1
|
Butts JC, Wu SR, Durham MA, Dhindsa RS, Revelli JP, Ljungberg MC, Saulnier O, McLaren ME, Taylor MD, Zoghbi HY. A single-cell transcriptomic map of the developing Atoh1 lineage identifies neural fate decisions and neuronal diversity in the hindbrain. Dev Cell 2024; 59:2171-2188.e7. [PMID: 39106860 DOI: 10.1016/j.devcel.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 07/09/2024] [Indexed: 08/09/2024]
Abstract
Proneural transcription factors establish molecular cascades to orchestrate neuronal diversity. One such transcription factor, Atonal homolog 1 (Atoh1), gives rise to cerebellar excitatory neurons and over 30 distinct nuclei in the brainstem critical for hearing, breathing, and balance. Although Atoh1 lineage neurons have been qualitatively described, the transcriptional programs that drive their fate decisions and the full extent of their diversity remain unknown. Here, we analyzed single-cell RNA sequencing and ATOH1 DNA binding in Atoh1 lineage neurons of the developing mouse hindbrain. This high-resolution dataset identified markers for specific brainstem nuclei and demonstrated that transcriptionally heterogeneous progenitors require ATOH1 for proper migration. Moreover, we identified a sizable population of proliferating unipolar brush cell progenitors in the mouse Atoh1 lineage, previously described in humans as the origin of one medulloblastoma subtype. Collectively, our data provide insights into the developing mouse hindbrain and markers for functional assessment of understudied neuronal populations.
Collapse
Affiliation(s)
- Jessica C Butts
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| | - Sih-Rong Wu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark A Durham
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan S Dhindsa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jean-Pierre Revelli
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - M Cecilia Ljungberg
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olivier Saulnier
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Genomics and Development of Childhood Cancers, Institut Curie, PSL University, 75005 Paris, France; INSERM U830, Cancer Heterogeneity Instability and Plasticity, Institut Curie, PSL University, 75005 Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, 75005 Paris, France
| | - Madison E McLaren
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Department of Surgery, Department of Laboratory Medicine and Pathobiology, and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Department of Pediatrics-Hematology/Oncology and Neurosurgery, Baylor College of Medicine, Houston, TX, USA; Texas Children's Cancer and Hematology Center, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Beaulac HJ, Munnamalai V. Localization of cadherins in the postnatal cochlear epithelium and their relation to space formation. Dev Dyn 2024; 253:771-780. [PMID: 38264972 PMCID: PMC11266531 DOI: 10.1002/dvdy.692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024] Open
Abstract
The sensory epithelium of the cochlea, the organ of Corti, has complex cytoarchitecture consisting of mechanosensory hair cells intercalated by epithelial support cells. The support cells provide important trophic and structural support to the hair cells. Thus, the support cells must be stiff yet compliant enough to withstand and modulate vibrations to the hair cells. Once the sensory cells are properly patterned, the support cells undergo significant remodeling from a simple epithelium into a structurally rigid epithelium with fluid-filled spaces in the murine cochlea. Cell adhesion molecules such as cadherins are necessary for sorting and connecting cells in an intact epithelium. To create the fluid-filled spaces, cell adhesion properties of adjoining cell membranes between cells must change to allow the formation of spaces within an epithelium. However, the dynamic localization of cadherins has not been properly analyzed as these spaces are formed. There are three cadherins that are reported to be expressed during the first postnatal week of development when the tunnel of Corti forms in the cochlea. In this study, we characterize the dynamic localization of cadherins that are associated with cytoskeletal remodeling at the contacting membranes of the inner and outer pillar cells flanking the tunnel of Corti.
Collapse
|
3
|
Park JH, Sahbaz BD, Pekhale K, Chu X, Okur MN, Grati M, Isgrig K, Chien W, Chrysostomou E, Sullivan L, Croteau DL, Manor U, Bohr VA. Early-Onset Hearing Loss in Mouse Models of Alzheimer's Disease and Increased DNA Damage in the Cochlea. AGING BIOLOGY 2024; 1:20240025. [PMID: 38500536 PMCID: PMC10948084 DOI: 10.59368/agingbio.20240025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
There is considerable interest in whether sensory deficiency is associated with the development of Alzheimer's disease (AD). Notably, the relationship between hearing impairment and AD is of high relevance but still poorly understood. In this study, we found early-onset hearing loss in two AD mouse models, 3xTgAD and 3xTgAD/Polβ+/-. The 3xTgAD/Polβ+/- mouse is DNA repair deficient and has more humanized AD features than the 3xTgAD. Both AD mouse models showed increased auditory brainstem response (ABR) thresholds between 16 and 32 kHz at 4 weeks of age, much earlier than any AD cognitive and behavioral changes. The ABR thresholds were significantly higher in 3xTgAD/Polβ+/- mice than in 3xTgAD mice at 16 kHz, and distortion product otoacoustic emission signals were reduced, indicating that DNA damage may be a factor underlying early hearing impairment in AD. Poly ADP-ribosylation and protein expression levels of DNA damage markers increased significantly in the cochlea of the AD mice but not in the adjacent auditory cortex. Phosphoglycerate mutase 2 levels and the number of synaptic ribbons in the presynaptic zones of inner hair cells were decreased in the cochlea of the AD mice. Furthermore, the activity of sirtuin 3 was downregulated in the cochlea of these mice, indicative of impaired mitochondrial function. Taken together, these findings provide new insights into potential mechanisms for hearing dysfunction in AD and suggest that DNA damage in the cochlea might contribute to the development of early hearing loss in AD.
Collapse
Affiliation(s)
- Jae-Hyeon Park
- DNA repair Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Burcin Duan Sahbaz
- DNA repair Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Komal Pekhale
- DNA repair Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Xixia Chu
- DNA repair Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Mustafa N. Okur
- DNA repair Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Mhamed Grati
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Kevin Isgrig
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Wade Chien
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Elena Chrysostomou
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lauren Sullivan
- Department of Cell & Developmental Biology School of Biological Sciences University of California, San Diego, La Jolla, CA, USA
| | - Deborah L. Croteau
- DNA repair Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Computational Biology & Genomics Core, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Uri Manor
- Department of Cell & Developmental Biology School of Biological Sciences University of California, San Diego, La Jolla, CA, USA
| | - Vilhelm A. Bohr
- DNA repair Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Danish Center for Healthy Aging, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
4
|
Senovilla-Ganzo R, García-Moreno F. The Phylotypic Brain of Vertebrates, from Neural Tube Closure to Brain Diversification. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:45-68. [PMID: 38342091 DOI: 10.1159/000537748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND The phylotypic or intermediate stages are thought to be the most evolutionary conserved stages throughout embryonic development. The contrast with divergent early and later stages derived from the concept of the evo-devo hourglass model. Nonetheless, this developmental constraint has been studied as a whole embryo process, not at organ level. In this review, we explore brain development to assess the existence of an equivalent brain developmental hourglass. In the specific case of vertebrates, we propose to split the brain developmental stages into: (1) Early: Neurulation, when the neural tube arises after gastrulation. (2) Intermediate: Brain patterning and segmentation, when the neuromere identities are established. (3) Late: Neurogenesis and maturation, the stages when the neurons acquire their functionality. Moreover, we extend this analysis to other chordates brain development to unravel the evolutionary origin of this evo-devo constraint. SUMMARY Based on the existing literature, we hypothesise that a major conservation of the phylotypic brain might be due to the pleiotropy of the inductive regulatory networks, which are predominantly expressed at this stage. In turn, earlier stages such as neurulation are rather mechanical processes, whose regulatory networks seem to adapt to environment or maternal geometries. The later stages are also controlled by inductive regulatory networks, but their effector genes are mostly tissue-specific and functional, allowing diverse developmental programs to generate current brain diversity. Nonetheless, all stages of the hourglass are highly interconnected: divergent neurulation must have a vertebrate shared end product to reproduce the vertebrate phylotypic brain, and the boundaries and transcription factor code established during the highly conserved patterning will set the bauplan for the specialised and diversified adult brain. KEY MESSAGES The vertebrate brain is conserved at phylotypic stages, but the highly conserved mechanisms that occur during these brain mid-development stages (Inducing Regulatory Networks) are also present during other stages. Oppositely, other processes as cell interactions and functional neuronal genes are more diverse and majoritarian in early and late stages of development, respectively. These phenomena create an hourglass of transcriptomic diversity during embryonic development and evolution, with a really conserved bottleneck that set the bauplan for the adult brain around the phylotypic stage.
Collapse
Affiliation(s)
- Rodrigo Senovilla-Ganzo
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Leioa, Spain
| | - Fernando García-Moreno
- Achucarro Basque Center for Neuroscience, Scientific Park of the University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, Faculty of Medicine and Odontology, UPV/EHU, Leioa, Spain
- IKERBASQUE Foundation, Bilbao, Spain
| |
Collapse
|
5
|
Beaulac HJ, Munnamalai V. Localization of Cadherins in the postnatal cochlear epithelium and their relation to space formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.30.560287. [PMID: 37808730 PMCID: PMC10557783 DOI: 10.1101/2023.09.30.560287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The sensory epithelium of the cochlea, the organ of Corti, has complex cytoarchitecture consisting of mechanosensory hair cells intercalated by epithelial support cells. The support cells provide important trophic and structural support to the hair cells. Thus, the support cells must be stiff yet compliant enough to withstand and modulate vibrations to the hair cells. Once the sensory cells are properly patterned, the support cells undergo significant remodeling from a simple epithelium into a structurally rigid epithelium with fluid-filled spaces in the murine cochlea. Cell adhesion molecules such as cadherins are necessary for sorting and connecting cells in an intact epithelium. To create the fluid-filled spaces, cell adhesion properties of adjoining cell membranes between cells must change to allow the formation of spaces within an epithelium. However, the dynamic localization of cadherins has not been properly analyzed as these spaces are formed. There are three cadherins that are reported to be expressed during the first postnatal week of development when the tunnel of Corti forms in the cochlea. In this study, we characterize the dynamic localization of cadherins that are associated with cytoskeletal remodeling at the contacting membranes of the inner and outer pillar cells flanking the tunnel of Corti. Key findings F-actin remodeling occurs between E18.5 to P7 in the cochlear sensory epithelium.Transient changes of F-actin cytoskeleton drives epithelial morphogenesis.Fluid-filled spaces in epithelium is driven by changes in cell adhesion.
Collapse
|
6
|
Elliott KL, Iskusnykh IY, Chizhikov VV, Fritzsch B. Ptf1a expression is necessary for correct targeting of spiral ganglion neurons within the cochlear nuclei. Neurosci Lett 2023; 806:137244. [PMID: 37055006 PMCID: PMC10210513 DOI: 10.1016/j.neulet.2023.137244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/09/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
Two transcription factors, Atoh1 and Ptf1a, are essential for cochlear nuclei development. Atoh1 is needed to develop glutamatergic neurons, while Ptf1a is required to generate glycinergic and GABAergic neurons that migrate into the cochlear nucleus. While central projections of inner ear afferents are normal following loss of Atoh1, we wanted to know whether the loss of Ptf1a affects central projections. We found that in Ptf1a mutants, initially, afferents show a normal projection; however, a transient posterior expansion of projections to the dorsal cochlear nucleus occurs at a later stage. In addition, in older (E18.5) Ptf1a mutant mice, excessive neuronal branches form beyond the normal projection to the anterior and posterior ventral cochlear nuclei. Our results on Ptf1a null mice are comparable to that observed in loss of function Prickel1, Npr2, or Fzd3 mouse mutants. The disorganized tonotopic projections that we report in Ptf1a mutant embryos might be functionally relevant, but testing this hypothesis requires Ptf1a KO mice at postnatal stages that unfortunately cannot be performed due to their early death.
Collapse
Affiliation(s)
- Karen L Elliott
- Department of Biology, University of Iowa, Iowa, IA 52242, USA
| | - Igor Y Iskusnykh
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Victor V Chizhikov
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa, IA 52242, USA.
| |
Collapse
|
7
|
García-Guillén IM, Aroca P, Marín F. Molecular identity of the lateral lemniscus nuclei in the adult mouse brain. Front Neuroanat 2023; 17:1098352. [PMID: 36999169 PMCID: PMC10044012 DOI: 10.3389/fnana.2023.1098352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
IntroductionThe dorsal (DLL), intermediate (ILL), and ventral (VLL) lateral lemniscus nuclei are relay centers in the central auditory pathway of the brainstem, commonly referred to as the lateral lemniscus nuclei (LLN). The LLN are situated in the prepontine and pontine hindbrain, from rhombomeres 1 to 4, extending from the more rostral DLL to the caudal VLL, with the ILL lying in between. These nuclei can be distinguished morphologically and by topological and connectivity criteria, and here, we set out to further characterize the molecular nature of each LLN.MethodsWe searched in situ hybridization studies in the Allen Mouse Brain Atlas for genes differentially expressed along the rostrocaudal axis of the brainstem, identifying 36 genes from diverse functional families expressed in the LLN.ResultsAvailable information in the databases indicated that 7 of these 36 genes are either associated with or potentially related to hearing disorders.DiscussionIn conclusion, the LLN are characterized by specific molecular profiles that reflect their rostrocaudal organization into the three constituent nuclei. This molecular regionalization may be involved in the etiology of some hearing disorders, in accordance with previous functional studies of these genes.
Collapse
|
8
|
Fuyuki A, Yamamoto S, Sohel MSH, Homma T, Kitamura K, Onouchi S, Saito S. Expression of prosaposin and its G protein-coupled receptor (GPR) 37 in mouse cochlear and vestibular nuclei. J Vet Med Sci 2023; 85:266-270. [PMID: 36696997 PMCID: PMC10076190 DOI: 10.1292/jvms.22-0552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Prosaposin is a precursor of lysosomal hydrolases activator proteins, saposins, and also acts as a secretory protein that is not processed into saposins. Prosaposin elicits neurotrophic function via G protein-coupled receptor (GPR) 37, and prosaposin deficiency causes abnormal vestibuloauditory end-organ development. In this study, immunohistochemistry was used to examine prosaposin and GPR37 expression patterns in the mouse cochlear and vestibular nuclei. Prosaposin immunoreactivity was observed in neurons and glial cells in both nuclei. GPR37 immunoreactivity was observed in only some neurons, and its immunoreactivity in the vestibular nucleus was weaker than that in the cochlear nucleus. This study suggests a possibility that prosaposin deficiency affects not only the end-organs but also the first center of the vestibuloauditory system.
Collapse
Affiliation(s)
- Aimi Fuyuki
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Saki Yamamoto
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Md Shahriar Hasan Sohel
- Laboratory of Veterinary Anatomy, The Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Takeshi Homma
- Laboratory of Veterinary Anatomy, The Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Kai Kitamura
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Sawa Onouchi
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan.,Laboratory of Veterinary Anatomy, The Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan.,Laboratory of Veterinary Anatomy, The Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
9
|
Krasewicz J, Yu WM. Eph and ephrin signaling in the development of the central auditory system. Dev Dyn 2023; 252:10-26. [PMID: 35705527 PMCID: PMC9751234 DOI: 10.1002/dvdy.506] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 01/17/2023] Open
Abstract
Acoustic communication relies crucially on accurate interpretation of information about the intensity, frequency, timing, and location of diverse sound stimuli in the environment. To meet this demand, neurons along different levels of the auditory system form precisely organized neural circuits. The assembly of these precise circuits requires tight regulation and coordination of multiple developmental processes. Several groups of axon guidance molecules have proven critical in controlling these processes. Among them, the family of Eph receptors and their ephrin ligands emerge as one group of key players. They mediate diverse functions at multiple levels of the auditory pathway, including axon guidance and targeting, topographic map formation, as well as cell migration and tissue pattern formation. Here, we review our current knowledge of how Eph and ephrin molecules regulate different processes in the development and maturation of central auditory circuits.
Collapse
Affiliation(s)
| | - Wei-Ming Yu
- Correspondence: Wei-Ming Yu, Department of Biology, Loyola University of Chicago, 1032 W Sheridan Rd, LSB 226, Chicago, IL 60660, , Tel: +1-773-508-3325, Fax: +1-773-508-3646
| |
Collapse
|
10
|
Xia Y, Cui K, Alonso A, Lowenstein ED, Hernandez-Miranda LR. Transcription factors regulating the specification of brainstem respiratory neurons. Front Mol Neurosci 2022; 15:1072475. [PMID: 36523603 PMCID: PMC9745097 DOI: 10.3389/fnmol.2022.1072475] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/14/2022] [Indexed: 11/12/2023] Open
Abstract
Breathing (or respiration) is an unconscious and complex motor behavior which neuronal drive emerges from the brainstem. In simplistic terms, respiratory motor activity comprises two phases, inspiration (uptake of oxygen, O2) and expiration (release of carbon dioxide, CO2). Breathing is not rigid, but instead highly adaptable to external and internal physiological demands of the organism. The neurons that generate, monitor, and adjust breathing patterns locate to two major brainstem structures, the pons and medulla oblongata. Extensive research over the last three decades has begun to identify the developmental origins of most brainstem neurons that control different aspects of breathing. This research has also elucidated the transcriptional control that secures the specification of brainstem respiratory neurons. In this review, we aim to summarize our current knowledge on the transcriptional regulation that operates during the specification of respiratory neurons, and we will highlight the cell lineages that contribute to the central respiratory circuit. Lastly, we will discuss on genetic disturbances altering transcription factor regulation and their impact in hypoventilation disorders in humans.
Collapse
Affiliation(s)
- Yiling Xia
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ke Cui
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Antonia Alonso
- Functional Genoarchitecture and Neurobiology Groups, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Murcia, Spain
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Elijah D. Lowenstein
- Developmental Biology/Signal Transduction, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Luis R. Hernandez-Miranda
- The Brainstem Group, Institute for Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
11
|
Filova I, Pysanenko K, Tavakoli M, Vochyanova S, Dvorakova M, Bohuslavova R, Smolik O, Fabriciova V, Hrabalova P, Benesova S, Valihrach L, Cerny J, Yamoah EN, Syka J, Fritzsch B, Pavlinkova G. ISL1 is necessary for auditory neuron development and contributes toward tonotopic organization. Proc Natl Acad Sci U S A 2022; 119:e2207433119. [PMID: 36074819 PMCID: PMC9478650 DOI: 10.1073/pnas.2207433119] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
A cardinal feature of the auditory pathway is frequency selectivity, represented in a tonotopic map from the cochlea to the cortex. The molecular determinants of the auditory frequency map are unknown. Here, we discovered that the transcription factor ISL1 regulates the molecular and cellular features of auditory neurons, including the formation of the spiral ganglion and peripheral and central processes that shape the tonotopic representation of the auditory map. We selectively knocked out Isl1 in auditory neurons using Neurod1Cre strategies. In the absence of Isl1, spiral ganglion neurons migrate into the central cochlea and beyond, and the cochlear wiring is profoundly reduced and disrupted. The central axons of Isl1 mutants lose their topographic projections and segregation at the cochlear nucleus. Transcriptome analysis of spiral ganglion neurons shows that Isl1 regulates neurogenesis, axonogenesis, migration, neurotransmission-related machinery, and synaptic communication patterns. We show that peripheral disorganization in the cochlea affects the physiological properties of hearing in the midbrain and auditory behavior. Surprisingly, auditory processing features are preserved despite the significant hearing impairment, revealing central auditory pathway resilience and plasticity in Isl1 mutant mice. Mutant mice have a reduced acoustic startle reflex, altered prepulse inhibition, and characteristics of compensatory neural hyperactivity centrally. Our findings show that ISL1 is one of the obligatory factors required to sculpt auditory structural and functional tonotopic maps. Still, upon Isl1 deletion, the ensuing central plasticity of the auditory pathway does not suffice to overcome developmentally induced peripheral dysfunction of the cochlea.
Collapse
Affiliation(s)
- Iva Filova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Kateryna Pysanenko
- Department of Auditory Neuroscience, Institute of Experimental Medicine Czech Academy of Sciences, 14220 Prague, Czechia
| | - Mitra Tavakoli
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Simona Vochyanova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Martina Dvorakova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Ondrej Smolik
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Valeria Fabriciova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Petra Hrabalova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| | - Jiri Cerny
- Laboratory of Light Microscopy, Institute of Molecular Genetics Czech Academy of Sciences, 14220 Prague, Czechia
| | - Ebenezer N. Yamoah
- Department of Physiology, School of Medicine, University of Nevada, Reno, NV 89557
| | - Josef Syka
- Department of Auditory Neuroscience, Institute of Experimental Medicine Czech Academy of Sciences, 14220 Prague, Czechia
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA 52242-1324
- Department of Otolaryngology, University of Iowa, Iowa City, IA 52242-1324
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences, 25250 Vestec, Czechia
| |
Collapse
|
12
|
Molecular Organization and Patterning of the Medulla Oblongata in Health and Disease. Int J Mol Sci 2022; 23:ijms23169260. [PMID: 36012524 PMCID: PMC9409237 DOI: 10.3390/ijms23169260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The medulla oblongata, located in the hindbrain between the pons and the spinal cord, is an important relay center for critical sensory, proprioceptive, and motoric information. It is an evolutionarily highly conserved brain region, both structural and functional, and consists of a multitude of nuclei all involved in different aspects of basic but vital functions. Understanding the functional anatomy and developmental program of this structure can help elucidate potential role(s) of the medulla in neurological disorders. Here, we have described the early molecular patterning of the medulla during murine development, from the fundamental units that structure the very early medullary region into 5 rhombomeres (r7–r11) and 13 different longitudinal progenitor domains, to the neuronal clusters derived from these progenitors that ultimately make-up the different medullary nuclei. By doing so, we developed a schematic overview that can be used to predict the cell-fate of a progenitor group, or pinpoint the progenitor domain of origin of medullary nuclei. This schematic overview can further be used to help in the explanation of medulla-related symptoms of neurodevelopmental disorders, e.g., congenital central hypoventilation syndrome, Wold–Hirschhorn syndrome, Rett syndrome, and Pitt–Hopkins syndrome. Based on the genetic defects seen in these syndromes, we can use our model to predict which medullary nuclei might be affected, which can be used to quickly direct the research into these diseases to the likely affected nuclei.
Collapse
|
13
|
Castro AC, Monteiro P. Auditory Dysfunction in Animal Models of Autism Spectrum Disorder. Front Mol Neurosci 2022; 15:845155. [PMID: 35493332 PMCID: PMC9043325 DOI: 10.3389/fnmol.2022.845155] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder mainly characterized by social-communication impairments, repetitive behaviors and altered sensory perception. Auditory hypersensitivity is the most common sensory-perceptual abnormality in ASD, however, its underlying neurobiological mechanisms remain elusive. Consistently with reports in ASD patients, animal models for ASD present sensory-perception alterations, including auditory processing impairments. Here we review the current knowledge regarding auditory dysfunction in rodent models of ASD, exploring both shared and distinct features among them, mechanistic and molecular underpinnings, and potential therapeutic approaches. Overall, auditory dysfunction in ASD models seems to arise from impaired central processing. Depending on the model, impairments may arise at different steps along the auditory pathway, from auditory brainstem up to the auditory cortex. Common defects found across models encompass atypical tonotopicity in different regions of the auditory pathway, temporal and spectral processing impairments and histological differences. Imbalance between excitation and inhibition (E/I imbalance) is one of the most well-supported mechanisms explaining the auditory phenotype in the ASD models studied so far and seems to be linked to alterations in GABAergic signaling. Such E/I imbalance may have a large impact on the development of the auditory pathway, influencing the establishment of connections responsible for normal sound processing.
Collapse
Affiliation(s)
- Ana Carolina Castro
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, Portugal
| | - Patricia Monteiro
- Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
14
|
Diaz C, Glover JC. The Vestibular Column in the Mouse: A Rhombomeric Perspective. Front Neuroanat 2022; 15:806815. [PMID: 35173589 PMCID: PMC8842660 DOI: 10.3389/fnana.2021.806815] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
The vestibular column is located in the hindbrain between the sensory auditory (dorsal) and trigeminal (ventral) columns, spanning rhombomeres r1 (or r2) to r9. It contains the vestibular nuclear complex that receives sensory innervation from the labyrinthine end organs in the inner ear. Gene expression studies and experimental manipulations of developmental genes, particularly Hox genes and other developmental patterning genes, are providing insight into the morphological and functional organization of the vestibular nuclear complex, particularly from a segmental standpoint. Here, we will review studies of the classical vestibular nuclei and of vestibular projection neurons that innervate distinct targets in relation to individual rhombomeres and the expression of specific genes. Studies in different species have demonstrated that the vestibular complex is organized into a hodological mosaic that relates axon trajectory and target to specific hindbrain rhombomeres and intrarhombomeric domains, with a molecular underpinning in the form of transcription factor signatures, which has been highly conserved during the evolution of the vertebrate lineage.
Collapse
Affiliation(s)
- Carmen Diaz
- Department of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, Albacete, Spain
- *Correspondence: Carmen Diaz,
| | - Joel C. Glover
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Joel C. Glover,
| |
Collapse
|
15
|
Stoner ZA, Ketchum EM, Sheltz-Kempf S, Blinkiewicz PV, Elliott KL, Duncan JS. Fzd3 Expression Within Inner Ear Afferent Neurons Is Necessary for Central Pathfinding. Front Neurosci 2022; 15:779871. [PMID: 35153658 PMCID: PMC8828977 DOI: 10.3389/fnins.2021.779871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022] Open
Abstract
During development the afferent neurons of the inner ear make precise wiring decisions in the hindbrain reflective of their topographic distribution in the periphery. This is critical for the formation of sensory maps capable of faithfully processing both auditory and vestibular input. Disorganized central projections of inner ear afferents in Fzd3 null mice indicate Wnt/PCP signaling is involved in this process and ear transplantation in Xenopus indicates that Fzd3 is necessary in the ear but not the hindbrain for proper afferent navigation. However, it remains unclear in which cell type of the inner ear Fzd3 expression is influencing the guidance of inner ear afferents to their proper synaptic targets in the hindbrain. We utilized Atoh1-cre and Neurod1-cre mouse lines to conditionally knockout Fzd3 within the mechanosensory hair cells of the organ of Corti and within the inner ear afferents, respectively. Following conditional deletion of Fzd3 within the hair cells, the central topographic distribution of inner ear afferents was maintained with no gross morphological defects. In contrast, conditional deletion of Fzd3 within inner ear afferents leads to central pathfinding defects of both cochlear and vestibular afferents. Here, we show that Fzd3 is acting in a cell autonomous manner within inner ear afferents to regulate central pathfinding within the hindbrain.
Collapse
Affiliation(s)
- Zachary A. Stoner
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| | - Elizabeth M. Ketchum
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| | - Sydney Sheltz-Kempf
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| | - Paige V. Blinkiewicz
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| | - Karen L. Elliott
- Department of Biology, University of Iowa, Iowa City, IA, United States
- *Correspondence: Karen L. Elliott,
| | - Jeremy S. Duncan
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
- Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
- Jeremy S. Duncan,
| |
Collapse
|
16
|
Hirsch D, Kohl A, Wang Y, Sela-Donenfeld D. Axonal Projection Patterns of the Dorsal Interneuron Populations in the Embryonic Hindbrain. Front Neuroanat 2022; 15:793161. [PMID: 35002640 PMCID: PMC8738170 DOI: 10.3389/fnana.2021.793161] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Unraveling the inner workings of neural circuits entails understanding the cellular origin and axonal pathfinding of various neuronal groups during development. In the embryonic hindbrain, different subtypes of dorsal interneurons (dINs) evolve along the dorsal-ventral (DV) axis of rhombomeres and are imperative for the assembly of central brainstem circuits. dINs are divided into two classes, class A and class B, each containing four neuronal subgroups (dA1-4 and dB1-4) that are born in well-defined DV positions. While all interneurons belonging to class A express the transcription factor Olig3 and become excitatory, all class B interneurons express the transcription factor Lbx1 but are diverse in their excitatory or inhibitory fate. Moreover, within every class, each interneuron subtype displays its own specification genes and axonal projection patterns which are required to govern the stage-by-stage assembly of their connectivity toward their target sites. Remarkably, despite the similar genetic landmark of each dINs subgroup along the anterior-posterior (AP) axis of the hindbrain, genetic fate maps of some dA/dB neuronal subtypes uncovered their contribution to different nuclei centers in relation to their rhombomeric origin. Thus, DV and AP positional information has to be orchestrated in each dA/dB subpopulation to form distinct neuronal circuits in the hindbrain. Over the span of several decades, different axonal routes have been well-documented to dynamically emerge and grow throughout the hindbrain DV and AP positions. Yet, the genetic link between these distinct axonal bundles and their neuronal origin is not fully clear. In this study, we reviewed the available data regarding the association between the specification of early-born dorsal interneuron subpopulations in the hindbrain and their axonal circuitry development and fate, as well as the present existing knowledge on molecular effectors underlying the process of axonal growth.
Collapse
Affiliation(s)
- Dana Hirsch
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Kohl
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yuan Wang
- Department of Biomedical Sciences, Program in Neuroscience, College of Medicine, Florida State University, Tallahassee, FL, United States
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
17
|
Lipovsek M, Marcovich I, Elgoyhen AB. The Hair Cell α9α10 Nicotinic Acetylcholine Receptor: Odd Cousin in an Old Family. Front Cell Neurosci 2021; 15:785265. [PMID: 34867208 PMCID: PMC8634148 DOI: 10.3389/fncel.2021.785265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are a subfamily of pentameric ligand-gated ion channels with members identified in most eumetazoan clades. In vertebrates, they are divided into three subgroups, according to their main tissue of expression: neuronal, muscle and hair cell nAChRs. Each receptor subtype is composed of different subunits, encoded by paralogous genes. The latest to be identified are the α9 and α10 subunits, expressed in the mechanosensory hair cells of the inner ear and the lateral line, where they mediate efferent modulation. α9α10 nAChRs are the most divergent amongst all nicotinic receptors, showing marked differences in their degree of sequence conservation, their expression pattern, their subunit co-assembly rules and, most importantly, their functional properties. Here, we review recent advances in the understanding of the structure and evolution of nAChRs. We discuss the functional consequences of sequence divergence and conservation, with special emphasis on the hair cell α9α10 receptor, a seemingly distant cousin of neuronal and muscle nicotinic receptors. Finally, we highlight potential links between the evolution of the octavolateral system and the extreme divergence of vertebrate α9α10 receptors.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Ear Institute, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Irina Marcovich
- Departments of Otolaryngology & Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ana Belén Elgoyhen
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres" (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
18
|
LaMantia AS. Why Does the Face Predict the Brain? Neural Crest Induction, Craniofacial Morphogenesis, and Neural Circuit Development. Front Physiol 2020; 11:610970. [PMID: 33362582 PMCID: PMC7759552 DOI: 10.3389/fphys.2020.610970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchephalic and rhombencephalic neural crest cells generate the craniofacial skeleton, special sensory organs, and subsets of cranial sensory receptor neurons. They do so while preserving the anterior-posterior (A-P) identity of their neural tube origins. This organizational principle is paralleled by central nervous system circuits that receive and process information from facial structures whose A-P identity is in register with that in the brain. Prior to morphogenesis of the face and its circuits, however, neural crest cells act as "inductive ambassadors" from distinct regions of the neural tube to induce differentiation of target craniofacial domains and establish an initial interface between the brain and face. At every site of bilateral, non-axial secondary induction, neural crest constitutes all or some of the mesenchymal compartment for non-axial mesenchymal/epithelial (M/E) interactions. Thus, for epithelial domains in the craniofacial primordia, aortic arches, limbs, the spinal cord, and the forebrain (Fb), neural crest-derived mesenchymal cells establish local sources of inductive signaling molecules that drive morphogenesis and cellular differentiation. This common mechanism for building brains, faces, limbs, and hearts, A-P axis specified, neural crest-mediated M/E induction, coordinates differentiation of distal structures, peripheral neurons that provide their sensory or autonomic innervation in some cases, and central neural circuits that regulate their behavioral functions. The essential role of this neural crest-mediated mechanism identifies it as a prime target for pathogenesis in a broad range of neurodevelopmental disorders. Thus, the face and the brain "predict" one another, and this mutual developmental relationship provides a key target for disruption by developmental pathology.
Collapse
Affiliation(s)
- Anthony-Samuel LaMantia
- Laboratory of Developmental Disorders and Genetics and Center for Neurobiology Research, Fralin Biomedical Research Institute, Department of Pediatrics, Virginia Tech-Carilion School of Medicine, Virginia Tech, Roanoke, VA, United States.,Department of Biological Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
19
|
Gonzalez D, Tomasek M, Hays S, Sridhar V, Ammanuel S, Chang CW, Pawlowski K, Huber KM, Gibson JR. Audiogenic Seizures in the Fmr1 Knock-Out Mouse Are Induced by Fmr1 Deletion in Subcortical, VGlut2-Expressing Excitatory Neurons and Require Deletion in the Inferior Colliculus. J Neurosci 2019; 39:9852-9863. [PMID: 31666356 PMCID: PMC6891051 DOI: 10.1523/jneurosci.0886-19.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/06/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and the leading monogenetic cause of autism. One symptom of FXS and autism is sensory hypersensitivity (also called sensory over-responsivity). Perhaps related to this, the audiogenic seizure (AGS) is arguably the most robust behavioral phenotype in the FXS mouse model-the Fmr1 knock-out (KO) mouse. Therefore, the AGS may be considered a mouse model of sensory hypersensitivity. Hyperactive circuits are hypothesized to underlie dysfunction in a number of brain regions in patients with FXS and Fmr1 KO mice, and the AGS may be a result of this. But the specific cell types and brain regions underlying AGSs in the Fmr1 KO are unknown. We used conditional deletion or expression of Fmr1 in different cell populations to determine whether Fmr1 deletion in those cells was sufficient or necessary, respectively, for the AGS phenotype in males. Our data indicate that Fmr1 deletion in glutamatergic neurons that express vesicular glutamate transporter 2 (VGlut2) and are located in subcortical brain regions is sufficient and necessary to cause AGSs. Furthermore, the deletion of Fmr1 in glutamatergic neurons of the inferior colliculus is necessary for AGSs. When we demonstrate necessity, we show that Fmr1 expression in either the larger population of VGlut2-expressing glutamatergic neurons or the smaller population of inferior collicular glutamatergic neurons-in an otherwise Fmr1 KO mouse-eliminates AGSs. Therefore, targeting these neuronal populations in FXS and autism may be part of a therapeutic strategy to alleviate sensory hypersensitivity.SIGNIFICANCE STATEMENT Sensory hypersensitivity in fragile X syndrome (FXS) and autism patients significantly interferes with quality of life. Audiogenic seizures (AGSs) are arguably the most robust behavioral phenotype in the FXS mouse model-the Fmr1 knockout-and may be considered a model of sensory hypersensitivity in FXS. We provide the clearest and most precise genetic evidence to date for the cell types and brain regions involved in causing AGSs in the Fmr1 knockout and, more broadly, for any mouse mutant. The expression of Fmr1 in these same cell types in an otherwise Fmr1 knockout eliminates AGSs indicating possible cellular targets for alleviating sensory hypersensitivity in FXS and other forms of autism.
Collapse
Affiliation(s)
| | | | - Seth Hays
- Department of Neuroscience, Dallas, and
| | | | | | | | - Karen Pawlowski
- Department of Otolaryngology and Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9035
| | | | | |
Collapse
|
20
|
Ghanavatinejad F, Fard Tabrizi ZP, Omidghaemi S, Sharifi E, Møller SG, Jami MS. Protein biomarkers of neural system. J Otol 2019; 14:77-88. [PMID: 31467504 PMCID: PMC6712353 DOI: 10.1016/j.joto.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 11/30/2022] Open
Abstract
The utilization of biomarkers for in vivo and in vitro research is growing rapidly. This is mainly due to the enormous potential of biomarkers in evaluating molecular and cellular abnormalities in cell models and in tissue, and evaluating drug responses and the effectiveness of therapeutic intervention strategies. An important way to analyze the development of the human body is to assess molecular markers in embryonic specialized cells, which include the ectoderm, mesoderm, and endoderm. Neuronal development is controlled through the gene networks in the neural crest and neural tube, both components of the ectoderm. The neural crest differentiates into several different tissues including, but not limited to, the peripheral nervous system, enteric nervous system, melanocyte, and the dental pulp. The neural tube eventually converts to the central nervous system. This review provides an overview of the differentiation of the ectoderm to a fully functioning nervous system, focusing on molecular biomarkers that emerge at each stage of the cellular specialization from multipotent stem cells to completely differentiated cells. Particularly, the otic placode is the origin of most of the inner ear cell types such as neurons, sensory hair cells, and supporting cells. During the development, different auditory cell types can be distinguished by the expression of the neurogenin differentiation factor1 (Neuro D1), Brn3a, and transcription factor GATA3. However, the mature auditory neurons express other markers including βIII tubulin, the vesicular glutamate transporter (VGLUT1), the tyrosine receptor kinase B and C (Trk B, C), BDNF, neurotrophin 3 (NT3), Calretinin, etc.
Collapse
Affiliation(s)
- Fatemeh Ghanavatinejad
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Zahra Pourteymour Fard Tabrizi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Shadi Omidghaemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Simon Geir Møller
- Department of Biological Sciences, St John's University, New York, NY, USA
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Norway
| | - Mohammad-Saeid Jami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Science, Shahrekord, Iran
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, CA, 90095, USA
| |
Collapse
|
21
|
Michalski N, Petit C. Genes Involved in the Development and Physiology of Both the Peripheral and Central Auditory Systems. Annu Rev Neurosci 2019; 42:67-86. [DOI: 10.1146/annurev-neuro-070918-050428] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genetic approach, based on the study of inherited forms of deafness, has proven to be particularly effective for deciphering the molecular mechanisms underlying the development of the peripheral auditory system, the cochlea and its afferent auditory neurons, and how this system extracts the physical parameters of sound. Although this genetic dissection has provided little information about the central auditory system, scattered data suggest that some genes may have a critical role in both the peripheral and central auditory systems. Here, we review the genes controlling the development and function of the peripheral and central auditory systems, focusing on those with demonstrated intrinsic roles in both systems and highlighting the current underappreciation of these genes. Their encoded products are diverse, from transcription factors to ion channels, as are their roles in the central auditory system, mostly evaluated in brainstem nuclei. We examine the ontogenetic and evolutionary mechanisms that may underlie their expression at different sites.
Collapse
Affiliation(s)
- Nicolas Michalski
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75015 Paris, France;,
- Institut National de la Santé et de la Recherche Médicale, UMRS 1120, 75015 Paris, France
- Sorbonne Universités, 75005 Paris, France
| | - Christine Petit
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75015 Paris, France;,
- Institut National de la Santé et de la Recherche Médicale, UMRS 1120, 75015 Paris, France
- Sorbonne Universités, 75005 Paris, France
- Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France
- Collège de France, 75005 Paris, France
| |
Collapse
|
22
|
Weghorst FP, Cramer KS. The evolution of hearing and balance. eLife 2019; 8:44567. [PMID: 30735124 PMCID: PMC6368400 DOI: 10.7554/elife.44567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 11/13/2022] Open
Abstract
New genetic tools have allowed researchers to compare how the brainstem auditory and vestibular nuclei develop in embryonic chicks and mice.
Collapse
Affiliation(s)
- Forrest P Weghorst
- Department of Neurobiology and BehaviorUniversity of California, IrvineIrvineUnited States
| | - Karina S Cramer
- Neurobiology and BehaviorUniversity of California, IrvineIrvineUnited States
| |
Collapse
|
23
|
Lipovsek M, Wingate RJ. Conserved and divergent development of brainstem vestibular and auditory nuclei. eLife 2018; 7:40232. [PMID: 30566077 PMCID: PMC6317910 DOI: 10.7554/elife.40232] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/18/2018] [Indexed: 12/20/2022] Open
Abstract
Vestibular function was established early in vertebrates and has remained, for the most part, unchanged. In contrast, each group of tetrapods underwent independent evolutionary processes to solve the problem of hearing on land, resulting in a remarkable mixture of conserved, divergent and convergent features that define extant auditory systems. The vestibuloacoustic nuclei of the hindbrain develop from a highly conserved ground plan and provide an ideal framework on which to address the participation of developmental processes to the evolution of neuronal circuits. We employed an electroporation strategy to unravel the contribution of two dorsoventral and four axial lineages to the development of the chick hindbrain vestibular and auditory nuclei. We compare the chick developmental map with recently established genetic fate-maps of the developing mouse hindbrain. Overall, we find considerable conservation of developmental origin for the vestibular nuclei. In contrast, a comparative analysis of the developmental origin of hindbrain auditory structures echoes the complex evolutionary history of the auditory system. In particular, we find that the developmental origin of the chick auditory interaural time difference circuit supports its emergence from an ancient vestibular network, unrelated to the analogous mammalian counterpart.
Collapse
Affiliation(s)
- Marcela Lipovsek
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Richard Jt Wingate
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
24
|
Arce ME, Sánchez SI, Correa MM, Ciuffo GM. Age-Related Changes in Ang II Receptor Localization and Expression in the Developing Auditory Pathway. Neurochem Res 2018; 44:412-420. [PMID: 30488363 DOI: 10.1007/s11064-018-2687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 10/27/2022]
Abstract
We studied Ang II receptor localization in different nuclei of the auditory system, by means of binding autoradiography, during brain development. The inferior colliculus (IC), a large midbrain structure which serves as an obligatory synaptic station in both the ascending and descending auditory pathways, exhibited high Ang II AT2 binding at all ages (P0, P8, P15, P30), being maximal at P15. These observations were confirmed by in situ hybridization and immunofluorescence at P15, demonstrating that AT2 receptor mRNA localized at the same area recognized by AT2 antibodies and anti β III-tubulin suggesting the neuronal nature of the reactive cells. Ang II AT1 receptors were absent at early developmental ages (P0) in all nuclei of the auditory system and a low level was observed in the IC at the age P8. AT2 receptors were present at ventral cochlear nucleus and superior olivary complex, being higher at P15 and P8, respectively. We also explored the effect of prenatal administration of Ang II or PD123319 (AT2 antagonist) on binding of Ang II receptors at P0, P8, P15. Both treatments increased significantly the level of AT2 receptors at P0 and P8 in the IC. Although total binding in the whole IC from P15 animals showed no difference between treatments, the central nucleus of the IC exhibited higher binding. Our results supports a correlation between the timing of the higher expression of Ang II AT2 receptors in different nuclei, the onset of audition and the establishment of neuronal circuits of the auditory pathway.
Collapse
Affiliation(s)
- M E Arce
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL CONICET), Universidad Nacional de San Luis, Ejército de los Andes 950, 5700, San Luis, Argentina
| | - S I Sánchez
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL CONICET), Universidad Nacional de San Luis, Ejército de los Andes 950, 5700, San Luis, Argentina
| | - M M Correa
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL CONICET), Universidad Nacional de San Luis, Ejército de los Andes 950, 5700, San Luis, Argentina
| | - G M Ciuffo
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL CONICET), Universidad Nacional de San Luis, Ejército de los Andes 950, 5700, San Luis, Argentina.
| |
Collapse
|
25
|
Frank MM, Goodrich LV. Talking back: Development of the olivocochlear efferent system. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2018; 7:e324. [PMID: 29944783 PMCID: PMC6185769 DOI: 10.1002/wdev.324] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/27/2018] [Accepted: 05/17/2018] [Indexed: 02/02/2023]
Abstract
Developing sensory systems must coordinate the growth of neural circuitry spanning from receptors in the peripheral nervous system (PNS) to multilayered networks within the central nervous system (CNS). This breadth presents particular challenges, as nascent processes must navigate across the CNS-PNS boundary and coalesce into a tightly intermingled wiring pattern, thereby enabling reliable integration from the PNS to the CNS and back. In the auditory system, feedforward spiral ganglion neurons (SGNs) from the periphery collect sound information via tonotopically organized connections in the cochlea and transmit this information to the brainstem for processing via the VIII cranial nerve. In turn, feedback olivocochlear neurons (OCNs) housed in the auditory brainstem send projections into the periphery, also through the VIII nerve. OCNs are motor neuron-like efferent cells that influence auditory processing within the cochlea and protect against noise damage in adult animals. These aligned feedforward and feedback systems develop in parallel, with SGN central axons reaching the developing auditory brainstem around the same time that the OCN axons extend out toward the developing inner ear. Recent findings have begun to unravel the genetic and molecular mechanisms that guide OCN development, from their origins in a generic pool of motor neuron precursors to their specialized roles as modulators of cochlear activity. One recurrent theme is the importance of efferent-afferent interactions, as afferent SGNs guide OCNs to their final locations within the sensory epithelium, and efferent OCNs shape the activity of the developing auditory system. This article is categorized under: Nervous System Development > Vertebrates: Regional Development.
Collapse
|
26
|
Puelles L, Tvrdik P, Martínez-de-la-torre M. The Postmigratory Alar Topography of Visceral Cranial Nerve Efferents Challenges the Classical Model of Hindbrain Columns. Anat Rec (Hoboken) 2018; 302:485-504. [DOI: 10.1002/ar.23830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, School of Medicine; University of Murcia; Murcia 30071 Spain
| | - Petr Tvrdik
- Department of Neurosurgery-Physiology; University of Utah; Salt Lake City, Utah 84112
| | - Margaret Martínez-de-la-torre
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, School of Medicine; University of Murcia; Murcia 30071 Spain
| |
Collapse
|
27
|
Glover JC, Elliott KL, Erives A, Chizhikov VV, Fritzsch B. Wilhelm His' lasting insights into hindbrain and cranial ganglia development and evolution. Dev Biol 2018; 444 Suppl 1:S14-S24. [PMID: 29447907 DOI: 10.1016/j.ydbio.2018.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/03/2018] [Accepted: 02/04/2018] [Indexed: 01/04/2023]
Abstract
Wilhelm His (1831-1904) provided lasting insights into the development of the central and peripheral nervous system using innovative technologies such as the microtome, which he invented. 150 years after his resurrection of the classical germ layer theory of Wolff, von Baer and Remak, his description of the developmental origin of cranial and spinal ganglia from a distinct cell population, now known as the neural crest, has stood the test of time and more recently sparked tremendous advances regarding the molecular development of these important cells. In addition to his 1868 treatise on 'Zwischenstrang' (now neural crest), his work on the development of the human hindbrain published in 1890 provided novel ideas that more than 100 years later form the basis for penetrating molecular investigations of the regionalization of the hindbrain neural tube and of the migration and differentiation of its constituent neuron populations. In the first part of this review we briefly summarize the major discoveries of Wilhelm His and his impact on the field of embryology. In the second part we relate His' observations to current knowledge about the molecular underpinnings of hindbrain development and evolution. We conclude with the proposition, present already in rudimentary form in the writings of His, that a primordial spinal cord-like organization has been molecularly supplemented to generate hindbrain 'neomorphs' such as the cerebellum and the auditory and vestibular nuclei and their associated afferents and sensory organs.
Collapse
Affiliation(s)
- Joel C Glover
- Department of Molecular Medicine, University of Oslo, Oslo, Norway; Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway; Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.
| | - Karen L Elliott
- Department of Biology, University of Iowa, Iowa, IA 52242, USA
| | - Albert Erives
- Department of Biology, University of Iowa, Iowa, IA 52242, USA
| | - Victor V Chizhikov
- The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa, IA 52242, USA.
| |
Collapse
|
28
|
Brown S, Zervas M. Temporal Expression of Wnt1 Defines the Competency State and Terminal Identity of Progenitors in the Developing Cochlear Nucleus and Inferior Colliculus. Front Neuroanat 2017; 11:67. [PMID: 28878630 PMCID: PMC5572273 DOI: 10.3389/fnana.2017.00067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 07/19/2017] [Indexed: 11/25/2022] Open
Abstract
The auditory system contains a diverse array of interconnected anatomical structures that mediate the perception of sound. The cochlear nucleus of the hindbrain serves as the initial site of convergence for auditory stimuli, while the inferior colliculus of the midbrain serves as an integration and relay station for all ascending auditory information. We used Genetic Inducible Fate Mapping (GIFM) to determine how the timing of Wnt1 expression is related to the competency states of auditory neuron progenitors. We demonstrate that the Wnt1 lineage defines progenitor pools of auditory neurons in the developing midbrain and hindbrain. The timing of Wnt1 expression specifies unique cell types during embryogenesis and follows a mixed model encompassing a brief epoch of de novo expression followed by rapid and progressive lineage restriction to shape the inferior colliculus. In contrast, Wnt1 fate mapping of the embryonic hindbrain revealed de novo induction of Wnt1 in auditory hindbrain progenitors, which is related to the development of biochemically distinct neurons in the cochlear nucleus. Thus, we uncovered two modes of lineage allocation that explain the relationship between the timing of Wnt1 expression and the development of the cochlear nucleus and the inferior colliculus. Finally, our analysis of Wnt1sw/sw mutant mice demonstrated a functional requirement of Wnt1 for the development of auditory midbrain and hindbrain neurons. Collectively, our study provides a deeper understanding of Wnt1 lineage allocation and function in mammalian brain development.
Collapse
Affiliation(s)
- Stephen Brown
- Department of Molecular Biology, Cell Biology and Biochemistry, Division of Biology and Medicine, Brown University, ProvidenceRI, United States
| | - Mark Zervas
- Department of Molecular Biology, Cell Biology and Biochemistry, Division of Biology and Medicine, Brown University, ProvidenceRI, United States.,Department of Neuroscience, Division of Biology and Medicine, Brown University, ProvidenceRI, United States.,Department of Neuroscience, Amgen, CambridgeMA, United States
| |
Collapse
|
29
|
Plummer NW, Scappini EL, Smith KG, Tucker CJ, Jensen P. Two Subpopulations of Noradrenergic Neurons in the Locus Coeruleus Complex Distinguished by Expression of the Dorsal Neural Tube Marker Pax7. Front Neuroanat 2017; 11:60. [PMID: 28775681 PMCID: PMC5518464 DOI: 10.3389/fnana.2017.00060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/07/2017] [Indexed: 01/05/2023] Open
Abstract
Central noradrenergic neurons, collectively defined by synthesis of the neurotransmitter norepinephrine, are a diverse collection of cells in the hindbrain, differing in their anatomy, physiological and behavioral functions, and susceptibility to disease and environmental insult. To investigate the developmental basis of this heterogeneity, we have used an intersectional genetic fate mapping strategy in mice to study the dorsoventral origins of the En1-derived locus coeruleus (LC) complex which encompasses virtually all of the anatomically defined LC proper, as well as a portion of the A7 and subcoeruleus (SubC) noradrenergic nuclei. We show that the noradrenergic neurons of the LC complex originate in two different territories of the En1 expression domain in the embryonic hindbrain. Consistent with prior studies, we confirm that the majority of the LC proper arises from the alar plate, the dorsal domain of the neural tube, as defined by expression of Pax7Cre. In addition, our analysis shows that a large proportion of the En1-derived A7 and SubC nuclei also originate in the Pax7Cre-defined alar plate. Surprisingly, however, we identify a smaller subpopulation of the LC complex that arises from outside the Pax7Cre expression domain. We characterize the distribution of these neurons within the LC complex, their cell morphology, and their axonal projection pattern. Compared to the broader LC complex, the newly identified Pax7Cre-negative noradrenergic subpopulation has very sparse projections to thalamic nuclei, suggestive of distinct functions. This developmental genetic analysis opens new avenues of investigation into the functional diversity of the LC complex.
Collapse
Affiliation(s)
- Nicholas W Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human ServicesDurham, NC, United States
| | - Erica L Scappini
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human ServicesDurham, NC, United States
| | - Kathleen G Smith
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human ServicesDurham, NC, United States
| | - Charles J Tucker
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human ServicesDurham, NC, United States
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human ServicesDurham, NC, United States
| |
Collapse
|