysfunction in hippocampus of aging rat model. Chem Biol Interact 2022; 351:109703. [PMID: 34673010 DOI: 10.1016/j.cbi.2021.109703] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/03/2021] [Accepted: 10/10/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Agomelatine, a novel antidepressant, is a melatonin MT receptor agonist and serotonin 5HT2C receptor antagonist. In this study, agomelatine was used to investigate the molecular mechanisms of hippocampal aging associated with endoplasmic reticulum (ER) stress, mitochondrial dysfunction, and apoptosis, all of which led to short-term memory impairment. METHOD Hippocampal aging was induced in male Wistar rats by d-galactose (D-gal) intraperitoneal injection (100 mg/kg) for 14 weeks. During the last 4 weeks of D-gal treatment, rats were treated with agomelatine (40 mg/kg) or melatonin (10 mg/kg). At the end of the experiment, all rats were assessed for short-term memory by using the Morris water maze test. Subsequently, rats were sacrified and the hippocampus was removed from each rat for determination of reactive oxygen species (ROS), malondialdehyde (MDA), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays; and immunohistochemistry related to ER stress, mitochondrial dysfunction, and apoptosis. RESULTS Agomelatine suppressed the expression of the aging-related proteins P16 and receptor for advanced glycation endproducts (RAGE), the expression of NADPH oxidase (NOX) 2 and 4, and ROS production. This treatment also shifted the morphology of astrocytes and microglia toward homeostasis. Furthermore, agomelatine decreased inositol-requiring enzyme 1 (pIRE1), protein kinase R-like endoplasmic reticulum kinase (pPERK), and chaperone binding immunoglobulin protein (BiP), leading to suppression of ER stress markers C/EBP homologous protein (CHOP) and caspase-12. Agomelatine reduced Ca2+ from the ER and stabilized the mitochondrial membrane stability, which was denoted by the BCL2 Associated X (Bax)/B-cell lymphoma 2 (Bcl2) balance. Agomelatine decreased cleaved caspase-3 production and the Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL)-positive area, and glutamate excitotoxicity was prevented via suppression of N-methyl-d-aspartate (NMDA) receptor subunit expression. Agomelatine exhibited effects that were similar to melatonin. CONCLUSION Agomelatine improved neurodegeneration in a rat model of hippocampal aging by attenuating ROS production, ER stress, mitochondrial dysfunction, excitotoxicity, and apoptosis.
Collapse
Affiliation(s)
- Teera Chanmanee
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Graduate School, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jittiporn Wongpun
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Kamphaeng Phet 6 Road, Lak Si, Bangkok, 10210, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
42
|
Deng J, Gutiérrez LG, Stoll G, Motiño O, Martins I, Núñez L, Bravo-San Pedro JM, Humeau J, Bordenave C, Pan J, Fohrer-Ting H, Souquere S, Pierron G, Hetz C, Villalobos C, Kroemer G, Senovilla L. Paradoxical implication of BAX/BAK in the persistence of tetraploid cells. Cell Death Dis 2021; 12:1039. [PMID: 34725331 PMCID: PMC8560871 DOI: 10.1038/s41419-021-04321-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/28/2021] [Accepted: 10/06/2021] [Indexed: 12/22/2022]
Abstract
Pro-apoptotic multi-domain proteins of the BCL2 family such as BAX and BAK are well known for their important role in the induction of mitochondrial outer membrane permeabilization (MOMP), which is the rate-limiting step of the intrinsic pathway of apoptosis. Human or mouse cells lacking both BAX and BAK (due to a double knockout, DKO) are notoriously resistant to MOMP and cell death induction. Here we report the surprising finding that BAX/BAK DKO cells proliferate less than control cells expressing both BAX and BAK (or either BAX or BAK) when they are driven into tetraploidy by transient exposure to the microtubule inhibitor nocodazole. Mechanistically, in contrast to their BAX/BAK-sufficient controls, tetraploid DKO cells activate a senescent program, as indicated by the overexpression of several cyclin-dependent kinase inhibitors and the activation of β-galactosidase. Moreover, DKO cells manifest alterations in ionomycin-mobilizable endoplasmic reticulum (ER) Ca2+ stores and store-operated Ca2+ entry that are affected by tetraploidization. DKO cells manifested reduced expression of endogenous sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (Serca2a) and transfection-enforced reintroduction of Serca2a, or reintroduction of an ER-targeted variant of BAK into DKO cells reestablished the same pattern of Ca2+ fluxes as observed in BAX/BAK-sufficient control cells. Serca2a reexpression and ER-targeted BAK also abolished the tetraploidy-induced senescence of DKO cells, placing ER Ca2+ fluxes downstream of the regulation of senescence by BAX/BAK. In conclusion, it appears that BAX/BAK prevent the induction of a tetraploidization-associated senescence program. Speculatively, this may contribute to the low incidence of cancers in BAX/BAK DKO mice and explain why human cancers rarely lose the expression of both BAX and BAK.
Collapse
Affiliation(s)
- Jiayin Deng
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Lucía G Gutiérrez
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid - CSIC, Valladolid, Spain
| | - Gautier Stoll
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Omar Motiño
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Lucía Núñez
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid - CSIC, Valladolid, Spain
| | - José Manuel Bravo-San Pedro
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Facultad de Medicina, Departamento de Fisiología, Universidad Complutense de Madrid, Madrid, Spain
| | - Juliette Humeau
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC, Canada, H3C 3J7
- Department of Medicine, Université de Montréal, Montreal, QC, Canada, H3C 3J7
| | - Chloé Bordenave
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Juncheng Pan
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
| | - Hélène Fohrer-Ting
- Centre de Recherche des Cordeliers, Center for Histology, Cell Imaging and Cytometry (CHIC), Sorbonne Université, Inserm, Université de Paris, F-75006, Paris, France
| | | | - Gerard Pierron
- CNRS, UMR9196, Gustave Roussy Cancer Campus, Villejuif, France
| | - Claudio Hetz
- Faculty of Medicine, Biomedical Neuroscience Institute (BNI), University of Chile, Santiago, 8380453, Chile
- Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, 7800003, Chile
- The Buck Institute for Research in Aging, Novato, CA, 94945, USA
| | - Carlos Villalobos
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid - CSIC, Valladolid, Spain.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, Paris, France.
| | - Laura Senovilla
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Equipe 11 Labellisée par la Ligue Contre le Cancer, F-75006, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid - CSIC, Valladolid, Spain.
| |
Collapse
|
43
|
Shardlow E, Khan B, Exley C. Monitoring the early aggregatory behaviour and size of Aβ 1-42 in the absence & presence of metal ions using dynamic light scattering. J Trace Elem Med Biol 2021; 67:126766. [PMID: 33964808 DOI: 10.1016/j.jtemb.2021.126766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND AND AIM Aβ1-42 is an amyloidogenic peptide found within senile plaques extracted from those who died with a diagnosis of Alzheimer's disease. The potent neurotoxicity of this peptide is related to its propensity to form aggregated conformations in vivo, a process that is influenced by the species and concentration of metal ions present within the local environment. This study examines the impact of different metals upon the early aggregatory behaviour and size of Aβ1-42 under simulated physiological conditions. METHODS The size and aggregatory behaviour of Aβ1-42 in the presence and absence of metal ions was monitored during the initial 30 min of fibril formation in real-time using dynamic light scattering. RESULTS Intensity scattering measurements showed a clear tendency towards aggregation with regards to Aβ1-42 only solutions (10 μM). Both equimolar Al3+ & Cu2+ lowered and stabilised the dimensions of Aβ1-42 aggregates; however, a diminutive but significant increase in size was still observed over a 30-min period. While excess Al3+ continued to supress the size of Aβ1-42, a 10-fold increase in the concentration of Cu2+ accelerated peptide aggregation relative to that observed for equimolar metal but not compared to Aβ1-42 alone. CONCLUSION These results infer that Al3+ ions stabilise and aid in the maintenance of smaller, toxic intermediates while excess Cu2+ facilitates the formation of larger, more inert, amorphous species exceeding 1 μm in size. Furthermore, we propose that metal-induced toxicity of Aβ1-42 is reflective of their ability to preserve smaller oligomeric species in vitro.
Collapse
Affiliation(s)
- Emma Shardlow
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | - Bakhtbilland Khan
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire, ST5 5BG, UK
| |
Collapse
|
44
|
Wu AJ, Tong BCK, Huang AS, Li M, Cheung KH. Mitochondrial Calcium Signaling as a Therapeutic Target for Alzheimer's Disease. Curr Alzheimer Res 2021; 17:329-343. [PMID: 31820698 DOI: 10.2174/1567205016666191210091302] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 10/17/2019] [Accepted: 12/09/2019] [Indexed: 11/22/2022]
Abstract
Mitochondria absorb calcium (Ca2+) at the expense of the electrochemical gradient generated during respiration. The influx of Ca2+ into the mitochondrial matrix helps maintain metabolic function and results in increased cytosolic Ca2+ during intracellular Ca2+ signaling. Mitochondrial Ca2+ homeostasis is tightly regulated by proteins located in the inner and outer mitochondrial membranes and by the cross-talk with endoplasmic reticulum Ca2+ signals. Increasing evidence indicates that mitochondrial Ca2+ overload is a pathological phenotype associated with Alzheimer's Disease (AD). As intracellular Ca2+ dysregulation can be observed before the appearance of typical pathological hallmarks of AD, it is believed that mitochondrial Ca2+ overload may also play an important role in AD etiology. The high mitochondrial Ca2+ uptake can easily compromise neuronal functions and exacerbate AD progression by impairing mitochondrial respiration, increasing reactive oxygen species formation and inducing apoptosis. Additionally, mitochondrial Ca2+ overload can damage mitochondrial recycling via mitophagy. This review will discuss the molecular players involved in mitochondrial Ca2+ dysregulation and the pharmacotherapies that target this dysregulation. As most of the current AD therapeutics are based on amyloidopathy, tauopathy, and the cholinergic hypothesis, they achieve only symptomatic relief. Thus, determining how to reestablish mitochondrial Ca2+ homeostasis may aid in the development of novel AD therapeutic interventions.
Collapse
Affiliation(s)
- Aston J Wu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.,Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Benjamin C-K Tong
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.,Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Alexis S Huang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.,Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.,Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| | - King-Ho Cheung
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China.,Mr. and Mrs. Ko Chi Ming Centre for Parkinson's Disease Research, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong, China
| |
Collapse
|
45
|
Jadiya P, Garbincius JF, Elrod JW. Reappraisal of metabolic dysfunction in neurodegeneration: Focus on mitochondrial function and calcium signaling. Acta Neuropathol Commun 2021; 9:124. [PMID: 34233766 PMCID: PMC8262011 DOI: 10.1186/s40478-021-01224-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023] Open
Abstract
The cellular and molecular mechanisms that drive neurodegeneration remain poorly defined. Recent clinical trial failures, difficult diagnosis, uncertain etiology, and lack of curative therapies prompted us to re-examine other hypotheses of neurodegenerative pathogenesis. Recent reports establish that mitochondrial and calcium dysregulation occur early in many neurodegenerative diseases (NDDs), including Alzheimer's disease, Parkinson's disease, Huntington's disease, and others. However, causal molecular evidence of mitochondrial and metabolic contributions to pathogenesis remains insufficient. Here we summarize the data supporting the hypothesis that mitochondrial and metabolic dysfunction result from diverse etiologies of neuropathology. We provide a current and comprehensive review of the literature and interpret that defective mitochondrial metabolism is upstream and primary to protein aggregation and other dogmatic hypotheses of NDDs. Finally, we identify gaps in knowledge and propose therapeutic modulation of mCa2+ exchange and mitochondrial function to alleviate metabolic impairments and treat NDDs.
Collapse
Affiliation(s)
- Pooja Jadiya
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA
| | - Joanne F Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, 3500 N Broad St, MERB 949, Philadelphia, PA, 19140, USA.
| |
Collapse
|
46
|
Paß T, Wiesner RJ, Pla-Martín D. Selective Neuron Vulnerability in Common and Rare Diseases-Mitochondria in the Focus. Front Mol Biosci 2021; 8:676187. [PMID: 34295920 PMCID: PMC8290884 DOI: 10.3389/fmolb.2021.676187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is a central feature of neurodegeneration within the central and peripheral nervous system, highlighting a strong dependence on proper mitochondrial function of neurons with especially high energy consumptions. The fitness of mitochondria critically depends on preservation of distinct processes, including the maintenance of their own genome, mitochondrial dynamics, quality control, and Ca2+ handling. These processes appear to be differently affected in common neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, as well as in rare neurological disorders, including Huntington’s disease, Amyotrophic Lateral Sclerosis and peripheral neuropathies. Strikingly, particular neuron populations of different morphology and function perish in these diseases, suggesting that cell-type specific factors contribute to the vulnerability to distinct mitochondrial defects. Here we review the disruption of mitochondrial processes in common as well as in rare neurological disorders and its impact on selective neurodegeneration. Understanding discrepancies and commonalities regarding mitochondrial dysfunction as well as individual neuronal demands will help to design new targets and to make use of already established treatments in order to improve treatment of these diseases.
Collapse
Affiliation(s)
- Thomas Paß
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Pla-Martín
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| |
Collapse
|
47
|
Ludewig S, Herrmann U, Michaelsen-Preusse K, Metzdorf K, Just J, Bold C, Müller UC, Korte M. APPsα rescues impaired Ca 2+ homeostasis in APP- and APLP2-deficient hippocampal neurons. Proc Natl Acad Sci U S A 2021; 118:e2011506118. [PMID: 34172567 PMCID: PMC8256088 DOI: 10.1073/pnas.2011506118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alterations in Ca2+ homeostasis have been reported in several in vitro and in vivo studies using mice expressing the Alzheimer's disease-associated transgenes, presenilin and the amyloid precursor protein (APP). While intense research focused on amyloid-β-mediated functions on neuronal Ca2+ handling, the physiological role of APP and its close homolog APLP2 is still not fully clarified. We now elucidate a mechanism to show how APP and its homolog APLP2 control neuronal Ca2+ handling and identify especially the ectodomain APPsα as an essential regulator of Ca2+ homeostasis. Importantly, we demonstrate that the loss of APP and APLP2, but not APLP2 alone, impairs Ca2+ handling, the refill of the endoplasmic reticulum Ca2+ stores, and synaptic plasticity due to altered function and expression of the SERCA-ATPase and expression of store-operated Ca2+ channel-associated proteins Stim1 and Stim2. Long-term AAV-mediated expression of APPsα, but not acute application of the recombinant protein, restored physiological Ca2+ homeostasis and synaptic plasticity in APP/APLP2 cDKO cultures. Overall, our analysis reveals an essential role of the APP family and especially of the ectodomain APPsα in Ca2+ homeostasis, thereby highlighting its therapeutic potential.
Collapse
Affiliation(s)
- Susann Ludewig
- Department of Cellular Neurobiology Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Ulrike Herrmann
- Department of Cellular Neurobiology Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Kristin Michaelsen-Preusse
- Department of Cellular Neurobiology Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Kristin Metzdorf
- Department of Cellular Neurobiology Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Jennifer Just
- Department of Cellular Neurobiology Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Charlotte Bold
- Department of Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, Heidelberg University, 69120 Heidelberg, Germany
| | - Ulrike C Müller
- Department of Functional Genomics, Institute for Pharmacy and Molecular Biotechnology, Heidelberg University, 69120 Heidelberg, Germany
| | - Martin Korte
- Department of Cellular Neurobiology Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany;
- Neuroinflammation and Neurodegeneration, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| |
Collapse
|
48
|
Garcia-Alloza M, Bacskai BJ, Calvo-Rodriguez M. Mitochondria-ER contacts and glucose: the powerhouse of Alzheimer's disease? Cell Calcium 2021; 97:102434. [PMID: 34186204 DOI: 10.1016/j.ceca.2021.102434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 11/22/2022]
Abstract
A mechanism involving endoplasmic reticulum-mitochondria contacts noted in diabetes mellitus may explain the neurodegeneration and amyloidogenesis observed in these patients. Urolithin A, a metabolite found in the gut microbiome, is proposed as a therapeutic strategy for the treatment of the diabetes-related dementia.
Collapse
Affiliation(s)
- Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Instituto de Investigacion Biomedica de Cadiz (INIBICA), Universidad de Cadiz, Cadiz, Spain
| | - Brian J Bacskai
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16(th) St, Charlestown, MA 02129, US
| | - Maria Calvo-Rodriguez
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 114, 16(th) St, Charlestown, MA 02129, US.
| |
Collapse
|
49
|
Sciaccaluga M, Megaro A, Bellomo G, Ruffolo G, Romoli M, Palma E, Costa C. An Unbalanced Synaptic Transmission: Cause or Consequence of the Amyloid Oligomers Neurotoxicity? Int J Mol Sci 2021; 22:ijms22115991. [PMID: 34206089 PMCID: PMC8199544 DOI: 10.3390/ijms22115991] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β (Aβ) 1-40 and 1-42 peptides are key mediators of synaptic and cognitive dysfunction in Alzheimer's disease (AD). Whereas in AD, Aβ is found to act as a pro-epileptogenic factor even before plaque formation, amyloid pathology has been detected among patients with epilepsy with increased risk of developing AD. Among Aβ aggregated species, soluble oligomers are suggested to be responsible for most of Aβ's toxic effects. Aβ oligomers exert extracellular and intracellular toxicity through different mechanisms, including interaction with membrane receptors and the formation of ion-permeable channels in cellular membranes. These damages, linked to an unbalance between excitatory and inhibitory neurotransmission, often result in neuronal hyperexcitability and neural circuit dysfunction, which in turn increase Aβ deposition and facilitate neurodegeneration, resulting in an Aβ-driven vicious loop. In this review, we summarize the most representative literature on the effects that oligomeric Aβ induces on synaptic dysfunction and network disorganization.
Collapse
Affiliation(s)
- Miriam Sciaccaluga
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
- Correspondence: (M.S.); (C.C.); Tel.: +39-0755858180 (M.S.); +39-0755784233 (C.C.)
| | - Alfredo Megaro
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
| | - Giovanni Bellomo
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
| | - Gabriele Ruffolo
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (G.R.); (E.P.)
- IRCCS San Raffaele Pisana, 00166 Rome, Italy
| | - Michele Romoli
- Neurology Unit, Rimini “Infermi” Hospital—AUSL Romagna, 47923 Rimini, Italy;
| | - Eleonora Palma
- Department of Physiology and Pharmacology, Istituto Pasteur—Fondazione Cenci Bolognetti, University of Rome Sapienza, 00185 Rome, Italy; (G.R.); (E.P.)
| | - Cinzia Costa
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia, Santa Maria della Misericordia Hospital, 06132 Perugia, Italy; (A.M.); (G.B.)
- Correspondence: (M.S.); (C.C.); Tel.: +39-0755858180 (M.S.); +39-0755784233 (C.C.)
| |
Collapse
|
50
|
Elevating the Levels of Calcium Ions Exacerbate Alzheimer's Disease via Inducing the Production and Aggregation of β-Amyloid Protein and Phosphorylated Tau. Int J Mol Sci 2021; 22:ijms22115900. [PMID: 34072743 PMCID: PMC8198078 DOI: 10.3390/ijms22115900] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/08/2021] [Accepted: 05/08/2021] [Indexed: 01/03/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with a high incidence rate. The main pathological features of AD are β-amyloid plaques (APs), which are formed by β-amyloid protein (Aβ) deposition, and neurofibrillary tangles (NFTs), which are formed by the excessive phosphorylation of the tau protein. Although a series of studies have shown that the accumulation of metal ions, including calcium ions (Ca2+), can promote the formation of APs and NFTs, there is no systematic review of the mechanisms by which Ca2+ affects the development and progression of AD. In view of this, the current review summarizes the mechanisms by which Ca2+ is transported into and out of cells and organelles, such as the cell, endoplasmic reticulum, mitochondrial and lysosomal membranes to affect the balance of intracellular Ca2+ levels. In addition, dyshomeostasis of Ca2+ plays an important role in modulating the pathogenesis of AD by influencing the production and aggregation of Aβ peptides and tau protein phosphorylation and the ways that disrupting the metabolic balance of Ca2+ can affect the learning ability and memory of people with AD. In addition, the effects of these mechanisms on the synaptic plasticity are also discussed. Finally, the molecular network through which Ca2+ regulates the pathogenesis of AD is introduced, providing a theoretical basis for improving the clinical treatment of AD.
Collapse
|