1
|
Brandli A, Vessey KA, Fletcher EL. The contribution of pattern recognition receptor signalling in the development of age related macular degeneration: the role of toll-like-receptors and the NLRP3-inflammasome. J Neuroinflammation 2024; 21:64. [PMID: 38443987 PMCID: PMC10913318 DOI: 10.1186/s12974-024-03055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Age-related macular degeneration (AMD) is a leading cause of irreversible vision loss, characterised by the dysfunction and death of the photoreceptors and retinal pigment epithelium (RPE). Innate immune cell activation and accompanying para-inflammation have been suggested to contribute to the pathogenesis of AMD, although the exact mechanism(s) and signalling pathways remain elusive. Pattern recognition receptors (PRRs) are essential activators of the innate immune system and drivers of para-inflammation. Of these PRRs, the two most prominent are (1) Toll-like receptors (TLR) and (2) NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3)-inflammasome have been found to modulate the progression of AMD. Mutations in TLR2 have been found to be associated with an increased risk of developing AMD. In animal models of AMD, inhibition of TLR and NLRP3 has been shown to reduce RPE cell death, inflammation and angiogenesis signalling, offering potential novel treatments for advanced AMD. Here, we examine the evidence for PRRs, TLRs2/3/4, and NLRP3-inflammasome pathways in macular degeneration pathogenesis.
Collapse
Affiliation(s)
- Alice Brandli
- Department of Anatomy and Physiology, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Kirstan A Vessey
- Department of Anatomy and Physiology, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Grattan St, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
2
|
Rajpar I, Kumar G, Fortina P, Tomlinson RE. Toll-like receptor 4 signaling in osteoblasts is required for load-induced bone formation in mice. iScience 2023; 26:106304. [PMID: 36950122 PMCID: PMC10025993 DOI: 10.1016/j.isci.2023.106304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/06/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
In mature bone, NGF is produced by osteoblasts following mechanical loading and signals through resident sensory nerves expressing its high affinity receptor, neurotrophic tyrosine kinase receptor type 1 (TrkA), to support bone formation. Here, we investigated whether osteoblastic expression of Toll-like receptor 4 (TLR4), a key receptor in the NF-κB signaling pathway, is required to initiate NGF-TrkA signaling required for load-induced bone formation. Although Tlr4 conditional knockout mice have normal skeletal mass and strength in adulthood, the loss of TLR4 signaling significantly reduced lamellar bone formation following loading. Inhibition of TLR4 signaling reduced Ngf expression in primary osteoblasts and RNA sequencing of bones from Tlr4 conditional knockout mice and wild-type littermates revealed dysregulated inflammatory signaling three days after osteogenic mechanical loading. In total, our study reveals an important role for osteoblastic TLR4 in the skeletal adaptation of bone to mechanical forces.
Collapse
Affiliation(s)
- Ibtesam Rajpar
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gaurav Kumar
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Paolo Fortina
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ryan E. Tomlinson
- Department of Orthopaedic Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
3
|
Short-term high-fat feeding exacerbates degeneration in retinitis pigmentosa by promoting retinal oxidative stress and inflammation. Proc Natl Acad Sci U S A 2021; 118:2100566118. [PMID: 34667124 DOI: 10.1073/pnas.2100566118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 12/22/2022] Open
Abstract
A high-fat diet (HFD) can induce hyperglycemia and metabolic syndromes that, in turn, can trigger visual impairment. To evaluate the acute effects of HFD feeding on retinal degeneration, we assessed retinal function and morphology, inflammatory state, oxidative stress, and gut microbiome in dystrophic retinal degeneration 10 (rd10) mice, a model of retinitis pigmentosa, fed an HFD for 2 to 3 wk. Short-term HFD feeding impaired retinal responsiveness and visual acuity and enhanced photoreceptor degeneration, microglial cell activation, and Müller cell gliosis. HFD consumption also triggered the expression of inflammatory and oxidative markers in rd10 retinas. Finally, an HFD caused gut microbiome dysbiosis, increasing the abundance of potentially proinflammatory bacteria. Thus, HFD feeding drives the pathological processes of retinal degeneration by promoting oxidative stress and activating inflammatory-related pathways. Our findings suggest that consumption of an HFD could accelerate the progression of the disease in patients with retinal degenerative disorders.
Collapse
|
4
|
Liu L, Jiang Y, Steinle J. Epac1 regulates TLR4 signaling in the diabetic retinal vasculature. Cytokine 2021; 144:155576. [PMID: 34020266 DOI: 10.1016/j.cyto.2021.155576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 01/08/2023]
Abstract
Toll-like receptor 4 (TLR4) polymorphisms occur in diabetic patients. Previous work showed that TLR4 is in the retina of diabetic mice, as well as in retinal endothelial cells (REC) and Müller cells. Since we have shown that exchange protein activated by cAMP 1 (Epac1) can reduce inflammatory mediators, we hypothesized that Epac1 would inhibit TLR4 signaling. We also hypothesized that direct TLR4 inhibition would protect the diabetic retina. Human REC in normal and high glucose were treated with an Epac1 agonist to explore the actions of Epac1 on TLR4 signaling in vitro. Subsequently, 2-month diabetic endothelial cell specific knockout mice for Epac1 (Cdh5Cre-Epac1) and Epac1 floxed mice retinas were used for Western blotting for TLR4 signaling pathways. We also used direct inhibition of TLR4 via Tak242 to investigate diabetes-induced changes in retinal permeability and neuronal loss in the mice. The Epac1 agonist reduced TLR4 signaling in REC grown in high glucose. TLR4 levels and both MyD88-dependent and -independent signaling pathways are increased in Cdh5Cre-Epac1 mice compared to Epac1 floxed mice. Tak242 reduced TLR4 signaling in diabetic mice and reduced diabetes-induced increases in permeability and cell loss in the ganglion cell layer in the Epac1 floxed and Cdh5Cre-Epac1 mice. In conclusion, Epac1 reduced TLR4 signaling in the retina and in REC. Direct inhibition of TLR4 was able to protect the retina against diabetes-induced changes in permeability and cell numbers in the ganglion cell layer.
Collapse
Affiliation(s)
- Li Liu
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Youde Jiang
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Jena Steinle
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, United States.
| |
Collapse
|
5
|
Seidel A, Liu L, Jiang Y, Steinle JJ. Loss of TLR4 in endothelial cells but not Müller cells protects the diabetic retina. Exp Eye Res 2021; 206:108557. [PMID: 33789141 DOI: 10.1016/j.exer.2021.108557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/10/2021] [Accepted: 03/24/2021] [Indexed: 01/01/2023]
Abstract
Others have previously reported that global loss of toll-like receptor 4 (TLR4) reduced retinal inflammation. To determine cell specific actions of TLR4 in the retina, we generated diabetic endothelial cell specific and Müller cell specific TLR4 knockout mice. Diabetic Cdh5-Cre TLR4 mice, PDGFRα-Cre TLR4 mice, and TLR4 floxed mice were evaluated for retinal permeability, neuronal damage, and numbers of degenerate capillaries, all changes commonly observed in the diabetic retina. We also measured protein levels of key inflammatory mediators. We found that diabetes increased permeability, neuronal, and vascular damage in all mice. Loss of TLR4 in the retinal endothelial cells protected against these changes when compared to diabetic TLR4 floxed mice. In contrast, loss of TLR4 in Müller cells did not reduce diabetes-induced increases in permeability or neuronal and vascular damage. Elimination of TLR4 in either mouse model reduced inflammatory mediators, as well as VEGF levels. Taken together, our findings suggest that loss of TLR4 in endothelial cells is protective against diabetic-induced damage, while Müller cell TLR4 is not involved in the damage.
Collapse
Affiliation(s)
- Adam Seidel
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Li Liu
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Youde Jiang
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jena J Steinle
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
6
|
Kutsyr O, Sánchez-Sáez X, Martínez-Gil N, de Juan E, Lax P, Maneu V, Cuenca N. Gradual Increase in Environmental Light Intensity Induces Oxidative Stress and Inflammation and Accelerates Retinal Neurodegeneration. Invest Ophthalmol Vis Sci 2021; 61:1. [PMID: 32744596 PMCID: PMC7441298 DOI: 10.1167/iovs.61.10.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Retinitis pigmentosa (RP) is a blinding neurodegenerative disease of the retina that can be affected by many factors. The present study aimed to analyze the effect of different environmental light intensities in rd10 mice retina. Methods C57BL/6J and rd10 mice were bred and housed under three different environmental light intensities: scotopic (5 lux), mesopic (50 lux), and photopic (300 lux). Visual function was studied using electroretinography and optomotor testing. The structural and morphological integrity of the retinas was evaluated by optical coherence tomography imaging and immunohistochemistry. Additionally, inflammatory processes and oxidative stress markers were analyzed by flow cytometry and western blotting. Results When the environmental light intensity was higher, retinal function decreased in rd10 mice and was accompanied by light-dependent photoreceptor loss, followed by morphological alterations, and synaptic connectivity loss. Moreover, light-dependent retinal degeneration was accompanied by an increased number of inflammatory cells, which became more activated and phagocytic, and by an exacerbated reactive gliosis. Furthermore, light-dependent increment in oxidative stress markers in rd10 mice retina pointed to a possible mechanism for light-induced photoreceptor degeneration. Conclusions An increase in rd10 mice housing light intensity accelerates retinal degeneration, activating cell death, oxidative stress pathways, and inflammatory cells. Lighting intensity is a key factor in the progression of retinal degeneration, and standardized lighting conditions are advisable for proper analysis and interpretation of experimental results from RP animal models, and specifically from rd10 mice. Also, it can be hypothesized that light protection could be an option to slow down retinal degeneration in some cases of RP.
Collapse
|
7
|
Ramachandra Rao S, Skelton LA, Wu F, Onysk A, Spolnik G, Danikiewicz W, Butler MC, Stacks DA, Surmacz L, Mu X, Swiezewska E, Pittler SJ, Fliesler SJ. Retinal Degeneration Caused by Rod-Specific Dhdds Ablation Occurs without Concomitant Inhibition of Protein N-Glycosylation. iScience 2020; 23:101198. [PMID: 32526701 PMCID: PMC7287266 DOI: 10.1016/j.isci.2020.101198] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/10/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022] Open
Abstract
Dehydrodolichyl diphosphate synthase (DHDDS) catalyzes the committed step in dolichol synthesis. Recessive mutations in DHDDS cause retinitis pigmentosa (RP59), resulting in blindness. We hypothesized that rod photoreceptor-specific ablation of Dhdds would cause retinal degeneration due to diminished dolichol-dependent protein N-glycosylation. Dhddsflx/flx mice were crossed with rod-specific Cre recombinase-expressing (Rho-iCre75) mice to generate rod-specific Dhdds knockout mice (Dhddsflx/flx iCre+). In vivo morphological and electrophysiological evaluation of Dhddsflx/flx iCre+ retinas revealed mild retinal dysfunction at postnatal (PN) 4 weeks, compared with age-matched controls; however, rapid photoreceptor degeneration ensued, resulting in almost complete loss of rods and cones by PN 6 weeks. Retina dolichol levels were markedly decreased by PN 4 weeks in Dhddsflx/flx iCre+ mice, relative to controls; despite this, N-glycosylation of retinal proteins, including opsin (the dominant rod-specific glycoprotein), persisted in Dhddsflx/flx iCre+ mice. These findings challenge the conventional mechanistic view of RP59 as a congenital disorder of glycosylation. Deletion of Dhdds in rod cells caused rapid retinal degeneration in mice Retinal dolichol levels markedly decreased before onset of degeneration Protein N-glycosylation was uncompromised despite Dhdds deletion Degeneration also involved gliosis, microglial activation, and phagoptosis
Collapse
Affiliation(s)
- Sriganesh Ramachandra Rao
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY 14209, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY 142015, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY 14203, USA
| | - Lara A Skelton
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY 14209, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY 142015, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY 14203, USA
| | - Fuguo Wu
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY 14209, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY 14203, USA; New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York- University at Buffalo, Buffalo, NY 14203, USA
| | - Agnieszka Onysk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Spolnik
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw 02106, Poland
| | - Witold Danikiewicz
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw 02106, Poland
| | - Mark C Butler
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY 14209, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY 142015, USA
| | - Delores A Stacks
- Department of Optometry and Vision Science, Vision Science Research Center, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Liliana Surmacz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY 14209, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY 14203, USA; New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York- University at Buffalo, Buffalo, NY 14203, USA
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Steven J Pittler
- Department of Optometry and Vision Science, Vision Science Research Center, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Steven J Fliesler
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY 14209, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY 142015, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY 14203, USA.
| |
Collapse
|
8
|
Abstract
Microglia are increasingly shown to be key players in neuron development and synapse connectivity. However, the underlying mechanisms by which microglia regulate neuron function remain poorly understood in part because such analysis is challenging in the brain where neurons and synapses are intermingled and connectivity is only beginning to be mapped. Here, we discuss the features and function of microglia in the ordered mammalian retina where the laminar organization of neurons and synapses facilitates such molecular studies. We discuss microglia origins and consider the evidence for molecularly distinct microglia subpopulations and their potential for differential roles with a particular focus on the early stages of retina development. We then review the models and methods used for the study of these cells and discuss emerging data that link retina microglia to the genesis and survival of particular retina cell subtypes. We also highlight potential roles for microglia in shaping the development and organization of the vasculature and discuss cellular and molecular mechanisms involved in this process. Such insights may help resolve the mechanisms by which retinal microglia impact visual function and help guide studies of related features in brain development and disease.
Collapse
Affiliation(s)
- Fenge Li
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Danye Jiang
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Melanie A Samuel
- Department of Neuroscience, Huffington Center on Aging, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Lax P, Ortuño-Lizarán I, Maneu V, Vidal-Sanz M, Cuenca N. Photosensitive Melanopsin-Containing Retinal Ganglion Cells in Health and Disease: Implications for Circadian Rhythms. Int J Mol Sci 2019; 20:E3164. [PMID: 31261700 PMCID: PMC6651433 DOI: 10.3390/ijms20133164] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/23/2022] Open
Abstract
Melanopsin-containing retinal ganglion cells (mRGCs) represent a third class of retinal photoreceptors involved in regulating the pupillary light reflex and circadian photoentrainment, among other things. The functional integrity of the circadian system and melanopsin cells is an essential component of well-being and health, being both impaired in aging and disease. Here we review evidence of melanopsin-expressing cell alterations in aging and neurodegenerative diseases and their correlation with the development of circadian rhythm disorders. In healthy humans, the average density of melanopsin-positive cells falls after age 70, accompanied by age-dependent atrophy of dendritic arborization. In addition to aging, inner and outer retinal diseases also involve progressive deterioration and loss of mRGCs that positively correlates with progressive alterations in circadian rhythms. Among others, mRGC number and plexus complexity are impaired in Parkinson's disease patients; changes that may explain sleep and circadian rhythm disorders in this pathology. The key role of mRGCs in circadian photoentrainment and their loss in age and disease endorse the importance of eye care, even if vision is lost, to preserve melanopsin ganglion cells and their essential functions in the maintenance of an adequate quality of life.
Collapse
Affiliation(s)
- Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain
| | - Isabel Ortuño-Lizarán
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain
| | - Manuel Vidal-Sanz
- Department of Ophthalmology, University of Murcia, 30120 Murcia, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain.
- Multidisciplinary Institute for Environmental Studies "Ramon Margalef", University of Alicante, 03690 Alicante, Spain.
| |
Collapse
|