1
|
Benarroch E. What Is the Role of the Dentate Nucleus in Normal and Abnormal Cerebellar Function? Neurology 2024; 103:e209636. [PMID: 38954796 DOI: 10.1212/wnl.0000000000209636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
|
2
|
Todd NPM, Govender S, Keller PE, Colebatch JG. Electrophysiological Activity from the Eye Muscles, Cerebellum and Cerebrum During Reflexive (Classical Pavlovian) Versus Voluntary (Ivanov-Smolensky) Eye-Blink Conditioning. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1086-1100. [PMID: 37840094 PMCID: PMC11102391 DOI: 10.1007/s12311-023-01613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
We report an experiment to investigate the role of the cerebellum and cerebrum in motor learning of timed movements. Eleven healthy human subjects were recruited to perform two experiments, the first was a classical eye-blink conditioning procedure with an auditory tone as conditional stimulus (CS) and vestibular unconditional stimulus (US) in the form of a double head-tap. In the second experiment, subjects were asked to blink voluntarily in synchrony with the double head-tap US preceded by a CS, a form of Ivanov-Smolensky conditioning in which a command or instruction is associated with the US. Electrophysiological recordings were made of extra-ocular EMG and EOG at infra-ocular sites (IO1/2), EEG from over the frontal eye fields (C3'/C4') and from over the posterior fossa over the cerebellum for the electrocerebellogram (ECeG). The behavioural outcomes of the experiments showed weak reflexive conditioning for the first experiment despite the double tap but robust, well-synchronised voluntary conditioning for the second. Voluntary conditioned blinks were larger than the reflex ones. For the voluntary conditioning experiment, a contingent negative variation (CNV) was also present in the EEG leads prior to movement, and modulation of the high-frequency EEG occurred during movement. US-related cerebellar activity was prominent in the high-frequency ECeG for both experiments, while conditioned response-related cerebellar activity was additionally present in the voluntary conditioning experiment. These results demonstrate a role for the cerebellum in voluntary (Ivanov-Smolensky) as well as in reflexive (classical Pavlovian) conditioning.
Collapse
Affiliation(s)
- Neil P M Todd
- UNSW Clinical School, Randwick Campus, Sydney, NSW, 2052, Australia.
- Department of Psychology, University of Exeter, Exeter, EX4 4QC, UK.
| | - Sendhil Govender
- Neuroscience Research Australia, UNSW, Sydney, NSW, 2052, Australia
| | - Peter E Keller
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University Penrith, Kingswood, NSW, 2751, Australia
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, 8000, Aarhus, Denmark
| | - James G Colebatch
- UNSW Clinical School, Randwick Campus, Sydney, NSW, 2052, Australia
- Neuroscience Research Australia, UNSW, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
van Hoogstraten WS, Lute MCC, Liu Z, Broersen R, Mangili L, Kros L, Gao Z, Wang X, van den Maagdenberg AMJM, De Zeeuw CI. Disynaptic Inhibitory Cerebellar Control Over Caudal Medial Accessory Olive. eNeuro 2024; 11:ENEURO.0262-23.2023. [PMID: 38242692 PMCID: PMC10875979 DOI: 10.1523/eneuro.0262-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 01/21/2024] Open
Abstract
The olivocerebellar system, which is critical for sensorimotor performance and learning, functions through modules with feedback loops. The main feedback to the inferior olive comes from the cerebellar nuclei (CN), which are predominantly GABAergic and contralateral. However, for the subnucleus d of the caudomedial accessory olive (cdMAO), a crucial region for oculomotor and upper body movements, the source of GABAergic input has yet to be identified. Here, we demonstrate the existence of a disynaptic inhibitory projection from the medial CN (MCN) to the cdMAO via the superior colliculus (SC) by exploiting retrograde, anterograde, and transsynaptic viral tracing at the light microscopic level as well as anterograde classical and viral tracing combined with immunocytochemistry at the electron microscopic level. Retrograde tracing in Gad2-Cre mice reveals that the cdMAO receives GABAergic input from the contralateral SC. Anterograde transsynaptic tracing uncovered that the SC neurons receiving input from the contralateral MCN provide predominantly inhibitory projections to contralateral cdMAO, ipsilateral to the MCN. Following ultrastructural analysis of the monosynaptic projection about half of the SC terminals within the contralateral cdMAO are GABAergic. The disynaptic GABAergic projection from the MCN to the ipsilateral cdMAO mirrors that of the monosynaptic excitatory projection from the MCN to the contralateral cdMAO. Thus, while completing the map of inhibitory inputs to the olivary subnuclei, we established that the MCN inhibits the cdMAO via the contralateral SC, highlighting a potential push-pull mechanism in directional gaze control that appears unique in terms of laterality and polarity among olivocerebellar modules.
Collapse
Affiliation(s)
| | - Marit C C Lute
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam 1105 BA, The Netherlands
| | - Zhiqiang Liu
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
| | - Robin Broersen
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
| | - Luca Mangili
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
| | - Lieke Kros
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
| | - Xiaolu Wang
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
| | - Arn M J M van den Maagdenberg
- Departments of Neurology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
- Human Genetics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam 1105 BA, The Netherlands
| |
Collapse
|
4
|
Morrison LM, Huang H, Handler HP, Fu M, Bushart DD, Pappas SS, Orr HT, Shakkottai VG. Increased intrinsic membrane excitability is associated with hypertrophic olivary degeneration in spinocerebellar ataxia type 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563657. [PMID: 37961407 PMCID: PMC10634770 DOI: 10.1101/2023.10.23.563657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
One of the characteristic areas of brainstem degeneration across multiple spinocerebellar ataxias (SCAs) is the inferior olive (IO), a medullary nucleus that plays a key role in motor learning. In addition to its vulnerability in SCAs, the IO is also susceptible to a distinct pathology known as hypertrophic olivary degeneration (HOD). Clinically, HOD has been exclusively observed after lesions in the brainstem disrupt inhibitory afferents to the IO. Here, for the first time, we describe HOD in another context: spinocerebellar ataxia type 1 (SCA1). Using the genetically-precise SCA1 knock-in mouse model (SCA1-KI; both sexes used), we assessed SCA1-associated changes in IO neuron structure and function. Concurrent with degeneration, we found that SCA1-KI IO neurons are hypertrophic, exhibiting early dendrite lengthening and later somatic expansion. Unlike in previous descriptions of HOD, we observed no clear loss of IO inhibitory innervation; nevertheless, patch-clamp recordings from brainstem slices reveal that SCA1-KI IO neurons are hyperexcitable. Rather than synaptic disinhibition, we identify increases in intrinsic membrane excitability as the more likely mechanism underlying this novel SCA1 phenotype. Specifically, transcriptome analysis indicates that SCA1-KI IO hyperexcitability is associated with a reduced medullary expression of ion channels responsible for spike afterhyperpolarization (AHP) in IO neurons - a result that has a functional consequence, as SCA1-KI IO neuron spikes exhibit a diminished AHP. These results reveal membrane excitability as a potential link between disparate causes of IO degeneration, suggesting that HOD can result from any cause, intrinsic or extrinsic, that increases excitability of the IO neuron membrane.
Collapse
Affiliation(s)
- Logan M. Morrison
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Haoran Huang
- Medical Scientist Training Program, The Ohio State University, Columbus, OH 43210 USA
- College of Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Hillary P. Handler
- Molecular Diagnostics Laboratory, University of Minnesota Fairview Medical Center, Minneapolis, MN 55455, USA
| | - Min Fu
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David D. Bushart
- College of Medicine, The Ohio State University, Columbus, OH 43210 USA
| | - Samuel S. Pappas
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Harry T. Orr
- Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Vikram G. Shakkottai
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Hoang H, Tsutsumi S, Matsuzaki M, Kano M, Kawato M, Kitamura K, Toyama K. Dynamic organization of cerebellar climbing fiber response and synchrony in multiple functional components reduces dimensions for reinforcement learning. eLife 2023; 12:e86340. [PMID: 37712651 PMCID: PMC10531405 DOI: 10.7554/elife.86340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023] Open
Abstract
Cerebellar climbing fibers convey diverse signals, but how they are organized in the compartmental structure of the cerebellar cortex during learning remains largely unclear. We analyzed a large amount of coordinate-localized two-photon imaging data from cerebellar Crus II in mice undergoing 'Go/No-go' reinforcement learning. Tensor component analysis revealed that a majority of climbing fiber inputs to Purkinje cells were reduced to only four functional components, corresponding to accurate timing control of motor initiation related to a Go cue, cognitive error-based learning, reward processing, and inhibition of erroneous behaviors after a No-go cue. Changes in neural activities during learning of the first two components were correlated with corresponding changes in timing control and error learning across animals, indirectly suggesting causal relationships. Spatial distribution of these components coincided well with boundaries of Aldolase-C/zebrin II expression in Purkinje cells, whereas several components are mixed in single neurons. Synchronization within individual components was bidirectionally regulated according to specific task contexts and learning stages. These findings suggest that, in close collaborations with other brain regions including the inferior olive nucleus, the cerebellum, based on anatomical compartments, reduces dimensions of the learning space by dynamically organizing multiple functional components, a feature that may inspire new-generation AI designs.
Collapse
Affiliation(s)
- Huu Hoang
- ATR Neural Information Analysis LaboratoriesKyotoJapan
| | | | | | - Masanobu Kano
- Department of Neurophysiology, The University of TokyoTokyoJapan
- International Research Center for Neurointelligence (WPI-IRCN), The University of TokyoTokyoJapan
| | - Mitsuo Kawato
- ATR Brain Information Communication Research Laboratory GroupKyotoJapan
| | - Kazuo Kitamura
- Department of Neurophysiology, University of YamanashiKofuJapan
| | | |
Collapse
|
6
|
Streng ML, Popa LS, Ebner TJ. Cerebellar Representations of Errors and Internal Models. CEREBELLUM (LONDON, ENGLAND) 2022; 21:814-820. [PMID: 35471627 PMCID: PMC9420826 DOI: 10.1007/s12311-022-01406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/08/2022] [Indexed: 05/12/2023]
Abstract
After decades of study, a comprehensive understanding of cerebellar function remains elusive. Several hypotheses have been put forward over the years, including that the cerebellum functions as a forward internal model. Integrated into the forward model framework is the long-standing view that Purkinje cell complex spike discharge encodes error information. In this brief review, we address both of these concepts based on our recordings of cerebellar Purkinje cells over the last decade as well as newer findings from the literature. During a high-dimensionality tracking task requiring continuous error processing, we find that complex spike discharge provides a rich source of non-error signals to Purkinje cells, indicating that the classical error encoding role ascribed to climbing fiber input needs revision. Instead, the simple spike discharge of Purkinje cells carries robust predictive and feedback signals of performance errors, as well as kinematics. These simple spike signals are consistent with a forward internal model. We also show that the information encoded in the simple spike is dynamically adjusted by the complex spike firing. Synthesis of these observations leads to the hypothesis that complex spikes convey behavioral state changes, possibly acting to select and maintain forward models.
Collapse
Affiliation(s)
- Martha L Streng
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Laurentiu S Popa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Sato SD, Choi JT. Corticospinal drive is associated with temporal walking adaptation in both healthy young and older adults. Front Aging Neurosci 2022; 14:920475. [PMID: 36062156 PMCID: PMC9436318 DOI: 10.3389/fnagi.2022.920475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Healthy aging is associated with reduced corticospinal drive to leg muscles during walking. Older adults also exhibit slower or reduced gait adaptation compared to young adults. The objective of this study was to determine age-related changes in the contribution of corticospinal drive to ankle muscles during walking adaptation. Electromyography (EMG) from the tibialis anterior (TA), soleus (SOL), medial, and lateral gastrocnemius (MGAS, LGAS) were recorded from 20 healthy young adults and 19 healthy older adults while they adapted walking on a split-belt treadmill. We quantified EMG-EMG coherence in the beta-gamma (15-45 Hz) and alpha-band (8-15 Hz) frequencies. Young adults demonstrated higher coherence in both the beta-gamma band coherence and alpha band coherence, although effect sizes were greater in the beta-gamma frequency. The results showed that slow leg TA-TA coherence in the beta-gamma band was the strongest predictor of early adaptation in double support time. In contrast, early adaptation in step length symmetry was predicted by age group alone. These findings suggest an important role of corticospinal drive in adapting interlimb timing during walking in both young and older adults.
Collapse
Affiliation(s)
- Sumire D. Sato
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Julia T. Choi
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, United States
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
8
|
Wong SB, Wang YM, Lin CC, Geng SK, Vanegas-Arroyave N, Pullman SL, Kuo SH, Pan MK. Cerebellar Oscillations in Familial and Sporadic Essential Tremor. CEREBELLUM (LONDON, ENGLAND) 2022; 21:425-431. [PMID: 34341893 PMCID: PMC8970339 DOI: 10.1007/s12311-021-01309-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
Enhanced cerebellar oscillations have recently been identified in essential tremor (ET) patients as a key pathophysiological change. Since ET is considered a heterogeneous group of diseases, we investigated whether cerebellar oscillations differ in ET subtypes (familial vs. sporadic). This study aims to determine cerebellar physiology in familial and sporadic ET. Using surface electroencephalogram, we studied cerebellar physiology in 40 ET cases (n = 22 familial and n = 18 sporadic) and 20 age-matched controls. Both familial and sporadic ET cases had an increase in the intensity of cerebellar oscillations when compared to controls. Interestingly, cerebellar oscillations correlated with tremor severity in familial ET but not in sporadic ET. Our study demonstrated that ET cases have enhanced cerebellar oscillations, and the different relationships between cerebellar oscillations and tremor severity in familial and sporadic ET suggest diverse cerebellar pathophysiology.
Collapse
Affiliation(s)
- Shi-Bing Wong
- Department of Pediatrics, Taipei Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, 23142, Taiwan
- School of Medicine, Tzu Chi University, Hualien, 97071, Taiwan
| | - Yi-Mei Wang
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, 64041, Taipei, Taiwan
- Department of Education and Medical Research, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, 64041, Taipei, Taiwan
| | - Chih-Chun Lin
- Department of Neurology, Columbia University, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, 10032, USA
| | - Scott Kun Geng
- Department of Computer Science, Columbia University, New York, NY, 10027, USA
| | | | - Seth L Pullman
- Department of Neurology, Columbia University, New York, NY, 10032, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, 10032, USA
| | - Ming-Kai Pan
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, 64041, Taipei, Taiwan.
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, 10617, Taiwan.
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, 10617, Taiwan.
- Department of Medical Research, National Taiwan University Hospital, Taipei, 10002, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
9
|
Chang KH, French IT, Liang WK, Lo YS, Wang YR, Cheng ML, Huang NE, Wu HC, Lim SN, Chen CM, Juan CH. Evaluating the Different Stages of Parkinson's Disease Using Electroencephalography With Holo-Hilbert Spectral Analysis. Front Aging Neurosci 2022; 14:832637. [PMID: 35619940 PMCID: PMC9127298 DOI: 10.3389/fnagi.2022.832637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/08/2022] [Indexed: 01/04/2023] Open
Abstract
Electroencephalography (EEG) can reveal the abnormalities of dopaminergic subcortico-cortical circuits in patients with Parkinson's disease (PD). However, conventional time-frequency analysis of EEG signals cannot fully reveal the non-linear processes of neural activities and interactions. A novel Holo-Hilbert Spectral Analysis (HHSA) was applied to reveal non-linear features of resting state EEG in 99 PD patients and 59 healthy controls (HCs). PD patients demonstrated a reduction of β bands in frontal and central regions, and reduction of γ bands in central, parietal, and temporal regions. Compared with early-stage PD patients, late-stage PD patients demonstrated reduction of β bands in the posterior central region, and increased θ and δ2 bands in the left parietal region. θ and β bands in all brain regions were positively correlated with Hamilton depression rating scale scores. Machine learning algorithms using three prioritized HHSA features demonstrated "Bag" with the best accuracy of 0.90, followed by "LogitBoost" with an accuracy of 0.89. Our findings strengthen the application of HHSA to reveal high-dimensional frequency features in EEG signals of PD patients. The EEG characteristics extracted by HHSA are important markers for the identification of depression severity and diagnosis of PD.
Collapse
Affiliation(s)
- Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Isobel Timothea French
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Central University and Academia Sinica, Taipei, Taiwan
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, Taoyuan, Taiwan
| | - Yen-Shi Lo
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Ru Wang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- Clinical Phenome Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Norden E. Huang
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, Taoyuan, Taiwan
- Data Analysis and Application Laboratory, The First Institute of Oceanography, Qingdao, China
| | - Hsiu-Chuan Wu
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Siew-Na Lim
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
- Cognitive Intelligence and Precision Healthcare Research Center, National Central University, Taoyuan, Taiwan
| |
Collapse
|
10
|
Protein kinase Cγ in cerebellar Purkinje cells regulates Ca 2+-activated large-conductance K + channels and motor coordination. Proc Natl Acad Sci U S A 2022; 119:2113336119. [PMID: 35145028 PMCID: PMC8851492 DOI: 10.1073/pnas.2113336119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2021] [Indexed: 11/18/2022] Open
Abstract
The cerebellum, the site where protein kinase C (PKC) was discovered, contains the highest amount of PKCγ in the central nervous system. PKCγ in the cerebellum is exclusively confined to Purkinje cells (PCs), sole outputs from the cerebellar cortex. Systemic PKCγ-knockout mice show impaired motor coordination; however, the cause of motor defects remains unknown. Here we show that activation of PKCγ suppresses the Ca2+-activated large-conductance K+ (BK) channels located along the PC dendrites. A consequential increase in the membrane resistance attenuates electrical signal decay during propagation, resulting in an altered complex spike waveform. Our results suggest that synaptically activated PKCγ in PCs plays a critical role in motor coordination by negative modulation of BK currents. The cerebellum, the site where protein kinase C (PKC) was first discovered, contains the highest amount of PKC in the central nervous system, with PKCγ being the major isoform. Systemic PKCγ-knockout (KO) mice showed impaired motor coordination and deficient pruning of surplus climbing fibers (CFs) from developing cerebellar Purkinje cells (PCs). However, the physiological significance of PKCγ in the mature cerebellum and the cause of motor incoordination remain unknown. Using adeno-associated virus vectors targeting PCs, we showed that impaired motor coordination was restored by re-expression of PKCγ in mature PKCγ-KO mouse PCs in a kinase activity–dependent manner, while normal motor coordination in mature Prkcgfl/fl mice was impaired by the Cre-dependent removal of PKCγ from PCs. Notably, the rescue or removal of PKCγ from mature PKCγ-KO or Prkcgfl/fl mice, respectively, did not affect the CF innervation profile of PCs, suggesting the presence of a mechanism distinct from multiple CF innervation of PCs for the motor defects in PKCγ-deficient mice. We found marked potentiation of Ca2+-activated large-conductance K+ (BK) channel currents in PKCγ-deficient mice, as compared to wild-type mice, which decreased the membrane resistance, resulting in attenuation of the electrical signal during the propagation and significant alterations of the complex spike waveform. These changes in PKCγ-deficient mice were restored by the rescue of PKCγ or pharmacological suppression of BK channels. Our results suggest that PKCγ is a critical regulator that negatively modulates BK currents in PCs, which significantly influences PC output from the cerebellar cortex and, eventually, motor coordination.
Collapse
|
11
|
Kim SY, Lim W. Influence of various temporal recoding on pavlovian eyeblink conditioning in the cerebellum. Cogn Neurodyn 2021; 15:1067-1099. [PMID: 34790271 DOI: 10.1007/s11571-021-09673-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 02/08/2021] [Accepted: 03/10/2021] [Indexed: 11/26/2022] Open
Abstract
We consider the Pavlovian eyeblink conditioning (EBC) via repeated presentation of paired conditioned stimulus (tone) and unconditioned stimulus (US; airpuff). In an effective cerebellar ring network, we change the connection probability p c from Golgi to granule (GR) cells, and make a dynamical classification of various firing patterns of the GR cells. Individual GR cells are thus found to show various well- and ill-matched firing patterns relative to the US timing signal. Then, these variously-recoded signals are fed into the Purkinje cells (PCs) through the parallel-fibers (PFs). Based on such unique dynamical classification of various firing patterns, we make intensive investigations on the influence of various temporal recoding (i.e., firing patterns) of the GR cells on the synaptic plasticity of the PF-PC synapses and the subsequent learning process for the EBC. We first note that the variously-recoded PF signals are effectively depressed by the (error-teaching) instructor climbing-fiber (CF) signals from the inferior olive neuron. In the case of well-matched PF signals, they are strongly depressed through strong long-term depression (LTD) by the instructor CF signals due to good association between the in-phase PF and the instructor CF signals. On the other hand, practically no LTD occurs for the ill-matched PF signals because most of them have no association with the instructor CF signals. This kind of "effective" depression at the PF-PC synapses coordinates firings of PCs effectively, which then makes effective inhibitory coordination on the cerebellar nucleus neuron [which elicits conditioned response (CR; eyeblink)]. When the learning trial passes a threshold, acquisition of CR begins. In this case, the timing degree T d of CR becomes good due to presence of the ill-matched firing group which plays a role of protection barrier for the timing. With further increase in the number of trials, strength S of CR (corresponding to the amplitude of eyelid closure) increases due to strong LTD in the well-matched firing group, while its timing degree T d decreases. In this way, the well- and the ill-matched firing groups play their own roles for the strength and the timing of CR, respectively. Thus, with increasing the number of learning trials, the (overall) learning efficiency degree L e (taking into consideration both timing and strength of CR) for the CR is increased, and eventually it becomes saturated. Finally, we also discuss dependence of the variety degree for firing patterns of the GR cells and the saturated learning efficiency degree L e of the CR on p c and their relations.
Collapse
Affiliation(s)
- Sang-Yoon Kim
- Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu, 42411 Korea
| | - Woochang Lim
- Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu, 42411 Korea
| |
Collapse
|
12
|
Abstract
Nectins are immunoglobulin-like cell adhesion molecules constituting a family with four members, nectin-1, nectin-2, nectin-3, and nectin-4. In the brain, nectin-2 as well as nectin-1 and nectin-3 are expressed whereas nectin-4 is hardly expressed. In the nervous system, physiological functions of nectin-1 and nectin-3, such as synapse formation, mossy fiber trajectory regulation, interneurite affinity, contextual fear memory formation, and stress-related mental disorders, have been revealed. Nectin-2 is ubiquitously expressed in non-neuronal tissues and various nectin-2 functions in non-nervous systems have been extensively investigated, but nectin-2 functions in the brain have not been revealed until recently. Recent findings have revealed that nectin-2 is expressed in the specific areas of the brain and plays important roles, such as homeostasis of astrocytes and neurons and the formation of synapses. Moreover, a single nucleotide polymorphism in the human NECTIN2 gene is associated with Alzheimer's disease. We here summarize recent progress in our understanding of nectin-2 functions in the brain.
Collapse
|
13
|
Miguel-Tomé S, Llinás RR. Broadening the definition of a nervous system to better understand the evolution of plants and animals. PLANT SIGNALING & BEHAVIOR 2021; 16:1927562. [PMID: 34120565 PMCID: PMC8331040 DOI: 10.1080/15592324.2021.1927562] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 05/10/2023]
Abstract
Most textbook definitions recognize only animals as having nervous systems. However, for the past couple decades, botanists have been meticulously studying long-distance signaling systems in plants, and some researchers have stated that plants have a simple nervous system. Thus, an academic conflict has emerged between those who defend and those who deny the existence of a nervous system in plants. This article analyses that debate, and we propose an alternative to answering yes or no: broadening the definition of a nervous system to include plants. We claim that a definition broader than the current one, which is based only on a phylogenetic viewpoint, would be helpful in obtaining a deeper understanding of how evolution has driven the features of signal generation, transmission and processing in multicellular beings. Also, we propose two possible definitions and exemplify how broader a definition allows for new viewpoints on the evolution of plants, animals and the nervous system.
Collapse
Affiliation(s)
- Sergio Miguel-Tomé
- Grupo De Investigación En Minería De Datos (Mida), Universidad De Salamanca, Salamanca, Spain
| | - Rodolfo R. Llinás
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, USA
| |
Collapse
|
14
|
Two-Photon Laser Ablation and In Vivo Wide-Field Imaging of Inferior Olive Neurons Revealed the Recovery of Olivocerebellar Circuits in Zebrafish. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168357. [PMID: 34444107 PMCID: PMC8391264 DOI: 10.3390/ijerph18168357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022]
Abstract
The cerebellum, a brain region with a high degree of plasticity, is pivotal in motor control, learning, and cognition. The cerebellar reserve is the capacity of the cerebellum to respond and adapt to various disorders via resilience and reversibility. Although structural and functional recovery has been reported in mammals and has attracted attention regarding treatments for cerebellar dysfunction, such as spinocerebellar degeneration, the regulatory mechanisms of the cerebellar reserve are largely unidentified, particularly at the circuit level. Herein, we established an optical approach using zebrafish, an ideal vertebrate model in optical techniques, neuroscience, and developmental biology. By combining two-photon laser ablation of the inferior olive (IO) and long-term non-invasive imaging of "the whole brain" at a single-cell resolution, we succeeded in visualization of the morphological changes occurring in the IO neuron population and showed at a single-cell level that structural remodeling of the olivocerebellar circuit occurred in a relatively short period. This system, in combination with various functional analyses, represents a novel and powerful approach for uncovering the mechanisms of the cerebellar reserve, and highlights the potential of the zebrafish model to elucidate the organizing principles of neuronal circuits and their homeostasis in health and disease.
Collapse
|
15
|
Abstract
Epilepsy is the fourth most common neurological disorder, but current treatment options provide limited efficacy and carry the potential for problematic adverse effects. There is an immense need to develop new therapeutic interventions in epilepsy, and targeting areas outside the seizure focus for neuromodulation has shown therapeutic value. While not traditionally associated with epilepsy, anatomical, clinical, and electrophysiological studies suggest the cerebellum can play a role in seizure networks, and importantly, may be a potential therapeutic target for seizure control. However, previous interventions targeting the cerebellum in both preclinical and clinical studies have produced mixed effects on seizures. These inconsistent results may be due in part to the lack of specificity inherent with open-loop electrical stimulation interventions. More recent studies, using more targeted closed-loop optogenetic approaches, suggest the possibility of robust seizure inhibition via cerebellar modulation for a range of seizure types. Therefore, while the mechanisms of cerebellar inhibition of seizures have yet to be fully elucidated, the cerebellum should be thoroughly revisited as a potential target for therapeutic intervention in epilepsy. This article is part of the Special Issue "NEWroscience 2018.
Collapse
|
16
|
Power L, Pathirana P, Horne M, Milne S, Marriott A, Szmulewicz DJ. Instrumented Objective Clinical Examination of Cerebellar Ataxia: the Upper and Lower Limb-a Review. THE CEREBELLUM 2021; 21:145-158. [PMID: 33852136 DOI: 10.1007/s12311-021-01253-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/25/2021] [Indexed: 11/27/2022]
Abstract
Cerebellar dysfunction results in impairments in co-ordination or 'ataxia'. Bedside examination of cerebellar function has changed little since the early nineteenth century with the exception being the oculomotor examination which has become instrumented. Otherwise, competence and confidence in performing the clinical assessment relies heavily on the skill and experience of the clinician. Potentially, instrumented objective measurement will more accurately assess the severity of ataxia and the changes brought about by advancing therapies in pharmaceutical trials and in rehabilitation intervention. This study describes instrumented versions of several bedside tests of cerebellar function, including rhythmic tapping of the hand (RTH), finger-nose test (FNT), dysdiadochokinesia (DDK), ramp tracking (RMT), ballistic tracking (BT), rhythmic tapping of the foot (RTF) and the heel shin (HST) examination which were validated against scores from Ataxia Rating Scales (ARS) such as the Scale of Assessment and Rating of Ataxia (SARA). While all of the instrumented tests accurately distinguished between ataxic subjects and controls, there was a difference in performance, with the best four performing upper limb tests being RTH, FNT, DDK and BT. A combination of BT plus RTH provided the best correlation with the SARA and outperformed a combination of all the bedside tests (Spearman 0.8; p < 0.001 compared to 0.68; p < 0.001 for the combined set) in identifying the presence and severity of ataxia. This indicates that there is redundancy in the information provided by the bedside tests and that adding other tests to BT plus RTH does not add accuracy to the assessment of ataxia. This analysis highlighted the need for metrics that could be generalised to each of the assessments of ataxia, so, in turn, domains of stability, timing, accuracy and rhythmicity (STAR domains) were developed and compared to the SARA. The STAR criteria could potentially influence the future of instrumented assessment in CA and pave the way for further research into the objective measurement of the cerebellar examination.
Collapse
Affiliation(s)
- Laura Power
- Royal Victorian Eye and Ear Hospital, Eye and Ear on the Park, East Melbourne, Victoria, Australia. .,Dizzy Day Clinic, Burnley, Victoria, Australia.
| | | | - Malcolm Horne
- Florey Institute of Neuroscience, Parkville, Victoria, Australia
| | - Sarah Milne
- Bruce Lefroy Centre, Murdoch Children's Research Institute, Parkville, Victoria, Australia.,School of Primary and Allied Health Care, Monash University, Frankston, Victoria, Australia.,Physiotherapy Department, Monash Health, Cheltenham, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | | | - David J Szmulewicz
- Royal Victorian Eye and Ear Hospital, Eye and Ear on the Park, East Melbourne, Victoria, Australia.,Cerebellar Ataxia Clinic, Alfred Health, Melbourne, Victoria, Australia
| |
Collapse
|
17
|
Thanawalla AR, Chen AI, Azim E. The Cerebellar Nuclei and Dexterous Limb Movements. Neuroscience 2020; 450:168-183. [PMID: 32652173 PMCID: PMC7688491 DOI: 10.1016/j.neuroscience.2020.06.046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/03/2020] [Accepted: 06/30/2020] [Indexed: 01/21/2023]
Abstract
Dexterous forelimb movements like reaching, grasping, and manipulating objects are fundamental building blocks of the mammalian motor repertoire. These behaviors are essential to everyday activities, and their elaboration underlies incredible accomplishments by human beings in art and sport. Moreover, the susceptibility of these behaviors to damage and disease of the nervous system can lead to debilitating deficits, highlighting a need for a better understanding of function and dysfunction in sensorimotor control. The cerebellum is central to coordinating limb movements, as defined in large part by Joseph Babinski and Gordon Holmes describing motor impairment in patients with cerebellar lesions over 100 years ago (Babinski, 1902; Holmes, 1917), and supported by many important human and animal studies that have been conducted since. Here, with a focus on output pathways of the cerebellar nuclei across mammalian species, we describe forelimb movement deficits observed when cerebellar circuits are perturbed, the mechanisms through which these circuits influence motor output, and key challenges in defining how the cerebellum refines limb movement.
Collapse
Affiliation(s)
- Ayesha R Thanawalla
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Albert I Chen
- Nanyang Technological University (NTU), School of Biological Sciences, 11 Mandalay Road, Singapore 308232, Singapore; A*STAR, Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 308232, Singapore.
| | - Eiman Azim
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
18
|
Effect of diverse recoding of granule cells on optokinetic response in a cerebellar ring network with synaptic plasticity. Neural Netw 2020; 134:173-204. [PMID: 33316723 DOI: 10.1016/j.neunet.2020.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022]
Abstract
We consider a cerebellar ring network for the optokinetic response (OKR), and investigate the effect of diverse recoding of granule (GR) cells on OKR by varying the connection probability pc from Golgi to GR cells. For an optimal value of pc∗(=0.06), individual GR cells exhibit diverse spiking patterns which are in-phase, anti-phase, or complex out-of-phase with respect to their population-averaged firing activity. Then, these diversely-recoded signals via parallel fibers (PFs) from GR cells are effectively depressed by the error-teaching signals via climbing fibers from the inferior olive which are also in-phase ones. Synaptic weights at in-phase PF-Purkinje cell (PC) synapses of active GR cells are strongly depressed via strong long-term depression (LTD), while those at anti-phase and complex out-of-phase PF-PC synapses are weakly depressed through weak LTD. This kind of "effective" depression (i.e., strong/weak LTD) at the PF-PC synapses causes a big modulation in firings of PCs, which then exert effective inhibitory coordination on the vestibular nucleus (VN) neuron (which evokes OKR). For the firing of the VN neuron, the learning gain degree Lg, corresponding to the modulation gain ratio, increases with increasing the learning cycle, and it saturates at about the 300th cycle. By varying pc from pc∗, we find that a plot of saturated learning gain degree Lg∗ versus pc forms a bell-shaped curve with a peak at pc∗ (where the diversity degree in spiking patterns of GR cells is also maximum). Consequently, the more diverse in recoding of GR cells, the more effective in motor learning for the OKR adaptation.
Collapse
|
19
|
Red nucleus structure and function: from anatomy to clinical neurosciences. Brain Struct Funct 2020; 226:69-91. [PMID: 33180142 PMCID: PMC7817566 DOI: 10.1007/s00429-020-02171-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
Abstract
The red nucleus (RN) is a large subcortical structure located in the ventral midbrain. Although it originated as a primitive relay between the cerebellum and the spinal cord, during its phylogenesis the RN shows a progressive segregation between a magnocellular part, involved in the rubrospinal system, and a parvocellular part, involved in the olivocerebellar system. Despite exhibiting distinct evolutionary trajectories, these two regions are strictly tied together and play a prominent role in motor and non-motor behavior in different animal species. However, little is known about their function in the human brain. This lack of knowledge may have been conditioned both by the notable differences between human and non-human RN and by inherent difficulties in studying this structure directly in the human brain, leading to a general decrease of interest in the last decades. In the present review, we identify the crucial issues in the current knowledge and summarize the results of several decades of research about the RN, ranging from animal models to human diseases. Connecting the dots between morphology, experimental physiology and neuroimaging, we try to draw a comprehensive overview on RN functional anatomy and bridge the gap between basic and translational research.
Collapse
|
20
|
Geminiani A, Pedrocchi A, D'Angelo E, Casellato C. Response Dynamics in an Olivocerebellar Spiking Neural Network With Non-linear Neuron Properties. Front Comput Neurosci 2019; 13:68. [PMID: 31632258 PMCID: PMC6779816 DOI: 10.3389/fncom.2019.00068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/10/2019] [Indexed: 12/14/2022] Open
Abstract
Sensorimotor signals are integrated and processed by the cerebellar circuit to predict accurate control of actions. In order to investigate how single neuron dynamics and geometrical modular connectivity affect cerebellar processing, we have built an olivocerebellar Spiking Neural Network (SNN) based on a novel simplification algorithm for single point models (Extended Generalized Leaky Integrate and Fire, EGLIF) capturing essential non-linear neuronal dynamics (e.g., pacemaking, bursting, adaptation, oscillation and resonance). EGLIF models specifically tuned for each neuron type were embedded into an olivocerebellar scaffold reproducing realistic spatial organization and physiological convergence and divergence ratios of connections. In order to emulate the circuit involved in an eye blink response to two associated stimuli, we modeled two adjacent olivocerebellar microcomplexes with a common mossy fiber input but different climbing fiber inputs (either on or off). EGLIF-SNN model simulations revealed the emergence of fundamental response properties in Purkinje cells (burst-pause) and deep nuclei cells (pause-burst) similar to those reported in vivo. The expression of these properties depended on the specific activation of climbing fibers in the microcomplexes and did not emerge with scaffold models using simplified point neurons. This result supports the importance of embedding SNNs with realistic neuronal dynamics and appropriate connectivity and anticipates the scale-up of EGLIF-SNN and the embedding of plasticity rules required to investigate cerebellar functioning at multiple scales.
Collapse
Affiliation(s)
- Alice Geminiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,NEARLab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Alessandra Pedrocchi
- NEARLab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
21
|
Geminiani A, Casellato C, D'Angelo E, Pedrocchi A. Complex Electroresponsive Dynamics in Olivocerebellar Neurons Represented With Extended-Generalized Leaky Integrate and Fire Models. Front Comput Neurosci 2019; 13:35. [PMID: 31244635 PMCID: PMC6563830 DOI: 10.3389/fncom.2019.00035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/20/2019] [Indexed: 11/24/2022] Open
Abstract
The neurons of the olivocerebellar circuit exhibit complex electroresponsive dynamics, which are thought to play a fundamental role for network entraining, plasticity induction, signal processing, and noise filtering. In order to reproduce these properties in single-point neuron models, we have optimized the Extended-Generalized Leaky Integrate and Fire (E-GLIF) neuron through a multi-objective gradient-based algorithm targeting the desired input–output relationships. In this way, E-GLIF was tuned toward the unique input–output properties of Golgi cells, granule cells, Purkinje cells, molecular layer interneurons, deep cerebellar nuclei cells, and inferior olivary cells. E-GLIF proved able to simulate the complex cell-specific electroresponsive dynamics of the main olivocerebellar neurons including pacemaking, adaptation, bursting, post-inhibitory rebound excitation, subthreshold oscillations, resonance, and phase reset. The integration of these E-GLIF point-neuron models into olivocerebellar Spiking Neural Networks will allow to evaluate the impact of complex electroresponsive dynamics at the higher scales, up to motor behavior, in closed-loop simulations of sensorimotor tasks.
Collapse
Affiliation(s)
- Alice Geminiani
- NEARLab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Alessandra Pedrocchi
- NEARLab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
22
|
Vrieler N, Loyola S, Yarden-Rabinowitz Y, Hoogendorp J, Medvedev N, Hoogland TM, De Zeeuw CI, De Schutter E, Yarom Y, Negrello M, Torben-Nielsen B, Uusisaari MY. Variability and directionality of inferior olive neuron dendrites revealed by detailed 3D characterization of an extensive morphological library. Brain Struct Funct 2019; 224:1677-1695. [PMID: 30929054 PMCID: PMC6509097 DOI: 10.1007/s00429-019-01859-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 03/09/2019] [Indexed: 12/14/2022]
Abstract
The inferior olive (IO) is an evolutionarily conserved brain stem structure and its output activity plays a major role in the cerebellar computation necessary for controlling the temporal accuracy of motor behavior. The precise timing and synchronization of IO network activity has been attributed to the dendro-dendritic gap junctions mediating electrical coupling within the IO nucleus. Thus, the dendritic morphology and spatial arrangement of IO neurons governs how synchronized activity emerges in this nucleus. To date, IO neuron structural properties have been characterized in few studies and with small numbers of neurons; these investigations have described IO neurons as belonging to two morphologically distinct types, “curly” and “straight”. In this work we collect a large number of individual IO neuron morphologies visualized using different labeling techniques and present a thorough examination of their morphological properties and spatial arrangement within the olivary neuropil. Our results show that the extensive heterogeneity in IO neuron dendritic morphologies occupies a continuous range between the classically described “curly” and “straight” types, and that this continuum is well represented by a relatively simple measure of “straightness”. Furthermore, we find that IO neuron dendritic trees are often directionally oriented. Combined with an examination of cell body density distributions and dendritic orientation of adjacent IO neurons, our results suggest that the IO network may be organized into groups of densely coupled neurons interspersed with areas of weaker coupling.
Collapse
Affiliation(s)
- Nora Vrieler
- Department of Neurobiology, Institute of Life Sciences and Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem, Israel
| | - Sebastian Loyola
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.,Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Yasmin Yarden-Rabinowitz
- Department of Neurobiology, Institute of Life Sciences and Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem, Israel
| | - Jesse Hoogendorp
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Nikolay Medvedev
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Tycho M Hoogland
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.,Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Chris I De Zeeuw
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.,Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Erik De Schutter
- Computational Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Yosef Yarom
- Department of Neurobiology, Institute of Life Sciences and Edmond and Lily Safra Center for Brain Sciences, Hebrew University, Jerusalem, Israel
| | - Mario Negrello
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Marylka Yoe Uusisaari
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
| |
Collapse
|
23
|
Abstract
Making predictions and validating the predictions against actual sensory information is thought to be one of the most fundamental functions of the nervous system. A growing body of evidence shows that the neural mechanisms controlling behavior, both in motor and non-motor domains, rely on prediction errors, the discrepancy between predicted and actual information. The cerebellum has been viewed as a key component of the motor system providing predictions about upcoming movements and receiving feedback about motor errors. Consequentially, studies of cerebellar function have focused on the motor domain with less consideration for the wider context in which movements are generated. However, motor learning experiments show that cognition makes important contributions to motor adaptation that involves the cerebellum. One of the more successful theoretical frameworks for understanding motor control and cerebellar function is the forward internal model which states that the cerebellum predicts the sensory consequences of the motor commands and is involved in computing sensory prediction errors by comparing the predictions to the sensory feedback. The forward internal model was applied and tested mainly for effector movements, raising the question whether cerebellar encoding of behavior reflects task performance measures associated with cognitive involvement. Electrophysiological studies based on pseudo-random tracking in monkeys show that the discharge of Purkinje cell, the sole output neurons of the cerebellar cortex, encodes predictive and feedback signals not only of the effector kinematics but also of task performance. The implications are that the cerebellum implements both effector and task performance forward models and the latter are consistent with the cognitive contributions observed during motor learning. The implications of these findings include insights into recent psychophysical observations on moving with reduced feedback and motor learning. The findings also support the cerebellum's place in hierarchical generative models that work in concert to refine predictions about behavior and the world. Therefore, cerebellar representations bridge motor and non-motor domains and provide a better understanding of cerebellar function within the functional architecture of the brain.
Collapse
Affiliation(s)
| | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
24
|
Abstract
The climbing fiber-Purkinje cell circuit is one of the most powerful and highly conserved in the central nervous system. Climbing fibers exert a powerful excitatory action that results in a complex spike in Purkinje cells and normal functioning of the cerebellum depends on the integrity of climbing fiber-Purkinje cell synapse. Over the last 50 years, multiple hypotheses have been put forward on the role of the climbing fibers and complex spikes in cerebellar information processing and motor control. Central to these theories is the nature of the interaction between the low-frequency complex spike discharge and the high-frequency simple spike firing of Purkinje cells. This review examines the major hypotheses surrounding the action of the climbing fiber-Purkinje cell projection, discussing both supporting and conflicting findings. The review describes newer findings establishing that climbing fibers and complex spikes provide predictive signals about movement parameters and that climbing fiber input controls the encoding of behavioral information in the simple spike firing of Purkinje cells. Finally, we propose the dynamic encoding hypothesis for complex spike function that strives to integrate established and newer findings.
Collapse
Affiliation(s)
- Martha L Streng
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth Street S.E, Minneapolis, MN, 55455, USA
| | - Laurentiu S Popa
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth Street S.E, Minneapolis, MN, 55455, USA
| | - Timothy J Ebner
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth Street S.E, Minneapolis, MN, 55455, USA.
| |
Collapse
|
25
|
Pan MK, Ni CL, Wu YC, Li YS, Kuo SH. Animal Models of Tremor: Relevance to Human Tremor Disorders. Tremor Other Hyperkinet Mov (N Y) 2018; 8:587. [PMID: 30402338 PMCID: PMC6214818 DOI: 10.7916/d89s37mv] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/10/2018] [Indexed: 12/17/2022] Open
Abstract
Background Tremor is the most common movement disorder; however, the pathophysiology of tremor remains elusive. While several neuropathological alterations in tremor disorders have been observed in post-mortem studies of human brains, a full understanding of the relationship between brain circuitry alterations and tremor requires testing in animal models. Additionally, tremor animal models are critical for our understanding of tremor pathophysiology, and/or to serve as a platform for therapy development. Methods A PubMed search was conducted in May 2018 to identify published papers for review. Results The methodology used in most studies on animal models of tremor lacks standardized measurement of tremor frequency and amplitude; instead, these studies are based on the visual inspection of phenotypes, which may fail to delineate tremor from other movement disorders such as ataxia. Of the animal models with extensive tremor characterization, harmaline-induced rodent tremor models provide an important framework showing that rhythmic and synchronous neuronal activities within the olivocerebellar circuit can drive action tremor. In addition, dopamine-depleted monkey and mouse models may develop rest tremor, highlighting the role of dopamine in rest tremor generation. Finally, other animal models of tremor have involvement of the cerebellar circuitry, leading to altered Purkinje cell physiology. Discussion Both the cerebellum and the basal ganglia are likely to play a role in tremor generation. While the cerebellar circuitry can generate rhythmic movements, the nigrostriatal system is likely to modulate the tremor circuit. Tremor disorders are heterogeneous in nature. Therefore, each animal model may represent a subset of tremor disorders, which collectively can advance our understanding of tremor.
Collapse
Affiliation(s)
- Ming-Kai Pan
- Department of Medical Research, National Taiwan University, Taipei, TW
| | - Chun-Lun Ni
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yeuh-Chi Wu
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Yong-Shi Li
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
26
|
Sarpong GA, Vibulyaseck S, Luo Y, Biswas MS, Fujita H, Hirano S, Sugihara I. Cerebellar modules in the olivo-cortico-nuclear loop demarcated by pcdh10 expression in the adult mouse. J Comp Neurol 2018; 526:2406-2427. [PMID: 30004589 DOI: 10.1002/cne.24499] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 12/12/2022]
Abstract
Topographic connection between corresponding compartments of the cerebellar cortex, cerebellar nuclei, and inferior olive form parallel modules, which are essential for the cerebellar function. Compared to the striped cortical compartmentalization which are labeled by molecular markers, such as aldolase C (Aldoc) or zebrin II, the presumed corresponding organization of the cerebellar nuclei and inferior olivary nucleus has not been much clarified. We focused on the expression pattern of pcdh10 gene coding cell adhesion molecule protocadherin 10 (Pcdh10) in adult mice. In the cortex, pcdh10 was strongly expressed in (a) Aldoc-positive vermal stripes a+//2+ in lobules VI-VII, (b) paravermal narrow stripes c+, d+, 4b+, 5a+ in crus I and neighboring lobules, and (c) paravermal stripes 4+//5+ across all lobules from lobule III to paraflocculus. In the cerebellar nuclei, pcdh10 was expressed strongly in the caudal part of the medial nucleus and the lateral part of the posterior interposed nucleus which project less to the medulla or to the red nucleus than to other metencephalic, mesencephalic, and diencephalic areas. In the inferior olive, pcdh10 was expressed strongly in the rostral and medioventrocaudal parts of the medial accessory olive which has connection with the mesencephalic areas rather than the spinal cord. Olivocerebellar and corticonuclear axonal labeling confirmed that the three cortical pcdh10-positive areas were topographically connected to the nuclear and olivary pcdh10-positive areas, demonstrating their coincidence with modular structures in the olivo-cortico-nuclear loop. We speculate that some of these modules are functionally involved in various nonsomatosensorimotor tasks via their afferent and efferent connections.
Collapse
Affiliation(s)
- Gideon A Sarpong
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Suteera Vibulyaseck
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuanjun Luo
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mohammad S Biswas
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirofumi Fujita
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shinji Hirano
- Department of Biology, Kansai Medical University, Osaka-fu, Japan
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
27
|
Sox14 Is Required for a Specific Subset of Cerebello-Olivary Projections. J Neurosci 2018; 38:9539-9550. [PMID: 30242051 DOI: 10.1523/jneurosci.1456-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/02/2018] [Accepted: 09/04/2018] [Indexed: 02/02/2023] Open
Abstract
We identify Sox14 as an exclusive marker of inhibitory projection neurons in the lateral and interposed, but not the medial, cerebellar nuclei. Sox14+ neurons make up ∼80% of Gad1+ neurons in these nuclei and are indistinguishable by soma size from other inhibitory neurons. All Sox14+ neurons of the lateral and interposed cerebellar nuclei are generated at approximately E10/10.5 and extend long-range, predominantly contralateral projections to the inferior olive. A small Sox14+ population in the adjacent vestibular nucleus "Y" sends an ipsilateral projection to the oculomotor nucleus. Cerebellar Sox14+ and glutamatergic projection neurons assemble in non-overlapping populations at the nuclear transition zone, and their integration into a coherent nucleus depends on Sox14 function. Targeted ablation of Sox14+ cells by conditional viral expression of diphtheria toxin leads to significantly impaired motor learning. Contrary to expectations, associative learning is unaffected by unilateral Sox14+ neuron elimination in the interposed and lateral nuclei.SIGNIFICANCE STATEMENT The cerebellar nuclei are central to cerebellar function, yet how they modulate and process cerebellar inputs and outputs is still primarily unknown. Our study gives a direct insight into how nucleo-olivary projection neurons are generated, their projections, and their function in an intact behaving mouse. These neurons play a critical conceptual role in all models of cerebellar function, and this study represents the first specific analysis of their molecular identity and function and offers a powerful model for future investigation of cerebellar function in motor control and learning.
Collapse
|
28
|
Popa LS, Streng ML, Ebner TJ. Purkinje Cell Representations of Behavior: Diary of a Busy Neuron. Neuroscientist 2018; 25:241-257. [PMID: 29985093 DOI: 10.1177/1073858418785628] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fundamental for understanding cerebellar function is determining the representations in Purkinje cell activity, the sole output of the cerebellar cortex. Up to the present, the most accurate descriptions of the information encoded by Purkinje cells were obtained in the context of motor behavior and reveal a high degree of heterogeneity of kinematic and performance error signals encoded. The most productive framework for organizing Purkinje cell firing representations is provided by the forward internal model hypothesis. Direct tests of this hypothesis show that individual Purkinje cells encode two different forward models simultaneously, one for effector kinematics and one for task performance. Newer results demonstrate that the timing of simple spike encoding of motor parameters spans an extend interval of up to ±2 seconds. Furthermore, complex spike discharge is not limited to signaling errors, can be predictive, and dynamically controls the information in the simple spike firing to meet the demands of upcoming behavior. These rich, diverse, and changing representations highlight the integrative aspects of cerebellar function and offer the opportunity to generalize the cerebellar computational framework over both motor and non-motor domains.
Collapse
Affiliation(s)
- Laurentiu S Popa
- 1 Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Martha L Streng
- 1 Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Timothy J Ebner
- 1 Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
29
|
Zhang Y, Zhang Z, Xiao S, Tien J, Le S, Le T, Jan LY, Yang H. Inferior Olivary TMEM16B Mediates Cerebellar Motor Learning. Neuron 2017; 95:1103-1111.e4. [PMID: 28858616 DOI: 10.1016/j.neuron.2017.08.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/17/2017] [Accepted: 08/04/2017] [Indexed: 01/31/2023]
Abstract
Ca2+-activated ion channels shape membrane excitability and Ca2+ dynamics in response to cytoplasmic Ca2+ elevation. Compared to the Ca2+-activated K+ channels, known as BK and SK channels, the physiological importance of Ca2+-activated Cl- channels (CaCCs) in neurons has been largely overlooked. Here we report that CaCCs coexist with BK and SK channels in inferior olivary (IO) neurons that send climbing fibers to innervate cerebellar Purkinje cells for the control of motor learning and timing. Ca2+ influx through the dendritic high-threshold voltage-gated Ca2+ channels activates CaCCs, which contribute to membrane repolarization of IO neurons. Loss of TMEM16B expression resulted in the absence of CaCCs in IO neurons, leading to markedly diminished action potential firing of IO neurons in TMEM16B knockout mice. Moreover, these mutant mice exhibited severe cerebellar motor learning deficits. Our findings thus advance the understanding of the neurophysiology of CaCCs and the ionic basis of IO neuron excitability.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Zhushan Zhang
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Shaohua Xiao
- Departments of Physiology, Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jason Tien
- Departments of Physiology, Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Son Le
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Trieu Le
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Lily Y Jan
- Departments of Physiology, Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
30
|
The Roles of the Olivocerebellar Pathway in Motor Learning and Motor Control. A Consensus Paper. THE CEREBELLUM 2017; 16:230-252. [PMID: 27193702 DOI: 10.1007/s12311-016-0787-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
For many decades, the predominant view in the cerebellar field has been that the olivocerebellar system's primary function is to induce plasticity in the cerebellar cortex, specifically, at the parallel fiber-Purkinje cell synapse. However, it has also long been proposed that the olivocerebellar system participates directly in motor control by helping to shape ongoing motor commands being issued by the cerebellum. Evidence consistent with both hypotheses exists; however, they are often investigated as mutually exclusive alternatives. In contrast, here, we take the perspective that the olivocerebellar system can contribute to both the motor learning and motor control functions of the cerebellum and might also play a role in development. We then consider the potential problems and benefits of it having multiple functions. Moreover, we discuss how its distinctive characteristics (e.g., low firing rates, synchronization, and variable complex spike waveforms) make it more or less suitable for one or the other of these functions, and why having multiple functions makes sense from an evolutionary perspective. We did not attempt to reach a consensus on the specific role(s) the olivocerebellar system plays in different types of movements, as that will ultimately be determined experimentally; however, collectively, the various contributions highlight the flexibility of the olivocerebellar system, and thereby suggest that it has the potential to act in both the motor learning and motor control functions of the cerebellum.
Collapse
|
31
|
Wang Y, Chen ZP, Zhuang QX, Zhang XY, Li HZ, Wang JJ, Zhu JN. Role of Corticotropin-Releasing Factor in Cerebellar Motor Control and Ataxia. Curr Biol 2017; 27:2661-2669.e5. [DOI: 10.1016/j.cub.2017.07.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/11/2017] [Accepted: 07/13/2017] [Indexed: 02/02/2023]
|
32
|
Long-Term Predictive and Feedback Encoding of Motor Signals in the Simple Spike Discharge of Purkinje Cells. eNeuro 2017; 4:eN-NWR-0036-17. [PMID: 28413823 PMCID: PMC5388669 DOI: 10.1523/eneuro.0036-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/21/2017] [Accepted: 03/28/2017] [Indexed: 11/21/2022] Open
Abstract
Most hypotheses of cerebellar function emphasize a role in real-time control of movements. However, the cerebellum’s use of current information to adjust future movements and its involvement in sequencing, working memory, and attention argues for predicting and maintaining information over extended time windows. The present study examines the time course of Purkinje cell discharge modulation in the monkey (Macaca mulatta) during manual, pseudo-random tracking. Analysis of the simple spike firing from 183 Purkinje cells during tracking reveals modulation up to 2 s before and after kinematics and position error. Modulation significance was assessed against trial shuffled firing, which decoupled simple spike activity from behavior and abolished long-range encoding while preserving data statistics. Position, velocity, and position errors have the most frequent and strongest long-range feedforward and feedback modulations, with less common, weaker long-term correlations for speed and radial error. Position, velocity, and position errors can be decoded from the population simple spike firing with considerable accuracy for even the longest predictive (-2000 to -1500 ms) and feedback (1500 to 2000 ms) epochs. Separate analysis of the simple spike firing in the initial hold period preceding tracking shows similar long-range feedforward encoding of the upcoming movement and in the final hold period feedback encoding of the just completed movement, respectively. Complex spike analysis reveals little long-term modulation with behavior. We conclude that Purkinje cell simple spike discharge includes short- and long-range representations of both upcoming and preceding behavior that could underlie cerebellar involvement in error correction, working memory, and sequencing.
Collapse
|
33
|
White JJ, Sillitoe RV. Genetic silencing of olivocerebellar synapses causes dystonia-like behaviour in mice. Nat Commun 2017; 8:14912. [PMID: 28374839 PMCID: PMC5382291 DOI: 10.1038/ncomms14912] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 02/14/2017] [Indexed: 01/13/2023] Open
Abstract
Theories of cerebellar function place the inferior olive to cerebellum connection at the centre of motor behaviour. One possible implication of this is that disruption of olivocerebellar signalling could play a major role in initiating motor disease. To test this, we devised a mouse genetics approach to silence glutamatergic signalling only at olivocerebellar synapses. The resulting mice had a severe neurological condition that mimicked the early-onset twisting, stiff limbs and tremor that is observed in dystonia, a debilitating movement disease. By blocking olivocerebellar excitatory neurotransmission, we eliminated Purkinje cell complex spikes and induced aberrant cerebellar nuclear activity. Pharmacologically inhibiting the erratic output of the cerebellar nuclei in the mutant mice improved movement. Furthermore, deep brain stimulation directed to the interposed cerebellar nuclei reduced dystonia-like postures in these mice. Collectively, our data uncover a neural mechanism by which olivocerebellar dysfunction promotes motor disease phenotypes and identify the cerebellar nuclei as a therapeutic target for surgical intervention. Dystonia is thought to be driven by impairments in cerebellar signalling. The authors use a mouse genetic approach to silence excitatory transmission in the inferior olive to cerebellum pathway, resulting in dystonia-like signs in the animals which can be alleviated using DBS stimulation of the pathway.
Collapse
Affiliation(s)
- Joshua J White
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas 77030, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA.,Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, Texas 77030, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
34
|
Connors BW. Synchrony and so much more: Diverse roles for electrical synapses in neural circuits. Dev Neurobiol 2017; 77:610-624. [PMID: 28245529 DOI: 10.1002/dneu.22493] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/05/2017] [Accepted: 02/14/2017] [Indexed: 11/09/2022]
Abstract
Electrical synapses are neuronal gap junctions that are ubiquitous across brain regions and species. The biophysical properties of most electrical synapses are relatively simple-transcellular channels allow nearly ohmic, bidirectional flow of ionic current. Yet these connections can play remarkably diverse roles in different neural circuit contexts. Recent findings illustrate how electrical synapses may excite or inhibit, synchronize or desynchronize, augment or diminish rhythms, phase-shift, detect coincidences, enhance signals relative to noise, adapt, and interact with nonlinear membrane and transmitter-release mechanisms. Most of these functions are likely to be widespread in central nervous systems. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 610-624, 2017.
Collapse
Affiliation(s)
- Barry W Connors
- Department of Neuroscience, Brown University, Providence, Rhode Island
| |
Collapse
|
35
|
Abstract
Breathing is vital for survival but also interesting from the perspective of rhythm generation. This rhythmic behavior is generated within the brainstem and is thought to emerge through the interaction between independent oscillatory neuronal networks. In mammals, breathing is composed of three phases - inspiration, post-inspiration, and active expiration - and this article discusses the concept that each phase is generated by anatomically distinct rhythm-generating networks: the preBötzinger complex (preBötC), the post-inspiratory complex (PiCo), and the lateral parafacial nucleus (pF L), respectively. The preBötC was first discovered 25 years ago and was shown to be both necessary and sufficient for the generation of inspiration. More recently, networks have been described that are responsible for post-inspiration and active expiration. Here, we attempt to collate the current knowledge and hypotheses regarding how respiratory rhythms are generated, the role that inhibition plays, and the interactions between the medullary networks. Our considerations may have implications for rhythm generation in general.
Collapse
Affiliation(s)
- Tatiana M. Anderson
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Graduate Program for Neuroscience, University of Washington School of Medicine, Seattle, WA, USA
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Neurological Surgery and Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
36
|
Climbing Fibers Control Purkinje Cell Representations of Behavior. J Neurosci 2017; 37:1997-2009. [PMID: 28077726 DOI: 10.1523/jneurosci.3163-16.2017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/13/2016] [Accepted: 01/06/2017] [Indexed: 11/21/2022] Open
Abstract
A crucial issue in understanding cerebellar function is the interaction between simple spike (SS) and complex spike (CS) discharge, the two fundamentally different activity modalities of Purkinje cells. Although several hypotheses have provided insights into the interaction, none fully explains or is completely consistent with the spectrum of experimental observations. Here, we show that during a pseudo-random manual tracking task in the monkey (Macaca mulatta), climbing fiber discharge dynamically controls the information present in the SS firing, triggering robust and rapid changes in the SS encoding of motor signals in 67% of Purkinje cells. The changes in encoding, tightly coupled to CS occurrences, consist of either increases or decreases in the SS sensitivity to kinematics or position errors and are not due to differences in SS firing rates or variability. Nor are the changes in sensitivity due to CS rhythmicity. In addition, the CS-coupled changes in encoding are not evoked by changes in kinematics or position errors. Instead, CS discharge most often leads alterations in behavior. Increases in SS encoding of a kinematic parameter are associated with larger changes in that parameter than are decreases in SS encoding. Increases in SS encoding of position error are followed by and scale with decreases in error. The results suggest a novel function of CSs, in which climbing fiber input dynamically controls the state of Purkinje cell SS encoding in advance of changes in behavior.SIGNIFICANCE STATEMENT Purkinje cells, the sole output of the cerebellar cortex, manifest two fundamentally different activity modalities, complex spike (CS) discharge and simple spike (SS) firing. Elucidating cerebellar function will require an understanding of the interactions, both short- and long-term, between CS and SS firing. This study shows that CSs dynamically control the information encoded in a Purkinje cell's SS activity by rapidly increasing or decreasing the SS sensitivity to kinematics and/or performance errors independent of firing rate. In many cases, the CS-coupled shift in SS encoding leads a change in behavior. These novel findings on the interaction between CS and SS firing provide for a new hypothesis in which climbing fiber input adjusts the encoding of SS information in advance of a change in behavior.
Collapse
|
37
|
D'Angelo E, Antonietti A, Casali S, Casellato C, Garrido JA, Luque NR, Mapelli L, Masoli S, Pedrocchi A, Prestori F, Rizza MF, Ros E. Modeling the Cerebellar Microcircuit: New Strategies for a Long-Standing Issue. Front Cell Neurosci 2016; 10:176. [PMID: 27458345 PMCID: PMC4937064 DOI: 10.3389/fncel.2016.00176] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/23/2016] [Indexed: 11/13/2022] Open
Abstract
The cerebellar microcircuit has been the work bench for theoretical and computational modeling since the beginning of neuroscientific research. The regular neural architecture of the cerebellum inspired different solutions to the long-standing issue of how its circuitry could control motor learning and coordination. Originally, the cerebellar network was modeled using a statistical-topological approach that was later extended by considering the geometrical organization of local microcircuits. However, with the advancement in anatomical and physiological investigations, new discoveries have revealed an unexpected richness of connections, neuronal dynamics and plasticity, calling for a change in modeling strategies, so as to include the multitude of elementary aspects of the network into an integrated and easily updatable computational framework. Recently, biophysically accurate “realistic” models using a bottom-up strategy accounted for both detailed connectivity and neuronal non-linear membrane dynamics. In this perspective review, we will consider the state of the art and discuss how these initial efforts could be further improved. Moreover, we will consider how embodied neurorobotic models including spiking cerebellar networks could help explaining the role and interplay of distributed forms of plasticity. We envisage that realistic modeling, combined with closed-loop simulations, will help to capture the essence of cerebellar computations and could eventually be applied to neurological diseases and neurorobotic control systems.
Collapse
Affiliation(s)
- Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy; Brain Connectivity Center, C. Mondino National Neurological InstitutePavia, Italy
| | - Alberto Antonietti
- NearLab - NeuroEngineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano Milano, Italy
| | - Stefano Casali
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - Claudia Casellato
- NearLab - NeuroEngineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano Milano, Italy
| | - Jesus A Garrido
- Department of Computer Architecture and Technology, University of Granada Granada, Spain
| | - Niceto Rafael Luque
- Department of Computer Architecture and Technology, University of Granada Granada, Spain
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - Stefano Masoli
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - Alessandra Pedrocchi
- NearLab - NeuroEngineering and Medical Robotics Laboratory, Department of Electronics, Information and Bioengineering, Politecnico di Milano Milano, Italy
| | - Francesca Prestori
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - Martina Francesca Rizza
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy; Dipartimento di Informatica, Sistemistica e Comunicazione, Università degli Studi di Milano-BicoccaMilan, Italy
| | - Eduardo Ros
- Department of Computer Architecture and Technology, University of Granada Granada, Spain
| |
Collapse
|
38
|
Kennefick M, Maslovat D, Chua R, Carlsen AN. Corticospinal excitability is reduced in a simple reaction time task requiring complex timing. Brain Res 2016; 1642:319-326. [DOI: 10.1016/j.brainres.2016.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/22/2016] [Accepted: 04/04/2016] [Indexed: 11/30/2022]
|
39
|
Abstract
Oscillatory activity is widespread in dynamic neuronal networks. The main paradigm for the origin of periodicity consists of specialized pacemaking elements that synchronize and drive the rest of the network; however, other models exist. Here, we studied the spontaneous emergence of synchronized periodic bursting in a network of cultured dissociated neurons from rat hippocampus and cortex. Surprisingly, about 60% of all active neurons were self-sustained oscillators when disconnected, each with its own natural frequency. The individual neuron's tendency to oscillate and the corresponding oscillation frequency are controlled by its excitability. The single neuron intrinsic oscillations were blocked by riluzole, and are thus dependent on persistent sodium leak currents. Upon a gradual retrieval of connectivity, the synchrony evolves: Loose synchrony appears already at weak connectivity, with the oscillators converging to one common oscillation frequency, yet shifted in phase across the population. Further strengthening of the connectivity causes a reduction in the mean phase shifts until zero-lag is achieved, manifested by synchronous periodic network bursts. Interestingly, the frequency of network bursting matches the average of the intrinsic frequencies. Overall, the network behaves like other universal systems, where order emerges spontaneously by entrainment of independent rhythmic units. Although simplified with respect to circuitry in the brain, our results attribute a basic functional role for intrinsic single neuron excitability mechanisms in driving the network's activity and dynamics, contributing to our understanding of developing neural circuits.
Collapse
|
40
|
Cheron G, Márquez-Ruiz J, Kishino T, Dan B. Disruption of the LTD dialogue between the cerebellum and the cortex in Angelman syndrome model: a timing hypothesis. Front Syst Neurosci 2014; 8:221. [PMID: 25477791 PMCID: PMC4237040 DOI: 10.3389/fnsys.2014.00221] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/25/2014] [Indexed: 12/11/2022] Open
Abstract
Angelman syndrome (AS) is a genetic neurodevelopmental disorder in which cerebellar functioning impairment has been documented despite the absence of gross structural abnormalities. Characteristically, a spontaneous 160 Hz oscillation emerges in the Purkinje cells network of the Ube3a (m-/p+) Angelman mouse model. This abnormal oscillation is induced by enhanced Purkinje cell rhythmicity and hypersynchrony along the parallel fiber beam. We present a pathophysiological hypothesis for the neurophysiology underlying major aspects of the clinical phenotype of AS, including cognitive, language and motor deficits, involving long-range connection between the cerebellar and the cortical networks. This hypothesis states that the alteration of the cerebellar rhythmic activity impinges cerebellar long-term depression (LTD) plasticity, which in turn alters the LTD plasticity in the cerebral cortex. This hypothesis was based on preliminary experiments using electrical stimulation of the whiskers pad performed in alert mice showing that after a 8 Hz LTD-inducing protocol, the cerebellar LTD accompanied by a delayed response in the wild type (WT) mice is missing in Ube3a (m-/p+) mice and that the LTD induced in the barrel cortex following the same peripheral stimulation in wild mice is reversed into a LTP in the Ube3a (m-/p+) mice. The control exerted by the cerebellum on the excitation vs. inhibition balance in the cerebral cortex and possible role played by the timing plasticity of the Purkinje cell LTD on the spike-timing dependent plasticity (STDP) of the pyramidal neurons are discussed in the context of the present hypothesis.
Collapse
Affiliation(s)
- Guy Cheron
- Laboratory of Electrophysiology, Université de MonsMons, Belgium
- Laboratory of Neurophysiology and Movement Biomechanics, ULB Neuroscience Institut, Université Libre de BruxellesBrussels, Belgium
| | | | - Tatsuya Kishino
- Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki UniversityNagasaki, Japan
| | - Bernard Dan
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de BruxellesBrussels, Belgium
| |
Collapse
|
41
|
Central pattern generator for vocalization: is there a vertebrate morphotype? Curr Opin Neurobiol 2014; 28:94-100. [PMID: 25050813 DOI: 10.1016/j.conb.2014.06.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/11/2014] [Accepted: 06/22/2014] [Indexed: 11/21/2022]
Abstract
Animals that generate acoustic signals for social communication are faced with two essential tasks: generate a temporally precise signal and inform the auditory system about the occurrence of one's own sonic signal. Recent studies of sound producing fishes delineate a hindbrain network comprised of anatomically distinct compartments coding equally distinct neurophysiological properties that allow an organism to meet these behavioral demands. A set of neural characters comprising a vocal-sonic central pattern generator (CPG) morphotype is proposed for fishes and tetrapods that shares evolutionary developmental origins with pectoral appendage motor systems.
Collapse
|
42
|
Cornelis H, Coop AD. Afference copy as a quantitative neurophysiological model for consciousness. J Integr Neurosci 2014; 13:363-402. [DOI: 10.1142/s0219635214400020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|