1
|
Kagan BJ, Gyngell C, Lysaght T, Cole VM, Sawai T, Savulescu J. The technology, opportunities, and challenges of Synthetic Biological Intelligence. Biotechnol Adv 2023; 68:108233. [PMID: 37558186 PMCID: PMC7615149 DOI: 10.1016/j.biotechadv.2023.108233] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/15/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Integrating neural cultures developed through synthetic biology methods with digital computing has enabled the early development of Synthetic Biological Intelligence (SBI). Recently, key studies have emphasized the advantages of biological neural systems in some information processing tasks. However, neither the technology behind this early development, nor the potential ethical opportunities or challenges, have been explored in detail yet. Here, we review the key aspects that facilitate the development of SBI and explore potential applications. Considering these foreseeable use cases, various ethical implications are proposed. Ultimately, this work aims to provide a robust framework to structure ethical considerations to ensure that SBI technology can be both researched and applied responsibly.
Collapse
Affiliation(s)
| | - Christopher Gyngell
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; University of Melbourne, Melbourne, VIC, Australia
| | - Tamra Lysaght
- Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Victor M Cole
- Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tsutomu Sawai
- Graduate School of Humanities and Social Sciences, Hiroshima University, Hiroshima, Japan; Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Julian Savulescu
- Murdoch Children's Research Institute, Melbourne, VIC, Australia; University of Melbourne, Melbourne, VIC, Australia; Centre for Biomedical Ethics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
2
|
Wang J, Deng B, Gao T, Wang J, Tan H. Spike-frequency adaptation inhibits the pairwise spike correlation. Front Neurosci 2023; 17:1193930. [PMID: 37378017 PMCID: PMC10291049 DOI: 10.3389/fnins.2023.1193930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/16/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction The spike train output correlation with pairwise neurons determines the neural population coding, which depends on the average firing rate of individual neurons. Spike frequency adaptation (SFA), which serves as an essential cellular encoding strategy, modulates the firing rates of individual neurons. However, the mechanism by which the SFA modulates the output correlation of the spike trains remains unclear. Methods We introduce a pairwise neuron model that receives correlated inputs to generate spike trains, and the output correlation is qualified using Pearson correlation coefficient. The SFA is modeled using adaptation currents to examine its effect on the output correlation. Moreover, we use dynamic thresholds to explore the effect of SFA on output correlation. Furthermore, a simple phenomenological neuron model with a threshold-linear transfer function is utilized to confirm the effect of SFA on decreasing the output correlation. Results The results show that the adaptation currents decreased the output correlation by reducing the firing rate of a single neuron. At the onset of a correlated input, a transient process shows a decrease in interspike intervals (ISIs), resulting in a temporary increase in the correlation. When the adaptation current is sufficiently activated, the correlation reached a steady state, and the ISIs are maintained at higher values. The enhanced adaptation current achieved by increasing the adaptation conductance further reduces the pairwise correlation. While the time and slide windows influence the correlation, they make no difference in the effect of SFA on decreasing the output correlation. Moreover, SFA simulated by dynamic thresholds also decreases the output correlation. Furthermore, the simple phenomenological neuron model with a threshold-linear transfer function confirms the effect of SFA on decreasing the output correlation. The strength of the signal input and the slope of the linear component of the transfer function, the latter of which can be decreased by SFA, could together modulate the strength of the output correlation. Stronger SFA will decrease the slope and hence decrease the output correlation. Conclusions The results reveal that the SFA reduces the output correlation with pairwise neurons in the network by reducing the firing rate of individual neurons. This study provides a link between cellular non-linear mechanisms and network coding strategies.
Collapse
Affiliation(s)
- Jixuan Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Bin Deng
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Tianshi Gao
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Hong Tan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Kagan BJ, Kitchen AC, Tran NT, Habibollahi F, Khajehnejad M, Parker BJ, Bhat A, Rollo B, Razi A, Friston KJ. In vitro neurons learn and exhibit sentience when embodied in a simulated game-world. Neuron 2022; 110:3952-3969.e8. [PMID: 36228614 DOI: 10.1016/j.neuron.2022.09.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/21/2022] [Accepted: 08/31/2022] [Indexed: 11/06/2022]
Abstract
Integrating neurons into digital systems may enable performance infeasible with silicon alone. Here, we develop DishBrain, a system that harnesses the inherent adaptive computation of neurons in a structured environment. In vitro neural networks from human or rodent origins are integrated with in silico computing via a high-density multielectrode array. Through electrophysiological stimulation and recording, cultures are embedded in a simulated game-world, mimicking the arcade game "Pong." Applying implications from the theory of active inference via the free energy principle, we find apparent learning within five minutes of real-time gameplay not observed in control conditions. Further experiments demonstrate the importance of closed-loop structured feedback in eliciting learning over time. Cultures display the ability to self-organize activity in a goal-directed manner in response to sparse sensory information about the consequences of their actions, which we term synthetic biological intelligence. Future applications may provide further insights into the cellular correlates of intelligence.
Collapse
Affiliation(s)
| | | | - Nhi T Tran
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Forough Habibollahi
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia
| | - Moein Khajehnejad
- Department of Data Science and AI, Monash University, Melbourne, Australia
| | - Bradyn J Parker
- Department of Materials Science and Engineering, Monash University, Melbourne, VIC, Australia
| | - Anjali Bhat
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Adeel Razi
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK; Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia; Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia; CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, Canada
| | - Karl J Friston
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, UK
| |
Collapse
|
4
|
Edmondson LR, Jiménez Rodríguez A, Saal HP. Expansion and contraction of resource allocation in sensory bottlenecks. eLife 2022; 11:70777. [PMID: 35924884 PMCID: PMC9391039 DOI: 10.7554/elife.70777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/29/2022] [Indexed: 11/22/2022] Open
Abstract
Topographic sensory representations often do not scale proportionally to the size of their input regions, with some expanded and others contracted. In vision, the foveal representation is magnified cortically, as are the fingertips in touch. What principles drive this allocation, and how should receptor density, for example, the high innervation of the fovea or the fingertips, and stimulus statistics, for example, the higher contact frequencies on the fingertips, contribute? Building on work in efficient coding, we address this problem using linear models that optimally decorrelate the sensory signals. We introduce a sensory bottleneck to impose constraints on resource allocation and derive the optimal neural allocation. We find that bottleneck width is a crucial factor in resource allocation, inducing either expansion or contraction. Both receptor density and stimulus statistics affect allocation and jointly determine convergence for wider bottlenecks. Furthermore, we show a close match between the predicted and empirical cortical allocations in a well-studied model system, the star-nosed mole. Overall, our results suggest that the strength of cortical magnification depends on resource limits.
Collapse
Affiliation(s)
- Laura R Edmondson
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| | | | - Hannes P Saal
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
5
|
Ly C, Barreiro AK, Gautam SH, Shew WL. Odor-evoked increases in olfactory bulb mitral cell spiking variability. iScience 2021; 24:102946. [PMID: 34485855 PMCID: PMC8397902 DOI: 10.1016/j.isci.2021.102946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/07/2021] [Accepted: 08/02/2021] [Indexed: 01/04/2023] Open
Abstract
The spiking variability of neural networks has important implications for how information is encoded to higher brain regions. It has been well documented by numerous labs in many cortical and motor regions that spiking variability decreases with stimulus onset, yet whether this principle holds in the OB has not been tested. In stark contrast to this common view, we demonstrate that the onset of sensory input can cause an increase in the variability of neural activity in the mammalian OB. We show this in both anesthetized and awake rodents. Furthermore, we use computational models to describe the mechanisms of this phenomenon. Our findings establish sensory evoked increases in spiking variability as a viable alternative coding strategy.
Collapse
Affiliation(s)
- Cheng Ly
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Andrea K. Barreiro
- Department of Mathematics, Southern Methodist University, Dallas, TX 75275, USA
| | - Shree Hari Gautam
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
| | - Woodrow L. Shew
- Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
6
|
Ben Hadj Hassen S, Ben Hamed S. Functional and behavioural correlates of shared neuronal noise variability in vision and visual cognition. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Alishbayli A, Tichelaar JG, Gorska U, Cohen MX, Englitz B. The asynchronous state's relation to large-scale potentials in cortex. J Neurophysiol 2019; 122:2206-2219. [PMID: 31642401 PMCID: PMC6966315 DOI: 10.1152/jn.00013.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/08/2019] [Accepted: 08/08/2019] [Indexed: 11/22/2022] Open
Abstract
Understanding the relation between large-scale potentials (M/EEG) and their underlying neural activity can improve the precision of research and clinical diagnosis. Recent insights into cortical dynamics highlighted a state of strongly reduced spike count correlations, termed the asynchronous state (AS). The AS has received considerable attention from experimenters and theorists alike, regarding its implications for cortical dynamics and coding of information. However, how reconcilable are these vanishing correlations in the AS with large-scale potentials such as M/EEG observed in most experiments? Typically the latter are assumed to be based on underlying correlations in activity, in particular between subthreshold potentials. We survey the occurrence of the AS across brain states, regions, and layers and argue for a reconciliation of this seeming disparity: large-scale potentials are either observed, first, at transitions between cortical activity states, which entail transient changes in population firing rate, as well as during the AS, and, second, on the basis of sufficiently large, asynchronous populations that only need to exhibit weak correlations in activity. Cells with no or little spiking activity can contribute to large-scale potentials via their subthreshold currents, while they do not contribute to the estimation of spiking correlations, defining the AS. Furthermore, third, the AS occurs only within particular cortical regions and layers associated with the currently selected modality, allowing for correlations at other times and between other areas and layers.
Collapse
Affiliation(s)
- A. Alishbayli
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Tactile Perception and Learning Laboratory, International School for Advanced Studies, Trieste, Italy
| | - J. G. Tichelaar
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - U. Gorska
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Psychophysiology Laboratory, Institute of Psychology, Jagiellonian University, Krakow, Poland
- Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland
| | - M. X. Cohen
- Department of Neuroinformatics, Donders Institute for Brain Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - B. Englitz
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Cardin JA. Inhibitory Interneurons Regulate Temporal Precision and Correlations in Cortical Circuits. Trends Neurosci 2018; 41:689-700. [PMID: 30274604 PMCID: PMC6173199 DOI: 10.1016/j.tins.2018.07.015] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 01/16/2023]
Abstract
GABAergic interneurons, which are highly diverse, have long been thought to contribute to the timing of neural activity as well as to the generation and shaping of brain rhythms. GABAergic activity is crucial not only for entrainment of oscillatory activity across a neural population, but also for precise regulation of the timing of action potentials and the suppression of slow-timescale correlations. The diversity of inhibition provides the potential for flexible regulation of patterned activity, but also poses a challenge to identifying the elements of excitatory-inhibitory interactions underlying network engagement. This review highlights the key roles of inhibitory interneurons in spike correlations and brain rhythms, describes several scales on which GABAergic inhibition regulates timing in neural networks, and identifies potential consequences of inhibitory dysfunction.
Collapse
Affiliation(s)
- Jessica A Cardin
- Department of Neuroscience, Yale University, New Haven, CT 06520, USA; Kavli Institute for Neuroscience, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
9
|
Patel MJ. Effects of Adaptation on Discrimination of Whisker Deflection Velocity and Angular Direction in a Model of the Barrel Cortex. Front Comput Neurosci 2018; 12:45. [PMID: 29946250 PMCID: PMC6006271 DOI: 10.3389/fncom.2018.00045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/25/2018] [Indexed: 11/17/2022] Open
Abstract
Two important stimulus features represented within the rodent barrel cortex are velocity and angular direction of whisker deflection. Each cortical barrel receives information from thalamocortical (TC) cells that relay information from a single whisker, and TC input is decoded by barrel regular-spiking (RS) cells through a feedforward inhibitory architecture (with inhibition delivered by cortical fast-spiking or FS cells). TC cells encode deflection velocity through population synchrony, while deflection direction is encoded through the distribution of spike counts across the TC population. Barrel RS cells encode both deflection direction and velocity with spike rate, and are divided into functional domains by direction preference. Following repetitive whisker stimulation, system adaptation causes a weakening of synaptic inputs to RS cells and diminishes RS cell spike responses, though evidence suggests that stimulus discrimination may improve following adaptation. In this work, I construct a model of the TC, FS, and RS cells comprising a single barrel system—the model incorporates realistic synaptic connectivity and dynamics and simulates both angular direction (through the spatial pattern of TC activation) and velocity (through synchrony of the TC population spikes) of a deflection of the primary whisker, and I use the model to examine direction and velocity selectivity of barrel RS cells before and after adaptation. I find that velocity and direction selectivity of individual RS cells (measured over multiple trials) sharpens following adaptation, but stimulus discrimination using a simple linear classifier by the RS population response during a single trial (a more biologically meaningful measure than single cell discrimination over multiple trials) exhibits strikingly different behavior—velocity discrimination is similar both before and after adaptation, while direction classification improves substantially following adaptation. This is the first model, to my knowledge, that simulates both whisker deflection velocity and angular direction and examines the ability of the RS population response to pinpoint both stimulus features within the context of adaptation.
Collapse
Affiliation(s)
- Mainak J Patel
- Department of Mathematics, College of William and Mary, Williamsburg, VA, United States
| |
Collapse
|
10
|
Spiking and Excitatory/Inhibitory Input Dynamics of Barrel Cells in Response to Whisker Deflections of Varying Velocity and Angular Direction. Neuroscience 2018; 369:15-28. [PMID: 29122591 DOI: 10.1016/j.neuroscience.2017.10.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 11/20/2022]
Abstract
The spiking of barrel regular-spiking (RS) cells is tuned for both whisker deflection direction and velocity. Velocity tuning arises due to thalamocortical (TC) synchrony (but not spike quantity) varying with deflection velocity, coupled with feedforward inhibition, while direction selectivity is not fully understood, though may be due partly to direction tuning of TC spiking. Data show that as deflection direction deviates from the preferred direction of an RS cell, excitatory input to the RS cell diminishes minimally, but temporally shifts to coincide with the time-lagged inhibitory input. This work constructs a realistic large-scale model of a barrel; model RS cells exhibit velocity and direction selectivity due to TC input dynamics, with the experimentally observed sharpening of direction tuning with decreasing velocity. The model puts forth the novel proposal that RS→RS synapses can naturally and simply account for the unexplained direction dependence of RS cell inputs - as deflection direction deviates from the preferred direction of an RS cell, and TC input declines, RS→RS synaptic transmission buffers the decline in total excitatory input and causes a shift in timing of the excitatory input peak from the peak in TC input to the delayed peak in RS input. The model also provides several experimentally testable predictions on the velocity dependence of RS cell inputs. This model is the first, to my knowledge, to study the interaction of direction and velocity and propose physiological mechanisms for the stimulus dependence in the timing and amplitude of RS cell inputs.
Collapse
|
11
|
Ly C, Marsat G. Variable synaptic strengths controls the firing rate distribution in feedforward neural networks. J Comput Neurosci 2017; 44:75-95. [DOI: 10.1007/s10827-017-0670-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 12/27/2022]
|
12
|
A theoretical framework for analyzing coupled neuronal networks: Application to the olfactory system. PLoS Comput Biol 2017; 13:e1005780. [PMID: 28968384 PMCID: PMC5638622 DOI: 10.1371/journal.pcbi.1005780] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 10/12/2017] [Accepted: 09/15/2017] [Indexed: 12/27/2022] Open
Abstract
Determining how synaptic coupling within and between regions is modulated during sensory processing is an important topic in neuroscience. Electrophysiological recordings provide detailed information about neural spiking but have traditionally been confined to a particular region or layer of cortex. Here we develop new theoretical methods to study interactions between and within two brain regions, based on experimental measurements of spiking activity simultaneously recorded from the two regions. By systematically comparing experimentally-obtained spiking statistics to (efficiently computed) model spike rate statistics, we identify regions in model parameter space that are consistent with the experimental data. We apply our new technique to dual micro-electrode array in vivo recordings from two distinct regions: olfactory bulb (OB) and anterior piriform cortex (PC). Our analysis predicts that: i) inhibition within the afferent region (OB) has to be weaker than the inhibition within PC, ii) excitation from PC to OB is generally stronger than excitation from OB to PC, iii) excitation from PC to OB and inhibition within PC have to both be relatively strong compared to presynaptic inputs from OB. These predictions are validated in a spiking neural network model of the OB–PC pathway that satisfies the many constraints from our experimental data. We find when the derived relationships are violated, the spiking statistics no longer satisfy the constraints from the data. In principle this modeling framework can be adapted to other systems and be used to investigate relationships between other neural attributes besides network connection strengths. Thus, this work can serve as a guide to further investigations into the relationships of various neural attributes within and across different regions during sensory processing. Sensory processing is known to span multiple regions of the nervous system. However, electrophysiological recordings during sensory processing have traditionally been limited to a single region or brain layer. With recent advances in experimental techniques, recorded spiking activity from multiple regions simultaneously is feasible. However, other important quantities— such as inter-region connection strengths—cannot yet be measured. Here, we develop new theoretical tools to leverage data obtained by recording from two different brain regions simultaneously. We address the following questions: what are the crucial neural network attributes that enable sensory processing across different regions, and how are these attributes related to one another? With a novel theoretical framework to efficiently calculate spiking statistics, we can characterize a high dimensional parameter space that satisfies data constraints. We apply our results to the olfactory system to make specific predictions about effective network connectivity. Our framework relies on incorporating relatively easy-to-measure quantities to predict hard-to-measure interactions across multiple brain regions. Because this work is adaptable to other systems, we anticipate it will be a valuable tool for analysis of other larger scale brain recordings.
Collapse
|
13
|
Long-Term Deficits in Cortical Circuit Function after Asphyxial Cardiac Arrest and Resuscitation in Developing Rats. eNeuro 2017; 4:eN-NWR-0319-16. [PMID: 28674699 PMCID: PMC5492685 DOI: 10.1523/eneuro.0319-16.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 11/21/2022] Open
Abstract
Cardiac arrest is a common cause of global hypoxic-ischemic brain injury. Poor neurologic outcome among cardiac arrest survivors results not only from direct cellular injury but also from subsequent long-term dysfunction of neuronal circuits. Here, we investigated the long-term impact of cardiac arrest during development on the function of cortical layer IV (L4) barrel circuits in the rat primary somatosensory cortex. We used multielectrode single-neuron recordings to examine responses of presumed excitatory L4 barrel neurons to controlled whisker stimuli in adult (8 ± 2-mo-old) rats that had undergone 9 min of asphyxial cardiac arrest and resuscitation during the third postnatal week. Results indicate that responses to deflections of the topographically appropriate principal whisker (PW) are smaller in magnitude in cardiac arrest survivors than in control rats. Responses to adjacent whisker (AW) deflections are similar in magnitude between the two groups. Because of a disproportionate decrease in PW-evoked responses, receptive fields of L4 barrel neurons are less spatially focused in cardiac arrest survivors than in control rats. In addition, spiking activity among L4 barrel neurons is more correlated in cardiac arrest survivors than in controls. Computational modeling demonstrates that experimentally observed disruptions in barrel circuit function after cardiac arrest can emerge from a balanced increase in background excitatory and inhibitory conductances in L4 neurons. Experimental and modeling data together suggest that after a hypoxic-ischemic insult, cortical sensory circuits are less responsive and less spatially tuned. Modulation of these deficits may represent a therapeutic approach to improving neurologic outcome after cardiac arrest.
Collapse
|
14
|
Wright NC, Hoseini MS, Wessel R. Adaptation modulates correlated subthreshold response variability in visual cortex. J Neurophysiol 2017; 118:1257-1269. [PMID: 28592686 DOI: 10.1152/jn.00124.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 02/02/2023] Open
Abstract
Cortical sensory responses are highly variable across stimulus presentations. This variability can be correlated across neurons (due to some combination of dense intracortical connectivity, cortical activity level, and cortical state), with fundamental implications for population coding. Yet the interpretation of correlated response variability (or "noise correlation") has remained fraught with difficulty, in part because of the restriction to extracellular neuronal spike recordings. Here, we measured response variability and its correlation at the most microscopic level of electrical neural activity, the membrane potential, by obtaining dual whole cell recordings from pairs of cortical pyramidal neurons during visual processing in the turtle whole brain ex vivo preparation. We found that during visual stimulation, correlated variability adapts toward an intermediate level and that this correlation dynamic is likely mediated by intracortical mechanisms. A model network with external inputs, synaptic depression, and structure reproduced the observed dynamics of correlated variability. These results suggest that intracortical adaptation self-organizes cortical circuits toward a balanced regime at which correlated variability is maintained at an intermediate level.NEW & NOTEWORTHY Correlated response variability has profound implications for stimulus encoding, yet our understanding of this phenomenon is based largely on spike data. Here, we investigate the dynamics and mechanisms of membrane potential-correlated variability (CC) in visual cortex with a combined experimental and computational approach. We observe a visually evoked increase in CC, followed by a fast return to baseline. Our results further suggest a link between this observation and the adaptation-mediated dynamics of emergent network phenomena.
Collapse
Affiliation(s)
- Nathaniel C Wright
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri
| | - Mahmood S Hoseini
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri
| | - Ralf Wessel
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
15
|
Kanashiro T, Ocker GK, Cohen MR, Doiron B. Attentional modulation of neuronal variability in circuit models of cortex. eLife 2017; 6. [PMID: 28590902 PMCID: PMC5476447 DOI: 10.7554/elife.23978] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/20/2017] [Indexed: 01/12/2023] Open
Abstract
The circuit mechanisms behind shared neural variability (noise correlation) and its dependence on neural state are poorly understood. Visual attention is well-suited to constrain cortical models of response variability because attention both increases firing rates and their stimulus sensitivity, as well as decreases noise correlations. We provide a novel analysis of population recordings in rhesus primate visual area V4 showing that a single biophysical mechanism may underlie these diverse neural correlates of attention. We explore model cortical networks where top-down mediated increases in excitability, distributed across excitatory and inhibitory targets, capture the key neuronal correlates of attention. Our models predict that top-down signals primarily affect inhibitory neurons, whereas excitatory neurons are more sensitive to stimulus specific bottom-up inputs. Accounting for trial variability in models of state dependent modulation of neuronal activity is a critical step in building a mechanistic theory of neuronal cognition. DOI:http://dx.doi.org/10.7554/eLife.23978.001 The world around us is complex and our brains need to navigate this complexity. We must focus on relevant inputs from our senses – such as the bus we need to catch – while ignoring distractions – such as the eye-catching displays in the shop windows we pass on the same street. Selective attention is a tool that enables us to filter complex sensory scenes and focus on whatever is most important at the time. But how does selective attention work? Our sense of vision results from the activity of cells in a region of the brain called visual cortex. Paying attention to an object affects the activity of visual cortex in two ways. First, it causes the average activity of the brain cells in the visual cortex that respond to that object to increase. Second, it reduces spontaneous moment-to-moment fluctuations in the activity of those brain cells, known as noise. Both of these effects make it easier for the brain to process the object in question. Kanashiro et al. set out to build a mathematical model of visual cortex that captures these two components of selective attention. The cortex contains two types of brain cells: excitatory neurons, which activate other cells, and inhibitory neurons, which suppress other cells. Experiments suggest that excitatory neurons contribute to the flow of activity within the cortex, whereas inhibitory neurons help cancel out noise. The new mathematical model predicts that paying attention affects inhibitory neurons far more than excitatory ones. According to the model, selective attention works mainly by reducing the noise that would otherwise distort the activity of visual cortex. The next step is to test this prediction directly. This will require measuring the activity of the inhibitory neurons in an animal performing a selective attention task. Such experiments, which should be achievable using existing technologies, will allow scientists to confirm or disprove the current model, and to dissect the mechanisms that underlie visual attention. DOI:http://dx.doi.org/10.7554/eLife.23978.002
Collapse
Affiliation(s)
- Tatjana Kanashiro
- Program for Neural Computation, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, United States.,Department of Mathematics, University of Pittsburgh, Pittsburgh, United States.,Center for the Neural Basis of Cognition, Pittsburgh, United States
| | - Gabriel Koch Ocker
- Department of Mathematics, University of Pittsburgh, Pittsburgh, United States.,Center for the Neural Basis of Cognition, Pittsburgh, United States.,Allen Institute for Brain Science, Seattle, United States
| | - Marlene R Cohen
- Center for the Neural Basis of Cognition, Pittsburgh, United States.,Department of Neuroscience, University of Pittsburgh, Pittsburgh, United States
| | - Brent Doiron
- Department of Mathematics, University of Pittsburgh, Pittsburgh, United States.,Center for the Neural Basis of Cognition, Pittsburgh, United States
| |
Collapse
|
16
|
Doiron B, Litwin-Kumar A, Rosenbaum R, Ocker GK, Josić K. The mechanics of state-dependent neural correlations. Nat Neurosci 2016; 19:383-93. [PMID: 26906505 DOI: 10.1038/nn.4242] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/12/2016] [Indexed: 12/12/2022]
Abstract
Simultaneous recordings from large neural populations are becoming increasingly common. An important feature of population activity is the trial-to-trial correlated fluctuation of spike train outputs from recorded neuron pairs. Similar to the firing rate of single neurons, correlated activity can be modulated by a number of factors, from changes in arousal and attentional state to learning and task engagement. However, the physiological mechanisms that underlie these changes are not fully understood. We review recent theoretical results that identify three separate mechanisms that modulate spike train correlations: changes in input correlations, internal fluctuations and the transfer function of single neurons. We first examine these mechanisms in feedforward pathways and then show how the same approach can explain the modulation of correlations in recurrent networks. Such mechanistic constraints on the modulation of population activity will be important in statistical analyses of high-dimensional neural data.
Collapse
Affiliation(s)
- Brent Doiron
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, USA
| | - Ashok Litwin-Kumar
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, USA.,Center for Theoretical Neuroscience, Columbia University, New York, New York, USA
| | - Robert Rosenbaum
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, USA.,Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, USA.,Interdisciplinary Center for Network Science and Applications, University of Notre Dame, Notre Dame, Indiana, USA
| | - Gabriel K Ocker
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, USA.,Allen Institute for Brain Science, Seattle, Washington, USA
| | - Krešimir Josić
- Department of Mathematics, University of Houston, Houston, Texas, USA.,Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
17
|
Zylberberg J, Cafaro J, Turner MH, Shea-Brown E, Rieke F. Direction-Selective Circuits Shape Noise to Ensure a Precise Population Code. Neuron 2016; 89:369-383. [PMID: 26796691 DOI: 10.1016/j.neuron.2015.11.019] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 08/15/2015] [Accepted: 10/26/2015] [Indexed: 12/29/2022]
Abstract
Neural responses are noisy, and circuit structure can correlate this noise across neurons. Theoretical studies show that noise correlations can have diverse effects on population coding, but these studies rarely explore stimulus dependence of noise correlations. Here, we show that noise correlations in responses of ON-OFF direction-selective retinal ganglion cells are strongly stimulus dependent, and we uncover the circuit mechanisms producing this stimulus dependence. A population model based on these mechanistic studies shows that stimulus-dependent noise correlations improve the encoding of motion direction 2-fold compared to independent noise. This work demonstrates a mechanism by which a neural circuit effectively shapes its signal and noise in concert, minimizing corruption of signal by noise. Finally, we generalize our findings beyond direction coding in the retina and show that stimulus-dependent correlations will generally enhance information coding in populations of diversely tuned neurons.
Collapse
Affiliation(s)
- Joel Zylberberg
- Department of Applied Mathematics, University of Washington, Seattle, Washington 98195, USA
| | - Jon Cafaro
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA.,Department of Neurobiology, Duke University, Durham, North Carolina 27708, USA
| | - Maxwell H Turner
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA
| | - Eric Shea-Brown
- Department of Applied Mathematics, University of Washington, Seattle, Washington 98195, USA.,Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA
| | - Fred Rieke
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
18
|
Litwin-Kumar A, Rosenbaum R, Doiron B. Inhibitory stabilization and visual coding in cortical circuits with multiple interneuron subtypes. J Neurophysiol 2016; 115:1399-409. [PMID: 26740531 DOI: 10.1152/jn.00732.2015] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/04/2016] [Indexed: 01/30/2023] Open
Abstract
Recent anatomical and functional characterization of cortical inhibitory interneurons has highlighted the diverse computations supported by different subtypes of interneurons. However, most theoretical models of cortex do not feature multiple classes of interneurons and rather assume a single homogeneous population. We study the dynamics of recurrent excitatory-inhibitory model cortical networks with parvalbumin (PV)-, somatostatin (SOM)-, and vasointestinal peptide-expressing (VIP) interneurons, with connectivity properties motivated by experimental recordings from mouse primary visual cortex. Our theory describes conditions under which the activity of such networks is stable and how perturbations of distinct neuronal subtypes recruit changes in activity through recurrent synaptic projections. We apply these conclusions to study the roles of each interneuron subtype in disinhibition, surround suppression, and subtractive or divisive modulation of orientation tuning curves. Our calculations and simulations determine the architectural and stimulus tuning conditions under which cortical activity consistent with experiment is possible. They also lead to novel predictions concerning connectivity and network dynamics that can be tested via optogenetic manipulations. Our work demonstrates that recurrent inhibitory dynamics must be taken into account to fully understand many properties of cortical dynamics observed in experiments.
Collapse
Affiliation(s)
- Ashok Litwin-Kumar
- Center for Theoretical Neuroscience, Columbia University, New York, New York; Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Robert Rosenbaum
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana; Interdisciplinary Center for Network Science and Applications, University of Notre Dame, Notre Dame, Indiana; Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Brent Doiron
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania; and Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Kanitscheider I, Coen-Cagli R, Pouget A. Origin of information-limiting noise correlations. Proc Natl Acad Sci U S A 2015; 112:E6973-82. [PMID: 26621747 PMCID: PMC4687541 DOI: 10.1073/pnas.1508738112] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The ability to discriminate between similar sensory stimuli relies on the amount of information encoded in sensory neuronal populations. Such information can be substantially reduced by correlated trial-to-trial variability. Noise correlations have been measured across a wide range of areas in the brain, but their origin is still far from clear. Here we show analytically and with simulations that optimal computation on inputs with limited information creates patterns of noise correlations that account for a broad range of experimental observations while at same time causing information to saturate in large neural populations. With the example of a network of V1 neurons extracting orientation from a noisy image, we illustrate to our knowledge the first generative model of noise correlations that is consistent both with neurophysiology and with behavioral thresholds, without invoking suboptimal encoding or decoding or internal sources of variability such as stochastic network dynamics or cortical state fluctuations. We further show that when information is limited at the input, both suboptimal connectivity and internal fluctuations could similarly reduce the asymptotic information, but they have qualitatively different effects on correlations leading to specific experimental predictions. Our study indicates that noise at the sensory periphery could have a major effect on cortical representations in widely studied discrimination tasks. It also provides an analytical framework to understand the functional relevance of different sources of experimentally measured correlations.
Collapse
Affiliation(s)
- Ingmar Kanitscheider
- Department of Basic Neuroscience, University of Geneva, 1211 Geneva, Switzerland; Center of Learning and Memory and Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712;
| | - Ruben Coen-Cagli
- Department of Basic Neuroscience, University of Geneva, 1211 Geneva, Switzerland
| | - Alexandre Pouget
- Department of Basic Neuroscience, University of Geneva, 1211 Geneva, Switzerland; Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627; Gatsby Computational Neuroscience Unit, University College London, London W1T 4JG, United Kingdom
| |
Collapse
|
20
|
Liu R, Patel M, Joshi B. Encoding whisker deflection velocity within the rodent barrel cortex using phase-delayed inhibition. J Comput Neurosci 2014; 37:387-401. [DOI: 10.1007/s10827-014-0535-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 09/23/2014] [Accepted: 09/26/2014] [Indexed: 11/30/2022]
|
21
|
Abstract
The amount of information encoded by cortical circuits depends critically on the capacity of nearby neurons to exhibit trial-to-trial (noise) correlations in their responses. Depending on their sign and relationship to signal correlations, noise correlations can either increase or decrease the population code accuracy relative to uncorrelated neuronal firing. Whereas positive noise correlations have been extensively studied using experimental and theoretical tools, the functional role of negative correlations in cortical circuits has remained elusive. We addressed this issue by performing multiple-electrode recording in the superficial layers of the primary visual cortex (V1) of alert monkey. Despite the fact that positive noise correlations decayed exponentially with the difference in the orientation preference between cells, negative correlations were uniformly distributed across the population. Using a statistical model for Fisher Information estimation, we found that a mild increase in negative correlations causes a sharp increase in network accuracy even when mean correlations were held constant. To examine the variables controlling the strength of negative correlations, we implemented a recurrent spiking network model of V1. We found that increasing local inhibition and reducing excitation causes a decrease in the firing rates of neurons while increasing the negative noise correlations, which in turn increase the population signal-to-noise ratio and network accuracy. Altogether, these results contribute to our understanding of the neuronal mechanism involved in the generation of negative correlations and their beneficial impact on cortical circuit function.
Collapse
Affiliation(s)
- Mircea I Chelaru
- Department of Neurobiology and Anatomy, University of Texas-Houston Medical School, Houston, TX 77030, USA
| | - Valentin Dragoi
- Department of Neurobiology and Anatomy, University of Texas-Houston Medical School, Houston, TX 77030, USA
| |
Collapse
|
22
|
Sensory-evoked synaptic integration in cerebellar and cerebral cortical neurons. Nat Rev Neurosci 2014; 15:71-83. [PMID: 24434910 DOI: 10.1038/nrn3648] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons integrate synaptic inputs across time and space, a process that determines the transformation of input signals into action potential output. This article explores how synaptic integration contributes to the richness of sensory signalling in the cerebellar and cerebral cortices. Whether a neuron receives a few or a few thousand discrete inputs, most evoked synaptic activity generates only subthreshold membrane potential fluctuations. Sensory tuning of synaptic inputs is typically broad, but short-term dynamics and the interplay between excitation and inhibition restrict action potential firing to narrow windows of opportunity. We highlight the challenges and limitations of the use of somatic recordings in the study of synaptic integration and the importance of active dendritic mechanisms in sensory processing.
Collapse
|
23
|
Synaptic input correlations leading to membrane potential decorrelation of spontaneous activity in cortex. J Neurosci 2013; 33:15075-85. [PMID: 24048838 DOI: 10.1523/jneurosci.0347-13.2013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Correlations in the spiking activity of neurons have been found in many regions of the cortex under multiple experimental conditions and are postulated to have important consequences for neural population coding. While there is a large body of extracellular data reporting correlations of various strengths, the subthreshold events underlying the origin and magnitude of signal-independent correlations (called noise or spike count correlations) are unknown. Here we investigate, using intracellular recordings, how synaptic input correlations from shared presynaptic neurons translate into membrane potential and spike-output correlations. Using a pharmacologically activated thalamocortical slice preparation, we perform simultaneous recordings from pairs of layer IV neurons in the auditory cortex of mice and measure synaptic potentials/currents, membrane potentials, and spiking outputs. We calculate cross-correlations between excitatory and inhibitory inputs to investigate correlations emerging from the network. We furthermore evaluate membrane potential correlations near resting potential to study how excitation and inhibition combine and affect spike-output correlations. We demonstrate directly that excitation is correlated with inhibition thereby partially canceling each other and resulting in weak membrane potential and spiking correlations between neurons. Our data suggest that cortical networks are set up to partially cancel correlations emerging from the connections between neurons. This active decorrelation is achieved because excitation and inhibition closely track each other. Our results suggest that the numerous shared presynaptic inputs do not automatically lead to increased spiking correlations.
Collapse
|
24
|
Bolhasani E, Azizi Y, Valizadeh A. Direct connections assist neurons to detect correlation in small amplitude noises. Front Comput Neurosci 2013; 7:108. [PMID: 23966940 PMCID: PMC3743174 DOI: 10.3389/fncom.2013.00108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/24/2013] [Indexed: 11/13/2022] Open
Abstract
We address a question on the effect of common stochastic inputs on the correlation of the spike trains of two neurons when they are coupled through direct connections. We show that the change in the correlation of small amplitude stochastic inputs can be better detected when the neurons are connected by direct excitatory couplings. Depending on whether intrinsic firing rate of the neurons is identical or slightly different, symmetric or asymmetric connections can increase the sensitivity of the system to the input correlation by changing the mean slope of the correlation transfer function over a given range of input correlation. In either case, there is also an optimum value for synaptic strength which maximizes the sensitivity of the system to the changes in input correlation.
Collapse
Affiliation(s)
- E Bolhasani
- Department of Physics, Institute for Advanced Studies in Basic Sciences Zanjan, Iran
| | | | | |
Collapse
|
25
|
Rosenbaum R, Rubin JE, Doiron B. Short-term synaptic depression and stochastic vesicle dynamics reduce and shape neuronal correlations. J Neurophysiol 2012; 109:475-84. [PMID: 23114215 DOI: 10.1152/jn.00733.2012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Correlated neuronal activity is an important feature in many neural codes, a neural correlate of a variety of cognitive states, as well as a signature of several disease states in the nervous system. The cellular and circuit mechanics of neural correlations is a vibrant area of research. Synapses throughout the cortex exhibit a form of short-term depression where increased presynaptic firing rates deplete neurotransmitter vesicles, which transiently reduces synaptic efficacy. The release and recovery of these vesicles are inherently stochastic, and this stochasticity introduces variability into the conductance elicited by depressing synapses. The impact of spiking and subthreshold membrane dynamics on the transfer of neuronal correlations has been studied intensively, but an investigation of the impact of short-term synaptic depression and stochastic vesicle dynamics on correlation transfer is lacking. We find that short-term synaptic depression and stochastic vesicle dynamics can substantially reduce correlations, shape the timescale over which these correlations occur, and alter the dependence of spiking correlations on firing rate. Our results show that short-term depression and stochastic vesicle dynamics need to be taken into account when modeling correlations in neuronal populations.
Collapse
Affiliation(s)
- Robert Rosenbaum
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA.
| | | | | |
Collapse
|
26
|
Litwin-Kumar A, Chacron MJ, Doiron B. The spatial structure of stimuli shapes the timescale of correlations in population spiking activity. PLoS Comput Biol 2012; 8:e1002667. [PMID: 23028274 PMCID: PMC3441501 DOI: 10.1371/journal.pcbi.1002667] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/12/2012] [Indexed: 11/18/2022] Open
Abstract
Throughout the central nervous system, the timescale over which pairs of neural spike trains are correlated is shaped by stimulus structure and behavioral context. Such shaping is thought to underlie important changes in the neural code, but the neural circuitry responsible is largely unknown. In this study, we investigate a stimulus-induced shaping of pairwise spike train correlations in the electrosensory system of weakly electric fish. Simultaneous single unit recordings of principal electrosensory cells show that an increase in the spatial extent of stimuli increases correlations at short () timescales while simultaneously reducing correlations at long () timescales. A spiking network model of the first two stages of electrosensory processing replicates this correlation shaping, under the assumptions that spatially broad stimuli both saturate feedforward afferent input and recruit an open-loop inhibitory feedback pathway. Our model predictions are experimentally verified using both the natural heterogeneity of the electrosensory system and pharmacological blockade of descending feedback projections. For weak stimuli, linear response analysis of the spiking network shows that the reduction of long timescale correlation for spatially broad stimuli is similar to correlation cancellation mechanisms previously suggested to be operative in mammalian cortex. The mechanism for correlation shaping supports population-level filtering of irrelevant distractor stimuli, thereby enhancing the population response to relevant prey and conspecific communication inputs. The size of a stimulus that is sensed by the nervous system can control the activity of neurons in sensory areas. How neural wiring supports this dependence remains an open question. We explore this general phenomenon using weakly electric fish, which possess a sensory system that detects electric field modulations produced by the surrounding environment. In particular, these animals' nervous systems are tuned to detect the difference between spatially compact prey inputs and spatially broad communication calls from other fish. In experiment, we discover that these two classes of stimuli differentially control the synchrony between pairs of electrosensory neurons. Using a computational model, we predict that this modulation is related to feedforward and feedback neural pathways in the electrosensory system, and we verify this prediction with experiments. This architecture prevents low frequency distractor stimuli, such as the animal's own tail motion, from driving neural population responses. With our model, we demonstrate how a common neural architecture enables a population-level code for behaviorally relevant stimuli.
Collapse
Affiliation(s)
- Ashok Litwin-Kumar
- Program for Neural Computation, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (ALK); (BD)
| | - Maurice J. Chacron
- Department of Physiology, McGill University, Montréal, Québec, Canada
- Center for Applied Mathematics in Biology and Medicine, McGill University, Montréal, Québec, Canada
| | - Brent Doiron
- Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania, United States of America
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail: (ALK); (BD)
| |
Collapse
|