1
|
Yang CT, Shyu BC, Lin WT, Lu KH, Lin CR, Wen YR, Chen CC. Establishing an Electrophysiological Recording Platform for Epidural Spinal Cord Stimulation in Neuropathic Pain Rats. J Pain Res 2025; 18:327-340. [PMID: 39872090 PMCID: PMC11771369 DOI: 10.2147/jpr.s489420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/19/2024] [Indexed: 01/29/2025] Open
Abstract
Purpose Spinal cord stimulation (SCS) is pivotal in treating chronic intractable pain. To elucidate the mechanism of action among conventional and current novel types of SCSs, a stable and reliable electrophysiology model in the consensus animals to mimic human SCS treatment is essential. We have recently developed a new in vivo implantable pulsed-ultrahigh-frequency (pUHF) SCS platform for conducting behavioral and electrophysiological studies in rats. However, some technical details were not fully understood. This study comprehensively analyzed methodology and technical challenges and pitfalls encountered during the development and implementation of this model. Materials and Methods Employing a newly developed pUHF-SCS (±3 V, 2 Hz pulses with 500-kHz biphasic radiofrequency sinewaves), we assessed analgesic effect and changes of evoked local field potentials (eLFPs) in the bilateral primary somatosensory and anterior cingulate cortices in the rats with or without spared nerve injury (SNI) using the platform. The placement of stimulating needle electrodes in the hind paw was examined and optimized for functionality. Results SNI enhanced the C component of eLFPs in bilateral cortexes elicited by stimulating the contralateral but not the ipsilateral lateral aspect of the hind paw. Repeated pUHF-SCS significantly reversed SNI-induced paw hypersensitivity and reduced C-component enhancement. An impedance test can determine an optimal SCS electrode function: an SCS discharge threshold of 100-400 μA for cortical activation or a motor threshold of 150-600 μA for the hind limbs. Impedance increased due to growth of fibrotic tissue but stabilized after post-implantation day 12. Conclusion We presented a reliable electrophysiological platform for SCS application in rat neuropathic pain model and demonstrated potent analgesic effects of pUHF-SCS. All device implantations or pUHF-SCS per se did not cause evident spinal cord damage. This safe and stable platform provides an in vivo rat model for SCS investigation of mechanisms of action and device innovation.
Collapse
Affiliation(s)
- Chin-Tsang Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Leisure Industry and Health Promotion, National Ilan University, Yilan, Taiwan
- Department of Biotechnology and Animal Sciences, National Ilan University, Yilan, Taiwan
| | - Bai-Chuang Shyu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | | - Chung-Ren Lin
- Department of Anesthesiology, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Yeong-Ray Wen
- Pain Management and Research Center, Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
- Chun Chuan Orthopedic and Pain Specialty Hospital, Taichung, Taiwan
- Pain Management Center, Department of Anesthesiology, Jen-Ai General Hospital, Taichung, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
- Taiwan Mouse Clinic, Biomedical Translational Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
2
|
El-Sayed R, Davis KD. Regional and interregional functional and structural brain abnormalities in neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:91-123. [PMID: 39580223 DOI: 10.1016/bs.irn.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Neuropathic pain is a severe form of chronic pain due to a lesion or disease of the somatosensory nervous system. Here we provide an overview of the neuroimaging approaches that can be used to assess brain abnormalities in a chronic pain condition, with particular focus on people with neuropathic pain and then summarize the findings of studies that applied these methodologies to study neuropathic pain. First, we review the most commonly used approaches to examine grey and white matter abnormalities using magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) and then review functional neuroimaging techniques to measure regional activity and inter-regional communication using functional MRI, electroencephalography (EEG) and magnetoencephalography (MEG). In neuropathic pain the most prominent structural abnormalities have been found to be in the primary somatosensory cortex, insula, anterior cingulate cortex and thalamus, with differences in volume directionality linked to neuropathic pain symptomology. Functional connectivity findings related to treatment outcome point to a potential clinical utility. Some prominent abnormalities in neuropathic pain identified with EEG and MEG throughout the dynamic pain connectome are slowing of alpha activity and higher regional oscillatory activity in the theta and alpha band, lower low beta and higher high beta band power. Finally, connectivity and coupling findings placed into context how regional abnormalities impact the networks and pathways of the dynamic pain connectome. Overall, functional and structural neuroimaging have the potential to identify predictive biomarkers that can be used to guide development of personalized pain management of neuropathic pain.
Collapse
Affiliation(s)
- Rima El-Sayed
- Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Karen Deborah Davis
- Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Canada; Institute of Medical Science, University of Toronto, Toronto, Canada; Department of Surgery, University of Toronto, Toronto, Canada.
| |
Collapse
|
3
|
Kayama T, Tamura A, Xiaoying T, Tsutsui KI, Kitajo K, Sasaki T. Transformer-based classification of visceral pain-related local field potential patterns in the brain. Sci Rep 2024; 14:24372. [PMID: 39420022 PMCID: PMC11487086 DOI: 10.1038/s41598-024-75616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Neuronal ensemble activity entrained by local field potential (LFP) patterns underlies a variety of brain functions, including emotion, cognition, and pain perception. Recent advances in machine learning approaches may enable more effective methods for analyzing LFP patterns across multiple brain areas than conventional time-frequency analysis. In this study, we tested the performance of two machine learning algorithms, AlexNet and the Transformer models, to classify LFP patterns in eight pain-related brain regions before and during acetic acid-induced visceral pain behaviors. Over short time windows lasting several seconds, applying AlexNet to LFP power datasets, but not to raw time-series LFP traces from multiple brain areas, successfully achieved superior classification performance compared with simple LFP power analysis. Furthermore, applying the Transformer directly to the raw LFP traces achieved significantly superior classification performance than AlexNet when using LFP power datasets. These results demonstrate the utility of the Transformer in the analysis of neurophysiological signals, and pave the way for its future applications in the decoding of more complex neuronal activity patterns.
Collapse
Affiliation(s)
- Tasuku Kayama
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Atsushi Tamura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Tuo Xiaoying
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan
| | - Ken-Ichiro Tsutsui
- Laboratory of Systems Neuroscience, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Keiichi Kitajo
- Division of Neural Dynamics, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Aichi, Japan
- Physiological Sciences Program, Department of Advanced Studies, Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Aichi, Japan
| | - Takuya Sasaki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan.
- Department of Neuropharmacology, Tohoku University School of Medicine, 4-1 Seiryo-machi, Aoba-Ku, Sendai, 980-8575, Japan.
| |
Collapse
|
4
|
Lykholt LED, Mørch CD, Jensen W. Differences in intracortical responses following non-noxious and noxious stimulation in anaesthetized rats. Brain Res 2023; 1821:148564. [PMID: 37678503 DOI: 10.1016/j.brainres.2023.148564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Cortical responses have been proposed as a source for the extraction of unique and non-subjective sensory information. The present study aimed to investigate if it is possible to distinguish between non-noxious and noxious cortical responses with two different types of anesthesia. Sixteen rats were randomly allocated to receive either Hypnorm/Dormicum (HD) or isoflurane (ISO) anesthesia. Each animal had a custom-made microelectrode array implanted in the primary somatosensory cortex to record the local field potentials and a cuff electrode implanted around the sciatic nerve to deliver electrical stimulations. Three stimulation intensities were applied: 1x movement threshold (MT) (i.e., non-noxious activation), 5x MT (low intensity noxious activation), and 10x MT (high intensity noxious activation). The evoked potentials were assessed by extracting three features: 1) the negative peak (NP), 2) the positive peak (PP), and 3) the peak-to-peak (PtP) amplitudes. Our results showed that it was possible to distinguish between three levels of stimulation intensities based on the NP, PP, and PtP features for the HD group, whereas it was only possible to make the same differentiation with the use of PP and PtP when applying ISO. This work is believed to contribute to a basic understanding of how the cortical responses change in the hyperacute phase of pain and which cortical features may be suitable as objective measures of nociception.
Collapse
Affiliation(s)
- L E D Lykholt
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - C D Mørch
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| | - W Jensen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark
| |
Collapse
|
5
|
Ma J, Huang X, Li Z, Wang S, Yan X, Huang D, Zhou H. Photic sensitization is mediated by cortico-accumbens pathway in rats with trigeminal neuropathic pain. Prog Neurobiol 2023; 231:102533. [PMID: 37776970 DOI: 10.1016/j.pneurobio.2023.102533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/29/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
Exposure to light stimuli may trigger or exacerbate perception of pain, also known as a common yet debilitating symptom of photophobia in patient with chronic orofacial pain. Mechanism underlying this phenomenon of photic sensitization in neuropathic condition remains elusive. Here, we found that rats developed hypersensitivity to normal light illumination after establishment of chronic constriction injury of infraorbital nerve (ION-CCI) model, which can be attenuated by blocking the exposure of photic stimulation. Additionally, this behavioral phenotype of light-sensitivity impairment was associated with overexpression of anterior cingulate cortex (ACC) c-fos positive neurons, enhancement of neural excitability in the ACC neurons and its excitatory synaptic transmission between nucleus accumbens (NAc). Optogenetic and chemogenic silencing of ACC-NAc pathway improved trigeminal sensitization in responses to light stimuli by decreasing spontaneous pain-like episodes in ION-CCI animals. In contrast, selective activation of ACC-to-NAc circuits enhanced photic hypersensitivity in dark environment. Thus, our data provided novel role of ACC and its projection to NAc in bidirectional modulation of photic sensation, which may contribute to the understanding of photic allodynia in trigeminal neuropathic pain status.
Collapse
Affiliation(s)
- Jiahui Ma
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha 410013, China
| | - Xiaoling Huang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha 410013, China; Department of Anesthesiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Clinical Research Center for Anesthesiology of ERAS in Hunan Province, Changsha, China
| | - Zhenxing Li
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha 410013, China
| | - Saiying Wang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xuebin Yan
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha 410013, China
| | - Dong Huang
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha 410013, China; Hunan Key Laboratory of Brain Homeostasis, Central South University, Changsha 410013, China
| | - Haocheng Zhou
- Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha 410013, China; Hunan Key Laboratory of Brain Homeostasis, Central South University, Changsha 410013, China.
| |
Collapse
|
6
|
Kenefati G, Rockholt MM, Ok D, McCartin M, Zhang Q, Sun G, Maslinski J, Wang A, Chen B, Voigt EP, Chen ZS, Wang J, Doan LV. Changes in alpha, theta, and gamma oscillations in distinct cortical areas are associated with altered acute pain responses in chronic low back pain patients. Front Neurosci 2023; 17:1278183. [PMID: 37901433 PMCID: PMC10611481 DOI: 10.3389/fnins.2023.1278183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Chronic pain negatively impacts a range of sensory and affective behaviors. Previous studies have shown that the presence of chronic pain not only causes hypersensitivity at the site of injury but may also be associated with pain-aversive experiences at anatomically unrelated sites. While animal studies have indicated that the cingulate and prefrontal cortices are involved in this generalized hyperalgesia, the mechanisms distinguishing increased sensitivity at the site of injury from a generalized site-nonspecific enhancement in the aversive response to nociceptive inputs are not well known. Methods We compared measured pain responses to peripheral mechanical stimuli applied to a site of chronic pain and at a pain-free site in participants suffering from chronic lower back pain (n = 15) versus pain-free control participants (n = 15) by analyzing behavioral and electroencephalographic (EEG) data. Results As expected, participants with chronic pain endorsed enhanced pain with mechanical stimuli in both back and hand. We further analyzed electroencephalographic (EEG) recordings during these evoked pain episodes. Brain oscillations in theta and alpha bands in the medial orbitofrontal cortex (mOFC) were associated with localized hypersensitivity, while increased gamma oscillations in the anterior cingulate cortex (ACC) and increased theta oscillations in the dorsolateral prefrontal cortex (dlPFC) were associated with generalized hyperalgesia. Discussion These findings indicate that chronic pain may disrupt multiple cortical circuits to impact nociceptive processing.
Collapse
Affiliation(s)
- George Kenefati
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Mika M. Rockholt
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Deborah Ok
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Michael McCartin
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Guanghao Sun
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Julia Maslinski
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Aaron Wang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Baldwin Chen
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Erich P. Voigt
- Department of Otolaryngology-Head and Neck Surgery, New York University Grossman School of Medicine, New York, NY, United States
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Lisa V. Doan
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
7
|
Jadidi AF, Jensen W, Zarei AA, Lontis ER, Atashzar SF. From pulse width modulated TENS to cortical modulation: based on EEG functional connectivity analysis. Front Neurosci 2023; 17:1239068. [PMID: 37600002 PMCID: PMC10433172 DOI: 10.3389/fnins.2023.1239068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Modulation in the temporal pattern of transcutaneous electrical nerve stimulation (TENS), such as Pulse width modulated (PWM), has been considered a new dimension in pain and neurorehabilitation therapy. Recently, the potentials of PWM TENS have been studied on sensory profiles and corticospinal activity. However, the underlying mechanism of PWM TENS on cortical network which might lead to pain alleviation is not yet investigated. Therefore, we recorded cortical activity using electroencephalography (EEG) from 12 healthy subjects and assessed the alternation of the functional connectivity at the cortex level up to an hour following the PWM TENS and compared that with the effect of conventional TENS. The connectivity between eight brain regions involved in sensory and pain processing was calculated based on phase lag index and spearman correlation. The alteration in segregation and integration of information in the network were investigated using graph theory. The proposed analysis discovered several statistically significant network changes between PWM TENS and conventional TENS, such as increased local strength and efficiency of the network in high gamma-band in primary and secondary somatosensory sources one hour following stimulation. Our findings regarding the long-lasting desired effects of PWM TENS support its potential as a therapeutic intervention in clinical research.
Collapse
Affiliation(s)
- Armita Faghani Jadidi
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | - Winnie Jensen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | - Ali Asghar Zarei
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | - Eugen Romulus Lontis
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg East, Denmark
| | - S. Farokh Atashzar
- Department of Electrical and Computer Engineering, New York University, New York, NY, United States
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY, United States
- Department of Biomedical Engineering, New York University, New York, NY, United States
- NYU WIRELESS, New York University (NYU), New York, NY, United States
- NYU Center for Urban Science and Progress (CUSP), New York University (NYU), New York, NY, United States
| |
Collapse
|
8
|
Aminitabar A, Mirmoosavi M, Ghodrati MT, Shalchyan V. Interhemispheric neural characteristics of noxious mechano-nociceptive stimulation in the anterior cingulate cortex. Front Neural Circuits 2023; 17:1144979. [PMID: 37215504 PMCID: PMC10196115 DOI: 10.3389/fncir.2023.1144979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Background Pain is an unpleasant sensory and emotional experience. One of the most critical regions of the brain for pain processing is the anterior cingulate cortex (ACC). Several studies have examined the role of this region in thermal nociceptive pain. However, studies on mechanical nociceptive pain have been very limited to date. Although several studies have investigated pain, the interactions between the two hemispheres are still not clear. This study aimed to investigate nociceptive mechanical pain in the ACC bilaterally. Methods Local field potential (LFP) signals were recorded from seven male Wistar rats' ACC regions of both hemispheres. Mechanical stimulations with two intensities, high-intensity noxious (HN) and non-noxious (NN) were applied to the left hind paw. At the same time, the LFP signals were recorded bilaterally from awake and freely moving rats. The recorded signals were analyzed from different perspectives, including spectral analysis, intensity classification, evoked potential (EP) analysis, and synchrony and similarity of two hemispheres. Results By using spectro-temporal features and support vector machine (SVM) classifier, HN vs. no-stimulation (NS), NN vs. NS, and HN vs. NN were classified with accuracies of 89.6, 71.1, and 84.7%, respectively. Analyses of the signals from the two hemispheres showed that the EPs in the two hemispheres were very similar and occurred simultaneously; however, the correlation and phase locking value (PLV) between the two hemispheres changed significantly after HN stimulation. These variations persisted for up to 4 s after the stimulation. In contrast, variations in the PLV and correlation for NN stimulation were not significant. Conclusions This study showed that the ACC area was able to distinguish the intensity of mechanical stimulation based on the power activities of neural responses. In addition, our results suggest that the ACC region is activated bilaterally due to nociceptive mechanical pain. Additionally, stimulations above the pain threshold (HN) significantly affect the synchronicity and correlation between the two hemispheres compared to non-noxious stimuli.
Collapse
|
9
|
Bucsea O, Rupawala M, Shiff I, Wang X, Meek J, Fitzgerald M, Fabrizi L, Pillai Riddell R, Jones L. Clinical thresholds in pain-related facial activity linked to differences in cortical network activation in neonates. Pain 2023; 164:1039-1050. [PMID: 36633530 PMCID: PMC10108588 DOI: 10.1097/j.pain.0000000000002798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 01/13/2023]
Abstract
ABSTRACT In neonates, a noxious stimulus elicits pain-related facial expression changes and distinct brain activity as measured by electroencephalography, but past research has revealed an inconsistent relationship between these responses. Facial activity is the most commonly used index of neonatal pain in clinical settings, with clinical thresholds determining if analgesia should be provided; however, we do not know if these thresholds are associated with differences in how the neonatal brain processes a noxious stimulus. The objective of this study was to examine whether subclinical vs clinically significant levels of pain-related facial activity are related to differences in the pattern of nociceptive brain activity in preterm and term neonates. We recorded whole-head electroencephalography and video in 78 neonates (0-14 days postnatal age) after a clinically required heel lance. Using an optimal constellation of Neonatal Facial Coding System actions (brow bulge, eye squeeze, and nasolabial furrow), we compared the serial network engagement (microstates) between neonates with and without clinically significant pain behaviour. Results revealed a sequence of nociceptive cortical network activation that was independent of pain-related behavior; however, a separate but interleaved sequence of early activity was related to the magnitude of the immediate behavioural response. Importantly, the degree of pain-related behavior is related to how the brain processes a stimulus and not simply the degree of cortical activation. This suggests that neonates who exhibit clinically significant pain behaviours process the stimulus differently and that neonatal pain-related behaviours reflect just a portion of the overall cortical pain response.
Collapse
Affiliation(s)
- Oana Bucsea
- Psychology, Faculty of Health, York University, Toronto, ON, Canada
| | - Mohammed Rupawala
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Ilana Shiff
- Psychology, Faculty of Health, York University, Toronto, ON, Canada
| | - Xiaogang Wang
- Department of Mathematics and Statistics, York University, Toronto, ON, Canada
| | - Judith Meek
- University College London Hospital, London, United Kingdom
| | - Maria Fitzgerald
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Rebecca Pillai Riddell
- Psychology, Faculty of Health, York University, Toronto, ON, Canada
- Psychiatry, Hospital for Sick Children, Toronto, ON, Canada
- Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Laura Jones
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
10
|
Zhang Q, Hu S, Talay R, Xiao Z, Rosenberg D, Liu Y, Sun G, Li A, Caravan B, Singh A, Gould JD, Chen ZS, Wang J. A prototype closed-loop brain-machine interface for the study and treatment of pain. Nat Biomed Eng 2023; 7:533-545. [PMID: 34155354 PMCID: PMC9516430 DOI: 10.1038/s41551-021-00736-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/22/2021] [Indexed: 12/25/2022]
Abstract
Chronic pain is characterized by discrete pain episodes of unpredictable frequency and duration. This hinders the study of pain mechanisms and contributes to the use of pharmacological treatments associated with side effects, addiction and drug tolerance. Here, we show that a closed-loop brain-machine interface (BMI) can modulate sensory-affective experiences in real time in freely behaving rats by coupling neural codes for nociception directly with therapeutic cortical stimulation. The BMI decodes the onset of nociception via a state-space model on the basis of the analysis of online-sorted spikes recorded from the anterior cingulate cortex (which is critical for pain processing) and couples real-time pain detection with optogenetic activation of the prelimbic prefrontal cortex (which exerts top-down nociceptive regulation). In rats, the BMI effectively inhibited sensory and affective behaviours caused by acute mechanical or thermal pain, and by chronic inflammatory or neuropathic pain. The approach provides a blueprint for demand-based neuromodulation to treat sensory-affective disorders, and could be further leveraged for nociceptive control and to study pain mechanisms.
Collapse
Affiliation(s)
- Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Sile Hu
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Robert Talay
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Zhengdong Xiao
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - David Rosenberg
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Yaling Liu
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Guanghao Sun
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Anna Li
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Bassir Caravan
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Amrita Singh
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA
| | - Jonathan D Gould
- College of Arts and Sciences, New York University, New York, NY, USA
| | - Zhe S Chen
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain, New York University School of Medicine, New York, NY, USA.
- Department of Neuroscience & Physiology, New York University School of Medicine, New York, NY, USA.
- Neuroscience Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
11
|
Black CJ, Saab CY, Borton DA. Transient gamma events delineate somatosensory modality in S1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534945. [PMID: 37034800 PMCID: PMC10081264 DOI: 10.1101/2023.03.30.534945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Gamma band activity localized to the primary somatosensory cortex (S1) in humans and animals is implicated in the higher order neural processing of painful and tactile stimuli. However, it is unclear if gamma band activity differs between these distinct somatosensory modalities. Here, we coupled a novel behavioral approach with chronic extracellular electrophysiology to investigate differences in S1 gamma band activity elicited by noxious and innocuous hind paw stimulation in transgenic mice. Like prior studies, we found that trial-averaged gamma power in S1 increased following both noxious and innocuous stimuli. However, on individual trials, we noticed that evoked gamma band activity was not a continuous oscillatory signal but a series of transient spectral events. Upon further analysis we found that there was a significantly higher incidence of these gamma band events following noxious stimulation than innocuous stimulation. These findings suggest that somatosensory stimuli may be represented by specific features of gamma band activity at the single trial level, which may provide insight to mechanisms underlying acute pain.
Collapse
|
12
|
Rupawala M, Bucsea O, Laudiano-Dray MP, Whitehead K, Meek J, Fitzgerald M, Olhede S, Jones L, Fabrizi L. A developmental shift in habituation to pain in human neonates. Curr Biol 2023; 33:1397-1406.e5. [PMID: 36931271 DOI: 10.1016/j.cub.2023.02.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/22/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023]
Abstract
Habituation to recurrent non-threatening or unavoidable noxious stimuli is an important aspect of adaptation to pain. Neonates, especially if preterm, are exposed to repeated noxious procedures during their clinical care. They can mount strong behavioral, autonomic, spinal, and cortical responses to a single noxious stimulus; however, it is not known whether the developing nervous system can adapt to the recurrence of these inputs. Here, we used electroencephalography to investigate changes in cortical microstates (representing the complex sequential processing of noxious inputs) following two consecutive clinically required heel lances in term and preterm infants. We show that stimulus repetition dampens the engagement of initial microstates and associated behavioral and autonomic responses in term infants, while preterm infants do not show signs of habituation. Nevertheless, both groups engage different longer-latency cortical microstates to each lance, which is likely to reflect changes in higher-level stimulus processing with repeated stimulation. These data suggest that while both age groups are capable of encoding contextual differences in pain, the preterm brain does not regulate the initial cortical, behavioral, and autonomic responses to repeated noxious stimuli. Habituation mechanisms to pain are already in place at term age but mature over the equivalent of the last trimester of gestation and are not fully functional in preterm neonates.
Collapse
Affiliation(s)
- Mohammed Rupawala
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Oana Bucsea
- Faculty of Health, Department of Psychology, York University, Toronto, ON M3J 1P3, Canada
| | | | - Kimberley Whitehead
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Judith Meek
- Elizabeth Garrett Anderson Obstetric Wing, University College London Hospitals, London WC1E 6DB, UK
| | - Maria Fitzgerald
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Sofia Olhede
- Department of Statistical Science, University College London, London WC1E 6BT, UK; Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Laura Jones
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
13
|
Chen ZS. Hierarchical predictive coding in distributed pain circuits. Front Neural Circuits 2023; 17:1073537. [PMID: 36937818 PMCID: PMC10020379 DOI: 10.3389/fncir.2023.1073537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
Predictive coding is a computational theory on describing how the brain perceives and acts, which has been widely adopted in sensory processing and motor control. Nociceptive and pain processing involves a large and distributed network of circuits. However, it is still unknown whether this distributed network is completely decentralized or requires networkwide coordination. Multiple lines of evidence from human and animal studies have suggested that the cingulate cortex and insula cortex (cingulate-insula network) are two major hubs in mediating information from sensory afferents and spinothalamic inputs, whereas subregions of cingulate and insula cortices have distinct projections and functional roles. In this mini-review, we propose an updated hierarchical predictive coding framework for pain perception and discuss its related computational, algorithmic, and implementation issues. We suggest active inference as a generalized predictive coding algorithm, and hierarchically organized traveling waves of independent neural oscillations as a plausible brain mechanism to integrate bottom-up and top-down information across distributed pain circuits.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, United States
- Interdisciplinary Pain Research Program, NYU Langone Health, New York, NY, United States
| |
Collapse
|
14
|
Gamma-band oscillations of pain and nociception: A systematic review and meta-analysis of human and rodent studies. Neurosci Biobehav Rev 2023; 146:105062. [PMID: 36682424 DOI: 10.1016/j.neubiorev.2023.105062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Pain-induced gamma-band oscillations (GBOs) are one of the most promising biomarkers of the pain experience. Although GBOs reliably encode pain perception across different individuals and species, considerable heterogeneity could be observed in the characteristics and functions of GBOs. However, such heterogeneity of GBOs and its underlying sources have rarely been detailed previously. Here, we conducted a systematic review and meta-analysis to characterize the temporal, frequential, and spatial characteristics of GBOs and summarize the functional significance of distinct GBOs. We found that GBO heterogeneity was mainly related to pain types, with a higher frequency (∼66 Hz) GBOs at the sensorimotor cortex elicited by phasic pain and a lower frequency (∼55 Hz) GBOs at the prefrontal cortex associated with tonic and chronic pains. Positive correlations between GBO magnitudes and pain intensity were observed in healthy participants. Notably, the characteristics and functions of GBOs seemed to be phylogenetically conserved across humans and rodents. Altogether, we provided a comprehensive description of heterogeneous GBOs in pain and nociception, laying the foundation for clinical applications of GBOs.
Collapse
|
15
|
Abstract
Pain is driven by sensation and emotion, and in turn, it motivates decisions and actions. To fully appreciate the multidimensional nature of pain, we formulate the study of pain within a closed-loop framework of sensory-motor prediction. In this closed-loop cycle, prediction plays an important role, as the interaction between prediction and actual sensory experience shapes pain perception and subsequently, action. In this Perspective, we describe the roles of two prominent computational theories-Bayesian inference and reinforcement learning-in modeling adaptive pain behaviors. We show that prediction serves as a common theme between these two theories, and that each of these theories can explain unique aspects of the pain perception-action cycle. We discuss how these computational theories and models can improve our mechanistic understandings of pain-centered processes such as anticipation, attention, placebo hypoalgesia, and pain chronification.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Pain Research Program, NYU Langone Health, New York, NY 10016, USA
| | - Jing Wang
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
- Interdisciplinary Pain Research Program, NYU Langone Health, New York, NY 10016, USA
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
16
|
Xiong HY, Cao YQ, Du SH, Yang QH, He SY, Wang XQ. Effects of High-Definition Transcranial Direct Current Stimulation Targeting the Anterior Cingulate Cortex on the Pain Thresholds: A Randomized Controlled Trial. PAIN MEDICINE 2023; 24:89-98. [PMID: 36066447 DOI: 10.1093/pm/pnac135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND The majority of existing clinical studies used active transcranial direct current stimulation (tDCS) over superficial areas of the pain neuromatrix to regulate pain, with conflicting results. Few studies have investigated the effect of tDCS on pain thresholds by focusing on targets in deep parts of the pain neuromatrix. METHODS This study applied a single session of high-definition tDCS (HD-tDCS) targeting the anterior cingulate cortex (ACC) and used a parallel and sham-controlled design to compare the antinociceptive effects in healthy individuals by assessing changes in pain thresholds. Sixty-six female individuals (mean age, 20.5 ± 2.4 years) were randomly allocated into the anodal, cathodal, or sham HD-tDCS groups. The primary outcome of the study was pain thresholds (pressure pain threshold, heat pain threshold, and cold pain threshold), which were evaluated before and after stimulation through the use of quantitative sensory tests. RESULTS Only cathodal HD-tDCS targeting the ACC significantly increased heat pain threshold (P < 0.05) and pressure pain threshold (P < 0.01) in healthy individuals compared with sham stimulation. Neither anodal nor cathodal HD-tDCS showed significant analgesic effects on cold pain threshold. Furthermore, no statistically significant difference was found in pain thresholds between anodal and sham HD-tDCS (P > 0.38). Independent of HD-tDCS protocols, the positive and negative affective schedule scores were decreased immediately after stimulation compared with baseline. CONCLUSIONS The present study has found that cathodal HD-tDCS targeting the ACC provided a strong antinociceptive effect (increase in pain threshold), demonstrating a positive biological effect of HD-tDCS.
Collapse
Affiliation(s)
- Huan-Yu Xiong
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yin-Quan Cao
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Shu-Hao Du
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Qi-Hao Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Si-Yi He
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
17
|
Shen J, Li M, Long C, Yang L, Jiang J. Altered Odor-Evoked Electrophysiological Responses in the Anterior Piriform Cortex of Conscious APP/PS1 Mice. J Alzheimers Dis 2022; 90:1277-1289. [DOI: 10.3233/jad-220694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Olfactory decline is an indicator of early-stage Alzheimer’s disease (AD). Although the anterior piriform cortex (aPC) is an important brain area involved in processing olfactory input, little is known about how its neuronal activity is affected in early-stage AD. Objective: To elucidate whether odor-induced electrophysiological responses are altered in the aPC of 3-5-month-old APP/PS1 mice. Methods: Using head-fixed multi-channel recording techniques in APP/PS1 AD mouse model to uncover potential aberrance of the aPC neuronal firing and local field potential (LFP) in response to vanillin. Results: We show that the firing rate of aPC neurons evoked by vanillin is significantly reduced in conscious APP/PS1 mice. LFP analysis demonstrates reduced low- and high-gamma (γ low, γ high) oscillations during both the baseline and odor stimulation periods in APP/PS1 mice. Moreover, according to spike-field coherence (SFC) analysis, APP/PS1 mice show decreased coherence between odor-evoked spikes and γ low rhythms, while the coherence with γ high rhythms and the ΔSFC of the oscillations is unaffected. Furthermore, APP/PS1 mice show reduced phase-locking strength in the baseline period, such that there is no difference between baseline and odor-stimulation conditions. This contrasts markedly with wild type mice, where phase-locking strength decreases on stimulation. Conclusion: The abnormalities in both the neuronal and oscillatory activities of the aPC may serve as electrophysiological indicators of underlying olfactory decline in early AD.
Collapse
Affiliation(s)
- Jialun Shen
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Meng Li
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Cheng Long
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Li Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jinxiang Jiang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
18
|
Domínguez-Oliva A, Mota-Rojas D, Hernández-Avalos I, Mora-Medina P, Olmos-Hernández A, Verduzco-Mendoza A, Casas-Alvarado A, Whittaker AL. The neurobiology of pain and facial movements in rodents: Clinical applications and current research. Front Vet Sci 2022; 9:1016720. [PMID: 36246319 PMCID: PMC9556725 DOI: 10.3389/fvets.2022.1016720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
One of the most controversial aspects of the use of animals in science is the production of pain. Pain is a central ethical concern. The activation of neural pathways involved in the pain response has physiological, endocrine, and behavioral consequences, that can affect both the health and welfare of the animals, as well as the validity of research. The strategy to prevent these consequences requires understanding of the nociception process, pain itself, and how assessment can be performed using validated, non-invasive methods. The study of facial expressions related to pain has undergone considerable study with the finding that certain movements of the facial muscles (called facial action units) are associated with the presence and intensity of pain. This review, focused on rodents, discusses the neurobiology of facial expressions, clinical applications, and current research designed to better understand pain and the nociceptive pathway as a strategy for implementing refinement in biomedical research.
Collapse
Affiliation(s)
- Adriana Domínguez-Oliva
- Master in Science Program “Maestría en Ciencias Agropecuarias”, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
- *Correspondence: Daniel Mota-Rojas
| | - Ismael Hernández-Avalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology-Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Alejandro Casas-Alvarado
- Neurophysiology, Behavior and Animal Welfare Assesment, DPAA, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Alexandra L. Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
19
|
Higinio-Rodríguez F, Rivera-Villaseñor A, Calero-Vargas I, López-Hidalgo M. From nociception to pain perception, possible implications of astrocytes. Front Cell Neurosci 2022; 16:972827. [PMID: 36159392 PMCID: PMC9492445 DOI: 10.3389/fncel.2022.972827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/15/2022] [Indexed: 11/15/2022] Open
Abstract
Astrocytes are determinants for the functioning of the CNS. They respond to neuronal activity with calcium increases and can in turn modulate synaptic transmission, brain plasticity as well as cognitive processes. Astrocytes display sensory-evoked calcium responses in different brain structures related to the discriminative system of most sensory modalities. In particular, noxious stimulation evoked calcium responses in astrocytes in the spinal cord, the hippocampus, and the somatosensory cortex. However, it is not clear if astrocytes are involved in pain. Pain is a private, personal, and complex experience that warns us about potential tissue damage. It is a perception that is not linearly associated with the amount of tissue damage or nociception; instead, it is constructed with sensory, cognitive, and affective components and depends on our previous experiences. However, it is not fully understood how pain is created from nociception. In this perspective article, we provide an overview of the mechanisms and neuronal networks that underlie the perception of pain. Then we proposed that coherent activity of astrocytes in the spinal cord and pain-related brain areas could be important in binding sensory, affective, and cognitive information on a slower time scale.
Collapse
Affiliation(s)
- Frida Higinio-Rodríguez
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Angélica Rivera-Villaseñor
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Isnarhazni Calero-Vargas
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Mónica López-Hidalgo
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Querétaro, Mexico
- *Correspondence: Mónica López-Hidalgo,
| |
Collapse
|
20
|
Sun G, Zeng F, McCartin M, Zhang Q, Xu H, Liu Y, Chen ZS, Wang J. Closed-loop stimulation using a multiregion brain-machine interface has analgesic effects in rodents. Sci Transl Med 2022; 14:eabm5868. [PMID: 35767651 DOI: 10.1126/scitranslmed.abm5868] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Effective treatments for chronic pain remain limited. Conceptually, a closed-loop neural interface combining sensory signal detection with therapeutic delivery could produce timely and effective pain relief. Such systems are challenging to develop because of difficulties in accurate pain detection and ultrafast analgesic delivery. Pain has sensory and affective components, encoded in large part by neural activities in the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC), respectively. Meanwhile, studies show that stimulation of the prefrontal cortex (PFC) produces descending pain control. Here, we designed and tested a brain-machine interface (BMI) combining an automated pain detection arm, based on simultaneously recorded local field potential (LFP) signals from the S1 and ACC, with a treatment arm, based on optogenetic activation or electrical deep brain stimulation (DBS) of the PFC in freely behaving rats. Our multiregion neural interface accurately detected and treated acute evoked pain and chronic pain. This neural interface is activated rapidly, and its efficacy remained stable over time. Given the clinical feasibility of LFP recordings and DBS, our findings suggest that BMI is a promising approach for pain treatment.
Collapse
Affiliation(s)
- Guanghao Sun
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA.,Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA.,Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY 10016, USA
| | - Fei Zeng
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Michael McCartin
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA.,Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY 10016, USA
| | - Helen Xu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Yaling Liu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA.,Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY 10016, USA.,Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA.,Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA.,Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY 10016, USA.,Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA.,Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
21
|
Andrade-Gonzalez RD, Perrusquia-Hernández E, Zepeda-Reyes KI, Campos Me H, Perez-Martinez IO. Sensory-motor response elicited by first time intraoral administered ethanol after trigeminal neuropathic injury. Alcohol 2022; 103:9-17. [PMID: 35714863 DOI: 10.1016/j.alcohol.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/29/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Recent findings have shown a relationship between alcohol use disorders (AUD) and chronic pain. Preclinical models have demonstrated that chronic pain, including trigeminal nerve injury, increases ethanol consumption throughout extended administration periods. Nevertheless, it remains unclear whether chronic pain induces a greater susceptibility to developing AUD by altering motor control consumption regardless of the symptomatology of neuropathic pain and if sex influences this susceptibility. We used a former prolonged pain experience model induced by a constriction of the mental nerve (mNC) to answer this question. We analyzed ethanol consumption in a short access protocol to reduce the post-ingestional effects and compared licking microstructure between groups. The constriction of the mental nerve induced evoked and spontaneous pain and reduction in the hedonic value of sucrose. The differences in alcohol consumption were not reflective of the former prolonged pain experience. Female mice showed a more efficient dynamic of consumption of alcohol reflected in a long burst of licking and a less variable licking rate within a cluster.
Collapse
Affiliation(s)
- R D Andrade-Gonzalez
- Sección de neurobiología de las sensaciones orales. Laboratorio de Investigación odontológica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Sección de Neurobiología de las sensaciones orales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.San Sebastián Xhala, San Sebastián Xhala, 54714 Cuautitlán Izcalli, México; Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - E Perrusquia-Hernández
- Sección de neurobiología de las sensaciones orales. Laboratorio de Investigación odontológica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Sección de Neurobiología de las sensaciones orales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.San Sebastián Xhala, San Sebastián Xhala, 54714 Cuautitlán Izcalli, México; Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - K I Zepeda-Reyes
- Sección de neurobiología de las sensaciones orales. Laboratorio de Investigación odontológica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Sección de Neurobiología de las sensaciones orales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.San Sebastián Xhala, San Sebastián Xhala, 54714 Cuautitlán Izcalli, México; Bioquímica Diagnóstica, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México Av. 1ro. De Mayo S/N, Col. Santa María De Las Torres Cuautitlán Izcalli, 54740, Mexico
| | - Hernandez Campos Me
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - I O Perez-Martinez
- Sección de neurobiología de las sensaciones orales. Laboratorio de Investigación odontológica, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México Sección de Neurobiología de las sensaciones orales, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México.San Sebastián Xhala, San Sebastián Xhala, 54714 Cuautitlán Izcalli, México.
| |
Collapse
|
22
|
Hsiao IH, Liao HY, Lin YW. Optogenetic modulation of electroacupuncture analgesia in a mouse inflammatory pain model. Sci Rep 2022; 12:9067. [PMID: 35641558 PMCID: PMC9156770 DOI: 10.1038/s41598-022-12771-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/22/2022] [Indexed: 11/09/2022] Open
Abstract
Peripheral tissue damage and associated inflammation can trigger neuroplastic changes in somatic pain pathways, such as reduced neuronal firing thresholds and synaptic potentiation, that ultimately lead to peripheral sensitization and chronic pain. Electroacupuncture (EA) can relieve chronic inflammatory pain, but the underlying mechanisms are unknown, including the contributions of higher pain centers such as somatosensory cortex (SSC). We investigated these mechanisms using optogenetic modulation of SSC activity in a mouse inflammatory pain model. Injection of Complete Freund's Adjuvant into the hind paw reliably induced inflammation accompanied by reduced mechanical and thermal pain thresholds (hyperalgesia) within three days (mechanical: 1.54 ± 0.13 g; thermal: 3.94 ± 0.43 s). Application of EA produced significant thermal and mechanical analgesia, but these responses were reversed by optogenetic activation of SSC neurons, suggesting that EA-induced analgesia involves modulation of central pain pathways. Western blot and immunostaining revealed that EA also attenuated CaMKIIα signaling in the dorsal root ganglion, central spinal cord, SSC, and anterior cingulate cortex (ACC). In contrast, optogenetic activation of the SSC induced CaMKIIα signaling in SSC and ACC. These findings suggest that AE can relieve inflammatory pain by suppressing CaMKIIα-dependent plasticity in cortical pain pathways. The SSC and ACC CaMKIIα signaling pathways may be valuable therapeutic targets for chronic inflammatory pain treatment.
Collapse
Affiliation(s)
- I-Han Hsiao
- College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan
- Department of Neurosurgery, China Medical University Hospital, Taichung, 404332, Taiwan
| | - Hsien-Yin Liao
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
| | - Yi-Wen Lin
- College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
- Chinese Medicine Research Center, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
23
|
Johnson C, Kretsge LN, Yen WW, Sriram B, O'Connor A, Liu RS, Jimenez JC, Phadke RA, Wingfield KK, Yeung C, Jinadasa TJ, Nguyen TPH, Cho ES, Fuchs E, Spevack ED, Velasco BE, Hausmann FS, Fournier LA, Brack A, Melzer S, Cruz-Martín A. Highly unstable heterogeneous representations in VIP interneurons of the anterior cingulate cortex. Mol Psychiatry 2022; 27:2602-2618. [PMID: 35246635 PMCID: PMC11128891 DOI: 10.1038/s41380-022-01485-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/09/2022]
Abstract
A hallmark of the anterior cingulate cortex (ACC) is its functional heterogeneity. Functional and imaging studies revealed its importance in the encoding of anxiety-related and social stimuli, but it is unknown how microcircuits within the ACC encode these distinct stimuli. One type of inhibitory interneuron, which is positive for vasoactive intestinal peptide (VIP), is known to modulate the activity of pyramidal cells in local microcircuits, but it is unknown whether VIP cells in the ACC (VIPACC) are engaged by particular contexts or stimuli. Additionally, recent studies demonstrated that neuronal representations in other cortical areas can change over time at the level of the individual neuron. However, it is not known whether stimulus representations in the ACC remain stable over time. Using in vivo Ca2+ imaging and miniscopes in freely behaving mice to monitor neuronal activity with cellular resolution, we identified individual VIPACC that preferentially activated to distinct stimuli across diverse tasks. Importantly, although the population-level activity of the VIPACC remained stable across trials, the stimulus-selectivity of individual interneurons changed rapidly. These findings demonstrate marked functional heterogeneity and instability within interneuron populations in the ACC. This work contributes to our understanding of how the cortex encodes information across diverse contexts and provides insight into the complexity of neural processes involved in anxiety and social behavior.
Collapse
Affiliation(s)
- Connor Johnson
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Lisa N Kretsge
- The Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Neurophotonics Center, Boston University, Boston, MA, USA
| | - William W Yen
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | | | - Alexandra O'Connor
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Ruichen Sky Liu
- MS in Statistical Practice Program, Boston University, Boston, MA, USA
| | - Jessica C Jimenez
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Rhushikesh A Phadke
- Molecular Biology, Cell Biology and Biochemistry Program, Boston University, Boston, MA, USA
| | - Kelly K Wingfield
- Neurophotonics Center, Boston University, Boston, MA, USA
- Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, USA
| | - Charlotte Yeung
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Tushare J Jinadasa
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Thanh P H Nguyen
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Eun Seon Cho
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Erelle Fuchs
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Eli D Spevack
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Berta Escude Velasco
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Frances S Hausmann
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Luke A Fournier
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA
| | - Alison Brack
- Molecular Biology, Cell Biology and Biochemistry Program, Boston University, Boston, MA, USA
| | - Sarah Melzer
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Alberto Cruz-Martín
- Neurobiology Section in the Department of Biology, Boston University, Boston, MA, USA.
- Neurophotonics Center, Boston University, Boston, MA, USA.
- Molecular Biology, Cell Biology and Biochemistry Program, Boston University, Boston, MA, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
- The Center for Network Systems Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
24
|
Zhang T, Wang Z, Liang H, Wu Z, Li J, Ou-Yang J, Yang X, Peng YB, Zhu B. Transcranial Focused Ultrasound Stimulation of Periaqueductal Gray for Analgesia. IEEE Trans Biomed Eng 2022; 69:3155-3162. [PMID: 35324431 DOI: 10.1109/tbme.2022.3162073] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Transcranial focused ultrasound (tFUS) is regarded as a promising non-invasive stimulation tool for modulating brain circuits. The aim of this study is to explore the feasibility of tFUS stimulation for analgesia application. METHODS 50 l of 3% formalin solution was injected into the rats left hindpaw to build a pain model, and then the local field potential (LFP) activities of the dorsal horn were tracked after a recording electrode was placed in the spinal cord. Rats were randomly divided into two groups: control group and tFUS group. At the 30th minute after formalin injection, tFUS (US-650 kHz, PD = 1 ms, PRF = 100 Hz, 691 mW/cm2) was conducted to stimulate the periaqueductal gray (PAG) for 5 minutes (on 5 s and off 5 s) in tFUS group, but there was no treatment in control group. In addition, the analgesia mechanism (LFP recording from the PAG) and safety assessment (histology analysis) were carried out. RESULTS The tFUS stimulation of the PAG can suppress effectively the nociceptive activity generated by formalin. The findings of the underlying mechanism exploration indicated that the tFUS stimulation was able to activate the PAG directly without causing significant temperature change and tissue injury. CONCLUSION The results illustrated that the tFUS stimulation of the PAG can achieve the effect of analgesia. SIGNIFICANCE This work provides new insights for the development of non-invasive analgesic technology in the future.
Collapse
|
25
|
Zarei AA, Jensen W, Faghani Jadidi A, Lontis R, Atashzar SF. Gamma-band Enhancement of Functional Brain Connectivity Following Transcutaneous Electrical Nerve Stimulation. J Neural Eng 2022; 19. [PMID: 35234662 DOI: 10.1088/1741-2552/ac59a1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/01/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Transcutaneous electrical nerve stimulation (TENS) has been suggested as a possible non-invasive pain treatment. However, the underlying mechanism of the analgesic effect of TENS and how brain network functional connectivity is affected following the use of TENS is not yet fully understood. The purpose of this study was to investigate the effect of high-frequency TENS on the alternation of functional brain network connectivity and the corresponding topographical changes, besides perceived sensations. APPROACH Forty healthy subjects participated in this study. EEG data and sensory profiles were recorded before and up to an hour following high-frequency TENS (100 Hz) in sham and intervention groups. Brain source activity from EEG data was estimated using the LORETA algorithm. In order to generate the brain connectivity network, the Phase lag index was calculated for all pair-wise connections of eight selected brain areas over six different frequency bands (i.e., δ, θ, α, β, γ, and 0.5-90 Hz). MAIN RESULTS The results suggested that the functional connectivity between the primary somatosensory cortex (SI) and the anterior cingulate cortex (ACC), in addition to functional connectivity between S1 and the medial prefrontal cortex (mPFC), were significantly increased in the gamma-band, following the TENS intervention. Additionally, using graph theory, several significant changes were observed in global and local characteristics of functional brain connectivity in gamma-band. SIGNIFICANCE Our observations in this paper open a neuropsychological window of understanding the underlying mechanism of TENS and the corresponding changes in functional brain connectivity, simultaneously with alternation in sensory perception.
Collapse
Affiliation(s)
- Ali Asghar Zarei
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg Universitet, Fredrik Bajers Vej 7 D3, Aalborg, 9220, DENMARK
| | - Winnie Jensen
- Center for Sensory-Motor Interaction Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220 Aalborg, Aalborg, 9220, DENMARK
| | - Armita Faghani Jadidi
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg Universitet, Fredrik Bajers Vej 7 D3, Aalborg, 9220, DENMARK
| | - Romulus Lontis
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg Universitet, Fredrik Bajers Vej 7 D3, Aalborg, 9220, DENMARK
| | - S Farokh Atashzar
- Departments of Electrical and Computer Engineering, and Mechanical and Aerospace Engineering, New York University, 5 MetroTech Center #266D Brooklyn, NY 11201, New York, New York, NY 11201, UNITED STATES
| |
Collapse
|
26
|
Chen ZS. Decoding pain from brain activity. J Neural Eng 2021; 18. [PMID: 34608868 DOI: 10.1088/1741-2552/ac28d4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/21/2021] [Indexed: 11/12/2022]
Abstract
Pain is a dynamic, complex and multidimensional experience. The identification of pain from brain activity as neural readout may effectively provide a neural code for pain, and further provide useful information for pain diagnosis and treatment. Advances in neuroimaging and large-scale electrophysiology have enabled us to examine neural activity with improved spatial and temporal resolution, providing opportunities to decode pain in humans and freely behaving animals. This topical review provides a systematical overview of state-of-the-art methods for decoding pain from brain signals, with special emphasis on electrophysiological and neuroimaging modalities. We show how pain decoding analyses can help pain diagnosis and discovery of neurobiomarkers for chronic pain. Finally, we discuss the challenges in the research field and point to several important future research directions.
Collapse
Affiliation(s)
- Zhe Sage Chen
- Department of Psychiatry, Department of Neuroscience and Physiology, Neuroscience Institute, Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY 10016, United States of America
| |
Collapse
|
27
|
Noboa K, Keller J, Hergenrader K, Housh T, Anders JP, Neltner T, Schmidt R, Johnson G. Men Exhibit Greater Pain Pressure Thresholds and Times to Task Failure but Not Performance Fatigability Following Self-Paced Exercise. Percept Mot Skills 2021; 128:2326-2345. [PMID: 34313524 DOI: 10.1177/00315125211035028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The purpose of the current study was to determine if, and to what extent, sex differences in performance fatigability after a sustained, bilateral leg extension, anchored to a moderate rating of perceived exertion (RPE), could be attributed to muscle size, muscular strength, or pain pressure threshold (PPT) in young, healthy adults. Thirty adults (men: n = 15, women: n = 15) volunteered to complete a sustained leg extension task anchored to RPE = 5 (10-point OMNI scale) as well as pretest and posttest maximal voluntary isometric contraction (MVIC) trials. The fatigue-induced decline in MVIC force was defined as performance fatigability. We used muscle cross-sectional area (mCSA) to quantify muscle size and a dolorimeter to assess PPT. The sustained task induced fatigue such that both men and women exhibited significant (p < 0.05) decreases in MVIC force from pretest to posttest (M = 113.3, SD =24.2 kg vs. M = 98.3, SD = 23.1 kg and M = 73.1, SD =14.5 kg vs. M = 64.1, SD = 16.2 kg, respectively), with no significant sex differences in performance fatigability (grand M = 12.6, SD =10.6%). Men, however, exhibited significantly (p < 0.05) longer time to task failure (TTF) than women (M = 166.1, SD =83.0 seconds vs. M = 94.6, SD =41.7) as well as greater PPT (M = 5.9, SD = 2.2 kg vs. M = 3.4, SD =1.1 kg). The only significant predictor of performance fatigability was PPT. In conclusion, differences in PPT, at least in part, mediate variations in TTF during self-paced exercise anchored to a specific RPE and resulting in performance fatigability.
Collapse
Affiliation(s)
- Karina Noboa
- Performance and Physique Enhancement Laboratory, Department of Educational and Psychological Studies, College of Education, University of South Florida, Tampa, Florida, United States
| | - Joshua Keller
- Department of Health, Kinesiology, and Sport, College of Education and Professional Studies, University of South Alabama, Mobile, United States
| | - Kipp Hergenrader
- Human Performance Laboratory, Department of Nutrition and Health Sciences, College of Education, University of Nebraska - Lincoln, Lincoln, United States
| | - Terry Housh
- Human Performance Laboratory, Department of Nutrition and Health Sciences, College of Education, University of Nebraska - Lincoln, Lincoln, United States
| | - John Paul Anders
- Human Performance Laboratory, Department of Nutrition and Health Sciences, College of Education, University of Nebraska - Lincoln, Lincoln, United States
| | - Tyler Neltner
- Human Performance Laboratory, Department of Nutrition and Health Sciences, College of Education, University of Nebraska - Lincoln, Lincoln, United States
| | - Richard Schmidt
- Human Performance Laboratory, Department of Nutrition and Health Sciences, College of Education, University of Nebraska - Lincoln, Lincoln, United States
| | - Glen Johnson
- Human Performance Laboratory, Department of Nutrition and Health Sciences, College of Education, University of Nebraska - Lincoln, Lincoln, United States
| |
Collapse
|
28
|
Tan LL, Oswald MJ, Kuner R. Neurobiology of brain oscillations in acute and chronic pain. Trends Neurosci 2021; 44:629-642. [PMID: 34176645 DOI: 10.1016/j.tins.2021.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/19/2021] [Accepted: 05/07/2021] [Indexed: 01/08/2023]
Abstract
Pain is a complex perceptual phenomenon. Coordinated activity among local and distant brain networks is a central element of the neural underpinnings of pain. Brain oscillatory rhythms across diverse frequency ranges provide a functional substrate for coordinating activity across local neuronal ensembles and anatomically distant brain areas in pain networks. This review addresses parallels between insights from human and rodent analyses of oscillatory rhythms in acute and chronic pain and discusses recent rodent-based studies that have shed light on mechanistic underpinnings of brain oscillatory dynamics in pain-related behaviors. We highlight the potential for therapeutic modulation of oscillatory rhythms, and identify outstanding questions and challenges to be addressed in future research.
Collapse
Affiliation(s)
- Linette Liqi Tan
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany.
| | - Manfred Josef Oswald
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany
| | - Rohini Kuner
- Institute of Pharmacology, Heidelberg University, Im Neuenheimer Feld 366, D-69120 Heidelberg, Germany.
| |
Collapse
|
29
|
Bak MS, Park H, Kim SK. Neural Plasticity in the Brain during Neuropathic Pain. Biomedicines 2021; 9:624. [PMID: 34072638 PMCID: PMC8228570 DOI: 10.3390/biomedicines9060624] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 01/02/2023] Open
Abstract
Neuropathic pain is an intractable chronic pain, caused by damage to the somatosensory nervous system. To date, treatment for neuropathic pain has limited effects. For the development of efficient therapeutic methods, it is essential to fully understand the pathological mechanisms of neuropathic pain. Besides abnormal sensitization in the periphery and spinal cord, accumulating evidence suggests that neural plasticity in the brain is also critical for the development and maintenance of this pain. Recent technological advances in the measurement and manipulation of neuronal activity allow us to understand maladaptive plastic changes in the brain during neuropathic pain more precisely and modulate brain activity to reverse pain states at the preclinical and clinical levels. In this review paper, we discuss the current understanding of pathological neural plasticity in the four pain-related brain areas: the primary somatosensory cortex, the anterior cingulate cortex, the periaqueductal gray, and the basal ganglia. We also discuss potential treatments for neuropathic pain based on the modulation of neural plasticity in these brain areas.
Collapse
Affiliation(s)
- Myeong Seong Bak
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea; (M.S.B.); (H.P.)
| | - Haney Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea; (M.S.B.); (H.P.)
| | - Sun Kwang Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea; (M.S.B.); (H.P.)
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
30
|
Tøttrup L, Atashzar SF, Farina D, Kamavuako EN, Jensen W. Altered evoked low-frequency connectivity from SI to ACC following nerve injury in rats. J Neural Eng 2021; 18. [PMID: 33957613 DOI: 10.1088/1741-2552/abfeb9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
Objective. Despite decades of research on central processing of pain, there are still several unanswered questions, in particular regarding the brain regions that may contribute to this alerting sensation. Since it is generally accepted that more than one cortical area is responsible for pain processing, there is an increasing focus on the interaction between areas known to be involved.Approach. In this study, we aimed to investigate the bidirectional information flow from the primary somatosensory cortex (SI) to the anterior cingulate cortex (ACC) in an animal model of neuropathic pain.19 rats (nine controls and ten intervention) had an intracortical electrode implanted with six pins in SI and six pins in ACC, and a cuff stimulation electrode around the sciatic nerve. The intervention rats were subjected to the spared nerve injury (SNI) after baseline recordings. Electrical stimulation at three intensities of both noxious and non-noxious stimulation was used to record electrically evoked cortical potentials. To investigate information flow, two connectivity measures were used: phase lag index (PLI) and granger prediction (GP). The rats were anesthetized during the entire study.Main results. Immediately after the intervention (<5 min after intervention), the high frequency (γandγ+) PLI was significantly decreased compared to controls. In the last recording cycle (3-4 h after intervention), the GP increased consistently in the intervention group. Peripheral nerve injury, as a model of neuropathic pain, resulted in an immediate decrease in information flow between SI and ACC, possibly due to decreased sensory input from the injured nerve. Hours after injury, the connectivity between SI and ACC increased, likely indicating hypersensitivity of this pathway.Significance. We have shown that both a directed and non-directed connectivity between SI and ACC approach can be used to show the acute changes resulting from the SNI model.
Collapse
Affiliation(s)
- Lea Tøttrup
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - S Farokh Atashzar
- Departments of Electrical and Computer Engineering, and Mechanical and Aerospace Engineering, New York University, New York, NY, USA.,NYU WIRELESS center, New York University (NYU), New York, NY, USA
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Ernest Nlandu Kamavuako
- Department of Engineering, King's College London, London, United Kingdom.,Université de Kindu, Faculté de Médecine, Département des Sciences de base, Maniema, DR Congo
| | - Winnie Jensen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
31
|
Huang J, Zhang Z, Zamponi GW. Pain: Integration of Sensory and Affective Aspects of Pain. Curr Biol 2021; 30:R393-R395. [PMID: 32369749 DOI: 10.1016/j.cub.2020.02.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Painful stimuli are detected by peripheral nociceptors, and the brain processes this nociceptive input into an unpleasant sensation. A new study identifies a brain circuit that integrates sensory and affective aspects of inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Junting Huang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Zizhen Zhang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada.
| |
Collapse
|
32
|
Xiao X, Ding M, Zhang YQ. Role of the Anterior Cingulate Cortex in Translational Pain Research. Neurosci Bull 2021; 37:405-422. [PMID: 33566301 PMCID: PMC7954910 DOI: 10.1007/s12264-020-00615-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
As the most common symptomatic reason to seek medical consultation, pain is a complex experience that has been classified into different categories and stages. In pain processing, noxious stimuli may activate the anterior cingulate cortex (ACC). But the function of ACC in the different pain conditions is not well discussed. In this review, we elaborate the commonalities and differences from accumulated evidence by a variety of pain assays for physiological pain and pathological pain including inflammatory pain, neuropathic pain, and cancer pain in the ACC, and discuss the cellular receptors and signaling molecules from animal studies. We further summarize the ACC as a new central neuromodulation target for invasive and non-invasive stimulation techniques in clinical pain management. The comprehensive understanding of pain processing in the ACC may lead to bridging the gap in translational research between basic and clinical studies and to develop new therapies.
Collapse
Affiliation(s)
- Xiao Xiao
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Institute of Science and Technology for Brain-Inspired Intelligence, Behavioral and Cognitive Neuroscience Center, Fudan University, Shanghai, 200433, China.
| | - Ming Ding
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education; Institute of Science and Technology for Brain-Inspired Intelligence, Behavioral and Cognitive Neuroscience Center, Fudan University, Shanghai, 200433, China
| | - Yu-Qiu Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science; Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
33
|
Strube A, Rose M, Fazeli S, Büchel C. The temporal and spectral characteristics of expectations and prediction errors in pain and thermoception. eLife 2021; 10:62809. [PMID: 33594976 PMCID: PMC7924946 DOI: 10.7554/elife.62809] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
In the context of a generative model, such as predictive coding, pain and heat perception can be construed as the integration of expectation and input with their difference denoted as a prediction error. In a previous neuroimaging study (Geuter et al., 2017) we observed an important role of the insula in such a model but could not establish its temporal aspects. Here, we employed electroencephalography to investigate neural representations of predictions and prediction errors in heat and pain processing. Our data show that alpha-to-beta activity was associated with stimulus intensity expectation, followed by a negative modulation of gamma band activity by absolute prediction errors. This is in contrast to prediction errors in visual and auditory perception, which are associated with increased gamma band activity, but is in agreement with observations in working memory and word matching, which show gamma band activity for correct, rather than violated, predictions.
Collapse
Affiliation(s)
- Andreas Strube
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Rose
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sepideh Fazeli
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
34
|
Song Y, Yao M, Kemprecos H, Byrne A, Xiao Z, Zhang Q, Singh A, Wang J, Chen ZS. Predictive coding models for pain perception. J Comput Neurosci 2021; 49:107-127. [PMID: 33595765 DOI: 10.1007/s10827-021-00780-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/14/2020] [Accepted: 01/29/2021] [Indexed: 12/31/2022]
Abstract
Pain is a complex, multidimensional experience that involves dynamic interactions between sensory-discriminative and affective-emotional processes. Pain experiences have a high degree of variability depending on their context and prior anticipation. Viewing pain perception as a perceptual inference problem, we propose a predictive coding paradigm to characterize evoked and non-evoked pain. We record the local field potentials (LFPs) from the primary somatosensory cortex (S1) and the anterior cingulate cortex (ACC) of freely behaving rats-two regions known to encode the sensory-discriminative and affective-emotional aspects of pain, respectively. We further use predictive coding to investigate the temporal coordination of oscillatory activity between the S1 and ACC. Specifically, we develop a phenomenological predictive coding model to describe the macroscopic dynamics of bottom-up and top-down activity. Supported by recent experimental data, we also develop a biophysical neural mass model to describe the mesoscopic neural dynamics in the S1 and ACC populations, in both naive and chronic pain-treated animals. Our proposed predictive coding models not only replicate important experimental findings, but also provide new prediction about the impact of the model parameters on the physiological or behavioral read-out-thereby yielding mechanistic insight into the uncertainty of expectation, placebo or nocebo effect, and chronic pain.
Collapse
Affiliation(s)
- Yuru Song
- Department of Psychiatry, New York University School of Medicine, New York, USA.,Department of Biology, University of California, San Diego, USA
| | - Mingchen Yao
- Department of Psychiatry, New York University School of Medicine, New York, USA.,Kuang Yaming Honors School, Nanjing University, Nanjing, China
| | - Helen Kemprecos
- Department of Biochemistry, New York University, New York, USA
| | - Aine Byrne
- Center for Neural Science, New York University, New York, USA
| | - Zhengdong Xiao
- Department of Psychiatry, New York University School of Medicine, New York, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Pain and Operative Medicine, New York University School of Medicine, New York, USA
| | - Amrita Singh
- Department of Anesthesiology, Pain and Operative Medicine, New York University School of Medicine, New York, USA
| | - Jing Wang
- Department of Anesthesiology, Pain and Operative Medicine, New York University School of Medicine, New York, USA.,Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA.,Neuroscience Institute, New York University School of Medicine, New York, USA
| | - Zhe S Chen
- Department of Psychiatry, New York University School of Medicine, New York, USA. .,Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA. .,Neuroscience Institute, New York University School of Medicine, New York, USA.
| |
Collapse
|
35
|
Talay RS, Liu Y, Michael M, Li A, Friesner ID, Zeng F, Sun G, Chen ZS, Zhang Q, Wang J. Pharmacological restoration of anti-nociceptive functions in the prefrontal cortex relieves chronic pain. Prog Neurobiol 2021; 201:102001. [PMID: 33545233 DOI: 10.1016/j.pneurobio.2021.102001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/14/2021] [Accepted: 01/24/2021] [Indexed: 12/30/2022]
Abstract
Chronic pain affects one in four adults, and effective non-sedating and non-addictive treatments are urgently needed. Chronic pain causes maladaptive changes in the cerebral cortex, which can lead to impaired endogenous nociceptive processing. However, it is not yet clear if drugs that restore endogenous cortical regulation could provide an effective therapeutic strategy for chronic pain. Here, we studied the nociceptive response of neurons in the prelimbic region of the prefrontal cortex (PL-PFC) in freely behaving rats using a spared nerve injury (SNI) model of chronic pain, and the impact of AMPAkines, a class of drugs that increase central glutamate signaling, on such response. We found that neurons in the PL-PFC increase their firing rates in response to noxious stimulations; chronic neuropathic pain, however, suppressed this important cortical pain response. Meanwhile, CX546, a well-known AMPAkine, restored the anti-nociceptive response of PL-PFC neurons in the chronic pain condition. In addition, both systemic administration and direct delivery of CX546 into the PL-PFC inhibited symptoms of chronic pain, whereas optogenetic inactivation of the PFC neurons or administration of AMPA receptor antagonists in the PL-PFC blocked the anti-nociceptive effects of CX546. These results indicate that restoration of the endogenous anti-nociceptive functions in the PL-PFC by pharmacological agents such as AMPAkines constitutes a successful strategy to treat chronic neuropathic pain.
Collapse
Affiliation(s)
- Robert S Talay
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Health, New York, NY 10016, United States
| | - Yaling Liu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Health, New York, NY 10016, United States; Department of Pain, The Third Xiangya Hospital and Institute of Pain Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Matthew Michael
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Health, New York, NY 10016, United States
| | - Anna Li
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Health, New York, NY 10016, United States
| | - Isabel D Friesner
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Health, New York, NY 10016, United States
| | - Fei Zeng
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Health, New York, NY 10016, United States
| | - Guanghao Sun
- Department of Psychiatry, New York University Langone Health, New York, NY 10016, United States
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Langone Health, New York, NY 10016, United States; Neuroscience Institute, New York University Langone Health, New York, NY 10016, United States
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Health, New York, NY 10016, United States.
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Langone Health, New York, NY 10016, United States; Neuroscience Institute, New York University Langone Health, New York, NY 10016, United States; Department of Neuroscience and Physiology, New York University Langone Health, New York, NY 10016, United States.
| |
Collapse
|
36
|
Tottrup L, Atashzar SF, Farina D, Kamavuako EN, Jensen W. Nerve Injury Decreases Hyperacute Resting-State Connectivity Between the Anterior Cingulate and Primary Somatosensory Cortex in Anesthetized Rats. IEEE Trans Neural Syst Rehabil Eng 2021; 28:2691-2698. [PMID: 33237862 DOI: 10.1109/tnsre.2020.3039854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A better understanding of neural pain processing and of the development of pain over time, is critical to identify objective measures of pain and to evaluate the effect of pain alleviation therapies. One issue is, that the brain areas known to be related to pain processing are not exclusively responding to painful stimuli, and the neuronal activity is also influenced by other brain areas. Functional connectivity reflects synchrony or covariation of activation between groups of neurons. Previous studies found changes in connectivity days or weeks after pain induction. However, less in known on the temporal development of pain. Our objective was therefore to investigate the interaction between the anterior cingulate cortex (ACC) and primary somatosensory cortex (SI) in the hyperacute (minute) and sustained (hours) response in an animal model of neuropathic pain. Intra-cortical local field potentials (LFP) were recorded in 18 rats. In 10 rats the spared nerve injury model was used as an intervention. The intra-cortical activity was recorded before, immediately after, and three hours after the intervention. The interaction was quantified as the calculated correlation and coherence. The results from the intervention group showed a decrease in correlation between ACC and SI activity, which was most pronounced in the hyperacute phase but a longer time frame may be required for plastic changes to occur. This indicated that both SI and ACC are involved in hyperacute pain processing.
Collapse
|
37
|
Sun G, Wen Z, Ok D, Doan L, Wang J, Chen ZS. Detecting acute pain signals from human EEG. J Neurosci Methods 2021; 347:108964. [PMID: 33010301 PMCID: PMC7744433 DOI: 10.1016/j.jneumeth.2020.108964] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Advances in human neuroimaging has enabled us to study functional connections among various brain regions in pain states. Despite a wealth of studies at high anatomic resolution, the exact neural signals for the timing of pain remain little known. Identifying the onset of pain signals from distributed cortical circuits may reveal the temporal dynamics of pain responses and subsequently provide important feedback for closed-loop neuromodulation for pain. NEW METHOD Here we developed an unsupervised learning method for sequential detection of acute pain signals based on multichannel human EEG recordings. Following EEG source localization, we used a state-space model (SSM) to detect the onset of acute pain signals based on the localized regions of interest (ROIs). RESULTS We validated the SSM-based detection strategy using two human EEG datasets, including one public EEG recordings of 50 subjects. We found that the detection accuracy varied across tested subjects and detection methods. We also demonstrated the feasibility for cross-subject and cross-modality prediction of detecting the acute pain signals. COMPARISON WITH EXISTING METHODS In contrast to the batch supervised learning analysis based on a support vector machine (SVM) classifier, the unsupervised learning method requires fewer number of training trials in the online experiment, and shows comparable or improved performance than the supervised method. CONCLUSIONS Our unsupervised SSM-based method combined with EEG source localization showed robust performance in detecting the onset of acute pain signals.
Collapse
Affiliation(s)
- Guanghao Sun
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Zhenfu Wen
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| | - Deborah Ok
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Lisa Doan
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine, New York, NY, United States
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine, New York, NY, United States; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, United States; The Neuroscience Institute, New York University School of Medicine, New York, NY, United States.
| | - Zhe Sage Chen
- Department of Psychiatry, New York University School of Medicine, New York, NY, United States; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, United States; The Neuroscience Institute, New York University School of Medicine, New York, NY, United States.
| |
Collapse
|
38
|
Tøttrup L, Diaz-Valencia G, Kamavuako EN, Jensen W. Modulation of SI and ACC response to noxious and non-noxious electrical stimuli after the spared nerve injury model of neuropathic pain. Eur J Pain 2020; 25:612-623. [PMID: 33166003 DOI: 10.1002/ejp.1697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/14/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND The current knowledge on the role of SI and ACC in acute pain processing and how these contribute to the development of chronic pain is limited. Our objective was to investigate differences in and modulation of intracortical responses from SI and ACC in response to different intensities of peripheral presumed noxious and non-noxious stimuli in the acute time frame of a peripheral nerve injury in rats. METHODS We applied non-noxious and noxious electrical stimulation pulses through a cuff electrode placed around the sciatic nerve and measured the cortical responses (six electrodes in each cortical area) before and after the spared nerve injury model. RESULTS We found that the peak response correlated with the stimulation intensity and that SI and ACC differed in both amplitude and latency of cortical response. The cortical response to both noxious and non-noxious stimulation showed a trend towards faster processing of non-noxious stimuli in ACC and increased cortical processing of non-noxious stimuli in SI after SNI. CONCLUSIONS We found different responses in SI and ACC to different intensity electrical stimulations based on two features and changes in these features following peripheral nerve injury. We believe that these features may be able to assist to track cortical changes during the chronification of pain in future animal studies. SIGNIFICANCE This study showed distinct cortical processing of noxious and non-noxious peripheral stimuli in SI and ACC. The processing latency in ACC and accumulated spiking activity in SI appeared to be modulated by peripheral nerve injury, which elaborated on the function of these two areas in the processing of nociception.
Collapse
Affiliation(s)
- Lea Tøttrup
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Gabriela Diaz-Valencia
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Ernest N Kamavuako
- Department of Engineering, King's College London, London, UK.,Faculté de Médecine, Université de Kindu, Maniema, D.R Congo
| | - Winnie Jensen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
39
|
García-Rosales F, López-Jury L, González-Palomares E, Cabral-Calderín Y, Kössl M, Hechavarria JC. Phase-amplitude coupling profiles differ in frontal and auditory cortices of bats. Eur J Neurosci 2020; 55:3483-3501. [PMID: 32979875 DOI: 10.1111/ejn.14986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/29/2022]
Abstract
Neural oscillations are at the core of important computations in the mammalian brain. Interactions between oscillatory activities in different frequency bands, such as delta (1-4 Hz), theta (4-8 Hz) or gamma (>30 Hz), are a powerful mechanism for binding fundamentally distinct spatiotemporal scales of neural processing. Phase-amplitude coupling (PAC) is one such plausible and well-described interaction, but much is yet to be uncovered regarding how PAC dynamics contribute to sensory representations. In particular, although PAC appears to have a major role in audition, the characteristics of coupling profiles in sensory and integration (i.e. frontal) cortical areas remain obscure. Here, we address this question by studying PAC dynamics in the frontal-auditory field (FAF; an auditory area in the bat frontal cortex) and the auditory cortex (AC) of the bat Carollia perspicillata. By means of simultaneous electrophysiological recordings in frontal and auditory cortices examining local-field potentials (LFPs), we show that the amplitude of gamma-band activity couples with the phase of low-frequency LFPs in both structures. Our results demonstrate that the coupling in FAF occurs most prominently in delta/high-gamma frequencies (1-4/75-100 Hz), whereas in the AC the coupling is strongest in the delta-theta/low-gamma (2-8/25-55 Hz) range. We argue that distinct PAC profiles may represent different mechanisms for neuronal processing in frontal and auditory cortices, and might complement oscillatory interactions for sensory processing in the frontal-auditory cortex network.
Collapse
Affiliation(s)
| | - Luciana López-Jury
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M, Germany
| | | | - Yuranny Cabral-Calderín
- Research Group Neural and Environmental Rhythms, Max Planck Institute for Empirical Aesthetics, Frankfurt/M, Germany
| | - Manfred Kössl
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M, Germany
| | - Julio C Hechavarria
- Institut für Zellbiologie und Neurowissenschaft, Goethe-Universität, Frankfurt/M, Germany
| |
Collapse
|
40
|
Abstract
Neural oscillations play an important role in the integration and segregation of brain regions that are important for brain functions, including pain. Disturbances in oscillatory activity are associated with several disease states, including chronic pain. Studies of neural oscillations related to pain have identified several functional bands, especially alpha, beta, and gamma bands, implicated in nociceptive processing. In this review, we introduce several properties of neural oscillations that are important to understand the role of brain oscillations in nociceptive processing. We also discuss the role of neural oscillations in the maintenance of efficient communication in the brain. Finally, we discuss the role of neural oscillations in healthy and chronic pain nociceptive processing. These data and concepts illustrate the key role of regional and interregional neural oscillations in nociceptive processing underlying acute and chronic pains.
Collapse
Affiliation(s)
- Junseok A. Kim
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karen D. Davis
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Elina KC, Moon HC, Islam J, Kim HK, Park YS. The Effect of Optogenetic Inhibition of the Anterior Cingulate Cortex in Neuropathic Pain Following Sciatic Nerve Injury. J Mol Neurosci 2020; 71:638-650. [PMID: 32808249 DOI: 10.1007/s12031-020-01685-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022]
Abstract
Cortical disinhibition is the underlying pathological alteration contributing to neuropathic pain associated with peripheral nerve injury. Nerve injury resulting in disinhibition of the anterior cingulate cortex has been reported. However, the effect of optogenetic inhibition of the anterior cingulate cortex (ACC) on the sensory component of nerve injury-induced neuropathic pain has not been well studied. To investigate the feasibility of optogenetic ACC modulation, we injected an optogenetic virus or a null virus into the ACC of a nerve injury-induced neuropathic pain model. The unilateral ACC was modulated, and the optogenetic effect was measured by mechanical and thermal sensitivity tests. The assessment was performed in "pre-light off," "stimulation-yellow light on," and "post-light off" states. Optogenetic inhibition of the ACC in injury models revealed improved mechanical and thermal latencies with profound pain-relieving effects against nerve injury-induced neuropathic pain. The sensory thalamic discharge in electrophysiological in vivo recordings was also altered during laser stimulation. This finding indicates that hyperactivity of the ACC in nerve injury increases output to the spinothalamic tract through direct or indirect pathways. The direct photoinhibition of ACC neurons could play a vital role in restoring equilibrium and provide novel insight into techniques that can assuage peripheral nerve injury-induced neuropathic pain.
Collapse
Affiliation(s)
- K C Elina
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Hyeong Cheol Moon
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, South Korea
- Department of Neurosurgery, Chungbuk National University Hospital, 776, 1 Sunhwanro, Seowon-gu, Cheongju-Si, Chungbuk, 28644, South Korea
| | - Jaisan Islam
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, South Korea
| | - Hyong Kyu Kim
- Department of Medical and Microbiology, College of Medicine, Cheongju, South Korea
| | - Young Seok Park
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, South Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, 776, 1 Sunhwanro, Seowon-gu, Cheongju-Si, Chungbuk, 28644, South Korea.
| |
Collapse
|
42
|
Mirasheh MH, Zohrehvand MR, Kazemi R, Bahari Z, Bahrami F, Jangravi Z, Graily M. The Analgesic and Anxiolytic Activity of Resveratrol Mediated by Different Sub-Types of α-Adrenoceptors of Anterior Cingulate Cortex Following Neuropathic Pain in Male Rats. ACTA ACUST UNITED AC 2020. [DOI: 10.30699/jambs.28.129.183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
43
|
Song Y, Kemprecos H, Wang J, Chen Z. A Predictive Coding Model for Evoked and Spontaneous Pain Perception. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2964-2967. [PMID: 31946512 DOI: 10.1109/embc.2019.8857298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pain is a complex multidimensional experience, and pain perception is still incompletely understood. Here we combine animal behavior, electrophysiology, and computer modeling to dissect mechanisms of evoked and spontaneous pain. We record the local field potentials (LFPs) from the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC) of freely behaving rats during pain episodes, and develop a predictive coding model to investigate the temporal coordination of oscillatory activity between the S1 and ACC. Our preliminary results from computational simulations support the experimental findings and provide new predictions.
Collapse
|
44
|
Guo X, Zhang Q, Singh A, Wang J, Chen ZS. Granger causality analysis of rat cortical functional connectivity in pain. J Neural Eng 2020; 17:016050. [PMID: 31945754 DOI: 10.1088/1741-2552/ab6cba] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The primary somatosensory cortex (S1) and the anterior cingulate cortex (ACC) are two of the most important cortical brain regions encoding the sensory-discriminative and affective-emotional aspects of pain, respectively. However, the functional connectivity of these two areas during pain processing remains unclear. Developing methods to dissect the functional connectivity and directed information flow between cortical pain circuits can reveal insight into neural mechanisms of pain perception. APPROACH We recorded multichannel local field potentials (LFPs) from the S1 and ACC in freely behaving rats under various conditions of pain stimulus (thermal versus mechanical) and pain state (naive versus chronic pain). We applied Granger causality (GC) analysis to the LFP recordings and inferred frequency-dependent GC statistics between the S1 and ACC. MAIN RESULTS We found an increased information flow during noxious pain stimulus presentation in both S1[Formula: see text]ACC and ACC[Formula: see text]S1 directions, especially at theta and gamma frequency bands. Similar results were found for thermal and mechanical pain stimuli. The chronic pain state shares common observations, except for further elevated GC measures especially in the gamma band. Furthermore, time-varying GC analysis revealed a negative correlation between the direction-specific and frequency-dependent GC and animal's paw withdrawal latency. In addition, we used computer simulations to investigate the impact of model mismatch, noise, missing variables, and common input on the conditional GC estimate. We also compared the GC results with the transfer entropy (TE) estimates. SIGNIFICANCE Our results reveal functional connectivity and directed information flow between the S1 and ACC during various pain conditions. The dynamic GC analysis support the hypothesis of cortico-cortical information loop in pain perception, consistent with the computational predictive coding paradigm.
Collapse
Affiliation(s)
- Xinling Guo
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. Department of Psychiatry, New York University School of Medicine, New York, NY 10016, United States of America
| | | | | | | | | |
Collapse
|
45
|
Quindlen-Hotek JC, Kent AR, De Anda P, Kartha S, Benison AM, Winkelstein BA. Changes in Neuronal Activity in the Anterior Cingulate Cortex and Primary Somatosensory Cortex With Nonlinear Burst and Tonic Spinal Cord Stimulation. Neuromodulation 2020; 23:594-604. [PMID: 32027444 DOI: 10.1111/ner.13116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/20/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Although nonlinear burst and tonic SCS are believed to treat neuropathic pain via distinct pain pathways, the effectiveness of these modalities on brain activity in vivo has not been investigated. This study compared neuronal firing patterns in the brain after nonlinear burst and tonic SCS in a rat model of painful radiculopathy. METHODS Neuronal activity was recorded in the ACC or S1 before and after nonlinear burst or tonic SCS on day 7 following painful cervical nerve root compression (NRC) or sham surgery. The amplitude of nonlinear burst SCS was set at 60% and 90% motor threshold to investigate the effect of lower amplitude SCS on brain activity. Neuronal activity was recorded during and immediately following light brush and noxious pinch of the paw. Change in neuron firing was measured as the percent change in spikes post-SCS relative to pre-SCS baseline. RESULTS ACC activity decreases during brush after 60% nonlinear burst compared to tonic (p < 0.05) after NRC and compared to 90% nonlinear burst (p < 0.04) and pre-SCS baseline (p < 0.03) after sham. ACC neuron activity decreases (p < 0.01) during pinch after 60% and 90% nonlinear burst compared to tonic for NRC. The 60% of nonlinear burst decreases (p < 0.02) ACC firing during pinch in both groups compared to baseline. In NRC S1 neurons, tonic SCS decreases (p < 0.01) firing from baseline during light brush; 60% nonlinear burst decreases (p < 0.01) firing from baseline during brush and pinch. CONCLUSIONS Nonlinear burst SCS reduces firing in the ACC from a painful stimulus; a lower amplitude nonlinear burst appears to have the greatest effect. Tonic and nonlinear burst SCS may have comparable effects in S1.
Collapse
Affiliation(s)
| | | | - Patrisia De Anda
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Sonia Kartha
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Beth A Winkelstein
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|