1
|
Weise K, Makaroff SN, Numssen O, Bikson M, Knösche TR. Statistical method accounts for microscopic electric field distortions around neurons when simulating activation thresholds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.619982. [PMID: 39484517 PMCID: PMC11527135 DOI: 10.1101/2024.10.25.619982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Notwithstanding advances in computational models of neuromodulation, there are mismatches between simulated and experimental activation thresholds. Transcranial Magnetic Stimulation (TMS) of the primary motor cortex generates motor evoked potentials (MEPs). At the threshold of MEP generation, whole-head models predict macroscopic (at millimeter scale) electric fields (50-70 V/m) which are considerably below conventionally simulated cortical neuron thresholds (200-300 V/m). We hypothesize that this apparent contradiction is in part a consequence of electrical field warping by brain microstructure. Classical neuronal models ignore the physical presence of neighboring neurons and microstructure and assume that the macroscopic field directly acts on the neurons. In previous work, we performed advanced numerical calculations considering realistic microscopic compartments (e.g., cells, blood vessels), resulting in locally inhomogeneous (micrometer scale) electric field and altered neuronal activation thresholds. Here we combine detailed neural threshold simulations under homogeneous field assumptions with microscopic field calculations, leveraging a novel statistical approach. We show that, provided brain-region specific microstructure metrics, a single statistically derived scaling factor between microscopic and macroscopic electric fields can be applied in predicting neuronal thresholds. For the cortical sample considered, the statistical methods match TMS experimental thresholds. Our approach can be broadly applied to neuromodulation models, where fully coupled microstructure scale simulations may not be practical.
Collapse
Affiliation(s)
- Konstantin Weise
- Leipzig University of Applied Sciences, Leipzig, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sergey N. Makaroff
- ECE Department, Math Department, Worcester Polytechnic Institute, Worcester MA USA
- Massachusetts General Hospital, Boston MA USA
| | - Ole Numssen
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Thomas R. Knösche
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Technical University of Ilmenau, Germany
| |
Collapse
|
2
|
Youssef L, Harroum N, Francisco BA, Johnson L, Arvisais D, Pageaux B, Romain AJ, Hayward KS, Neva JL. Neurophysiological effects of acute aerobic exercise in young adults: a systematic review and meta-analysis. Neurosci Biobehav Rev 2024; 164:105811. [PMID: 39025386 DOI: 10.1016/j.neubiorev.2024.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Evidence continues to accumulate that acute aerobic exercise (AAE) impacts neurophysiological excitability as measured by transcranial magnetic stimulation (TMS). Yet, uncertainty exists about which TMS measures are modulated after AAE in young adults. The influence of AAE intensity and duration of effects are also uncertain. This pre-registered meta-analysis (CRD42017065673) addressed these uncertainties by synthesizing data from 23 studies (including 474 participants) published until February 2024. Meta-analysis was run using a random-effects model and Hedge's g used as effect size. Our results demonstrated a decrease in short-interval intracortical inhibition (SICI) following AAE (g = 0.27; 95 % CI [0.16-0.38]; p <.0001), particularly for moderate (g = 0.18; 95 % CI [0.05-0.31]; p <.01) and high (g = 0.49; 95 % CI [0.27-0.71]; p <.0001) AAE intensities. These effects remained for 30 minutes after AAE. Additionally, increased corticospinal excitability was only observed for high intensity AAE (g = 0.28; 95 % CI, [0.07-0.48]; p <.01). Our results suggest potential mechanisms for inducing a more susceptible neuroplastic environment following AAE.
Collapse
Affiliation(s)
- Layale Youssef
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada; Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montreal, QC, Canada.
| | - Nesrine Harroum
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada; Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montreal, QC, Canada
| | - Beatrice A Francisco
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Liam Johnson
- School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Denis Arvisais
- Direction des bibliothèques, Bibliothèques des sciences de la santé, Université de Montréal, Montréal, Québec, Canada
| | - Benjamin Pageaux
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada; Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montreal, QC, Canada
| | - Ahmed Jérôme Romain
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada; Research Center of the University Institute of Mental Health of Montreal, Montreal, QC, Canada
| | - Kathryn S Hayward
- Departments of Physiotherapy and Medicine (RMH), University of Melbourne, Parkville, VIC, Australia
| | - Jason L Neva
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada; Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montreal, QC, Canada
| |
Collapse
|
3
|
Khatri UU, Pulliam K, Manesiya M, Cortez MV, Millán JDR, Hussain SJ. Personalized whole-brain activity patterns predict human corticospinal tract activation in real-time. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.607985. [PMID: 39229238 PMCID: PMC11370398 DOI: 10.1101/2024.08.15.607985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) interventions could feasibly treat stroke-related motor impairments, but their effects are highly variable. Brain state-dependent TMS approaches are a promising solution to this problem, but inter-individual variation in lesion location and oscillatory dynamics can make translating them to the poststroke brain challenging. Personalized brain state-dependent approaches specifically designed to address these challenges are therefore needed. METHODS As a first step towards this goal, we tested a novel machine learning-based EEG-TMS system that identifies personalized brain activity patterns reflecting strong and weak corticospinal tract (CST) output (strong and weak CST states) in healthy adults in real-time. Participants completed a single-session study that included the acquisition of a TMS-EEG-EMG training dataset, personalized classifier training, and real-time EEG-informed single pulse TMS during classifier-predicted personalized CST states. RESULTS MEP amplitudes elicited in real-time during personalized strong CST states were significantly larger than those elicited during personalized weak and random CST states. MEP amplitudes elicited in real-time during personalized strong CST states were also significantly less variable than those elicited during personalized weak CST states. Personalized CST states lasted for ~1-2 seconds at a time and ~1 second elapsed between consecutive similar states. Individual participants exhibited unique differences in spectro-spatial EEG patterns between personalized strong and weak CST states. CONCLUSION Our results show for the first time that personalized whole-brain EEG activity patterns predict CST activation in real-time in healthy humans. These findings represent a pivotal step towards using personalized brain state-dependent TMS interventions to promote poststroke CST function.
Collapse
Affiliation(s)
- Uttara U Khatri
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| | - Kristen Pulliam
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| | - Muskan Manesiya
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| | - Melanie Vieyra Cortez
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| | - José del R. Millán
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
- Department of Neurology, The University of Texas at Austin, Austin, TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Sara J Hussain
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
4
|
Duma GM, Cuozzo S, Wilson L, Danieli A, Bonanni P, Pellegrino G. Excitation/Inhibition balance relates to cognitive function and gene expression in temporal lobe epilepsy: a high density EEG assessment with aperiodic exponent. Brain Commun 2024; 6:fcae231. [PMID: 39056027 PMCID: PMC11272395 DOI: 10.1093/braincomms/fcae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/22/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Patients with epilepsy are characterized by a dysregulation of excitation/inhibition balance (E/I). The assessment of E/I may inform clinicians during the diagnosis and therapy management, even though it is rarely performed. An accessible measure of the E/I of the brain represents a clinically relevant feature. Here, we exploited the exponent of the aperiodic component of the power spectrum of the electroencephalography (EEG) signal, as a non-invasive and cost-effective proxy of the E/I balance. We recorded resting-state activity with high-density EEG from 67 patients with temporal lobe epilepsy and 35 controls. We extracted the exponent of the aperiodic fit of the power spectrum from source-reconstructed EEG and tested differences between patients with epilepsy and controls. Spearman's correlation was performed between the exponent and clinical variables (age of onset, epilepsy duration and neuropsychology) and cortical expression of epilepsy-related genes derived from the Allen Human Brain Atlas. Patients with temporal lobe epilepsy showed a significantly larger exponent, corresponding to inhibition-directed E/I balance, in bilateral frontal and temporal regions. Lower E/I in the left entorhinal and bilateral dorsolateral prefrontal cortices corresponded to a lower performance of short-term verbal memory. Limited to patients with temporal lobe epilepsy, we detected a significant correlation between the exponent and the cortical expression of GABRA1, GRIN2A, GABRD, GABRG2, KCNA2 and PDYN genes. EEG aperiodic exponent maps the E/I balance non-invasively in patients with epilepsy and reveals a close relationship between altered E/I patterns, cognition and genetics.
Collapse
Affiliation(s)
- Gian Marco Duma
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Simone Cuozzo
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Luc Wilson
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alberto Danieli
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Paolo Bonanni
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Giovanni Pellegrino
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London N6A5C1, Canada
| |
Collapse
|
5
|
Dharmadasa T, Pavey N, Tu S, Menon P, Huynh W, Mahoney CJ, Timmins HC, Higashihara M, van den Bos M, Shibuya K, Kuwabara S, Grosskreutz J, Kiernan MC, Vucic S. Novel approaches to assessing upper motor neuron dysfunction in motor neuron disease/amyotrophic lateral sclerosis: IFCN handbook chapter. Clin Neurophysiol 2024; 163:68-89. [PMID: 38705104 DOI: 10.1016/j.clinph.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/08/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
Identifying upper motor neuron (UMN) dysfunction is fundamental to the diagnosis and understanding of disease pathogenesis in motor neuron disease (MND). The clinical assessment of UMN dysfunction may be difficult, particularly in the setting of severe muscle weakness. From a physiological perspective, transcranial magnetic stimulation (TMS) techniques provide objective biomarkers of UMN dysfunction in MND and may also be useful to interrogate cortical and network function. Single, paired- and triple pulse TMS techniques have yielded novel diagnostic and prognostic biomarkers in MND, and have provided important pathogenic insights, particularly pertaining to site of disease onset. Cortical hyperexcitability, as heralded by reduced short interval intracortical inhibition (SICI) and increased short interval intracortical facilitation, has been associated with the onset of lower motor neuron degeneration, along with patterns of disease spread, development of specific clinical features such as the split hand phenomenon, and may provide an indication about the rate of disease progression. Additionally, reduction of SICI has emerged as a potential diagnostic aid in MND. The triple stimulation technique (TST) was shown to enhance the diagnostic utility of conventional TMS measures in detecting UMN dysfunction in MND. Separately, sophisticated brain imaging techniques have uncovered novel biomarkers of neurodegeneration that have bene associated with progression. The present review will discuss the utility of TMS and brain neuroimaging derived biomarkers of UMN dysfunction in MND, focusing on recently developed TMS techniques and advanced neuroimaging modalities that interrogate structural and functional integrity of the corticomotoneuronal system, with an emphasis on pathogenic, diagnostic, and prognostic utility.
Collapse
Affiliation(s)
- Thanuja Dharmadasa
- Department of Neurology, The Royal Melbourne Hospital City Campus, Parkville, Victoria, Australia
| | - Nathan Pavey
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - Sicong Tu
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Parvathi Menon
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - William Huynh
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Colin J Mahoney
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Hannah C Timmins
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mana Higashihara
- Department of Neurology, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Mehdi van den Bos
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia
| | - Kazumoto Shibuya
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Satoshi Kuwabara
- Neurology, Chiba University, Graduate School of Medicine, Chiba, Japan
| | - Julian Grosskreutz
- Precision Neurology, Excellence Cluster Precision Medicine in Inflammation, University of Lübeck, University Hospital Schleswig-Holstein Campus, Lübeck, Germany
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney, and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Steve Vucic
- Brain and Nerve Research Center, The University of Sydney, Sydney, Australia.
| |
Collapse
|
6
|
Jacques FH, Apedaile BE, Danis I, Sikati-Foko V, Lecompte M, Fortin J. Motor Evoked Potential-A Pilot Study Looking at Reliability and Clinical Correlations in Multiple Sclerosis. J Clin Neurophysiol 2024; 41:357-364. [PMID: 36943437 PMCID: PMC11060055 DOI: 10.1097/wnp.0000000000001003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
PURPOSE Multiple sclerosis (MS) is a clinically heterogeneous disease. Biomarkers that can assess pathological processes that are unseen with conventional imaging remain an unmet need in MS disease management. Motor evoked potentials (MEPs) could be such a biomarker. To determine and follow longitudinal MEP reliability and correlations with clinical measures in MS patients. METHODS This is a single-center study in alemtuzumab-treated MS patients to evaluate temporal reliability of MEPs, identify MEP minimum detectible differences, and explore correlations with existing clinical scales. Ten MS patients recently treated with alemtuzumab were evaluated every 6 months over 3 years. Clinical evaluations consisted of expanded disability status scale, timed 25-foot walk, 6-minute walk, and nine-hole peg test. MEPs were measured twice, 2 weeks apart, every 6 months. RESULTS Eight patients completed all 3 years of study. The intraclass correlation coefficient for MEP parameters ranged from 0.76 to 0.98. TA latency and amplitude with facilitation significantly and strongly correlated with all clinical measures, whereas the MEP duration modestly correlated. Biceps latency with facilitation significantly and moderately correlated with 9-hole peg test. Longitudinal correlations demonstrated good predictive values for either clinical deterioration or improvement. CONCLUSIONS MEPs have excellent intrapatient and intrarater reliability, and TA MEPs significantly and strongly correlated with expanded disability status scale, 6-minute walk, and timed 25-foot walk, whereas biceps MEPs significantly and moderately correlated with nine-hole peg test. Further studies using larger cohorts of MS patients are indicated. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov, Identifier: NCT02623946.
Collapse
Affiliation(s)
- F H Jacques
- Clinique Neuro-Outaouais, Gatineau, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
7
|
Haggie L, Besier T, McMorland A. Circuits in the motor cortex explain oscillatory responses to transcranial magnetic stimulation. Netw Neurosci 2024; 8:96-118. [PMID: 38562291 PMCID: PMC10861165 DOI: 10.1162/netn_a_00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/11/2023] [Indexed: 04/04/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) is a popular method used to investigate brain function. Stimulation over the motor cortex evokes muscle contractions known as motor evoked potentials (MEPs) and also high-frequency volleys of electrical activity measured in the cervical spinal cord. The physiological mechanisms of these experimentally derived responses remain unclear, but it is thought that the connections between circuits of excitatory and inhibitory neurons play a vital role. Using a spiking neural network model of the motor cortex, we explained the generation of waves of activity, so called 'I-waves', following cortical stimulation. The model reproduces a number of experimentally known responses including direction of TMS, increased inhibition, and changes in strength. Using populations of thousands of neurons in a model of cortical circuitry we showed that the cortex generated transient oscillatory responses without any tuning, and that neuron parameters such as refractory period and delays influenced the pattern and timing of those oscillations. By comparing our network with simpler, previously proposed circuits, we explored the contributions of specific connections and found that recurrent inhibitory connections are vital in producing later waves that significantly impact the production of motor evoked potentials in downstream muscles (Thickbroom, 2011). This model builds on previous work to increase our understanding of how complex circuitry of the cortex is involved in the generation of I-waves.
Collapse
Affiliation(s)
- Lysea Haggie
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Thor Besier
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Angus McMorland
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Wischnewski M, Tran H, Zhao Z, Shirinpour S, Haigh ZJ, Rotteveel J, Perera ND, Alekseichuk I, Zimmermann J, Opitz A. Induced neural phase precession through exogenous electric fields. Nat Commun 2024; 15:1687. [PMID: 38402188 PMCID: PMC10894208 DOI: 10.1038/s41467-024-45898-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024] Open
Abstract
The gradual shifting of preferred neural spiking relative to local field potentials (LFPs), known as phase precession, plays a prominent role in neural coding. Correlations between the phase precession and behavior have been observed throughout various brain regions. As such, phase precession is suggested to be a global neural mechanism that promotes local neuroplasticity. However, causal evidence and neuroplastic mechanisms of phase precession are lacking so far. Here we show a causal link between LFP dynamics and phase precession. In three experiments, we modulated LFPs in humans, a non-human primate, and computational models using alternating current stimulation. We show that continuous stimulation of motor cortex oscillations in humans lead to a gradual phase shift of maximal corticospinal excitability by ~90°. Further, exogenous alternating current stimulation induced phase precession in a subset of entrained neurons (~30%) in the non-human primate. Multiscale modeling of realistic neural circuits suggests that alternating current stimulation-induced phase precession is driven by NMDA-mediated synaptic plasticity. Altogether, the three experiments provide mechanistic and causal evidence for phase precession as a global neocortical process. Alternating current-induced phase precession and consequently synaptic plasticity is crucial for the development of novel therapeutic neuromodulation methods.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Harry Tran
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Zhihe Zhao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Sina Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Zachary J Haigh
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jonna Rotteveel
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Nipun D Perera
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ivan Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Jan Zimmermann
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Alexander Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
9
|
Di Lazzaro V, Ranieri F, Bączyk M, de Carvalho M, Dileone M, Dubbioso R, Fernandes S, Kozak G, Motolese F, Ziemann U. Novel approaches to motoneuron disease/ALS treatment using non-invasive brain and spinal stimulation: IFCN handbook chapter. Clin Neurophysiol 2024; 158:114-136. [PMID: 38218077 DOI: 10.1016/j.clinph.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Accepted: 12/17/2023] [Indexed: 01/15/2024]
Abstract
Non-invasive brain stimulation techniques have been exploited in motor neuron disease (MND) with multifold objectives: to support the diagnosis, to get insights in the pathophysiology of these disorders and, more recently, to slow down disease progression. In this review, we consider how neuromodulation can now be employed to treat MND, with specific attention to amyotrophic lateral sclerosis (ALS), the most common form with upper motoneuron (UMN) involvement, taking into account electrophysiological abnormalities revealed by human and animal studies that can be targeted by neuromodulation techniques. This review article encompasses repetitive transcranial magnetic stimulation methods (including low-frequency, high-frequency, and pattern stimulation paradigms), transcranial direct current stimulation as well as experimental findings with the newer approach of trans-spinal direct current stimulation. We also survey and discuss the trials that have been performed, and future perspectives.
Collapse
Affiliation(s)
- Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy.
| | - Federico Ranieri
- Neurology Unit, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, P.Le L.A. Scuro 10, 37134 Verona, Italy
| | - Marcin Bączyk
- Department of Neurobiology, Poznań University of Physical Education, Królowej Jadwigi Street 27/39, 61-871 Poznań, Poland
| | - Mamede de Carvalho
- Institute of Physiology, Institute of Molecular Medicine-JLA, Egas Moniz Study Centre, Faculty of Medicine, University of Lisbon, Lisbon 1649-028, Portugal; Department of Neurosciences and Mental Health, CHULN, Lisbon, Portugal
| | - Michele Dileone
- Faculty of Health Sciences, UCLM Talavera de la Reina, Toledo, Spain; Neurology Department, Hospital Nuestra Señora del Prado, Talavera de la Reina, Toledo, Spain
| | - Raffaele Dubbioso
- Neurophysiology Unit, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Napoli, Italy
| | - Sofia Fernandes
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016-Lisboa, Portugal
| | - Gabor Kozak
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute of Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Francesco Motolese
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128 Roma, Italy
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Tübingen, Germany; Hertie-Institute of Clinical Brain Research, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
10
|
Bove F, Angeloni B, Sanginario P, Rossini PM, Calabresi P, Di Iorio R. Neuroplasticity in levodopa-induced dyskinesias: An overview on pathophysiology and therapeutic targets. Prog Neurobiol 2024; 232:102548. [PMID: 38040324 DOI: 10.1016/j.pneurobio.2023.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Levodopa-induced dyskinesias (LIDs) are a common complication in patients with Parkinson's disease (PD). A complex cascade of electrophysiological and molecular events that induce aberrant plasticity in the cortico-basal ganglia system plays a key role in the pathophysiology of LIDs. In the striatum, multiple neurotransmitters regulate the different forms of physiological synaptic plasticity to provide it in a bidirectional and Hebbian manner. In PD, impairment of both long-term potentiation (LTP) and long-term depression (LTD) progresses with disease and dopaminergic denervation of striatum. The altered balance between LTP and LTD processes leads to unidirectional changes in plasticity that cause network dysregulation and the development of involuntary movements. These alterations have been documented, in both experimental models and PD patients, not only in deep brain structures but also at motor cortex. Invasive and non-invasive neuromodulation treatments, as deep brain stimulation, transcranial magnetic stimulation, or transcranial direct current stimulation, may provide strategies to modulate the aberrant plasticity in the cortico-basal ganglia network of patients affected by LIDs, thus restoring normal neurophysiological functioning and treating dyskinesias. In this review, we discuss the evidence for neuroplasticity impairment in experimental PD models and in patients affected by LIDs, and potential neuromodulation strategies that may modulate aberrant plasticity.
Collapse
Affiliation(s)
- Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Benedetta Angeloni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pasquale Sanginario
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Paolo Calabresi
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Di Iorio
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
11
|
Sohn MN, Brown JC, Sharma P, Ziemann U, McGirr A. Pharmacological adjuncts and transcranial magnetic stimulation-induced synaptic plasticity: a systematic review. J Psychiatry Neurosci 2024; 49:E59-E76. [PMID: 38359933 PMCID: PMC10890793 DOI: 10.1503/jpn.230090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is a noninvasive neurostimulation modality that has been used to study human synaptic plasticity. Leveraging work in ex vivo preparations, mechanistically informed pharmacological adjuncts to TMS have been used to improve our fundamental understanding of TMS-induced synaptic plasticity. METHODS We systematically reviewed the literature pairing pharmacological adjuncts with TMS plasticity-induction protocols in humans. We searched MEDLINE, PsycINFO, and Embase from 2013 to Mar. 10, 2023. Studies published before 2013 were extracted from a previous systematic review. We included studies using repetitive TMS, theta-burst stimulation, paired associative stimulation, and quadripulse stimulation paradigms in healthy and clinical populations. RESULTS Thirty-six studies met our inclusion criteria (28 in healthy and 8 in clinical populations). Most pharmacological agents have targeted the glutamatergic N-methyl-d-aspartate (NMDA; 15 studies) or dopamine receptors (13 studies). The NMDA receptor is necessary for TMS-induced plasticity; however, sufficiency has not been shown across protocols. Dopaminergic modulation of TMS-induced plasticity appears to be dose-dependent. The GABAergic, cholinergic, noradrenergic, and serotonergic neurotransmitter systems have small evidence bases supporting modulation of TMS-induced plasticity, as do voltage-gated calcium and sodium channels. Studies in clinical populations suggest that pharmacological adjuncts to TMS may rescue motor cortex plasticity, with implications for therapeutic applications of TMS and a promising clinical trial in depression. LIMITATIONS This review is limited by the predominance in the literature of studies with small sample sizes and crossover designs. CONCLUSION Pharmacologically enhanced TMS largely parallels findings from ex vivo preparations. As this area expands and novel targets are tested, adequately powered samples in healthy and clinical populations will inform the mechanisms of TMS-induced plasticity in health and disease.
Collapse
Affiliation(s)
- Myren N Sohn
- From the Hotchkiss Brain Institute, University of Calgary, Calgary, Alta., Canada (Sohn, McGirr); the Department of Psychiatry, University of Calgary, Alta., Canada (Sohn, McGirr); the Mathison Centre for Mental Health Research and Education, Calgary, Alta., Canada (Sohn, McGirr); the McLean Hospital, Division of Neurotherapeutics, Belmont, Mass., USA (Brown, Sharma); the Department of Psychiatry, Harvard Medical School, Boston, Mass., USA (Brown); the Department of Neurology & Stroke, Eberhard-Karls University, Tübingen, Germany (Ziemann); and the Hertie-Institute for Clinical Brain Research, Eberhard-Karls University, Tübingen, Germany (Ziemann)
| | - Joshua C Brown
- From the Hotchkiss Brain Institute, University of Calgary, Calgary, Alta., Canada (Sohn, McGirr); the Department of Psychiatry, University of Calgary, Alta., Canada (Sohn, McGirr); the Mathison Centre for Mental Health Research and Education, Calgary, Alta., Canada (Sohn, McGirr); the McLean Hospital, Division of Neurotherapeutics, Belmont, Mass., USA (Brown, Sharma); the Department of Psychiatry, Harvard Medical School, Boston, Mass., USA (Brown); the Department of Neurology & Stroke, Eberhard-Karls University, Tübingen, Germany (Ziemann); and the Hertie-Institute for Clinical Brain Research, Eberhard-Karls University, Tübingen, Germany (Ziemann)
| | - Prayushi Sharma
- From the Hotchkiss Brain Institute, University of Calgary, Calgary, Alta., Canada (Sohn, McGirr); the Department of Psychiatry, University of Calgary, Alta., Canada (Sohn, McGirr); the Mathison Centre for Mental Health Research and Education, Calgary, Alta., Canada (Sohn, McGirr); the McLean Hospital, Division of Neurotherapeutics, Belmont, Mass., USA (Brown, Sharma); the Department of Psychiatry, Harvard Medical School, Boston, Mass., USA (Brown); the Department of Neurology & Stroke, Eberhard-Karls University, Tübingen, Germany (Ziemann); and the Hertie-Institute for Clinical Brain Research, Eberhard-Karls University, Tübingen, Germany (Ziemann)
| | - Ulf Ziemann
- From the Hotchkiss Brain Institute, University of Calgary, Calgary, Alta., Canada (Sohn, McGirr); the Department of Psychiatry, University of Calgary, Alta., Canada (Sohn, McGirr); the Mathison Centre for Mental Health Research and Education, Calgary, Alta., Canada (Sohn, McGirr); the McLean Hospital, Division of Neurotherapeutics, Belmont, Mass., USA (Brown, Sharma); the Department of Psychiatry, Harvard Medical School, Boston, Mass., USA (Brown); the Department of Neurology & Stroke, Eberhard-Karls University, Tübingen, Germany (Ziemann); and the Hertie-Institute for Clinical Brain Research, Eberhard-Karls University, Tübingen, Germany (Ziemann)
| | - Alexander McGirr
- From the Hotchkiss Brain Institute, University of Calgary, Calgary, Alta., Canada (Sohn, McGirr); the Department of Psychiatry, University of Calgary, Alta., Canada (Sohn, McGirr); the Mathison Centre for Mental Health Research and Education, Calgary, Alta., Canada (Sohn, McGirr); the McLean Hospital, Division of Neurotherapeutics, Belmont, Mass., USA (Brown, Sharma); the Department of Psychiatry, Harvard Medical School, Boston, Mass., USA (Brown); the Department of Neurology & Stroke, Eberhard-Karls University, Tübingen, Germany (Ziemann); and the Hertie-Institute for Clinical Brain Research, Eberhard-Karls University, Tübingen, Germany (Ziemann)
| |
Collapse
|
12
|
Wischnewski M, Tran H, Zhao Z, Shirinpour S, Haigh Z, Rotteveel J, Perera N, Alekseichuk I, Zimmermann J, Opitz A. Induced neural phase precession through exogeneous electric fields. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535073. [PMID: 37034780 PMCID: PMC10081336 DOI: 10.1101/2023.03.31.535073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
The gradual shifting of preferred neural spiking relative to local field potentials (LFPs), known as phase precession, plays a prominent role in neural coding. Correlations between the phase precession and behavior have been observed throughout various brain regions. As such, phase precession is suggested to be a global neural mechanism that promotes local neuroplasticity. However, causal evidence and neuroplastic mechanisms of phase precession are lacking so far. Here we show a causal link between LFP dynamics and phase precession. In three experiments, we modulated LFPs in humans, a non-human primate, and computational models using alternating current stimulation. We show that continuous stimulation of motor cortex oscillations in humans lead to a gradual phase shift of maximal corticospinal excitability by ~90°. Further, exogenous alternating current stimulation induced phase precession in a subset of entrained neurons (~30%) in the non-human primate. Multiscale modeling of realistic neural circuits suggests that alternating current stimulation-induced phase precession is driven by NMDA-mediated synaptic plasticity. Altogether, the three experiments provide mechanistic and causal evidence for phase precession as a global neocortical process. Alternating current-induced phase precession and consequently synaptic plasticity is crucial for the development of novel therapeutic neuromodulation methods.
Collapse
Affiliation(s)
- M. Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - H. Tran
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Z. Zhao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - S. Shirinpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Z.J. Haigh
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - J. Rotteveel
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - N.D. Perera
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - I. Alekseichuk
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - J. Zimmermann
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - A. Opitz
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
13
|
Hand BJ, Merkin A, Opie GM, Ziemann U, Semmler JG. Repetitive paired-pulse TMS increases motor cortex excitability and visuomotor skill acquisition in young and older adults. Cereb Cortex 2023; 33:10660-10675. [PMID: 37689833 PMCID: PMC10560576 DOI: 10.1093/cercor/bhad315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 09/11/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) over primary motor cortex (M1) recruits indirect (I) waves that can be modulated by repetitive paired-pulse TMS (rppTMS). The purpose of this study was to examine the effect of rppTMS on M1 excitability and visuomotor skill acquisition in young and older adults. A total of 37 healthy adults (22 young, 18-32 yr; 15 older, 60-79 yr) participated in a study that involved rppTMS at early (1.4 ms) and late (4.5 ms) interstimulus intervals (ISIs), followed by the performance of a visuomotor training task. M1 excitability was examined with motor-evoked potential (MEP) amplitudes and short-interval intracortical facilitation (SICF) using posterior-anterior (PA) and anterior-posterior (AP) TMS current directions. We found that rppTMS increased M1 excitability in young and old adults, with the greatest effects for PA TMS at the late ISI (4.5 ms). Motor skill acquisition was improved by rppTMS at an early (1.4 ms) but not late (4.5 ms) ISI in young and older adults. An additional study using a non-I-wave interval (3.5 ms) also showed increased M1 excitability and visuomotor skill acquisition. These findings show that rppTMS at both I-wave and non-I-wave intervals can alter M1 excitability and improve visuomotor skill acquisition in young and older adults.
Collapse
Affiliation(s)
- Brodie J Hand
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide 5005, Australia
| | - Ashley Merkin
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide 5005, Australia
| | - George M Opie
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide 5005, Australia
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen 72076, Germany
| | - John G Semmler
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
14
|
Guidali G, Zazio A, Lucarelli D, Marcantoni E, Stango A, Barchiesi G, Bortoletto M. Effects of transcranial magnetic stimulation (TMS) current direction and pulse waveform on cortico-cortical connectivity: A registered report TMS-EEG study. Eur J Neurosci 2023; 58:3785-3809. [PMID: 37649453 DOI: 10.1111/ejn.16127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/14/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Transcranial magnetic stimulation (TMS)-evoked potentials (TEPs) are a promising proxy for measuring effective connectivity, that is, the directed transmission of physiological signals along cortico-cortical tracts, and for developing connectivity-based biomarkers. A crucial point is how stimulation parameters may affect TEPs, as they may contribute to the general variability of findings across studies. Here, we manipulated two TMS parameters (i.e. current direction and pulse waveform) while measuring (a) an early TEP component reflecting contralateral inhibition of motor areas, namely, M1-P15, as an operative model of interhemispheric cortico-cortical connectivity, and (b) motor-evoked potentials (MEP) for the corticospinal pathway. Our results showed that these two TMS parameters are crucial to evoke the M1-P15, influencing its amplitude, latency, and replicability. Specifically, (a) M1-P15 amplitude was strongly affected by current direction in monophasic stimulation; (b) M1-P15 latency was significantly modulated by current direction for monophasic and biphasic pulses. The replicability of M1-P15 was substantial for the same stimulation condition. At the same time, it was poor when stimulation parameters were changed, suggesting that these factors must be controlled to obtain stable single-subject measures. Finally, MEP latency was modulated by current direction, whereas non-statistically significant changes were evident for amplitude. Overall, our study highlights the importance of TMS parameters for early TEP responses recording and suggests controlling their impact in developing connectivity biomarkers from TEPs. Moreover, these results point out that the excitability of the corticospinal tract, which is commonly used as a reference to set TMS intensity, may not correspond to the excitability of cortico-cortical pathways.
Collapse
Affiliation(s)
- Giacomo Guidali
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Agnese Zazio
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Delia Lucarelli
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Eleonora Marcantoni
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Antonietta Stango
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Guido Barchiesi
- Department of Philosophy, University of Milano, Milan, Italy
| | - Marta Bortoletto
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
15
|
Wang H, Zheng H, Yang Y, Fong KNK, Long J. Cortical Contributions to Imagined Power Grip Task: An EEG-Triggered TMS Study. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3813-3822. [PMID: 37729574 DOI: 10.1109/tnsre.2023.3317813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Previous studies have demonstrated that motor imagery leads to desynchronization in the alpha rhythm within the contralateral primary motor cortex. However, the underlying electrophysiological mechanisms responsible for this desynchronization during motor imagery remain unclear. To examine this question, we conducted an investigation using EEG in combination with noninvasive transcranial magnetic stimulation (TMS) during index finger abduction (ABD) and power grip imaginations. The TMS was administered employing diverse coil orientations to selectively stimulate corticospinal axons, aiming to target both early and late synaptic inputs to corticospinal neurons. TMS was triggered based on the alpha power levels, categorized in 20th percentile bins, derived from the individual alpha power distribution during the imagined tasks of ABD and power grip. Our analysis revealed negative correlations between alpha power and motor evoked potential (MEP) amplitude, as well as positive correlations with MEP latency across all coil orientations for each imagined task. Furthermore, we conducted functional network analysis in the alpha band to explore network connectivity during imagined index finger abduction and power grip tasks. Our findings indicate that network connections were denser in the fronto-parietal area during imagined ABD compared to power grip conditions. Moreover, the functional network properties demonstrated potential for effectively classifying between these two imagined tasks. These results provide functional evidence supporting the hypothesis that alpha oscillations may play a role in suppressing MEP amplitude and latency during imagined power grip. We propose that imagined ABD and power grip tasks may activate different populations and densities of axons at the cortical level.
Collapse
|
16
|
Simis M, Thibaut A, Imamura M, Battistella LR, Fregni F. Neurophysiological biomarkers of motor improvement from Constraint-Induced Movement Therapy and Robot-Assisted Therapy in participants with stroke. Front Hum Neurosci 2023; 17:1188806. [PMID: 37780964 PMCID: PMC10540307 DOI: 10.3389/fnhum.2023.1188806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Background The mechanism of stroke recovery is related to the reorganization of cerebral activity that can be enhanced by rehabilitation therapy. Two well established treatments are Robot-Assisted Therapy (RT) and Constraint-Induced Movement Therapy (CIMT), however, it is unknown whether there is a difference in the neuroplastic changes induced by these therapies, and if the modifications are related to motor improvement. Therefore, this study aims to identify neurophysiological biomarkers related to motor improvement of participants with chronic stroke that received RT or CIMT, and to test whether there is a difference in neuronal changes induced by these two therapies. Methods This study included participants with chronic stroke that took part in a pilot experiment to compare CIMT vs. RT. Neurophysiological evaluations were performed with electroencephalography (EEG) and transcranial magnetic stimulation (TMS), pre and post rehabilitation therapy. Motor function was measured by the Wolf Motor Function Test (WMFT) and Fugl-Meyer Assessment Upper Limb (FMA-UL). Results Twenty-seven participants with chronic stroke completed the present study [mean age of 58.8 years (SD ± 13.6), mean time since stroke of 18.2 months (SD ± 9.6)]. We found that changes in motor threshold (MT) and motor evoked potential (MEP) in the lesioned hemisphere have a positive and negative correlation with WMFT improvement, respectively. The absolute change in alpha peak in the unlesioned hemisphere and the absolute change of the alpha ratio (unlesioned/lesioned hemisphere) is negatively correlated with WMFT improvement. The decrease of EEG power ratio (increase in the lesioned hemisphere and decrease in the unlesioned hemisphere) for high alpha bandwidths is correlated with better improvement in WMFT. The variable "type of treatment (RT or CIMT)" was not significant in the models. Conclusion Our results suggest that distinct treatments (RT and CIMT) have similar neuroplastic mechanisms of recovery. Moreover, motor improvements in participants with chronic stroke are related to decreases of cortical excitability in the lesioned hemisphere measured with TMS. Furthermore, the balance of both EEG power and EEG alpha peak frequency in the lesioned hemisphere is related to motor improvement.
Collapse
Affiliation(s)
- Marcel Simis
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium
| | - Marta Imamura
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Linamara Rizzo Battistella
- Instituto de Medicina Fisica e Reabilitacao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Medicina Legal, Bioética, Medicina do Trabalho e Medicina Física e Reabilitação, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Felipe Fregni
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
17
|
Tian D, Izumi SI. Different effects of I-wave periodicity repetitive TMS on motor cortex interhemispheric interaction. Front Neurosci 2023; 17:1079432. [PMID: 37457007 PMCID: PMC10349661 DOI: 10.3389/fnins.2023.1079432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
Background Activity of the neural circuits in the human motor cortex can be probed using transcranial magnetic stimulation (TMS). Changing TMS-induced current direction recruits different cortical neural circuits. I-wave periodicity repetitive TMS (iTMS) substantially modulates motor cortex excitability through neural plasticity, yet its effect on interhemispheric interaction remains unclear. Objective To explore the modulation of interhemispheric interaction by iTMS applied in different current directions. Materials and Methods Twenty right-handed healthy young volunteers (aged 27.5 ± 5.0 years) participated in this study with three visits. On each visit, iTMS in posterior-anterior/anterior-posterior direction (PA-/AP-iTMS) or sham-iTMS was applied to the right hemisphere, with corticospinal excitability and intracortical facilitation of the non-stimulated left hemisphere evaluated at four timepoints. Ipsilateral silent period was also measured at each timepoint probing interhemispheric inhibition (IHI). Results PA- and AP-iTMS potentiated cortical excitability concurrently in the stimulated right hemisphere. Corticospinal excitability of the non-stimulated left hemisphere increased 10 min after both PA- and AP-iTMS intervention, with a decrease in short-interval intracortical facilitation (SICF) observed in AP-iTMS only. Immediately after the intervention, PA-iTMS tilted the IHI balance toward inhibiting the non-stimulated hemisphere, while AP-iTMS shifted the balance toward the opposite direction. Conclusions Our findings provide systematic evidence on the plastic modulation of interhemispheric interaction by PA- and AP-iTMS. We show that iTMS induces an interhemispheric facilitatory effect, and that PA- and AP-iTMS differs in modulating interhemispheric inhibition.
Collapse
Affiliation(s)
- Dongting Tian
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduate School of Medicine, Sendai, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
18
|
Magnuson J, Ozdemir MA, Mathieson E, Kirkman S, Passera B, Rampersad S, Dufour AB, Brooks D, Pascual-Leone A, Fried PJ, Shafi MM, Ozdemir RA. Neuromodulatory effects and reproducibility of the most widely used repetitive transcranial magnetic stimulation protocols. PLoS One 2023; 18:e0286465. [PMID: 37352290 PMCID: PMC10289434 DOI: 10.1371/journal.pone.0286465] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/16/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is widely used in both research and clinical settings to modulate human brain function and behavior through the engagement of the mechanisms of plasticity. Based upon experiments using single-pulse TMS as a probe, the physiologic mechanism of these effects is often assumed to be via changes in cortical excitability, with 10 Hz rTMS increasing and 1 Hz rTMS decreasing the excitability of the stimulated region. However, the reliability and reproducibility of these rTMS protocols on cortical excitability across and within individual subjects, particularly in comparison to robust sham stimulation, have not been systematically examined. OBJECTIVES In a cohort of 28 subjects (39 ± 16 years), we report the first comprehensive study to (1) assess the neuromodulatory effects of traditional 1 Hz and 10 Hz rTMS on corticospinal excitability against both a robust sham control, and two other widely used patterned rTMS protocols (intermittent theta burst stimulation, iTBS; and continuous theta burst stimulation, cTBS), and (2) determine the reproducibility of all rTMS protocols across identical repeat sessions. RESULTS At the group level, neither 1 Hz nor 10 Hz rTMS significantly modulated corticospinal excitability. 1 Hz and 10 Hz rTMS were also not significantly different from sham and both TBS protocols. Reproducibility was poor for all rTMS protocols except for sham. Importantly, none of the real rTMS and TBS protocols demonstrated greater neuromodulatory effects or reproducibility after controlling for potential experimental factors including baseline corticospinal excitability, TMS coil deviation and the number of individual MEP trials. CONCLUSIONS These results call into question the effectiveness and reproducibility of widely used rTMS techniques for modulating corticospinal excitability, and suggest the need for a fundamental rethinking regarding the potential mechanisms by which rTMS affects brain function and behavior in humans.
Collapse
Affiliation(s)
- Justine Magnuson
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- Department of Neurology, Harvard Medical School, Boston, MA, United States of America
- Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, BC, CA
| | - Mehmet A. Ozdemir
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- Department of Neurology, Harvard Medical School, Boston, MA, United States of America
- Department of Biomedical Engineering, Izmir Katip Celebi University, Izmir, Turkey
| | - Elon Mathieson
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Sofia Kirkman
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Brice Passera
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- Department of Neurology, Harvard Medical School, Boston, MA, United States of America
| | - Sumientra Rampersad
- Department of Physics, University of Massachusetts, Boston, MA, United States of America
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States of America
| | - Alyssa B. Dufour
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew Senior Life, Boston, MA, United States of America
| | - Dana Brooks
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, United States of America
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, United States of America
- Hinda and Arthur Marcus Institute for Aging Research and Deanne and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, United States of America
- Guttmann Brain Health Institute, Institut Guttmann de Neurorehabilitació, Universitat Autonoma de Barcelona, Badalona, Spain
| | - Peter J. Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- Department of Neurology, Harvard Medical School, Boston, MA, United States of America
| | - Mouhsin M. Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- Department of Neurology, Harvard Medical School, Boston, MA, United States of America
| | - Recep A. Ozdemir
- Berenson-Allen Center for Noninvasive Brain Stimulation, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- Department of Neurology, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
19
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
20
|
Anil S, Lu H, Rotter S, Vlachos A. Repetitive transcranial magnetic stimulation (rTMS) triggers dose-dependent homeostatic rewiring in recurrent neuronal networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533396. [PMID: 36993387 PMCID: PMC10055183 DOI: 10.1101/2023.03.20.533396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique used to induce neuronal plasticity in healthy individuals and patients. Designing effective and reproducible rTMS protocols poses a major challenge in the field as the underlying biomechanisms remain elusive. Current clinical protocol designs are often based on studies reporting rTMS-induced long-term potentiation or depression of synaptic transmission. Herein, we employed computational modeling to explore the effects of rTMS on long-term structural plasticity and changes in network connectivity. We simulated a recurrent neuronal network with homeostatic structural plasticity between excitatory neurons, and demonstrated that this mechanism was sensitive to specific parameters of the stimulation protocol (i.e., frequency, intensity, and duration of stimulation). The feedback-inhibition initiated by network stimulation influenced the net stimulation outcome and hindered the rTMS-induced homeostatic structural plasticity, highlighting the role of inhibitory networks. These findings suggest a novel mechanism for the lasting effects of rTMS, i.e., rTMS-induced homeostatic structural plasticity, and highlight the importance of network inhibition in careful protocol design, standardization, and optimization of stimulation.
Collapse
Affiliation(s)
- Swathi Anil
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Han Lu
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
| | - Stefan Rotter
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
- Center BrainLinks-BrainTools, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
21
|
Schoisswohl S, Langguth B, Weber FC, Abdelnaim MA, Hebel T, Mack W, Schecklmann M. One way or another: Treatment effects of 1 Hz rTMS using different current directions in a small sample of tinnitus patients. Neurosci Lett 2023; 797:137026. [PMID: 36535466 DOI: 10.1016/j.neulet.2022.137026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION So far studies on the efficacy of repetitive transcranial magnetic stimulation (rTMS) as a treatment for tinnitus are inconclusive. Two large scale placebo-controlled randomized clinical trials (RCT) examined the efficacy of low frequency temporal cortex rTMS and report different findings. As the used TMS devices differ in their used primary current direction by default, this technical parameter was speculated as a potential reason for the observed incongruences in tinnitus-related outcomes. The aim of the present pilot study was to investigate the treatment effect of 1 Hz rTMS using two different current flows. MATERIALS AND METHODS Nine tinnitus patients were treated in two different groups each comprised of 10 treatment sessions á 3000 biphasic pulses of 1 Hz rTMS applied over the left temporo-parietal cortex using either an anterior-posterior to posterior-anterior (AP-PA) or posterior-anterior to anterior-posterior (PA-AP) induced current flow. RESULTS 1 Hz rTMS with a primary posterior-anterior to anterior-posterior (PA-AP) current flow caused a superior reduction in tinnitus-related symptoms, particularly tinnitus unpleasantness, loudness and tinnitus-related distress. CONCLUSIONS The present pilot study demonstrated that the technical TMS parameter current direction might be essential for the efficacy of rTMS as a treatment for tinnitus. Systematic investigations of technical TMS parameters like current direction in larger samples of tinnitus patients are highly needed.
Collapse
Affiliation(s)
- Stefan Schoisswohl
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany; Department of Psychology, Universität der Bundeswehr München, Neubiberg, Germany.
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Franziska C Weber
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Mohamed A Abdelnaim
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Tobias Hebel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Wolfgang Mack
- Department of Psychology, Universität der Bundeswehr München, Neubiberg, Germany
| | - Martin Schecklmann
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| |
Collapse
|
22
|
Motolese F, Rossi M, Capone F, Cruciani A, Musumeci G, Manzo M, Pilato F, Di Pino G, Di Lazzaro V. High-frequency oscillations-based precise temporal resolution of short latency afferent inhibition in the human brain. Clin Neurophysiol 2022; 144:135-141. [PMID: 36210268 DOI: 10.1016/j.clinph.2022.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Sensorimotor integration is a crucial process for adaptive behaviour and can be explored non-invasively with a conditioned transcranial magnetic stimulation (TMS) paradigm - i.e. short-latency afferent inhibition (SAI). To gain insight into the sensorimotor integration phenomenon, we used two different approaches to combine peripheral and cortical stimulation in the SAI paradigm, measuring not only the latency of low frequency somatosensory evoked potentials (SEPs) but also the peaks of high frequency oscillations (HFOs) underlying SEPs. METHODS The interstimulus intervals (ISIs) between the electrical stimulation of the median nerve and the motor cortex magnetic stimulation were determined relative to the latency of the earliest SEPs cortical potential (N20) or the HFOs peaks. In particular, the first and last negative and positive peaks of HFOs were extracted through a custom-made MATLAB script. RESULTS Thirty-three healthy subjects participated in this study. We found out that muscle responses after TMS were suppressed when ISIs were comprised between -1 to +3 ms relative to the N20 peak and at all ISIs relative to HFOs peaks, except for the first negative peak. CONCLUSIONS Coupling peripheral and cortical stimulation at early interstimulus intervals - before the SEPs N20 peak - may modulate muscle response. SIGNIFICANCE Our findings confirm that afferent inhibition is produced both through a direct (thalamus-motor cortex) and indirect (thalamus-somatosensory-motor cortex) pathway.
Collapse
Affiliation(s)
- Francesco Motolese
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy.
| | - Mariagrazia Rossi
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fioravante Capone
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Alessandro Cruciani
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Gabriella Musumeci
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marco Manzo
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Fabio Pilato
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Giovanni Di Pino
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy; Research Unit of Neurophysiology and Neuroengineering of Human-Technology Interaction, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Vincenzo Di Lazzaro
- Neurology, Neurophysiology and Neurobiology Unit, Department of Medicine, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
23
|
Neige C, Ciechelski V, Lebon F. The recruitment of indirect waves within primary motor cortex during motor imagery: A directional transcranial magnetic stimulation study. Eur J Neurosci 2022; 56:6187-6200. [PMID: 36215136 PMCID: PMC10092871 DOI: 10.1111/ejn.15843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 12/29/2022]
Abstract
Motor imagery (MI) refers to the mental simulation of an action without overt movement. While numerous transcranial magnetic stimulation (TMS) studies provided evidence for a modulation of corticospinal excitability and intracortical inhibition during MI, the neural signature within the primary motor cortex is not clearly established. In the current study, we used directional TMS to probe the modulation of the excitability of early and late indirect waves (I-waves) generating pathways during MI. Corticospinal responses evoked by TMS with posterior-anterior (PA) and anterior-posterior (AP) current flow within the primary motor cortex evoke preferentially early and late I-waves, respectively. Seventeen participants were instructed to stay at rest or to imagine maximal isometric contractions of the right flexor carpi radialis. We demonstrated that the increase of corticospinal excitability during MI is greater with PA than AP orientation. By using paired-pulse stimulations, we confirmed that short-interval intracortical inhibition (SICI) increased during MI in comparison to rest with PA orientation, whereas we found that it decreased with AP orientation. Overall, these results indicate that the pathways recruited by PA and AP orientations that generate early and late I-waves are differentially modulated by MI.
Collapse
Affiliation(s)
- Cécilia Neige
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France.,Centre Hospitalier Le Vinatier, Université Claude Bernard Lyon 1, INSERM, CNRS, CRNL U1028 UMR5292, PsyR2 Team, Bron, France
| | - Valentin Ciechelski
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - Florent Lebon
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| |
Collapse
|
24
|
Naro A, Calabrò RS. Improving Upper Limb and Gait Rehabilitation Outcomes in Post-Stroke Patients: A Scoping Review on the Additional Effects of Non-Invasive Brain Stimulation When Combined with Robot-Aided Rehabilitation. Brain Sci 2022; 12:1511. [PMID: 36358437 PMCID: PMC9688385 DOI: 10.3390/brainsci12111511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 07/03/2024] Open
Abstract
Robot-aided rehabilitation (RAR) and non-invasive brain stimulation (NIBS) are the two main interventions for post-stroke rehabilitation. The efficacy of both approaches in combination has not been well established yet. The importance of coupling these interventions, which both enhance brain plasticity to promote recovery, lies in augmenting the rehabilitation potential to constrain the limitation in daily living activities and the quality of life following stroke. This review aimed to evaluate the evidence of NIBS coupled with RAR in improving rehabilitation outcomes of upper limb and gait motor impairment in adult individuals with stroke. We included 18 clinical trials in this review. All studies were highly heterogeneous concerning the technical characteristics of robotic devices and NIBS protocols. However, the studies reported a global improvement in body structure and function and activity limitation for the upper limb, which were non-significant between the active and control groups. Concerning gait training protocols, the active group outperformed the control group in improving walking capacity and recovery. According to this review, NIBS and RAR in combination are promising but not yet largely recommendable as a systematic approach for stroke rehabilitation as there is not enough data about this. Therefore, more homogenous clinical trials are required, pointing out the best characteristics of the combined therapeutic protocols.
Collapse
Affiliation(s)
- Antonino Naro
- Stroke Unit, AOU Policlinico G. Martino, 98122 Messina, Italy
| | | |
Collapse
|
25
|
Sarkar A, Dipani A, Leodori G, Popa T, Kassavetis P, Hallett M, Thirugnanasambandam N. Inter-Individual Variability in Motor Output Is Driven by Recruitment Gain in the Corticospinal Tract Rather Than Motor Threshold. Brain Sci 2022; 12:1401. [PMID: 36291333 PMCID: PMC9599681 DOI: 10.3390/brainsci12101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
Variability in the response of individuals to various non-invasive brain stimulation protocols is a major problem that limits their potential for clinical applications. Baseline motor-evoked potential (MEP) amplitude is the key predictor of an individual's response to transcranial magnetic stimulation protocols. However, the factors that predict MEP amplitude and its variability remain unclear. In this study, we aimed to identify the input-output curve (IOC) parameters that best predict MEP amplitude and its variability. We analysed IOC data from 75 subjects and built a general linear model (GLM) using the IOC parameters as regressors and MEP amplitude at 120% resting motor threshold (RMT) as the response variable. We bootstrapped the data to estimate variability of IOC parameters and included them in a GLM to identify the significant predictors of MEP amplitude variability. Peak slope, motor threshold, and maximum MEP amplitude of the IOC were significant predictors of MEP amplitude at 120% RMT and its variability was primarily driven by the variability of peak slope and maximum MEP amplitude. Recruitment gain and maximum corticospinal excitability are the key predictors of MEP amplitude and its variability. Inter-individual variability in motor output may be reduced by achieving a uniform IOC slope.
Collapse
Affiliation(s)
- Arkaprovo Sarkar
- Human Motor Neurophysiology and Neuromodulation Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- National Brain Research Centre (NBRC), Manesar 122052, India
| | - Alish Dipani
- National Brain Research Centre (NBRC), Manesar 122052, India
| | - Giorgio Leodori
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Roma, Italy
- Neuromed Mediterranean Neurological Institute, Scientific Institute for Research, Hospitalisation and Healthcare (I.R.C.C.S.), 86077 Pozzilli, Italy
| | - Traian Popa
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
- Department of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1950 Sion, Switzerland
| | - Panagiotis Kassavetis
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Nivethida Thirugnanasambandam
- Human Motor Neurophysiology and Neuromodulation Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- National Brain Research Centre (NBRC), Manesar 122052, India
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| |
Collapse
|
26
|
Bonassi G, Lagravinese G, Putzolu M, Botta A, Bove M, Pelosin E, Avanzino L. Transcranial direct current stimulation alters sensorimotor modulation during cognitive representation of movement. Front Hum Neurosci 2022; 16:862013. [PMID: 36277054 PMCID: PMC9583391 DOI: 10.3389/fnhum.2022.862013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/09/2022] [Indexed: 11/13/2022] Open
Abstract
We recently demonstrated, by means of short latency afferent inhibition (SAI), that before an imagined movement, during the reaction time (RT), SAI decreases only in the movement-related muscle (sensorimotor modulation) and that a correlation exists between sensorimotor modulation and motor imagery (MI) ability. Excitatory anodal transcranial direct current stimulation (a-tDCS) on M1 could enhance the MI outcome; however, mechanisms of action are not completely known. Here, we assessed if a-tDCS on M1 prior to an MI task could affect sensorimotor modulation. Participants imagined abducting the index or little finger in response to an acoustic signal. SAI was evaluated from the first dorsal interosseus after the “go” signal, before the expected electromyographic (EMG) activity. Participants received 20-min 1.5 mA a-tDCS or sham-tDCS on M1 on two different days, in random order. Results showed that a-tDCS on M1 increases the sensorimotor modulation consisting of a weakening of SAI after the Go signal with respect to sham-tDCS, in the movement-related muscle right before the beginning of MI. These results suggest that a-tDCS on M1 further potentiate those circuits responsible for sensorimotor modulation in the RT phase of MI. Increased sensorimotor modulation during MI may be one of the mechanisms involved in MI improvement after a-tDCS over M1.
Collapse
Affiliation(s)
- Gaia Bonassi
- S.C. Medicina Fisica e Riabilitazione Ospedaliera, ASL4, Azienda Sanitaria Locale Chiavarese, Chiavari, Italy
| | - Giovanna Lagravinese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Martina Putzolu
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Alessandro Botta
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Section of Human Physiology, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Marco Bove
- Section of Human Physiology, Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
| | - Laura Avanzino
- Ospedale Policlinico San Martino, IRCCS, Genoa, Italy
- Section of Human Physiology, Department of Experimental Medicine, University of Genoa, Genoa, Italy
- *Correspondence: Laura Avanzino
| |
Collapse
|
27
|
Russell C, Difford N, Stamenkovic A, Stapley P, McAndrew D, Arpel C, MacKinnon C, Shemmell J. Postural support requirements preferentially modulate late components of the gastrocnemius response to transcranial magnetic stimulation. Exp Brain Res 2022; 240:2647-2657. [PMID: 36006434 PMCID: PMC9510120 DOI: 10.1007/s00221-022-06440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/05/2022] [Indexed: 11/27/2022]
Abstract
Mounting evidence suggests that motor evoked potentials (MEPs) recorded in upper limb muscles with postural support roles following transcranial magnetic stimulation receive contributions from both corticospinal and non-corticospinal descending pathways. We tested the hypothesis that neural structures responsible for regulating upright balance are involved in transmitting late portions of TMS-induced MEPs in a lower limb muscle. MEPs were recorded in the medial gastrocnemius muscles of each leg, while participants supported their upright posture in five postural conditions that required different levels of support from the target muscles. We observed that early and late portions of the MEP were modulated independently, with early MEP amplitude being reduced when high levels of postural support were required from a target muscle. Independent modulation of early and late MEPs by altered postural demand suggests largely separable transmission of each part of the MEP. The early component of the MEP is likely generated by fast-conducting corticospinal pathways, whereas the later component may be primarily transmitted along a polysynaptic cortico-reticulospinal pathway.
Collapse
Affiliation(s)
- Cassandra Russell
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Building 41, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Nathan Difford
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Building 41, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Alexander Stamenkovic
- Department of Physical Therapy, College of Health Professions, Virgina Commonwealth University, Richmond, USA
| | - Paul Stapley
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Building 41, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Darryl McAndrew
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Building 41, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Caitlin Arpel
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Building 41, Northfields Avenue, Wollongong, NSW, 2522, Australia
| | - Colum MacKinnon
- Department of Neurology, University of Minnesota, Minneapolis, USA
| | - Jonathan Shemmell
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Building 41, Northfields Avenue, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
28
|
Siebner HR, Funke K, Aberra AS, Antal A, Bestmann S, Chen R, Classen J, Davare M, Di Lazzaro V, Fox PT, Hallett M, Karabanov AN, Kesselheim J, Beck MM, Koch G, Liebetanz D, Meunier S, Miniussi C, Paulus W, Peterchev AV, Popa T, Ridding MC, Thielscher A, Ziemann U, Rothwell JC, Ugawa Y. Transcranial magnetic stimulation of the brain: What is stimulated? - A consensus and critical position paper. Clin Neurophysiol 2022; 140:59-97. [PMID: 35738037 PMCID: PMC9753778 DOI: 10.1016/j.clinph.2022.04.022] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 03/14/2022] [Accepted: 04/15/2022] [Indexed: 12/11/2022]
Abstract
Transcranial (electro)magnetic stimulation (TMS) is currently the method of choice to non-invasively induce neural activity in the human brain. A single transcranial stimulus induces a time-varying electric field in the brain that may evoke action potentials in cortical neurons. The spatial relationship between the locally induced electric field and the stimulated neurons determines axonal depolarization. The induced electric field is influenced by the conductive properties of the tissue compartments and is strongest in the superficial parts of the targeted cortical gyri and underlying white matter. TMS likely targets axons of both excitatory and inhibitory neurons. The propensity of individual axons to fire an action potential in response to TMS depends on their geometry, myelination and spatial relation to the imposed electric field and the physiological state of the neuron. The latter is determined by its transsynaptic dendritic and somatic inputs, intrinsic membrane potential and firing rate. Modeling work suggests that the primary target of TMS is axonal terminals in the crown top and lip regions of cortical gyri. The induced electric field may additionally excite bends of myelinated axons in the juxtacortical white matter below the gyral crown. Neuronal excitation spreads ortho- and antidromically along the stimulated axons and causes secondary excitation of connected neuronal populations within local intracortical microcircuits in the target area. Axonal and transsynaptic spread of excitation also occurs along cortico-cortical and cortico-subcortical connections, impacting on neuronal activity in the targeted network. Both local and remote neural excitation depend critically on the functional state of the stimulated target area and network. TMS also causes substantial direct co-stimulation of the peripheral nervous system. Peripheral co-excitation propagates centrally in auditory and somatosensory networks, but also produces brain responses in other networks subserving multisensory integration, orienting or arousal. The complexity of the response to TMS warrants cautious interpretation of its physiological and behavioural consequences, and a deeper understanding of the mechanistic underpinnings of TMS will be critical for advancing it as a scientific and therapeutic tool.
Collapse
Affiliation(s)
- Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Klaus Funke
- Department of Neurophysiology, Medical Faculty, Ruhr-University Bochum, Bochum, Germany
| | - Aman S Aberra
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Andrea Antal
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Sven Bestmann
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Robert Chen
- Krembil Brain Institute, University Health Network and Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Marco Davare
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, 00128 Rome, Italy
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Anke N Karabanov
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Nutrition and Exercise, University of Copenhagen, Copenhagen, Denmark
| | - Janine Kesselheim
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Mikkel M Beck
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Non-invasive Brain Stimulation Unit, Laboratorio di NeurologiaClinica e Comportamentale, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - David Liebetanz
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Sabine Meunier
- Sorbonne Université, Faculté de Médecine, INSERM U 1127, CNRS 4 UMR 7225, Institut du Cerveau, F-75013, Paris, France
| | - Carlo Miniussi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy; Cognitive Neuroscience Section, IRCCS Centro San Giovanni di DioFatebenefratelli, Brescia, Italy
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Angel V Peterchev
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Psychiatry & Behavioral Sciences, School of Medicine, Duke University, Durham, NC, USA; Department of Electrical & Computer Engineering, Duke University, Durham, NC, USA; Department of Neurosurgery, School of Medicine, Duke University, Durham, NC, USA
| | - Traian Popa
- Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland; Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, Sion, Switzerland
| | - Michael C Ridding
- University of South Australia, IIMPACT in Health, Adelaide, Australia
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ulf Ziemann
- Department of Neurology & Stroke, University Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Yoshikazu Ugawa
- Department of Neurology, Fukushima Medical University, Fukushima, Japan; Fukushima Global Medical Science Centre, Advanced Clinical Research Centre, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
29
|
Stimulation with acoustic white noise enhances motor excitability and sensorimotor integration. Sci Rep 2022; 12:13108. [PMID: 35907889 PMCID: PMC9338990 DOI: 10.1038/s41598-022-17055-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
Auditory white noise (WN) is widely used in neuroscience to mask unwanted environmental noise and cues, e.g. TMS clicks. However, to date there is no research on the influence of WN on corticospinal excitability and potentially associated sensorimotor integration itself. Here we tested the hypothesis, if WN induces M1 excitability changes and improves sensorimotor performance. M1 excitability (spTMS, SICI, ICF, I/O curve) and sensorimotor reaction-time performance were quantified before, during and after WN stimulation in a set of experiments performed in a cohort of 61 healthy subjects. WN enhanced M1 corticospinal excitability, not just during exposure, but also during silence periods intermingled with WN, and up to several minutes after the end of exposure. Two independent behavioural experiments highlighted that WN improved multimodal sensorimotor performance. The enduring excitability modulation combined with the effects on behaviour suggest that WN might induce neural plasticity. WN is thus a relevant modulator of corticospinal function; its neurobiological effects should not be neglected and could in fact be exploited in research applications.
Collapse
|
30
|
Hussain SJ, Vollmer MK, Iturrate I, Quentin R. Voluntary Motor Command Release Coincides with Restricted Sensorimotor Beta Rhythm Phases. J Neurosci 2022; 42:5771-5781. [PMID: 35701160 PMCID: PMC9302459 DOI: 10.1523/jneurosci.1495-21.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 01/22/2023] Open
Abstract
Sensory perception and memory are enhanced during restricted phases of ongoing brain rhythms, but whether voluntary movement is constrained by brain rhythm phase is not known. Voluntary movement requires motor commands to be released from motor cortex (M1) and transmitted to spinal motoneurons and effector muscles. Here, we tested the hypothesis that motor commands are preferentially released from M1 during circumscribed phases of ongoing sensorimotor rhythms. Healthy humans of both sexes performed a self-paced finger movement task during electroencephalography (EEG) and electromyography (EMG) recordings. We first estimated the time of motor command release preceding each finger movement by subtracting individually measured corticomuscular transmission latencies from EMG-determined movement onset times. Then, we determined the phase of ipsilateral and contralateral sensorimotor mu (8-12 Hz) and beta (13-35 Hz) rhythms during release of each motor command. We report that motor commands were most often released between 120 and 140° along the contralateral beta cycle but were released uniformly along the contralateral mu cycle. Motor commands were also released uniformly along ipsilateral mu and beta cycles. Results demonstrate that motor command release coincides with restricted phases of the contralateral sensorimotor beta rhythm, suggesting that sensorimotor beta rhythm phase may sculpt the timing of voluntary human movement.SIGNIFICANCE STATEMENT Perceptual and cognitive function is optimal during specific brain rhythm phases. Although brain rhythm phase influences motor cortical neuronal activity and communication between the motor cortex and spinal cord, its role in voluntary movement is poorly understood. Here, we show that the motor commands needed to produce voluntary movements are preferentially released from the motor cortex during contralateral sensorimotor beta rhythm phases. Our findings are consistent with the notion that sensorimotor rhythm phase influences the timing of voluntary human movement.
Collapse
Affiliation(s)
- Sara J Hussain
- Movement and Cognitive Rehabilitation Science Program, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas 78712
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892
| | - Mary K Vollmer
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892
| | - Iñaki Iturrate
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892
- Amazon EU, Spain
| | - Romain Quentin
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland 20892
- MEL Group, EDUWELL Team, Lyon Neuroscience Research Center, Institut National de la Santé et de la Recherche Médicale U1028, Centre National de la Recherche Scientifique UMR5292, Université Claude Bernard Lyon 1, 69500 Bron, France
| |
Collapse
|
31
|
Effects of acute intermittent hypoxia on corticospinal excitability within the primary motor cortex. Eur J Appl Physiol 2022; 122:2111-2123. [PMID: 35752660 PMCID: PMC9381468 DOI: 10.1007/s00421-022-04982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
Purpose Acute intermittent hypoxia (AIH) is a safe and non-invasive treatment approach that uses brief, repetitive periods of breathing reduced oxygen air alternated with normoxia. While AIH is known to affect spinal circuit excitability, the effects of AIH on cortical excitability remain largely unknown. We investigated the effects of AIH on cortical excitability within the primary motor cortex. Methods Eleven healthy, right-handed participants completed two testing sessions: (1) AIH (comprising 3 min in hypoxia [fraction of inspired oxygen ~ 10%] and 2 min in normoxia repeated over five cycles) and (2) normoxia (NOR) (equivalent duration to AIH). Single- and paired-pulse transcranial magnetic stimulations were delivered to the primary motor cortex, before and 0, 25, and 50 min after AIH and normoxia. Results The mean nadir in arterial oxygen saturation was lower (p < 0.001) during the cycles of AIH (82.5 ± 4.9%) than NOR (97.8 ± 0.6%). There was no significant difference in corticospinal excitability, intracortical facilitation, or intracortical inhibition between AIH and normoxia conditions at any time point (all p > 0.05). There was no association between arterial oxygen saturation and changes in corticospinal excitability after AIH (r = 0.05, p = 0.87). Conclusion Overall, AIH did not modify either corticospinal excitability or excitability of intracortical facilitatory and inhibitory circuits within the primary motor cortex. Future research should explore whether a more severe or individualised AIH dose would induce consistent, measurable changes in corticospinal excitability. Supplementary Information The online version contains supplementary material available at 10.1007/s00421-022-04982-8.
Collapse
|
32
|
Kahl CK, Giuffre A, Wrightson JG, Kirton A, Condliffe EG, MacMaster FP, Zewdie E. Active versus resting neuro-navigated robotic transcranial magnetic stimulation motor mapping. Physiol Rep 2022; 10:e15346. [PMID: 35748041 PMCID: PMC9226845 DOI: 10.14814/phy2.15346] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) motor mapping is a safe, non-invasive method that can be used to study corticomotor organization. Motor maps are typically acquired at rest, and comparisons to maps obtained during muscle activation have been both limited and contradictory. Understanding the relationship between functional activation of the corticomotor system as recorded by motor mapping is crucial for their use clinically and in research. The present study utilized robotic TMS paired with personalized neuro-navigation to examine the relationship between resting and active motor map measures and their relationship with motor performance. Twenty healthy right-handed participants underwent resting and active robotic TMS motor mapping of the first dorsal interosseous to 10% maximum voluntary contraction. Motor map parameters including map area, volume, and measures of map centrality were compared between techniques using paired sample tests of difference and Bland-Altman plots and analysis. Map area, volume, and hotspot magnitude were larger in the active motor maps, while map center of gravity and hotspot locations remained consistent between both maps. No associations were observed between motor maps and motor performance as measured by the Purdue Pegboard Test. Our findings support previous suggestions that maps scale with muscle contraction. Differences in mapping outcomes suggest rest and active motor maps may reflect functionally different corticomotor representations. Advanced analysis methods may better characterize the underlying neurophysiology of both types of motor mapping.
Collapse
Affiliation(s)
- Cynthia K. Kahl
- Department of Psychiatry, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Pediatrics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Adrianna Giuffre
- Department of Pediatrics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Clinical Neurosciences, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - James G. Wrightson
- Department of Pediatrics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Clinical Neurosciences, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Adam Kirton
- Department of Pediatrics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Clinical Neurosciences, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Elizabeth G. Condliffe
- Department of Pediatrics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Clinical Neurosciences, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Frank P. MacMaster
- Department of Psychiatry, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Pediatrics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Strategic Clinical Network for Neuroscience, Vision, and RehabilitationCalgaryAlbertaCanada
- Strategic Clinical Network for Addictions and Mental HealthCalgaryAlbertaCanada
| | - Ephrem Zewdie
- Department of Pediatrics, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Department of Clinical Neurosciences, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
33
|
Botta A, Lagravinese G, Bove M, Pelosin E, Bonassi G, Avenanti A, Avanzino L. Sensorimotor inhibition during emotional processing. Sci Rep 2022; 12:6998. [PMID: 35488018 PMCID: PMC9054825 DOI: 10.1038/s41598-022-10981-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
Visual processing of emotional stimuli has been shown to engage complex cortical and subcortical networks, but it is still unclear how it affects sensorimotor integration processes. To fill this gap, here, we used a TMS protocol named short-latency afferent inhibition (SAI), capturing sensorimotor interactions, while healthy participants were observing emotional body language (EBL) and International Affective Picture System (IAPS) stimuli. Participants were presented with emotional (fear- and happiness-related) or non-emotional (neutral) EBL and IAPS stimuli while SAI was tested at 120 ms and 300 ms after pictures presentation. At the earlier time point (120 ms), we found that fear-related EBL and IAPS stimuli selectively enhanced SAI as indexed by the greater inhibitory effect of somatosensory afferents on motor excitability. Larger early SAI enhancement was associated with lower scores at the Behavioural Inhibition Scale (BIS). At the later time point (300 ms), we found a generalized SAI decrease for all kind of stimuli (fear, happiness or neutral). Because the SAI index reflects integrative activity of cholinergic sensorimotor circuits, our findings suggest greater sensitivity of such circuits during early (120 ms) processing of threat-related information. Moreover, the correlation with BIS score may suggest increased attention and sensory vigilance in participants with greater anxiety-related dispositions. In conclusion, the results of this study show that sensorimotor inhibition is rapidly enhanced while processing threatening stimuli and that SAI protocol might be a valuable option in evaluating emotional-motor interactions in physiological and pathological conditions.
Collapse
Affiliation(s)
- Alessandro Botta
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, Viale Benedetto XV/3, 16132, Genoa, Italy.,Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Giovanna Lagravinese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Bove
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, Viale Benedetto XV/3, 16132, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gaia Bonassi
- S.C. Medicina Fisica e Riabilitazione Ospedaliera, ASL4, Azienda Sanitaria Locale Chiavarese, Chiavari, Italy
| | - Alessio Avenanti
- Centro di Neuroscienze Cognitive and Dipartimento di Psicologia, Campus Cesena, Alma Mater Studiorum-University of Bologna, Cesena, Italy.,Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile
| | - Laura Avanzino
- Department of Experimental Medicine (DIMES), Section of Human Physiology, University of Genoa, Viale Benedetto XV/3, 16132, Genoa, Italy. .,IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
34
|
Dubbioso R, Bove M, Boccia D, D'Ambrosio V, Nolano M, Manganelli F, Iodice R. Neurophysiological and behavioural correlates of ocrelizumab therapy on manual dexterity in patients with primary progressive multiple sclerosis. J Neurol 2022; 269:4791-4801. [PMID: 35419681 PMCID: PMC9363320 DOI: 10.1007/s00415-022-11114-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022]
Abstract
Background Hand dexterity impairment is a key feature of disability in people with primary progressive multiple sclerosis (PPMS). So far, ocrelizumab, a recombinant humanized monoclonal antibody that selectively depletes CD20-expressing B cells, is the only therapy approved for PPMS and recent analysis reported its ability to reduce the risk of upper limb disability progression. However, the neural mechanisms underlying hand impairment in PPMS and the brain networks behind the effect of ocrelizumab on manual dexterity are not fully understood. Objective Main aims of our study were: (i) to investigate neurophysiological and behavioural correlates of hand function impairment in subjects with PPMS, and (ii) to use neurophysiologic and behavioural measures to track the effects of ocrelizumab therapy on manual dexterity. Methods Seventeen PPMS patients and 17 healthy-controls underwent routine neurophysiological protocols assessing the integrity of cortico-spinal and somatosensory pathways and advanced transcranial magnetic stimulation (TMS) protocols evaluating inhibitory (short and long interval intracortical inhibition, short-latency afferent inhibition) and facilitatory (motor thresholds, intracortical facilitation, short-interval intracortical facilitation) circuits in the primary motor cortex. All subjects also underwent behavioural analysis of hand dexterity by means of nine-hole peg test and finger movement analysis, and hand strength with handgrip and three-point pinch test. Neurophysiological and clinical assessments of hand functionality were also performed after 1 year of ocrelizumab therapy. Results At baseline PPMS patients displayed a significant impairment of hand dexterity and strength compared to healthy controls (all p < 0.03). Neurophysiological study disclosed prolonged latencies of standard somatosensory and motor evoked potentials (all p < 0.025) and an overall reduction of intracortical excitability at TMS protocols, involving both excitatory and inhibitory circuits. Importantly, hand dexterity impairment, indexed by delayed 9HPT, correlated with TMS protocols investigating cortical sensorimotor integration (short-latency afferent inhibition, SAI), p = 0.009. Both parameters, 9HPT (p = 0.01) and SAI (p = 0.01), displayed a significant improvement after 1 year of therapy with ocrelizumab. Conclusion Intracortical sensorimotor networks are involved in hand dexterity dysfunction of PPMS. Ocrelizumab therapy displays a beneficial effect on hand dexterity impairment most likely through intracortical networks implicated in fast sensorimotor integration.
Collapse
Affiliation(s)
- Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Via Sergio Pansini, 5. 80131, Napoli, Italy.
| | - Marco Bove
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Section of Human Physiology, Department of Experimental Medicine, Università Degli Studi Di Genova, 16132, Genoa, Italy
| | - Daniele Boccia
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Neuroscience Genetics, Maternal and Child Health (DINOGMI)Center of Excellence for Biomedical Research (CEBR), University of Genoa, RehabilitationGenoa, Ophthalmology, Italy
| | - Vincenzo D'Ambrosio
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Maria Nolano
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Via Sergio Pansini, 5. 80131, Napoli, Italy.,Department of Neurology, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Via Sergio Pansini, 5. 80131, Napoli, Italy
| | - Rosa Iodice
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Via Sergio Pansini, 5. 80131, Napoli, Italy
| |
Collapse
|
35
|
Starosta M, Cichoń N, Saluk-Bijak J, Miller E. Benefits from Repetitive Transcranial Magnetic Stimulation in Post-Stroke Rehabilitation. J Clin Med 2022; 11:jcm11082149. [PMID: 35456245 PMCID: PMC9030945 DOI: 10.3390/jcm11082149] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 02/04/2023] Open
Abstract
Stroke is an acute neurovascular central nervous system (CNS) injury and one of the main causes of long-term disability and mortality. Post-stroke rehabilitation as part of recovery is focused on relearning lost skills and regaining independence as much as possible. Many novel strategies in neurorehabilitation have been introduced. This review focuses on current evidence of the effectiveness of repetitive transcranial magnetic stimulation (rTMS), a noninvasive brain stimulation (NIBS), in post-stroke rehabilitation. Moreover, we present the effects of specific interventions, such as low-frequency or high-frequency rTMS therapy, on motor function, cognitive function, depression, and aphasia in post-stroke patients. Collected data suggest that high-frequency stimulation (5 Hz and beyond) produces an increase in cortical excitability, whereas low-frequency stimulation (≤1 Hz) decreases cortical excitability. Accumulated data suggest that rTMS is safe and can be used to modulate cortical excitability, which may improve overall performance. Side effects such as tingling sensation on the skin of the skull or headache are possible. Serious side effects such as epileptic seizures can be avoided by adhering to international safety guidelines. We reviewed clinical studies that present promising results in general recovery and stimulating neuroplasticity. This article is an overview of the current rTMS state of knowledge related to benefits in stroke, as well as its cellular and molecular mechanisms. In the stroke rehabilitation literature, there is a key methodological problem of creating double-blinding studies, which are very often impossible to conduct.
Collapse
Affiliation(s)
- Michał Starosta
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland;
- Correspondence:
| | - Natalia Cichoń
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Elżbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland;
| |
Collapse
|
36
|
Tian D, Izumi SI. Transcranial Magnetic Stimulation and Neocortical Neurons: The Micro-Macro Connection. Front Neurosci 2022; 16:866245. [PMID: 35495053 PMCID: PMC9039343 DOI: 10.3389/fnins.2022.866245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the operation of cortical circuits is an important and necessary task in both neuroscience and neurorehabilitation. The functioning of the neocortex results from integrative neuronal activity, which can be probed non-invasively by transcranial magnetic stimulation (TMS). Despite a clear indication of the direct involvement of cortical neurons in TMS, no explicit connection model has been made between the microscopic neuronal landscape and the macroscopic TMS outcome. Here we have performed an integrative review of multidisciplinary evidence regarding motor cortex neurocytology and TMS-related neurophysiology with the aim of elucidating the micro–macro connections underlying TMS. Neurocytological evidence from animal and human studies has been reviewed to describe the landscape of the cortical neurons covering the taxonomy, morphology, circuit wiring, and excitatory–inhibitory balance. Evidence from TMS studies in healthy humans is discussed, with emphasis on the TMS pulse and paradigm selectivity that reflect the underlying neural circuitry constitution. As a result, we propose a preliminary neuronal model of the human motor cortex and then link the TMS mechanisms with the neuronal model by stimulus intensity, direction of induced current, and paired-pulse timing. As TMS bears great developmental potential for both a probe and modulator of neural network activity and neurotransmission, the connection model will act as a foundation for future combined studies of neurocytology and neurophysiology, as well as the technical advances and application of TMS.
Collapse
Affiliation(s)
- Dongting Tian
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduates School of Medicine, Sendai, Japan
- *Correspondence: Dongting Tian,
| | - Shin-Ichi Izumi
- Department of Physical Medicine and Rehabilitation, Tohoku University Graduates School of Medicine, Sendai, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
- Shin-Ichi Izumi,
| |
Collapse
|
37
|
Boček V, Krbec M, Vaško P, Brabec K, Pavlíková M, Štětkářová I. Alteration of cortical but not spinal inhibitory circuits in idiopathic scoliosis. J Spinal Cord Med 2022; 45:186-193. [PMID: 32202478 PMCID: PMC8986185 DOI: 10.1080/10790268.2020.1739893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Background: The pathogenesis of adolescent idiopathic scoliosis (AIS), including the role of brain and spinal inhibitory circuits, is still poorly elucidated. The aim of this study was to identify which central inhibitory mechanisms are involved in the pathogenesis of AIS.Design: A prospective neurophysiological study, using a battery of neurophysiological tests, such as cutaneous (CuSP) and cortical (CoSP) silent periods, motor evoked potentials (MEP) and paired-pulse transcranial magnetic stimulation (ppTMS).Settings: Neurophysiological laboratory.Participants: Sixteen patients with AIS (14 females, median age 14.4) and healthy controls.Outcome measures: MEPs were obtained after transcranial magnetic stimulation (TMS) and recorded from the abductor pollicis muscle (APB). ppTMS was obtained at interval ratios (ISI) of 1, 2, 3, 6, 10, 15 and 20 ms. The cortical silent period (CoSP) was recorded from the APB. The cutaneous silent period (CuSP) was measured after painful stimuli delivered to the thumb while the subjects maintained voluntary contraction of the intrinsic hand muscles. The data were analyzed and compared with those from healthy subjects.Results: The CoSP duration was significantly prolonged in AIS patients. A significantly higher amplitude of ppTMS for ISI was found in all AIS patients, without remarkable left-right side differences. No significant difference in MEP latency or amplitude nor in the CuSP duration was obtained.Conclusion: Our observation demonstrates evidence of central nervous system involvement in adolescent idiopathic scoliosis (AIS). Lower intracortical inhibition, higher motor cortex excitability, and preserved spinal inhibitory circuits are the main findings of this study. A possible explanation of these changes could be attributed to impaired sensorimotor integration predominantly at the cortical level.
Collapse
Affiliation(s)
- Václav Boček
- Department of Neurology, Third Faculty of Medicine, Charles University and Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic,Correspondence to: Václav Boček, Department of Neurology, Third Faculty of Medicine, Charles University and Faculty Hospital Kralovske Vinohrady, Ruska 87, 100 00Prague 10, Czech Republic.
| | - Martin Krbec
- Department of Orthopedics and Traumatology, Third Faculty of Medicine, Charles University and Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Peter Vaško
- Department of Neurology, Third Faculty of Medicine, Charles University and Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Karel Brabec
- Department of Neurology, Third Faculty of Medicine, Charles University and Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic,Department of Orthopedics and Traumatology, Third Faculty of Medicine, Charles University and Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Markéta Pavlíková
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
| | - Ivana Štětkářová
- Department of Neurology, Third Faculty of Medicine, Charles University and Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| |
Collapse
|
38
|
Navid MS, Niazi IK, Lelic D, Amjad I, Kumari N, Shafique M, Holt K, Rashid U, Drewes AM, Haavik H. Chiropractic Spinal Adjustment Increases the Cortical Drive to the Lower Limb Muscle in Chronic Stroke Patients. Front Neurol 2022; 12:747261. [PMID: 35185747 PMCID: PMC8854235 DOI: 10.3389/fneur.2021.747261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to investigate the effects of a single session of chiropractic spinal adjustment on the cortical drive to the lower limb in chronic stroke patients. In a single-blinded, randomized controlled parallel design study, 29 individuals with chronic stroke and motor weakness in a lower limb were randomly divided to receive either chiropractic spinal adjustment or a passive movement control intervention. Before and immediately after the intervention, transcranial magnetic stimulation (TMS)-induced motor evoked potentials (MEPs) were recorded from the tibialis anterior (TA) muscle of the lower limb with the greatest degree of motor weakness. Differences in the averaged peak-peak MEP amplitude following interventions were calculated using a linear regression model. Chiropractic spinal adjustment elicited significantly larger MEP amplitude (pre = 0.24 ± 0.17 mV, post = 0.39 ± 0.23 mV, absolute difference = +0.15 mV, relative difference = +92%, p < 0.001) compared to the control intervention (pre = 0.15 ± 0.09 mV, post = 0.16 ± 0.09 mV). The results indicate that chiropractic spinal adjustment increases the corticomotor excitability of ankle dorsiflexor muscles in people with chronic stroke. Further research is required to investigate whether chiropractic spinal adjustment increases dorsiflexor muscle strength and walking function in people with stroke.
Collapse
Affiliation(s)
- Muhammad Samran Navid
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
| | - Imran Khan Niazi
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
- Faculty of Health and Environmental Sciences, Health and Rehabilitation Research Institute, AUT University, Auckland, New Zealand
- Department of Health Science and Technology, Centre for Sensory-Motor Interactions, Aalborg University, Aalborg, Denmark
- *Correspondence: Imran Khan Niazi
| | - Dina Lelic
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
| | - Imran Amjad
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Islamabad, Pakistan
- Faculty of Engineering and Applied Sciences, Riphah International University, Islamabad, Pakistan
| | - Nitika Kumari
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
- Faculty of Health and Environmental Sciences, Health and Rehabilitation Research Institute, AUT University, Auckland, New Zealand
| | - Muhammad Shafique
- Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Islamabad, Pakistan
| | - Kelly Holt
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
| | - Usman Rashid
- Faculty of Health and Environmental Sciences, Health and Rehabilitation Research Institute, AUT University, Auckland, New Zealand
| | - Asbjørn Mohr Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Heidi Haavik
- Centre for Chiropractic Research, New Zealand College of Chiropractic, Auckland, New Zealand
| |
Collapse
|
39
|
Suppa A, Asci F, Guerra A. Transcranial magnetic stimulation as a tool to induce and explore plasticity in humans. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:73-89. [PMID: 35034759 DOI: 10.1016/b978-0-12-819410-2.00005-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activity-dependent synaptic plasticity is the main theoretical framework to explain mechanisms of learning and memory. Synaptic plasticity can be explored experimentally in animals through various standardized protocols for eliciting long-term potentiation and long-term depression in hippocampal and cortical slices. In humans, several non-invasive protocols of repetitive transcranial magnetic stimulation and transcranial direct current stimulation have been designed and applied to probe synaptic plasticity in the primary motor cortex, as reflected by long-term changes in motor evoked potential amplitudes. These protocols mimic those normally used in animal studies for assessing long-term potentiation and long-term depression. In this chapter, we first discuss the physiologic basis of theta-burst stimulation, paired associative stimulation, and transcranial direct current stimulation. We describe the current biophysical and theoretical models underlying the molecular mechanisms of synaptic plasticity and metaplasticity, defined as activity-dependent changes in neural functions that modulate subsequent synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), in the human motor cortex including calcium-dependent plasticity, spike-timing-dependent plasticity, the role of N-methyl-d-aspartate-related transmission and gamma-aminobutyric-acid interneuronal activity. We also review the putative microcircuits responsible for synaptic plasticity in the human motor cortex. We critically readdress the issue of variability in studies investigating synaptic plasticity and propose available solutions. Finally, we speculate about the utility of future studies with more advanced experimental approaches.
Collapse
Affiliation(s)
- Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed Institute, Pozzilli (IS), Italy.
| | | | | |
Collapse
|
40
|
Davis M, Wang Y, Bao S, Buchanan JJ, Wright DL, Lei Y. The Interactions Between Primary Somatosensory and Motor Cortex during Human Grasping Behaviors. Neuroscience 2021; 485:1-11. [PMID: 34848261 DOI: 10.1016/j.neuroscience.2021.11.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/26/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022]
Abstract
Afferent inputs to the primary somatosensory cortex (S1) are differentially processed during precision and power grip in humans. However, it remains unclear how S1 interacts with the primary motor cortex (M1) during these two grasping behaviors. To address this question, we measured short-latency afferent inhibition (SAI), reflecting S1-M1 interactions via thalamo-cortical pathways, using paired-pulse transcranial magnetic stimulation (TMS) during precision and power grip. The TMS coil over the hand representation of M1 was oriented in the posterior-anterior (PA) and anterior-posterior (AP) direction to activate distinct sets of corticospinal neurons. We found that SAI increased during precision compared with power grip when AP, but not PA, currents were applied. Notably, SAI tested in the AP direction were similar during two-digit than five-digit precision grip. The M1 receives movement information from S1 through direct cortico-cortical pathways, so intra-hemispheric S1-M1 interactions using dual-site TMS were also evaluated. Stimulation of S1 attenuated M1 excitability (S1-M1 inhibition) during precision and power grip, while the S1-M1 inhibition ratio remained similar across tasks. Taken together,our findings suggest that distinct neural mechanisms for S1-M1 interactions mediate precision and power grip, presumably by modulating neural activity along thalamo-cortical pathways.
Collapse
Affiliation(s)
- Madison Davis
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, United States
| | - Yiyu Wang
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, United States
| | - Shancheng Bao
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, United States
| | - John J Buchanan
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, United States
| | - David L Wright
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, United States
| | - Yuming Lei
- Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
41
|
Guerra A, Belvisi D, Berardelli A. The importance of assessing interactions between different circuits in primary motor cortex in Parkinson's disease. Clin Neurophysiol 2021; 132:2668-2670. [PMID: 34364745 DOI: 10.1016/j.clinph.2021.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/18/2021] [Indexed: 01/01/2023]
Affiliation(s)
| | - Daniele Belvisi
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy.
| |
Collapse
|
42
|
Chia CH, Tang XW, Cao Y, Cao HT, Zhang W, Wu JF, Zhu YL, Chen Y, Lin Y, Wu Y, Zhang Z, Yuan TF, Hu RP. Cortical excitability signatures for the degree of sleepiness in human. eLife 2021; 10:65099. [PMID: 34313218 PMCID: PMC8373378 DOI: 10.7554/elife.65099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Sleep is essential in maintaining physiological homeostasis in the brain. While the underlying mechanism is not fully understood, a 'synaptic homeostasis' theory has been proposed that synapses continue to strengthen during awake and undergo downscaling during sleep. This theory predicts that brain excitability increases with sleepiness. Here, we collected transcranial magnetic stimulation measurements in 38 subjects in a 34 hr program and decoded the relationship between cortical excitability and self-report sleepiness using advanced statistical methods. By utilizing a combination of partial least squares regression and mixed-effect models, we identified a robust pattern of excitability changes, which can quantitatively predict the degree of sleepiness. Moreover, we found that synaptic strengthen occurred in both excitatory and inhibitory connections after sleep deprivation. In sum, our study provides supportive evidence for the synaptic homeostasis theory in human sleep and clarifies the process of synaptic strength modulation during sleepiness.
Collapse
Affiliation(s)
- Chin-Hsuan Chia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin-Wei Tang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yue Cao
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hua-Teng Cao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Wei Zhang
- Institute of Brain Science, Fudan University, Shanghai, China
| | - Jun-Fa Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu-Lian Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Chen
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Lin
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhe Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental HealthCenter, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Rui-Ping Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Neige C, Rannaud Monany D, Lebon F. Exploring cortico-cortical interactions during action preparation by means of dual-coil transcranial magnetic stimulation: A systematic review. Neurosci Biobehav Rev 2021; 128:678-692. [PMID: 34274404 DOI: 10.1016/j.neubiorev.2021.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 05/31/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Action preparation is characterized by a set of complex and distributed processes that occur in multiple brain areas. Interestingly, dual-coil transcranial magnetic stimulation (TMS) is a relevant technique to probe effective connectivity between cortical areas, with a high temporal resolution. In the current systematic review, we aimed at providing a detailed picture of the cortico-cortical interactions underlying action preparation focusing on dual-coil TMS studies. We considered four theoretical processes (impulse control, action selection, movement initiation and action reprogramming) and one task modulator (movement complexity). The main findings highlight 1) the interplay between primary motor cortex (M1) and premotor, prefrontal and parietal cortices during action preparation, 2) the varying (facilitatory or inhibitory) cortico-cortical influence depending on the theoretical processes and the TMS timing, and 3) the key role of the supplementary motor area-M1 interactions that shape the preparation of simple and complex movements. These findings are of particular interest for clinical perspectives, with a need to better characterize functional connectivity deficiency in clinical population with altered action preparation.
Collapse
Affiliation(s)
- Cécilia Neige
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Dylan Rannaud Monany
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Florent Lebon
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France.
| |
Collapse
|
44
|
Corp DT, Bereznicki HGK, Clark GM, Youssef GJ, Fried PJ, Jannati A, Davies CB, Gomes-Osman J, Kirkovski M, Albein-Urios N, Fitzgerald PB, Koch G, Di Lazzaro V, Pascual-Leone A, Enticott PG. Large-scale analysis of interindividual variability in single and paired-pulse TMS data. Clin Neurophysiol 2021; 132:2639-2653. [PMID: 34344609 DOI: 10.1016/j.clinph.2021.06.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 01/01/2023]
Abstract
OBJECTIVE This study brought together over 60 transcranial magnetic stimulation (TMS) researchers to create the largest known sample of individual participant single and paired-pulse TMS data to date, enabling a more comprehensive evaluation of factors driving response variability. METHODS Authors of previously published studies were contacted and asked to share deidentified individual TMS data. Mixed-effects regression investigated a range of individual and study level variables for their contribution to variability in response to single and paired-pulse TMS data. RESULTS 687 healthy participant's data were pooled across 35 studies. Target muscle, pulse waveform, neuronavigation use, and TMS machine significantly predicted an individual's single-pulse TMS amplitude. Baseline motor evoked potential amplitude, motor cortex hemisphere, and motor threshold (MT) significantly predicted short-interval intracortical inhibition response. Baseline motor evoked potential amplitude, test stimulus intensity, interstimulus interval, and MT significantly predicted intracortical facilitation response. Age, hemisphere, and TMS machine significantly predicted MT. CONCLUSIONS This large-scale analysis has identified a number of factors influencing participants' responses to single and paired-pulse TMS. We provide specific recommendations to minimise interindividual variability in single and paired-pulse TMS data. SIGNIFICANCE This study has used large-scale analyses to give clarity to factors driving variance in TMS data. We hope that this ongoing collaborative approach will increase standardisation of methods and thus the utility of single and paired-pulse TMS.
Collapse
Affiliation(s)
- Daniel T Corp
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Hannah G K Bereznicki
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Gillian M Clark
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - George J Youssef
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Centre for Adolescent Health, Murdoch Children's Research Institute, Parkville, Australia
| | - Peter J Fried
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ali Jannati
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charlotte B Davies
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Joyce Gomes-Osman
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Physical Therapy, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Melissa Kirkovski
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Natalia Albein-Urios
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Central Clinical School, The Alfred and Monash University, Melbourne, Australia; Epworth Centre for Innovation in Mental Health, Epworth HealthCare and Central Clinical School, Melbourne, Australia
| | - Giacomo Koch
- Non-invasive Brain Stimulation Unit, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology and Neurobiology, Università Campus Bio-Medico, Rome, Italy
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA; Guttmann Brain Health Institute, Institut Guttmann de Neurorehabilitació, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | | |
Collapse
|
45
|
Leukel C, Kurz A. Determining the types of descending waves from transcranial magnetic stimulation measured with conditioned H-reflexes in humans. Eur J Neurosci 2021; 54:5038-5046. [PMID: 33966324 DOI: 10.1111/ejn.15308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/09/2021] [Accepted: 05/02/2021] [Indexed: 11/30/2022]
Abstract
Non-invasive techniques are scarce with which human (motor) cortical mechanisms can be investigated. In a series of previous experiments, we have applied an advanced form of conditioning technique with transcranial magnetic stimulation (TMS) and peripheral nerve stimulation by which excitability changes at the laminar level in the primary motor cortex can be estimated. This method builds on the assumption that the first of subsequent corticospinal waves from TMS which is assessed with H-reflexes (called early facilitation) results from indirect excitation of corticospinal neurons in motor cortex (I-wave) and not direct excitation of corticospinal axons (D-wave). So far, we have not provided strong experimental evidence that this is actually the case. In the present study, we therefore compared temporal differences of the early facilitation between transcranial magnetic and electrical stimulation (TES). TES is known to excite the axons of corticospinal neurons. TES in our study caused a temporal shift of the early facilitation of H-reflexes in all subjects compared to TMS, which indicates that the early facilitation with TMS is indeed produced by an I-wave. Additionally, we investigated temporal shifts of the early facilitation with different TMS intensities and two TMS coils. It has long been known that TMS with higher intensities can induce a D-wave. Accordingly, we found that TMS with an intensity of 150% of resting motor threshold compared to 130%/110% results in a temporal shift of the early facilitation, indicating the presence of a D-wave. This effect was dependent on the coil type.
Collapse
Affiliation(s)
- Christian Leukel
- Department of Sport Science, University of Freiburg, Freiburg, Germany.,Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Alexander Kurz
- Department of Sport Science, University of Freiburg, Freiburg, Germany.,Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
46
|
Jarczok TA, Roebruck F, Pokorny L, Biermann L, Roessner V, Klein C, Bender S. Single-Pulse TMS to the Temporo-Occipital and Dorsolateral Prefrontal Cortex Evokes Lateralized Long Latency EEG Responses at the Stimulation Site. Front Neurosci 2021; 15:616667. [PMID: 33790732 PMCID: PMC8006291 DOI: 10.3389/fnins.2021.616667] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction Transcranial magnetic stimulation (TMS)–evoked potentials (TEPs) allow for probing cortical functions in health and pathology. However, there is uncertainty whether long-latency TMS-evoked potentials reflect functioning of the targeted cortical area. It has been suggested that components such as the TMS-evoked N100 are stereotypical and related to nonspecific sensory processes rather than transcranial effects of the changing magnetic field. In contrast, TEPs that vary according to the targeted brain region and are systematically lateralized toward the stimulated hemisphere can be considered to reflect activity in the stimulated brain region resulting from transcranial electromagnetic induction. Methods TMS with concurrent 64-channel electroencephalography (EEG) was sequentially performed in homologous areas of both hemispheres. One sample of healthy adults received TMS to the dorsolateral prefrontal cortex; another sample received TMS to the temporo-occipital cortex. We analyzed late negative TEP deflections corresponding to the N100 component in motor cortex stimulation. Results TEP topography varied according to the stimulation target site. Long-latency negative TEP deflections were systematically lateralized (higher in ipsilateral compared to contralateral electrodes) in electrodes over the stimulated brain region. A calculation that removes evoked components that are not systematically lateralized relative to the stimulated hemisphere revealed negative maxima located around the respective target sites. Conclusion TEPs contain long-latency negative components that are lateralized toward the stimulated hemisphere and have their topographic maxima at the respective stimulation sites. They can be differentiated from co-occurring components that are invariable across different stimulation sites (probably reflecting coactivation of peripheral sensory afferences) according to their spatiotemporal patterns. Lateralized long-latency TEP components located at the stimulation site likely reflect activity evoked in the targeted cortex region by direct transcranial effects and are therefore suitable for assessing cortical functions.
Collapse
Affiliation(s)
- Tomasz A Jarczok
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Friederike Roebruck
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lena Pokorny
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lea Biermann
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Veit Roessner
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christoph Klein
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Clinic for Child and Adolescent Psychiatry, Medical Faculty, University of Freiburg, Freiburg, Germany.,Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Stephan Bender
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
47
|
Turi Z, Normann C, Domschke K, Vlachos A. Transcranial Magnetic Stimulation in Psychiatry: Is There a Need for Electric Field Standardization? Front Hum Neurosci 2021; 15:639640. [PMID: 33767616 PMCID: PMC7985083 DOI: 10.3389/fnhum.2021.639640] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/16/2021] [Indexed: 01/29/2023] Open
Abstract
Single-pulse and repetitive transcranial magnetic stimulation (rTMS) are used in clinical practice for diagnostic and therapeutic purposes. However, rTMS-based therapies that lead to a significant and sustained reduction in neuropsychiatric symptoms remain scarce. While it is generally accepted that the stimulation frequency plays a crucial role in producing the therapeutic effects of rTMS, less attention has been dedicated to determining the role of the electric field strength. Conventional threshold-based intensity selection approaches, such as the resting motor threshold, produce variable stimulation intensities and electric fields across participants and cortical regions. Insufficient standardization of electric field strength may contribute to the variability of rTMS effects and thus therapeutic success. Computational approaches that can prospectively optimize the electric field and standardize it across patients and cortical targets may overcome some of these limitations. Here, we discuss these approaches and propose that electric field standardization will be instrumental for translational science frameworks (e.g., multiscale modeling and basic science approaches) aimed at deciphering the subcellular, cellular, and network mechanisms of rTMS. Advances in understanding these mechanisms will be important for optimizing rTMS-based therapies in psychiatry.
Collapse
Affiliation(s)
- Zsolt Turi
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center—Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center—Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center Brain Links Brain Tools, University of Freiburg, Freiburg, Germany
| |
Collapse
|
48
|
Choi CH, Iordanishvili E, Shah NJ, Binkofski F. Magnetic resonance spectroscopy with transcranial direct current stimulation to explore the underlying biochemical and physiological mechanism of the human brain: A systematic review. Hum Brain Mapp 2021; 42:2642-2671. [PMID: 33634527 PMCID: PMC8090777 DOI: 10.1002/hbm.25388] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022] Open
Abstract
A large body of molecular and neurophysiological evidence connects synaptic plasticity to specific functions and energy metabolism in particular areas of the brain. Furthermore, altered plasticity and energy regulation has been associated with a number of neuropsychiatric disorders. A favourable approach enabling the modulation of neuronal excitability and energy in humans is to stimulate the brain using transcranial direct current stimulation (tDCS) and then to observe the effect on neurometabolites using magnetic resonance spectroscopy (MRS). In this way, a well-defined modulation of brain energy and excitability can be achieved using a dedicated tDCS protocol to a predetermined brain region. This systematic review was guided by the preferred reporting items for systematic reviews and meta-analysis and summarises recent literature studying the effect of tDCS on neurometabolites in the human brain as measured by proton or phosphorus MRS. Limitations and recommendations are discussed for future research. The findings of this review provide clear evidence for the potential of using tDCS and MRS to examine and understand the effect of neurometabolites in the in vivo human brain.
Collapse
Affiliation(s)
- Chang-Hoon Choi
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
| | - Elene Iordanishvili
- Division of Clinical Cognitive Sciences, Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany.,Institute of Neuroscience and Medicine - 11, JARA, Forschungszentrum Jülich, Jülich, Germany.,JARA - BRAIN - Translational Medicine, Aachen, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Ferdinand Binkofski
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany.,Division of Clinical Cognitive Sciences, Department of Neurology, RWTH Aachen University Hospital, Aachen, Germany.,JARA - BRAIN - Translational Medicine, Aachen, Germany
| |
Collapse
|
49
|
Thorstensen JR, Taylor JL, Kavanagh JJ. Human corticospinal-motoneuronal output is reduced with 5-HT 2 receptor antagonism. J Neurophysiol 2021; 125:1279-1288. [PMID: 33596722 DOI: 10.1152/jn.00698.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Animal models indicate that serotonin (5-HT) release onto motoneurons facilitates motor output, particularly during strong motor activities. However, evidence for 5-HT effects during human movement are limited. This study examined how antagonism of the 5-HT2 receptor, which is a 5-HT receptor that promotes motoneuron excitability, affects human movement. Ten healthy participants (24.2 ± 1.9 yr) ingested 8 mg of cyproheptadine (competitive 5-HT2 antagonist) in a double-blinded, placebo-controlled, repeated-measures design. Transcranial magnetic stimulation (TMS) of the motor cortex was used to elicit motor evoked potentials (MEPs) from biceps brachii. First, stimulus-response curves (90%-160% active motor threshold) were obtained during very weak elbow flexions (10% of maximal). Second, to determine if 5-HT effects are scaled to the intensity of muscle contraction, TMS at a fixed intensity was applied during elbow flexions of 20%, 40%, 60%, 80%, and 100% of maximal. Cyproheptadine reduced the size of MEPs across the stimulus-response curves (P = 0.045). Notably, MEP amplitude was 22.3% smaller for the cyproheptadine condition for the strongest TMS intensity. In addition, cyproheptadine reduced maximal torque (P = 0.045), lengthened the biceps silent period during maximal elbow flexions (P = 0.037), and reduced superimposed twitch amplitude during moderate-intensity elbow flexions (P = 0.035). This study presents novel evidence that 5-HT2 receptors influence corticospinal-motoneuronal output, which was particularly evident when a large number of descending inputs to motoneurons were active. Although it is likely that antagonism of 5-HT2 receptors reduces motoneuron gain to ionotropic inputs, supraspinal mechanisms may have also contributed to the study findings.NEW & NOTEWORTHY Voluntary contractions and responses to magnetic stimulation of the motor cortex are dependent on serotonin activity in the central nervous system. 5-HT2 antagonism decreased evoked potential size to high-intensity stimulation, and reduced torque and lengthened inhibitory silent periods during maximal contractions. We provide novel evidence that 5-HT2 receptors are involved in muscle activation, where 5-HT effects are strongest when a large number of descending inputs activate motoneurons.
Collapse
Affiliation(s)
- Jacob R Thorstensen
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Janet L Taylor
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia.,Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia
| | - Justin J Kavanagh
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
50
|
Resting fMRI-guided TMS results in subcortical and brain network modulation indexed by interleaved TMS/fMRI. Exp Brain Res 2021; 239:1165-1178. [PMID: 33560448 DOI: 10.1007/s00221-021-06036-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/08/2021] [Indexed: 12/31/2022]
Abstract
Traditional non-invasive imaging methods describe statistical associations of functional co-activation over time. They cannot easily establish hierarchies in communication as done in non-human animals using invasive methods. Here, we interleaved functional MRI (fMRI) recordings with non-invasive transcranial magnetic stimulation (TMS) to map causal communication between the frontal cortex and subcortical target structures including the subgenual anterior cingulate cortex (sgACC) and the amygdala. Seed-based correlation maps from each participant's resting fMRI scan determined individual stimulation sites with high temporal correlation to targets for the subsequent TMS/fMRI session(s). The resulting TMS/fMRI images were transformed to quantile responses, so that regions of high-/low-quantile response corresponded to the areas of the brain with the most positive/negative evoked response relative to the global brain response. We then modeled the average quantile response for a given region (e.g., structure or network) to determine whether TMS was effective in the relative engagement of the downstream targets. Both the sgACC and amygdala were differentially influenced by TMS. Furthermore, we found that the sgACC distributed brain network was modulated in response to fMRI-guided TMS. The amygdala, but not its distributed network, also responded to TMS. Our findings suggest that individual targeting and brain response measurements reflect causal circuit mapping to the sgACC and amygdala in humans. These results set the stage to further map circuits in the brain and link circuit pathway integrity to clinical intervention outcomes, especially when the intervention targets specific pathways and networks as is possible with TMS.
Collapse
|