1
|
El Din DMA, Moenkemoeller L, Loeffler A, Habibollahi F, Schenkman J, Mitra A, van der Molen T, Ding L, Laird J, Schenke M, Johnson EC, Kagan BJ, Hartung T, Smirnova L. Human Neural Organoid Microphysiological Systems Show the Building Blocks Necessary for Basic Learning and Memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613333. [PMID: 39345518 PMCID: PMC11429697 DOI: 10.1101/2024.09.17.613333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Brain Microphysiological Systems including neural organoids derived from human induced pluripotent stem cells offer a unique lens to study the intricate workings of the human brain. This paper investigates the foundational elements of learning and memory in neural organoids, also known as Organoid Intelligence by quantifying immediate early gene expression, synaptic plasticity, neuronal network dynamics, and criticality to demonstrate the utility of these organoids in basic science research. Neural organoids showed synapse formation, glutamatergic and GABAergic receptor expression, immediate early gene expression basally and evoked, functional connectivity, criticality, and synaptic plasticity in response to theta-burst stimulation. In addition, pharmacological interventions on GABAergic and glutamatergic receptors, and input specific theta-burst stimulation further shed light on the capacity of neural organoids to mirror synaptic modulation and short-term potentiation, demonstrating their potential as tools for studying neurophysiological and neurological processes and informing therapeutic strategies for diseases.
Collapse
Affiliation(s)
- Dowlette-Mary Alam El Din
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore MD
| | - Leah Moenkemoeller
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD
| | | | | | - Jack Schenkman
- Department of Electrical and Computer Engineering, Princeton University, Princeton NJ
| | - Amitav Mitra
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore MD
| | - Tjitse van der Molen
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA
| | - Lixuan Ding
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD
| | - Jason Laird
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore MD
| | - Maren Schenke
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore MD
| | - Erik C Johnson
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Brett J Kagan
- Cortical Labs Pty Ltd; Melbourne, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore MD
- CAAT-Europe, University of Konstanz, Konstanz, Germany
- Doerenkamp-Zbinden Chair for Evidence-based Toxicology, Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore MD
| | - Lena Smirnova
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Baltimore, MD
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore MD
| |
Collapse
|
2
|
Morales Pantoja IE, Ding L, Leite PEC, Marques SA, Romero JC, Alam El Din DM, Zack DJ, Chamling X, Smirnova L. A Novel Approach to Increase Glial Cell Populations in Brain Microphysiological Systems. Adv Biol (Weinh) 2024; 8:e2300198. [PMID: 38062868 PMCID: PMC11156795 DOI: 10.1002/adbi.202300198] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/14/2023] [Indexed: 12/19/2023]
Abstract
Brain microphysiological systems (bMPS) recapitulate human brain cellular architecture and functionality more closely than traditional monolayer cultures and have become increasingly relevant for the study of neurological function in health and disease. Existing 3D brain models vary in reflecting the relative populations of different cell types present in the human brain. Most models consist mainly of neurons, while glial cells represent a smaller portion of the cell populations. Here, by means of a chemically defined glial-enriched medium (GEM), an improved method to expand the population of astrocytes and oligodendrocytes without compromising neuronal differentiation in bMPS, is presented. An important finding is that astrocytes also change in morphology when cultured in GEM, more closely recapitulating primary culture astrocytes. GEM bMPS are electro-chemically active and show different patterns of calcium staining and flux. Synaptic vesicles and terminals observed by electron microscopy are also present. No significant changes in neuronal differentiation are observed by gene expression, however, GEM enhanced neurite outgrowth and cell migration, and differentially modulated neuronal maturation in two different cell lines. These results have the potential to significantly improve functionality of bMPS for the study of neurological diseases and drug discovery, contributing to the unmet need for safe human models.
Collapse
Affiliation(s)
- Itzy E Morales Pantoja
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Lixuan Ding
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Paulo E C Leite
- Clinical Research Unit of the Antonio Pedro Hospital, Fluminense Federal University, Niteroi, 24033-900, Brazil
| | - Suelen A Marques
- Laboratory of Neural Regeneration and Function, Neurobiology Department, Biology Institute, Fluminense Federal University, Niteroi, 24210-201, Brazil
| | - July Carolina Romero
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Dowlette-Mary Alam El Din
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Donald J Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Xitiz Chamling
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Lena Smirnova
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health Johns Hopkins University, Baltimore, MD, 21205, USA
| |
Collapse
|
3
|
Smirnova L, Hartung T. The Promise and Potential of Brain Organoids. Adv Healthc Mater 2024; 13:e2302745. [PMID: 38252094 DOI: 10.1002/adhm.202302745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/22/2023] [Indexed: 01/23/2024]
Abstract
Brain organoids are 3D in vitro culture systems derived from human pluripotent stem cells that self-organize to model features of the (developing) human brain. This review examines the techniques behind organoid generation, their current and potential applications, and future directions for the field. Brain organoids possess complex architecture containing various neural cell types, synapses, and myelination. They have been utilized for toxicology testing, disease modeling, infection studies, personalized medicine, and gene-environment interaction studies. An emerging concept termed Organoid Intelligence (OI) combines organoids with artificial intelligence systems to generate learning and memory, with the goals of modeling cognition and enabling biological computing applications. Brain organoids allow neuroscience studies not previously achievable with traditional techniques, and have the potential to transform disease modeling, drug development, and the understanding of human brain development and disorders. The aspirational vision of OI parallels the origins of artificial intelligence, and efforts are underway to map a roadmap toward its realization. In summary, brain organoids constitute a disruptive technology that is rapidly advancing and gaining traction across multiple disciplines.
Collapse
Affiliation(s)
- Lena Smirnova
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, 615 N Wolfe St, Baltimore, MD, 21205, USA
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, 615 N Wolfe St, Baltimore, MD, 21205, USA
- CAAT-Europe, University of Konstanz, Universitätsstr. 10, 78464, Konstanz, BW, Germany
| |
Collapse
|
4
|
Fagiani F, Pedrini E, Taverna S, Brambilla E, Murtaj V, Podini P, Ruffini F, Butti E, Braccia C, Andolfo A, Magliozzi R, Smirnova L, Kuhlmann T, Quattrini A, Calabresi PA, Reich DS, Martino G, Panina-Bordignon P, Absinta M. Glia-enriched stem-cell 3D model of the human brain mimics the glial-immune neurodegenerative phenotypes of multiple sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.597748. [PMID: 39372788 PMCID: PMC11451585 DOI: 10.1101/2024.06.20.597748] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The role of central nervous system (CNS) glia in sustaining self-autonomous inflammation and driving clinical progression in multiple sclerosis (MS) is gaining scientific interest. We applied a single transcription factor ( SOX10 )-based protocol to accelerate oligodendrocyte differentiation from hiPSC-derived neural precursor cells, generating self-organizing forebrain organoids. These organoids include neurons, astrocytes, oligodendroglia, and hiPSC-derived microglia to achieve immunocompetence. Over 8 weeks, organoids reproducibly generated mature CNS cell types, exhibiting single-cell transcriptional profiles similar to the adult human brain. Exposed to inflamed cerebrospinal fluid (CSF) from MS patients, organoids properly mimic macroglia-microglia neuro-degenerative phenotypes and intercellular communication seen in chronic active MS. Oligodendrocyte vulnerability emerged by day 6 post-MS-CSF exposure, with nearly 50% reduction. Temporally-resolved organoid data support and expand on the role of soluble CSF mediators in sustaining downstream events leading to oligodendrocyte death and inflammatory neurodegeneration. Such findings support implementing this organoid model for drug screening to halt inflammatory neurodegeneration.
Collapse
|
5
|
Vardhan S, Jordan T, Sakiyama-Elbert S. Stem cell engineering approaches for investigating glial cues in central nervous system disorders. Curr Opin Biotechnol 2024; 87:103131. [PMID: 38599012 PMCID: PMC11351366 DOI: 10.1016/j.copbio.2024.103131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/04/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
Glial cells are important in maintaining homeostasis for neurons in the central nervous system (CNS). During CNS disease or after injury, glia react to altered microenvironments and often acquire altered functions that contribute to disease pathology. A major focus for research is utilizing stem cell (SC)-derived glia as a potential renewable source for cell replacement to restore function, including neuronal support, and as a model for disease states to identify therapeutic targets. In this review, we focus on SC differentiation protocols for deriving three types of glial cells, astrocytes, oligodendrocytes, and microglia. These SC-derived glia can be used to identify critical cues that contribute to CNS disease progression and aid in investigation of therapeutic targets.
Collapse
Affiliation(s)
- Sangamithra Vardhan
- Department of Bioengineering, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Tyler Jordan
- Department of Bioengineering, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Shelly Sakiyama-Elbert
- Department of Bioengineering, University of Washington, 850 Republican Street, Seattle, WA 98109, USA.
| |
Collapse
|
6
|
Zeldich E, Rajkumar S. Identity and Maturity of iPSC-Derived Oligodendrocytes in 2D and Organoid Systems. Cells 2024; 13:674. [PMID: 38667289 PMCID: PMC11049552 DOI: 10.3390/cells13080674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Oligodendrocytes originating in the brain and spinal cord as well as in the ventral and dorsal domains of the neural tube are transcriptomically and functionally distinct. These distinctions are also reflected in the ultrastructure of the produced myelin, and the susceptibility to myelin-related disorders, which highlights the significance of the choice of patterning protocols in the differentiation of induced pluripotent stem cells (iPSCs) into oligodendrocytes. Thus, our first goal was to survey the different approaches applied to the generation of iPSC-derived oligodendrocytes in 2D culture and in organoids, as well as reflect on how these approaches pertain to the regional and spatial fate of the generated oligodendrocyte progenitors and myelinating oligodendrocytes. This knowledge is increasingly important to disease modeling and future therapeutic strategies. Our second goal was to recap the recent advances in the development of oligodendrocyte-enriched organoids, as we explore their relevance to a regional specification alongside their duration, complexity, and maturation stages of oligodendrocytes and myelin biology. Finally, we discuss the shortcomings of the existing protocols and potential future explorations.
Collapse
Affiliation(s)
- Ella Zeldich
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedesian School of Medicine, Boston, MA 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA 02115, USA
- Neurophotonics Center, Boston University, Boston, MA 02115, USA
| | - Sandeep Rajkumar
- Department of Anatomy & Neurobiology, Boston University Chobanian and Avedesian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
7
|
Smirnova L, Modafferi S, Schlett C, Osborne LM, Payne JL, Sabunciyan S. Blood extracellular vesicles carrying brain-specific mRNAs are potential biomarkers for detecting gene expression changes in the female brain. Mol Psychiatry 2024; 29:962-973. [PMID: 38212371 DOI: 10.1038/s41380-023-02384-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024]
Abstract
The absence of non-invasive tests that can monitor the status of the brain is a major obstacle for psychiatric care. In order to address this need, we assessed the feasibility of using tissue-specific gene expression to determine the origin of extracellular vesicle (EV) mRNAs in peripheral blood. Using the placenta as a model, we discovered that 26 messenger RNAs that are specifically expressed in the placenta are present in EVs circulating in maternal blood. Twenty-three of these transcripts were either exclusively or highly expressed in maternal blood during pregnancy only and not in the postpartum period, verifying the feasibility of using tissue-specific gene expression to infer the tissue of origin for EV mRNAs. Using the same bioinformatic approach, which provides better specificity than isolating L1 cell-adhesion molecule containing EVs, we discovered that 181 mRNAs that are specifically expressed in the female brain are also present in EVs circulating in maternal blood. Gene set enrichment analysis revealed that these transcripts, which are involved in synaptic functions and myelination, are enriched for genes implicated in mood disorders, schizophrenia, and substance use disorders. The EV mRNA levels of 13 of these female brain-specific transcripts are associated with postpartum depression (adjusted p-vals = 3 × 10-5 to 0.08), raising the possibility that they can be used to infer the state of the brain. In order to determine the extent to which EV mRNAs reflect transcription in the brain, we compared mRNAs isolated from cells and EVs in an iPSC-derived brain microphysiological system differentiated for 3 and 9 weeks. We discovered that, although cellular and extracellular mRNA levels are not identical, they do correlate, and it is possible to extrapolate cellular RNA expression changes in the brain via EV mRNA levels. Our findings bring EV mRNAs to the forefront of peripheral biomarker development efforts in psychiatric diseases by demonstrating the feasibility of inferring transcriptional changes in the brain via blood EV mRNA levels.
Collapse
Affiliation(s)
- Lena Smirnova
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Sergio Modafferi
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Charlotte Schlett
- Center for Alternatives to Animal Testing, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Lauren M Osborne
- Departments of Obstetrics & Gynecology and of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | - Jennifer L Payne
- Department of Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA
| | - Sarven Sabunciyan
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Pantoja IEM, Ding L, Leite PEC, Marques SA, Romero JC, Din DMAE, Zack DJ, Chamling X, Smirnova L. A novel approach to increase glial cell populations in brain microphysiological systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557775. [PMID: 37745321 PMCID: PMC10515937 DOI: 10.1101/2023.09.14.557775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Brain microphysiological systems (bMPS), which recapitulate human brain cellular architecture and functionality more closely than traditional monolayer cultures, have become a practical, non-invasive, and increasingly relevant platform for the study of neurological function in health and disease. These models include 3D spheroids and organoids as well as organ-on-chip models. Currently, however, existing 3D brain models vary in reflecting the relative populations of the different cell types present in the human brain. Most of the models consist mainly of neurons, while glial cells represent a smaller portion of the cell populations. Here, by means of a chemically defined glial-enriched medium (GEM), we present an improved method to expand the population of astrocytes and oligodendrocytes without compromising neuronal differentiation in bMPS. An important finding is that astrocytes not only increased in number but also changed in morphology when cultured in GEM, more closely recapitulating primary culture astrocytes. We demonstrate oligodendrocyte and astrocyte enrichment in GEM bMPS using a variety of complementary methods. We found that GEM bMPS are electro-chemically active and showed different patterns of Ca +2 staining and flux. Synaptic vesicles and terminals observed by electron microscopy were also present. No significant changes in neuronal differentiation were observed by gene expression, however, GEM enhanced neurite outgrowth and cell migration, and differentially modulated neuronal maturation in two different iPSC lines. Our results have the potential to significantly improve in vivo-like functionality of bMPS for the study of neurological diseases and drug discovery, contributing to the unmet need for safe human models.
Collapse
|
9
|
Barreras P, Pamies D, Hartung T, Pardo CA. Human brain microphysiological systems in the study of neuroinfectious disorders. Exp Neurol 2023; 365:114409. [PMID: 37061175 PMCID: PMC10205672 DOI: 10.1016/j.expneurol.2023.114409] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Microphysiological systems (MPS) are 2D or 3D multicellular constructs able to mimic tissue microenvironments. The latest models encompass a range of techniques, including co-culturing of various cell types, utilization of scaffolds and extracellular matrix materials, perfusion systems, 3D culture methods, 3D bioprinting, organ-on-a-chip technology, and examination of tissue structures. Several human brain 3D cultures or brain MPS (BMPS) have emerged in the last decade. These organoids or spheroids are 3D culture systems derived from induced pluripotent cells or embryonic stem cells that contain neuronal and glial populations and recapitulate structural and physiological aspects of the human brain. BMPS have been introduced recently in the study and modeling of neuroinfectious diseases and have proven to be useful in establishing neurotropism of viral infections, cell-pathogen interactions needed for infection, assessing cytopathological effects, genomic and proteomic profiles, and screening therapeutic compounds. Here we review the different methodologies of organoids used in neuroinfectious diseases including spheroids, guided and unguided protocols as well as microglia and blood-brain barrier containing models, their specific applications, and limitations. The review provides an overview of the models existing for specific infections including Zika, Dengue, JC virus, Japanese encephalitis, measles, herpes, SARS-CoV2, and influenza viruses among others, and provide useful concepts in the modeling of disease and antiviral agent screening.
Collapse
Affiliation(s)
- Paula Barreras
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - David Pamies
- Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland; Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA; CAAT-Europe, University of Konstanz, Germany
| | - Carlos A Pardo
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
10
|
Morales Pantoja IE, Smirnova L, Muotri AR, Wahlin KJ, Kahn J, Boyd JL, Gracias DH, Harris TD, Cohen-Karni T, Caffo BS, Szalay AS, Han F, Zack DJ, Etienne-Cummings R, Akwaboah A, Romero JC, Alam El Din DM, Plotkin JD, Paulhamus BL, Johnson EC, Gilbert F, Curley JL, Cappiello B, Schwamborn JC, Hill EJ, Roach P, Tornero D, Krall C, Parri R, Sillé F, Levchenko A, Jabbour RE, Kagan BJ, Berlinicke CA, Huang Q, Maertens A, Herrmann K, Tsaioun K, Dastgheyb R, Habela CW, Vogelstein JT, Hartung T. First Organoid Intelligence (OI) workshop to form an OI community. Front Artif Intell 2023; 6:1116870. [PMID: 36925616 PMCID: PMC10013972 DOI: 10.3389/frai.2023.1116870] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023] Open
Abstract
The brain is arguably the most powerful computation system known. It is extremely efficient in processing large amounts of information and can discern signals from noise, adapt, and filter faulty information all while running on only 20 watts of power. The human brain's processing efficiency, progressive learning, and plasticity are unmatched by any computer system. Recent advances in stem cell technology have elevated the field of cell culture to higher levels of complexity, such as the development of three-dimensional (3D) brain organoids that recapitulate human brain functionality better than traditional monolayer cell systems. Organoid Intelligence (OI) aims to harness the innate biological capabilities of brain organoids for biocomputing and synthetic intelligence by interfacing them with computer technology. With the latest strides in stem cell technology, bioengineering, and machine learning, we can explore the ability of brain organoids to compute, and store given information (input), execute a task (output), and study how this affects the structural and functional connections in the organoids themselves. Furthermore, understanding how learning generates and changes patterns of connectivity in organoids can shed light on the early stages of cognition in the human brain. Investigating and understanding these concepts is an enormous, multidisciplinary endeavor that necessitates the engagement of both the scientific community and the public. Thus, on Feb 22-24 of 2022, the Johns Hopkins University held the first Organoid Intelligence Workshop to form an OI Community and to lay out the groundwork for the establishment of OI as a new scientific discipline. The potential of OI to revolutionize computing, neurological research, and drug development was discussed, along with a vision and roadmap for its development over the coming decade.
Collapse
Affiliation(s)
- Itzy E. Morales Pantoja
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Lena Smirnova
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Alysson R. Muotri
- Department of Pediatrics and Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, San Diego, CA, United States
- Center for Academic Research and Training in Anthropogeny (CARTA), Archealization Center (ArchC), Kavli Institute for Brain and Mind, University of California, San Diego, San Diego, CA, United States
| | - Karl J. Wahlin
- Viterbi Family Department of Ophthalmology & the Shiley Eye Institute, UC San Diego, La Jolla, CA, United States
| | - Jeffrey Kahn
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD, United States
| | - J. Lomax Boyd
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, MD, United States
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, United States
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, United States
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, United States
- Center for Microphysiological Systems (MPS), Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Timothy D. Harris
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States
| | - Tzahi Cohen-Karni
- Departments of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Brian S. Caffo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Alexander S. Szalay
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Physics and Astronomy, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, United States
- Mark Foundation Center for Advanced Genomics and Imaging, Johns Hopkins University, Baltimore, MD, United States
| | - Fang Han
- Department of Statistics and Economics, University of Washington, Seattle, WA, United States
| | - Donald J. Zack
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ralph Etienne-Cummings
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Akwasi Akwaboah
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - July Carolina Romero
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Dowlette-Mary Alam El Din
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Jesse D. Plotkin
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Barton L. Paulhamus
- Department of Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Erik C. Johnson
- Department of Research and Exploratory Development, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, United States
| | - Frederic Gilbert
- Philosophy Program, School of Humanities, University of Tasmania, Hobart, TAS, Australia
| | | | | | - Jens C. Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Eric J. Hill
- School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Paul Roach
- Department of Chemistry, School of Science, Loughborough University, Loughborough, Leicestershire, United Kingdom
| | - Daniel Tornero
- Department of Biomedical Sciences, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Clinic Hospital August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Caroline Krall
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, United States
| | - Rheinallt Parri
- Aston Pharmacy School, College of Health and Life Sciences, Aston University, Birmingham, United Kingdom
| | - Fenna Sillé
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale Systems Biology Institute, Yale University, New Haven, CT, United States
| | - Rabih E. Jabbour
- Department of Bioscience and Biotechnology, University of Maryland Global Campus, Rockville, MD, United States
| | | | - Cynthia A. Berlinicke
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Qi Huang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Alexandra Maertens
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Kathrin Herrmann
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Katya Tsaioun
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Raha Dastgheyb
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Christa Whelan Habela
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Joshua T. Vogelstein
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health and Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
- Center for Alternatives to Animal Testing (CAAT)-Europe, University of Konstanz, Konstanz, Germany
| |
Collapse
|