1
|
Allawala AB, Bijanki KR, Adkinson J, Oswalt D, Tsolaki E, Mathew S, Mathura RK, Bartoli E, Provenza N, Watrous AJ, Xiao J, Pirtle V, Mocchi MM, Rajesh S, Diab N, Cohn JF, Borton DA, Goodman WK, Pouratian N, Sheth SA. Stereo-Electroencephalography-Guided Network Neuromodulation for Psychiatric Disorders: The Neurophysiology Monitoring Unit. Oper Neurosurg (Hagerstown) 2024; 27:329-336. [PMID: 39145663 PMCID: PMC11315541 DOI: 10.1227/ons.0000000000001122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/19/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Recent advances in stereotactic and functional neurosurgery have brought forth the stereo-electroencephalography approach which allows deeper interrogation and characterization of the contributions of deep structures to neural and affective functioning. We argue that this approach can and should be brought to bear on the notoriously intractable issue of defining the pathophysiology of refractory psychiatric disorders and developing patient-specific optimized stimulation therapies. METHODS We have developed a suite of methods for maximally leveraging the stereo-electroencephalography approach for an innovative application to understand affective disorders, with high translatability across the broader range of refractory neuropsychiatric conditions. RESULTS This article provides a roadmap for determining desired electrode coverage, tracking high-resolution research recordings across a large number of electrodes, synchronizing intracranial signals with ongoing research tasks and other data streams, applying intracranial stimulation during recording, and design choices for patient comfort and safety. CONCLUSION These methods can be implemented across other neuropsychiatric conditions needing intensive electrophysiological characterization to define biomarkers and more effectively guide therapeutic decision-making in cases of severe and treatment-refractory disease.
Collapse
Affiliation(s)
- Anusha B. Allawala
- School of Engineering, Brown University, Providence, Rhode Island, USA
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Kelly R. Bijanki
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Joshua Adkinson
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Denise Oswalt
- Department of Neurosurgery, University of Pennsylvania Philadelphia, Pennsylvania, USA
| | - Evangelia Tsolaki
- Department of Neurosurgery, University of California, Los Angeles, California, USA
| | - Sanjay Mathew
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Raissa K. Mathura
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Eleonora Bartoli
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Nicole Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Andrew J. Watrous
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Jiayang Xiao
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Victoria Pirtle
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Madaline M. Mocchi
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Sameer Rajesh
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Nabeel Diab
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Jeffrey F. Cohn
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David A. Borton
- School of Engineering, Brown University, Providence, Rhode Island, USA
| | - Wayne K. Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Nader Pouratian
- Department of Neurosurgery, University of Texas Southwestern, Dallas, Texas, USA
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
2
|
Ng KKW, So A, Fang JY, Birznieks I, Vickery RM. Multiplexing intensity and frequency sensations for artificial touch by modulating temporal features of electrical pulse trains. Front Neurosci 2024; 18:1125597. [PMID: 38894940 PMCID: PMC11183272 DOI: 10.3389/fnins.2024.1125597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
In neural prostheses, intensity modulation of a single channel (i.e., through a single stimulating electrode) has been achieved by increasing the magnitude or width of each stimulation pulse, which risks eliciting pain or paraesthesia; and by changing the stimulation rate, which leads to concurrent changes in perceived frequency. In this study, we sought to render a perception of tactile intensity and frequency independently, by means of temporal pulse train patterns of fixed magnitude, delivered non-invasively. Our psychophysical study exploits a previously discovered frequency coding mechanism, where the perceived frequency of stimulus pulses grouped into periodic bursts depends on the duration of the inter-burst interval, rather than the mean pulse rate or periodicity. When electrical stimulus pulses were organised into bursts, perceived intensity was influenced by the number of pulses within a burst, while perceived frequency was determined by the time between the end of one burst envelope and the start of the next. The perceived amplitude was modulated by 1.6× while perceived frequency was varied independently by 2× within the tested range (20-40 Hz). Thus, the sensation of intensity might be controlled independently from frequency through a single stimulation channel without having to vary the injected electrical current. This can form the basis for improving strategies in delivering more complex and natural sensations for prosthetic hand users.
Collapse
Affiliation(s)
- Kevin K. W. Ng
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Alwin So
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Jun Yi Fang
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Ingvars Birznieks
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
- Bionics and Bio-robotics, Tyree Foundation Institute of Health Engineering, UNSW Sydney, Sydney, NSW, Australia
| | - Richard M. Vickery
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
- Bionics and Bio-robotics, Tyree Foundation Institute of Health Engineering, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Ng PR, Bush A, Vissani M, McIntyre CC, Richardson RM. Biophysical Principles and Computational Modeling of Deep Brain Stimulation. Neuromodulation 2024; 27:422-439. [PMID: 37204360 DOI: 10.1016/j.neurom.2023.04.471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/02/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) has revolutionized the treatment of neurological disorders, yet the mechanisms of DBS are still under investigation. Computational models are important in silico tools for elucidating these underlying principles and potentially for personalizing DBS therapy to individual patients. The basic principles underlying neurostimulation computational models, however, are not well known in the clinical neuromodulation community. OBJECTIVE In this study, we present a tutorial on the derivation of computational models of DBS and outline the biophysical contributions of electrodes, stimulation parameters, and tissue substrates to the effects of DBS. RESULTS Given that many aspects of DBS are difficult to characterize experimentally, computational models have played an important role in understanding how material, size, shape, and contact segmentation influence device biocompatibility, energy efficiency, the spatial spread of the electric field, and the specificity of neural activation. Neural activation is dictated by stimulation parameters including frequency, current vs voltage control, amplitude, pulse width, polarity configurations, and waveform. These parameters also affect the potential for tissue damage, energy efficiency, the spatial spread of the electric field, and the specificity of neural activation. Activation of the neural substrate also is influenced by the encapsulation layer surrounding the electrode, the conductivity of the surrounding tissue, and the size and orientation of white matter fibers. These properties modulate the effects of the electric field and determine the ultimate therapeutic response. CONCLUSION This article describes biophysical principles that are useful for understanding the mechanisms of neurostimulation.
Collapse
Affiliation(s)
| | - Alan Bush
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Matteo Vissani
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Robert Mark Richardson
- Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
4
|
Zhang J, Wang M, Alam M, Zheng YP, Ye F, Hu X. Effects of non-invasive cervical spinal cord neuromodulation by trans-spinal electrical stimulation on cortico-muscular descending patterns in upper extremity of chronic stroke. Front Bioeng Biotechnol 2024; 12:1372158. [PMID: 38576448 PMCID: PMC10991759 DOI: 10.3389/fbioe.2024.1372158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Background: Trans-spinal electrical stimulation (tsES) to the intact spinal cord poststroke may modulate the cortico-muscular control in stroke survivors with diverse lesions in the brain. This work aimed to investigate the immediate effects of tsES on the cortico-muscular descending patterns during voluntary upper extremity (UE) muscle contractions by analyzing cortico-muscular coherence (CMCoh) and electromyography (EMG) in people with chronic stroke. Methods: Twelve chronic stroke participants were recruited to perform wrist-hand extension and flexion tasks at submaximal levels of voluntary contraction for the corresponding agonist flexors and extensors. During the tasks, the tsES was delivered to the cervical spinal cord with rectangular biphasic pulses. Electroencephalography (EEG) data were collected from the sensorimotor cortex, and the EMG data were recorded from both distal and proximal UE muscles. The CMCoh, laterality index (LI) of the peak CMCoh, and EMG activation level parameters under both non-tsES and tsES conditions were compared to evaluate the immediate effects of tsES on the cortico-muscular descending pathway. Results: The CMCoh and LI of peak CMCoh in the agonist distal muscles showed significant increases (p < 0.05) during the wrist-hand extension and flexion tasks with the application of tsES. The EMG activation levels of the antagonist distal muscle during wrist-hand extension were significantly decreased (p < 0.05) with tsES. Additionally, the proximal UE muscles exhibited significant decreases (p < 0.05) in peak CMCoh and EMG activation levels by applying tsES. There was a significant increase (p < 0.05) in LI of peak CMCoh of proximal UE muscles during tsES. Conclusion: The cervical spinal cord neuromodulation via tsES enhanced the residual descending excitatory control, activated the local inhibitory circuits within the spinal cord, and reduced the cortical and proximal muscular compensatory effects. These results suggested the potential of tsES as a supplementary input for improving UE motor functions in stroke rehabilitation.
Collapse
Affiliation(s)
- Jianing Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Maner Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Monzurul Alam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Fuqiang Ye
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
| | - Xiaoling Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, China
- Research Institute for Smart Ageing (RISA), Hong Kong SAR, China
- Research Centre of Data Science and Artificial Intelligence (RC-DSAI), Hong Kong SAR, China
- Joint Research Centre for Biosensing and Precision Theranostics, Hong Kong SAR, China
- University Research Facility in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
5
|
Gilbert Z, Mason X, Sebastian R, Tang AM, Martin Del Campo-Vera R, Chen KH, Leonor A, Shao A, Tabarsi E, Chung R, Sundaram S, Kammen A, Cavaleri J, Gogia AS, Heck C, Nune G, Liu CY, Kellis SS, Lee B. A review of neurophysiological effects and efficiency of waveform parameters in deep brain stimulation. Clin Neurophysiol 2023; 152:93-111. [PMID: 37208270 DOI: 10.1016/j.clinph.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/09/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
Neurostimulation has diverse clinical applications and potential as a treatment for medically refractory movement disorders, epilepsy, and other neurological disorders. However, the parameters used to program electrodes-polarity, pulse width, amplitude, and frequency-and how they are adjusted have remained largely untouched since the 1970 s. This review summarizes the state-of-the-art in Deep Brain Stimulation (DBS) and highlights the need for further research to uncover the physiological mechanisms of neurostimulation. We focus on studies that reveal the potential for clinicians to use waveform parameters to selectively stimulate neural tissue for therapeutic benefit, while avoiding activating tissue associated with adverse effects. DBS uses cathodic monophasic rectangular pulses with passive recharging in clinical practice to treat neurological conditions such as Parkinson's Disease. However, research has shown that stimulation efficiency can be improved, and side effects reduced, through modulating parameters and adding novel waveform properties. These developments can prolong implantable pulse generator lifespan, reducing costs and surgery-associated risks. Waveform parameters can stimulate neurons based on axon orientation and intrinsic structural properties, providing clinicians with more precise targeting of neural pathways. These findings could expand the spectrum of diseases treatable with neuromodulation and improve patient outcomes.
Collapse
Affiliation(s)
- Zachary Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.
| | - Xenos Mason
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Rinu Sebastian
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Austin M Tang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Roberto Martin Del Campo-Vera
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Kuang-Hsuan Chen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Andrea Leonor
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Arthur Shao
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Emiliano Tabarsi
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Ryan Chung
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Alexandra Kammen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Jonathan Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Angad S Gogia
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Christi Heck
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - George Nune
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Spencer S Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
6
|
Kromer JA, Tass PA. Synaptic reshaping of plastic neuronal networks by periodic multichannel stimulation with single-pulse and burst stimuli. PLoS Comput Biol 2022; 18:e1010568. [PMID: 36327232 PMCID: PMC9632832 DOI: 10.1371/journal.pcbi.1010568] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022] Open
Abstract
Synaptic dysfunction is associated with several brain disorders, including Alzheimer's disease, Parkinson's disease (PD) and obsessive compulsive disorder (OCD). Utilizing synaptic plasticity, brain stimulation is capable of reshaping synaptic connectivity. This may pave the way for novel therapies that specifically counteract pathological synaptic connectivity. For instance, in PD, novel multichannel coordinated reset stimulation (CRS) was designed to counteract neuronal synchrony and down-regulate pathological synaptic connectivity. CRS was shown to entail long-lasting therapeutic aftereffects in PD patients and related animal models. This is in marked contrast to conventional deep brain stimulation (DBS) therapy, where PD symptoms return shortly after stimulation ceases. In the present paper, we study synaptic reshaping by periodic multichannel stimulation (PMCS) in networks of leaky integrate-and-fire (LIF) neurons with spike-timing-dependent plasticity (STDP). During PMCS, phase-shifted periodic stimulus trains are delivered to segregated neuronal subpopulations. Harnessing STDP, PMCS leads to changes of the synaptic network structure. We found that the PMCS-induced changes of the network structure depend on both the phase lags between stimuli and the shape of individual stimuli. Single-pulse stimuli and burst stimuli with low intraburst frequency down-regulate synapses between neurons receiving stimuli simultaneously. In contrast, burst stimuli with high intraburst frequency up-regulate these synapses. We derive theoretical approximations of the stimulation-induced network structure. This enables us to formulate stimulation strategies for inducing a variety of network structures. Our results provide testable hypotheses for future pre-clinical and clinical studies and suggest that periodic multichannel stimulation may be suitable for reshaping plastic neuronal networks to counteract pathological synaptic connectivity. Furthermore, we provide novel insight on how the stimulus type may affect the long-lasting outcome of conventional DBS. This may strongly impact parameter adjustment procedures for clinical DBS, which, so far, primarily focused on acute effects of stimulation.
Collapse
Affiliation(s)
- Justus A Kromer
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
| |
Collapse
|
7
|
Panda AK, Sitaramgupta VSN, Pandya HJ, Basu B. Electrical waveform dependent osteogenesis on PVDF/BaTiO 3 composite using a customized and programmable cell stimulator. Biotechnol Bioeng 2022; 119:1578-1597. [PMID: 35244212 DOI: 10.1002/bit.28076] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/07/2022]
Abstract
Directing cellular functionalities using biomaterial-based bioelectronic stimulation remains a significant constraint in translating research outcomes to address specific clinical challenges. Electrical stimulation is now being clinically used as a therapeutic treatment option to promote bone tissue regeneration and to improve neuromuscular functionalities. However, the nature of the electrical waveforms during the stimulation and underlying biophysical rationale are still not scientifically well explored. Furthermore, bone-mimicking implant-based bioelectrical regulation of osteoinductivity has not been translated to clinics. The present study demonstrates the role of the waveform in electrical signal to direct differentiation of stem cells on an electroactive polymeric substrate, using monophasic DC, square wave, and biphasic wave. In this regard, an in-house electrical stimulation device has been fabricated for the uninterrupted delivery of programmed electrical signals to stem cells in culture. To provide a functional platform for stem cells to differentiate, barium titanate (BaTiO3 , BT) reinforced PVDF has been developed with mechanical properties similar to bone. The electrical stimulation of human mesenchymal stem cells (hMSCs) on PVDF/BT composite inhibited proliferation rate at day 7, indicating early commitment for differentiation. The phenotypical characteristics of DC stimulated hMSCs provided signatures of differentiation towards osteogenic lineage, which was subsequently confirmed using ALP assay, collagen deposition, matrix mineralization, and genetic expression. Our findings suggest that DC stimulation induced early osteogenesis in hMSCs with a higher level of intracellular reactive oxygen species (ROS), whereas the stimulation with square wave directed late osteogenesis with a lower ROS regeneration. In summary, the present study critically analyzes the role of electrical stimulation and its waveforms in regulating osteogenesis, without external biochemical differentiation inducers, on a bone-mimicking functional substrate. Such a strategy can potentially be adopted to develop orthopedic implant-based bioelectronic medicine for bone regeneration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Asish Kumar Panda
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, India
| | - V S N Sitaramgupta
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
| | - Hardik J Pandya
- Department of Electronic Systems Engineering, Indian Institute of Science, Bangalore, India
- Centre for Product Design and Manufacturing, Indian Institute of Science, Bangalore, India
| | - Bikramjit Basu
- Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| |
Collapse
|
8
|
Mau ETK, Rosenblum M. Optimizing charge-balanced pulse stimulation for desynchronization. CHAOS (WOODBURY, N.Y.) 2022; 32:013103. [PMID: 35105136 DOI: 10.1063/5.0070036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Collective synchronization in a large population of self-sustained units appears both in natural and engineered systems. Sometimes this effect is in demand, while in some cases, it is undesirable, which calls for control techniques. In this paper, we focus on pulsatile control, with the goal to either increase or decrease the level of synchrony. We quantify this level by the entropy of the phase distribution. Motivated by possible applications in neuroscience, we consider pulses of a realistic shape. Exploiting the noisy Kuramoto-Winfree model, we search for the optimal pulse profile and the optimal stimulation phase. For this purpose, we derive an expression for the change of the phase distribution entropy due to the stimulus. We relate this change to the properties of individual units characterized by generally different natural frequencies and phase response curves and the population's state. We verify the general result by analyzing a two-frequency population model and demonstrating a good agreement of the theory and numerical simulations.
Collapse
Affiliation(s)
- Erik T K Mau
- Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam-Golm, Germany
| | - Michael Rosenblum
- Department of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
9
|
Taylor C, McHugh C, Mockler D, Minogue C, Reilly RB, Fleming N. Transcutaneous spinal cord stimulation and motor responses in individuals with spinal cord injury: A methodological review. PLoS One 2021; 16:e0260166. [PMID: 34793572 PMCID: PMC8601579 DOI: 10.1371/journal.pone.0260166] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/03/2021] [Indexed: 11/18/2022] Open
Abstract
Background Transcutaneous spinal cord stimulation (tSCS) is a non-invasive modality in which electrodes can stimulate spinal circuitries and facilitate a motor response. This review aimed to evaluate the methodology of studies using tSCS to generate motor activity in persons with spinal cord injury (SCI) and to appraise the quality of included trials. Methods A systematic search for studies published until May 2021 was made of the following databases: EMBASE, Medline (Ovid) and Web of Science. Two reviewers independently screened the studies, extracted the data, and evaluated the quality of included trials. The electrical characteristics of stimulation were summarised to allow for comparison across studies. In addition, the surface electromyography (EMG) recording methods were evaluated. Results A total of 3753 articles were initially screened, of which 25 met the criteria for inclusion. Studies were divided into those using tSCS for neurophysiological investigations of reflex responses (n = 9) and therapeutic investigations of motor recovery (n = 16). The overall quality of evidence was deemed to be poor-to-fair (10.5 ± 4.9) based on the Downs and Black Quality Checklist criteria. The electrical characteristics were collated to establish the dosage range across stimulation trials. The methods employed by included studies relating to stimulation parameters and outcome measurement varied extensively, although some trends are beginning to appear in relation to electrode configuration and EMG outcomes. Conclusion This review outlines the parameters currently employed for tSCS of the cervicothoracic and thoracolumbar regions to produce motor responses. However, to establish standardised procedures for neurophysiological assessments and therapeutic investigations of tSCS, further high-quality investigations are required, ideally utilizing consistent electrophysiological recording methods, and reporting common characteristics of the electrical stimulation administered.
Collapse
Affiliation(s)
- Clare Taylor
- Department of Anatomy, School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
- * E-mail:
| | - Conor McHugh
- Department of Anatomy, School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
| | - David Mockler
- John Stearne Medical Library, Trinity Centre for Health Sciences, School of Medicine, St. James’s Hospital, Dublin, Ireland
| | - Conor Minogue
- Department of Anatomy, School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
| | - Richard B. Reilly
- Trinity Centre for Biomedical Engineering, Trinity College, The University of Dublin, Dublin, Ireland
- School of Engineering, Trinity College, The University of Dublin, Dublin, Ireland
- School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
| | - Neil Fleming
- Department of Anatomy, School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Patel B, Chiu S, Wong JK, Patterson A, Deeb W, Burns M, Zeilman P, Wagle-Shukla A, Almeida L, Okun MS, Ramirez-Zamora A. Deep brain stimulation programming strategies: segmented leads, independent current sources, and future technology. Expert Rev Med Devices 2021; 18:875-891. [PMID: 34329566 DOI: 10.1080/17434440.2021.1962286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Advances in neuromodulation and deep brain stimulation (DBS) technologies have facilitated opportunities for improved clinical benefit and side effect management. However, new technologies have added complexity to clinic-based DBS programming.Areas covered: In this article, we review basic basal ganglia physiology, proposed mechanisms of action and technical aspects of DBS. We discuss novel DBS technologies for movement disorders including the role of advanced imaging software, lead design, IPG design, novel programming techniques including directional stimulation and coordinated reset neuromodulation. Additional topics include the use of potential biomarkers, such as local field potentials, electrocorticography, and adaptive stimulation. We will also discuss future directions including optogenetically inspired DBS.Expert opinion: The introduction of DBS for the management of movement disorders has expanded treatment options. In parallel with our improved understanding of brain physiology and neuroanatomy, new technologies have emerged to address challenges associated with neuromodulation, including variable effectiveness, side-effects, and programming complexity. Advanced functional neuroanatomy, improved imaging, real-time neurophysiology, improved electrode designs, and novel programming techniques have collectively been driving improvements in DBS outcomes.
Collapse
Affiliation(s)
- Bhavana Patel
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, . Gainesville, FL, USA
| | - Shannon Chiu
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, . Gainesville, FL, USA
| | - Joshua K Wong
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, . Gainesville, FL, USA
| | - Addie Patterson
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, . Gainesville, FL, USA
| | - Wissam Deeb
- Department of Neurology, University of Massachusetts College of Medicine, Worcester, MA, USA
| | - Matthew Burns
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, . Gainesville, FL, USA
| | - Pamela Zeilman
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Aparna Wagle-Shukla
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, . Gainesville, FL, USA
| | - Leonardo Almeida
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, . Gainesville, FL, USA
| | - Michael S Okun
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, . Gainesville, FL, USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL, USA.,Norman Fixel Institute for Neurological Diseases, . Gainesville, FL, USA
| |
Collapse
|
11
|
Electrical stimulation of the nucleus basalis of meynert: a systematic review of preclinical and clinical data. Sci Rep 2021; 11:11751. [PMID: 34083732 PMCID: PMC8175342 DOI: 10.1038/s41598-021-91391-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/24/2021] [Indexed: 12/09/2022] Open
Abstract
Deep brain stimulation (DBS) of the nucleus basalis of Meynert (NBM) has been clinically investigated in Alzheimer’s disease (AD) and Lewy body dementia (LBD). However, the clinical effects are highly variable, which questions the suggested basic principles underlying these clinical trials. Therefore, preclinical and clinical data on the design of NBM stimulation experiments and its effects on behavioral and neurophysiological aspects are systematically reviewed here. Animal studies have shown that electrical stimulation of the NBM enhanced cognition, increased the release of acetylcholine, enhanced cerebral blood flow, released several neuroprotective factors, and facilitates plasticity of cortical and subcortical receptive fields. However, the translation of these outcomes to current clinical practice is hampered by the fact that mainly animals with an intact NBM were used, whereas most animals were stimulated unilaterally, with different stimulation paradigms for only restricted timeframes. Future animal research has to refine the NBM stimulation methods, using partially lesioned NBM nuclei, to better resemble the clinical situation in AD, and LBD. More preclinical data on the effect of stimulation of lesioned NBM should be present, before DBS of the NBM in human is explored further.
Collapse
|
12
|
Chang J, Paydarfar D. Falling off a limit cycle using phase-agnostic stimuli: Applications to clinical oscillopathies. CHAOS (WOODBURY, N.Y.) 2021; 31:023134. [PMID: 33653068 DOI: 10.1063/5.0032974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
For over a century, physiological studies have shown that precisely timed pulses can switch off a biological oscillator. This empiric finding has shaped our mechanistic understanding of how perturbations start, stop, and reset biological oscillators and has led to treatments that suppress pathological oscillations using electrical pulses given within specified therapeutic phase windows. Here, we present evidence, using numerical simulations of models of epileptic seizures and reentrant tachycardia, that the phase window can be opened to the entire cycle using novel complex stimulus waveforms. Our results reveal that the trajectories are displaced by such phase-agnostic stimuli off the oscillator's limit cycle and corralled into a region where oscillation is suppressed, irrespective of the phase at which the stimulus was applied. Our findings suggest the need for broadening theoretical understanding of how complex perturbing waveforms interact with biological oscillators to access their arrhythmic states. In clinical practice, oscillopathies may be treated more effectively with non-traditional stimulus waveforms that obviate the need for phase specificity.
Collapse
Affiliation(s)
- Joshua Chang
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, USA
| | - David Paydarfar
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
13
|
Krauss JK, Lipsman N, Aziz T, Boutet A, Brown P, Chang JW, Davidson B, Grill WM, Hariz MI, Horn A, Schulder M, Mammis A, Tass PA, Volkmann J, Lozano AM. Technology of deep brain stimulation: current status and future directions. Nat Rev Neurol 2020; 17:75-87. [PMID: 33244188 DOI: 10.1038/s41582-020-00426-z] [Citation(s) in RCA: 314] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 01/20/2023]
Abstract
Deep brain stimulation (DBS) is a neurosurgical procedure that allows targeted circuit-based neuromodulation. DBS is a standard of care in Parkinson disease, essential tremor and dystonia, and is also under active investigation for other conditions linked to pathological circuitry, including major depressive disorder and Alzheimer disease. Modern DBS systems, borrowed from the cardiac field, consist of an intracranial electrode, an extension wire and a pulse generator, and have evolved slowly over the past two decades. Advances in engineering and imaging along with an improved understanding of brain disorders are poised to reshape how DBS is viewed and delivered to patients. Breakthroughs in electrode and battery designs, stimulation paradigms, closed-loop and on-demand stimulation, and sensing technologies are expected to enhance the efficacy and tolerability of DBS. In this Review, we provide a comprehensive overview of the technical development of DBS, from its origins to its future. Understanding the evolution of DBS technology helps put the currently available systems in perspective and allows us to predict the next major technological advances and hurdles in the field.
Collapse
Affiliation(s)
- Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Nir Lipsman
- Department of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Tipu Aziz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Alexandre Boutet
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Peter Brown
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Benjamin Davidson
- Department of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Marwan I Hariz
- Department of Clinical Neuroscience, University of Umea, Umea, Sweden
| | - Andreas Horn
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité Medicine University of Berlin, Berlin, Germany
| | - Michael Schulder
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Antonios Mammis
- Department of Neurosurgery, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Jens Volkmann
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany.,Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Pyragas K, Fedaravičius AP, Pyragienė T, Tass PA. Entrainment of a network of interacting neurons with minimum stimulating charge. Phys Rev E 2020; 102:012221. [PMID: 32795011 DOI: 10.1103/physreve.102.012221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/07/2020] [Indexed: 11/07/2022]
Abstract
Periodic pulse train stimulation is generically used to study the function of the nervous system and to counteract disease-related neuronal activity, e.g., collective periodic neuronal oscillations. The efficient control of neuronal dynamics without compromising brain tissue is key to research and clinical purposes. We here adapt the minimum charge control theory, recently developed for a single neuron, to a network of interacting neurons exhibiting collective periodic oscillations. We present a general expression for the optimal waveform, which provides an entrainment of a neural network to the stimulation frequency with a minimum absolute value of the stimulating current. As in the case of a single neuron, the optimal waveform is of bang-off-bang type, but its parameters are now determined by the parameters of the effective phase response curve of the entire network, rather than of a single neuron. The theoretical results are confirmed by three specific examples: two small-scale networks of FitzHugh-Nagumo neurons with synaptic and electric couplings, as well as a large-scale network of synaptically coupled quadratic integrate-and-fire neurons.
Collapse
Affiliation(s)
- Kestutis Pyragas
- Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| | | | - Tatjana Pyragienė
- Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
15
|
Stieger KC, Eles JR, Ludwig KA, Kozai TDY. In vivo microstimulation with cathodic and anodic asymmetric waveforms modulates spatiotemporal calcium dynamics in cortical neuropil and pyramidal neurons of male mice. J Neurosci Res 2020; 98:2072-2095. [PMID: 32592267 DOI: 10.1002/jnr.24676] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
Electrical stimulation has been critical in the development of an understanding of brain function and disease. Despite its widespread use and obvious clinical potential, the mechanisms governing stimulation in the cortex remain largely unexplored in the context of pulse parameters. Modeling studies have suggested that modulation of stimulation pulse waveform may be able to control the probability of neuronal activation to selectively stimulate either cell bodies or passing fibers depending on the leading polarity. Thus, asymmetric waveforms with equal charge per phase (i.e., increasing the leading phase duration and proportionately decreasing the amplitude) may be able to activate a more spatially localized or distributed population of neurons if the leading phase is cathodic or anodic, respectively. Here, we use two-photon and mesoscale calcium imaging of GCaMP6s expressed in excitatory pyramidal neurons of male mice to investigate the role of pulse polarity and waveform asymmetry on the spatiotemporal properties of direct neuronal activation with 10-Hz electrical stimulation. We demonstrate that increasing cathodic asymmetry effectively reduces neuronal activation and results in a more spatially localized subpopulation of activated neurons without sacrificing the density of activated neurons around the electrode. Conversely, increasing anodic asymmetry increases the spatial spread of activation and highly resembles spatiotemporal calcium activity induced by conventional symmetric cathodic stimulation. These results suggest that stimulation polarity and asymmetry can be used to modulate the spatiotemporal dynamics of neuronal activity thus increasing the effective parameter space of electrical stimulation to restore sensation and study circuit dynamics.
Collapse
Affiliation(s)
- Kevin C Stieger
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Carnegie Mellon University, Pittsburgh, PA, USA
| | - James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kip A Ludwig
- Department of Biomedical Engineering, University of Wisconsin Madison, Madison, WI, USA.,Department of Neurological Surgery, University of Wisconsin Madison, Madison, WI, USA.,Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, WI, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,Center for the Neural Basis of Cognition, University of Pittsburgh, Carnegie Mellon University, Pittsburgh, PA, USA.,Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Wong JK, Hess CW, Almeida L, Middlebrooks EH, Christou EA, Patrick EE, Shukla AW, Foote KD, Okun MS. Deep brain stimulation in essential tremor: targets, technology, and a comprehensive review of clinical outcomes. Expert Rev Neurother 2020; 20:319-331. [PMID: 32116065 DOI: 10.1080/14737175.2020.1737017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Essential tremor (ET) is a common movement disorder with an estimated prevalence of 0.9% worldwide. Deep brain stimulation (DBS) is an established therapy for medication refractory and debilitating tremor. With the arrival of next generation technology, the implementation and delivery of DBS has been rapidly evolving. This review will highlight the current applications and constraints for DBS in ET.Areas covered: The mechanism of action, targets for neuromodulation, next generation guidance techniques, symptom-specific applications, and long-term efficacy will be reviewed.Expert opinion: The posterior subthalamic area and zona incerta are alternative targets to thalamic DBS in ET. However, they may be associated with additional stimulation-induced side effects. Novel stimulation paradigms and segmented electrodes provide innovative approaches to DBS programming and stimulation-induced side effects.
Collapse
Affiliation(s)
- Joshua K Wong
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Christopher W Hess
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Leonardo Almeida
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | | | - Evangelos A Christou
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - Erin E Patrick
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
| | - Aparna Wagle Shukla
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Kelly D Foote
- Fixel Institute for Neurological Diseases, Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Michael S Okun
- Fixel Institute for Neurological Diseases, Department of Neurology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Wu YK, Levine JM, Wecht JR, Maher MT, LiMonta JM, Saeed S, Santiago TM, Bailey E, Kastuar S, Guber KS, Yung L, Weir JP, Carmel JB, Harel NY. Posteroanterior cervical transcutaneous spinal stimulation targets ventral and dorsal nerve roots. Clin Neurophysiol 2019; 131:451-460. [PMID: 31887616 DOI: 10.1016/j.clinph.2019.11.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/24/2019] [Accepted: 11/17/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE We aim to non-invasively facilitate activation of spared neural circuits after cervical spinal cord injury (SCI) and amyotrophic lateral sclerosis (ALS). We developed and tested a novel configuration for cervical transcutaneous spinal stimulation (cTSS). METHODS cTSS was delivered via electrodes placed over the midline at ~T2-T4 levels posteriorly and ~C4-C5 levels anteriorly. Electromyographic responses were measured in arm and hand muscles across a range of stimulus intensities. Double-pulse experiments were performed to assess homosynaptic post-activation depression (PAD). Safety was closely monitored. RESULTS More than 170 cTSS sessions were conducted without major safety or tolerability issues. A cathode-posterior, 2 ms biphasic waveform provided optimal stimulation characteristics. Bilateral upper extremity muscle responses were easily obtained in subjects with SCI and ALS. Resting motor threshold at the abductor pollicis brevis muscle ranged from 5.5 to 51.0 mA. As stimulus intensity increased, response latencies to all muscles decreased. PAD was incomplete at lower stimulus intensities, and decreased at higher stimulus intensities. CONCLUSIONS Posteroanterior cTSS has the capability to target motor neurons both trans-synaptically via large-diameter afferents and non-synaptically via efferent motor axons. SIGNIFICANCE Posteroanterior cTSS is well tolerated and easily activates upper extremity muscles in individuals with SCI and ALS.
Collapse
Affiliation(s)
- Yu-Kuang Wu
- James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Jonah M Levine
- James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
| | - Jaclyn R Wecht
- James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
| | - Matthew T Maher
- James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
| | - James M LiMonta
- James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
| | - Sana Saeed
- James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
| | - Tiffany M Santiago
- James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
| | - Eric Bailey
- James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
| | - Shivani Kastuar
- Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Kenneth S Guber
- James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
| | - Lok Yung
- James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
| | - Joseph P Weir
- University of Kansas, 1301 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Jason B Carmel
- Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | - Noam Y Harel
- James J. Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA; Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
18
|
Adaptive delivery of continuous and delayed feedback deep brain stimulation - a computational study. Sci Rep 2019; 9:10585. [PMID: 31332226 PMCID: PMC6646395 DOI: 10.1038/s41598-019-47036-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/09/2019] [Indexed: 12/15/2022] Open
Abstract
Adaptive deep brain stimulation (aDBS) is a closed-loop method, where high-frequency DBS is turned on and off according to a feedback signal, whereas conventional high-frequency DBS (cDBS) is delivered permanently. Using a computational model of subthalamic nucleus and external globus pallidus, we extend the concept of adaptive stimulation by adaptively controlling not only continuous, but also demand-controlled stimulation. Apart from aDBS and cDBS, we consider continuous pulsatile linear delayed feedback stimulation (cpLDF), specifically designed to induce desynchronization. Additionally, we combine adaptive on-off delivery with continuous delayed feedback modulation by introducing adaptive pulsatile linear delayed feedback stimulation (apLDF), where cpLDF is turned on and off using pre-defined amplitude thresholds. By varying the stimulation parameters of cDBS, aDBS, cpLDF, and apLDF we obtain optimal parameter ranges. We reveal a simple relation between the thresholds of the local field potential (LFP) for aDBS and apLDF, the extent of the stimulation-induced desynchronization, and the integral stimulation time required. We find that aDBS and apLDF can be more efficient in suppressing abnormal synchronization than continuous simulation. However, apLDF still remains more efficient and also causes a stronger reduction of the LFP beta burst length. Hence, adaptive on-off delivery may further improve the intrinsically demand-controlled pLDF.
Collapse
|
19
|
Muddapu VR, Mandali A, Chakravarthy VS, Ramaswamy S. A Computational Model of Loss of Dopaminergic Cells in Parkinson's Disease Due to Glutamate-Induced Excitotoxicity. Front Neural Circuits 2019; 13:11. [PMID: 30858799 PMCID: PMC6397878 DOI: 10.3389/fncir.2019.00011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/05/2019] [Indexed: 01/04/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease associated with progressive and inexorable loss of dopaminergic cells in Substantia Nigra pars compacta (SNc). Although many mechanisms have been suggested, a decisive root cause of this cell loss is unknown. A couple of the proposed mechanisms, however, show potential for the development of a novel line of PD therapeutics. One of these mechanisms is the peculiar metabolic vulnerability of SNc cells compared to other dopaminergic clusters; the other is the SubThalamic Nucleus (STN)-induced excitotoxicity in SNc. To investigate the latter hypothesis computationally, we developed a spiking neuron network-model of SNc-STN-GPe system. In the model, prolonged stimulation of SNc cells by an overactive STN leads to an increase in ‘stress' variable; when the stress in a SNc neuron exceeds a stress threshold, the neuron dies. The model shows that the interaction between SNc and STN involves a positive-feedback due to which, an initial loss of SNc cells that crosses a threshold causes a runaway-effect, leading to an inexorable loss of SNc cells, strongly resembling the process of neurodegeneration. The model further suggests a link between the two aforementioned mechanisms of SNc cell loss. Our simulation results show that the excitotoxic cause of SNc cell loss might initiate by weak-excitotoxicity mediated by energy deficit, followed by strong-excitotoxicity, mediated by a disinhibited STN. A variety of conventional therapies were simulated to test their efficacy in slowing down SNc cell loss. Among them, glutamate inhibition, dopamine restoration, subthalamotomy and deep brain stimulation showed superior neuroprotective-effects in the proposed model.
Collapse
Affiliation(s)
| | - Alekhya Mandali
- Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - V Srinivasa Chakravarthy
- Computational Neuroscience Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT-Madras, Chennai, India
| | | |
Collapse
|
20
|
Adams SD, Bennet KE, Tye SJ, Berk M, Kouzani AZ. Development of a miniature device for emerging deep brain stimulation paradigms. PLoS One 2019; 14:e0212554. [PMID: 30789946 PMCID: PMC6383994 DOI: 10.1371/journal.pone.0212554] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 02/05/2019] [Indexed: 11/18/2022] Open
Abstract
Deep brain stimulation (DBS) is a neuromodulatory approach for treatment of several neurological and psychiatric disorders. A new focus on optimising the waveforms used for stimulation is emerging regarding the mechanism of DBS treatment. Many existing DBS devices offer only a limited set of predefined waveforms, mainly rectangular, and hence are inapt for exploring the emerging paradigm. Advances in clinical DBS are moving towards incorporating new stimulation parameters, yet we remain limited in our capacity to test these in animal models, arguably a critical first step. Accordingly, there is a need for the development of new miniature, low-power devices to enable investigation into the new DBS paradigms in preclinical settings. The ideal device would allow for flexibility in the stimulation waveforms, while remaining suitable for chronic, tetherless, biphasic deep brain stimulation. In this work, we elucidate several key parameters in a DBS system, identify gaps in existing solutions, and propose a new device to support preclinical DBS. The device allows for a high degree of flexibility in the output waveform with easily altered shape, frequency, pulse-width and amplitude. The device is suitable for both traditional and modern stimulation schemes, including those using non-rectangular waveforms, as well as delayed feedback schemes. The device incorporates active charge balancing to ensure safe operation, and allows for simple production of custom biphasic waveforms. This custom waveform output is unique in the field of preclinical DBS devices, and could be advantageous in performing future DBS studies investigating new treatment paradigms. This tetherless device can be easily and comfortably carried by an animal in a back-mountable configuration. The results of in-vitro tests are presented and discussed.
Collapse
Affiliation(s)
- Scott D. Adams
- Deakin University, School of Engineering, Geelong, Victoria, Australia
| | - Kevin E. Bennet
- Division of Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Susannah J. Tye
- Queensland Brain Institute, the University of Queensland, St Lucia QLD, Australia
| | - Michael Berk
- Deakin University, School of Medicine, IMPACT SRC, Barwon Health, Geelong, Victoria, Australia
| | - Abbas Z. Kouzani
- Deakin University, School of Engineering, Geelong, Victoria, Australia
- * E-mail:
| |
Collapse
|
21
|
Voigt MB, Kral A. Cathodic-leading pulses are more effective than anodic-leading pulses in intracortical microstimulation of the auditory cortex. J Neural Eng 2019; 16:036002. [PMID: 30790776 DOI: 10.1088/1741-2552/ab0944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Intracortical microstimulation (ICMS) is widely used in neuroscientific research. Earlier work from our lab showed the possibility to combine ICMS with neuronal recordings on the same shank of multi-electrode arrays and consequently inside the same cortical column in vivo. The standard stimulus pulse shape for ICMS is a symmetric, biphasic current pulse. Here, we investigated the role of the leading-phase polarity (cathodic- versus anodic-leading) of such single ICMS pulses on the activation of the cortical network. APPROACH Local field potentials (LFPs) and multi-unit responses were recorded in the primary auditory cortex (A1) of adult guinea pigs (n = 15) under ketamine/xylazine anesthesia using linear multi-electrode arrays. Physiological responses of A1 were recorded during acoustic stimulation and ICMS. For the ICMS, the leading-phase polarity, the stimulated electrode and the stimulation current where varied systematically on any one of the 16 electrodes while recording at the same time with the 15 remaining electrodes. MAIN RESULTS Cathodic-leading ICMS consistently led to higher response amplitudes. In superficial cortical layers and for a given current amplitude, cathodic-leading and anodic-leading ICMS showed comparable activation patterns, while in deep layers only cathodic-leading ICMS reliably generated local neuronal activity. ICMS had a significantly smaller dynamic range than acoustic stimulation regardless of leading-phase polarity. SIGNIFICANCE The present study provides in vivo evidence for a differential neuronal activation mechanism of the different leading-phase polarities, with cathodic-leading stimulation being more effective, and suggests that the waveform of the stimulus should be considered systematically for cortical neuroprosthesis development.
Collapse
Affiliation(s)
- Mathias Benjamin Voigt
- Department of Experimental Otology, Institute of AudioNeuroTechnology (VIANNA), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany. Cluster of Excellence 'Hearing4all', Hannover, Germany
| | | |
Collapse
|
22
|
Daneshzand M, Faezipour M, Barkana BD. Robust desynchronization of Parkinson's disease pathological oscillations by frequency modulation of delayed feedback deep brain stimulation. PLoS One 2018; 13:e0207761. [PMID: 30458039 PMCID: PMC6245797 DOI: 10.1371/journal.pone.0207761] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 11/06/2018] [Indexed: 11/30/2022] Open
Abstract
The hyperkinetic symptoms of Parkinson's Disease (PD) are associated with the ensembles of interacting oscillators that cause excess or abnormal synchronous behavior within the Basal Ganglia (BG) circuitry. Delayed feedback stimulation is a closed loop technique shown to suppress this synchronous oscillatory activity. Deep Brain Stimulation (DBS) via delayed feedback is known to destabilize the complex intermittent synchronous states. Computational models of the BG network are often introduced to investigate the effect of delayed feedback high frequency stimulation on partially synchronized dynamics. In this study, we develop a reduced order model of four interacting nuclei of the BG as well as considering the Thalamo-Cortical local effects on the oscillatory dynamics. This model is able to capture the emergence of 34 Hz beta band oscillations seen in the Local Field Potential (LFP) recordings of the PD state. Train of high frequency pulses in a delayed feedback stimulation has shown deficiencies such as strengthening the synchronization in case of highly fluctuating neuronal activities, increasing the energy consumed as well as the incapability of activating all neurons in a large-scale network. To overcome these drawbacks, we propose a new feedback control variable based on the filtered and linearly delayed LFP recordings. The proposed control variable is then used to modulate the frequency of the stimulation signal rather than its amplitude. In strongly coupled networks, oscillations reoccur as soon as the amplitude of the stimulus signal declines. Therefore, we show that maintaining a fixed amplitude and modulating the frequency might ameliorate the desynchronization process, increase the battery lifespan and activate substantial regions of the administered DBS electrode. The charge balanced stimulus pulse itself is embedded with a delay period between its charges to grant robust desynchronization with lower amplitudes needed. The efficiency of the proposed Frequency Adjustment Stimulation (FAS) protocol in a delayed feedback method might contribute to further investigation of DBS modulations aspired to address a wide range of abnormal oscillatory behavior observed in neurological disorders.
Collapse
Affiliation(s)
- Mohammad Daneshzand
- D-BEST Lab, Departments of Computer Science and Engineering and Biomedical Engineering, University of Bridgeport, Bridgeport, CT, United States of America
| | - Miad Faezipour
- D-BEST Lab, Departments of Computer Science and Engineering and Biomedical Engineering, University of Bridgeport, Bridgeport, CT, United States of America
| | - Buket D. Barkana
- Department of Electrical Engineering, University of Bridgeport, Bridgeport, CT, United States of America
| |
Collapse
|
23
|
Daneshzand M, Faezipour M, Barkana BD. Delayed Feedback Frequency Adjustment for Deep Brain Stimulation of Subthalamic Nucleus Oscillations. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2018; 2018:2194-2197. [PMID: 30440840 DOI: 10.1109/embc.2018.8512652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neural oscillations within the Basal Ganglia (BG) circuitry are associated with Parkinson's Disease (PD) and are observable through the Local Field Potential (LFP) of the Subthalamic Nucleus (STN) or Globus Pallidus externa (GPe) neurons. LFP amplitude modulation in a delayed feedback protocol for Deep Brain Stimulation (DBS) is shown to destabilize the complex intermittent synchronous states. However, traditional High Frequency Stimulations (HFS) often intensify the synchronization of highly fluctuating neurons, are less efficient in activating all neurons in large scale networks and consume more battery of the DBS device. Here, we investigate the partially synchronous dynamics of a STN-GPe coupling network to examine the effect of frequency adjustment in the stimulation signal. The frequency of the stimulation signal is adjusted according to the nonlinear delayed feedback LFP of the STN population. Frequency adjustment protocol with a fixed stimulation amplitude is shown to increase the desynchronization efficiency and neuronal activation by 25% and 16.2%, respectively, while reducing the energy consumption by 31.5% compared to amplitude modulation methods for stimulation of large networks (1000 neurons).
Collapse
|
24
|
Anderson DN, Duffley G, Vorwerk J, Dorval AD, Butson CR. Anodic stimulation misunderstood: preferential activation of fiber orientations with anodic waveforms in deep brain stimulation. J Neural Eng 2018; 16:016026. [PMID: 30275348 DOI: 10.1088/1741-2552/aae590] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE During deep brain stimulation (DBS), it is well understood that extracellular cathodic stimulation can cause activation of passing axons. Activation can be predicted from the second derivative of the electric potential along an axon, which depends on axonal orientation with respect to the stimulation source. We hypothesize that fiber orientation influences activation thresholds and that fiber orientations can be selectively targeted with DBS waveforms. APPROACH We used bioelectric field and multicompartment NEURON models to explore preferential activation based on fiber orientation during monopolar or bipolar stimulation. Preferential fiber orientation was extracted from the principal eigenvectors and eigenvalues of the Hessian matrix of the electric potential. We tested cathodic, anodic, and charge-balanced pulses to target neurons based on fiber orientation in general and clinical scenarios. MAIN RESULTS Axons passing the DBS lead have positive second derivatives around a cathode, whereas orthogonal axons have positive second derivatives around an anode, as indicated by the Hessian. Multicompartment NEURON models confirm that passing fibers are activated by cathodic stimulation, and orthogonal fibers are activated by anodic stimulation. Additionally, orthogonal axons have lower thresholds compared to passing axons. In a clinical scenario, fiber pathways associated with therapeutic benefit can be targeted with anodic stimulation at 50% lower stimulation amplitudes. SIGNIFICANCE Fiber orientations can be selectively targeted with simple changes to the stimulus waveform. Anodic stimulation preferentially activates orthogonal fibers, approaching or leaving the electrode, at lower thresholds for similar therapeutic benefit in DBS with decreased power consumption.
Collapse
Affiliation(s)
- Daria Nesterovich Anderson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States of America. Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, UT, United States of America
| | | | | | | | | |
Collapse
|
25
|
Shepherd RK, Villalobos J, Burns O, Nayagam DAX. The development of neural stimulators: a review of preclinical safety and efficacy studies. J Neural Eng 2018; 15:041004. [PMID: 29756600 PMCID: PMC6049833 DOI: 10.1088/1741-2552/aac43c] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Given the rapid expansion of the field of neural stimulation and the rigorous regulatory approval requirements required before these devices can be applied clinically, it is important that there is clarity around conducting preclinical safety and efficacy studies required for the development of this technology. APPROACH The present review examines basic design principles associated with the development of a safe neural stimulator and describes the suite of preclinical safety studies that need to be considered when taking a device to clinical trial. MAIN RESULTS Neural stimulators are active implantable devices that provide therapeutic intervention, sensory feedback or improved motor control via electrical stimulation of neural or neuro-muscular tissue in response to trauma or disease. Because of their complexity, regulatory bodies classify these devices in the highest risk category (Class III), and they are therefore required to go through a rigorous regulatory approval process before progressing to market. The successful development of these devices is achieved through close collaboration across disciplines including engineers, scientists and a surgical/clinical team, and the adherence to clear design principles. Preclinical studies form one of several key components in the development pathway from concept to product release of neural stimulators. Importantly, these studies provide iterative feedback in order to optimise the final design of the device. Key components of any preclinical evaluation include: in vitro studies that are focussed on device reliability and include accelerated testing under highly controlled environments; in vivo studies using animal models of the disease or injury in order to assess efficacy and, given an appropriate animal model, the safety of the technology under both passive and electrically active conditions; and human cadaver and ex vivo studies designed to ensure the device's form factor conforms to human anatomy, to optimise the surgical approach and to develop any specialist surgical tooling required. SIGNIFICANCE The pipeline from concept to commercialisation of these devices is long and expensive; careful attention to both device design and its preclinical evaluation will have significant impact on the duration and cost associated with taking a device through to commercialisation. Carefully controlled in vitro and in vivo studies together with ex vivo and human cadaver trials are key components of a thorough preclinical evaluation of any new neural stimulator.
Collapse
Affiliation(s)
- Robert K Shepherd
- Bionics Institute, East Melbourne, Australia. Medical Bionics Department, University of Melbourne, Melbourne, Australia
| | | | | | | |
Collapse
|
26
|
Numerical optimization of coordinated reset stimulation for desynchronizing neuronal network dynamics. J Comput Neurosci 2018; 45:45-58. [PMID: 29882174 DOI: 10.1007/s10827-018-0690-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 04/23/2018] [Accepted: 05/31/2018] [Indexed: 12/29/2022]
Abstract
Excessive synchronization in neural activity is a hallmark of Parkinson's disease (PD). A promising technique for treating PD is coordinated reset (CR) neuromodulation in which a neural population is desynchronized by the delivery of spatially-distributed current stimuli using multiple electrodes. In this study, we perform numerical optimization to find the energy-optimal current waveform for desynchronizing neuronal network with CR stimulation, by proposing and applying a new optimization method based on the direct search algorithm. In the proposed optimization method, the stimulating current is described as a Fourier series, and each Fourier coefficient as well as the stimulation period are directly optimized by evaluating the order parameter, which quantifies the synchrony level, from network simulation. This direct optimization scheme has an advantage that arbitrary changes in the dynamical properties of the network can be taken into account in the search process. By harnessing this advantage, we demonstrate the significant influence of externally applied oscillatory inputs and non-random network topology on the efficacy of CR modulation. Our results suggest that the effectiveness of brain stimulation for desynchronization may depend on various factors modulating the dynamics of the target network. We also discuss the possible relevance of the results to the efficacy of the stimulation in PD treatment.
Collapse
|
27
|
Du ZJ, Bi GQ, Cui XT. Electrically Controlled Neurochemical Release from Dual-Layer Conducting Polymer Films for Precise Modulation of Neural Network Activity in Rat Barrel Cortex. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1703988. [PMID: 30467460 PMCID: PMC6242295 DOI: 10.1002/adfm.201703988] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Implantable microelectrode arrays (MEAs) are important tools for investigating functional neural circuits and treating neurological diseases. Precise modulation of neural activity may be achieved by controlled delivery of neurochemicals directly from coatings on MEA electrode sites. In this study, a novel dual-layer conductive polymer/acid functionalized carbon nanotube (fCNT) microelectrode coating is developed to better facilitate the loading and controlled delivery of the neurochemical 6,7-dinitroquinoxaline-2,3-dione (DNQX). The base layer coating is consisted of poly(3,4-ethylenedioxythiophene/fCNT and the top layer is consisted of polypyrrole/fCNT/DNQX. The dual-layer coating is capable of both loading and electrically releasing DNQX and the release dynamic is characterized with fluorescence microscopy and mathematical modeling. In vivo DNQX release is demonstrated in rat somatosensory cortex. Sensory-evoked neural activity is immediately (<1s) and locally (<446 µm) suppressed by electrically triggered DNQX release. Furthermore, a single DNQX-loaded, dual-layer coating is capable of inducing effective neural inhibition for at least 26 times without observable degradation in efficacy. Incorporation of the novel drug releasing coating onto individual MEA electrodes offers many advantages over alternative methods by increasing spatial-temporal precision and improving drug selection flexibility without increasing the device's size.
Collapse
Affiliation(s)
- Zhanhong Jeff Du
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Guo-Qiang Bi
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Brain Science and Intelligence, Technology and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, 5057 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
28
|
An evaluation of the effect of pulse-shape on grey and white matter stimulation in the rat brain. Sci Rep 2018; 8:752. [PMID: 29335516 PMCID: PMC5768709 DOI: 10.1038/s41598-017-19023-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/15/2017] [Indexed: 01/22/2023] Open
Abstract
Despite the current success of neuromodulation, standard biphasic, rectangular pulse shapes may not be optimal to achieve symptom alleviation. Here, we compared stimulation efficiency (in terms of charge) between complex and standard pulses in two areas of the rat brain. In motor cortex, Gaussian and interphase gap stimulation (IPG) increased stimulation efficiency in terms of charge per phase compared with a standard pulse. Moreover, IPG stimulation of the deep mesencephalic reticular formation in freely moving rats was more efficient compared to a standard pulse. We therefore conclude that complex pulses are superior to standard stimulation, as less charge is required to achieve the same behavioral effects in a motor paradigm. These results have important implications for the understanding of electrical stimulation of the nervous system and open new perspectives for the design of the next generation of safe and efficient neural implants.
Collapse
|
29
|
Square biphasic pulse deep brain stimulation for essential tremor: The BiP tremor study. Parkinsonism Relat Disord 2017; 46:41-46. [PMID: 29102253 DOI: 10.1016/j.parkreldis.2017.10.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/02/2017] [Accepted: 10/19/2017] [Indexed: 11/20/2022]
Abstract
BACKGROUND Conventional deep brain stimulation (DBS) utilizes regular, high frequency pulses to treat medication-refractory symptoms in essential tremor (ET). Modifications of DBS pulse shape to achieve improved effectiveness is a promising approach. OBJECTIVES The current study assessed the safety, tolerability and effectiveness of square biphasic pulse shaping as an alternative to conventional ET DBS. METHODS This pilot study compared biphasic pulses (BiP) versus conventional DBS pulses (ClinDBS). Eleven ET subjects with clinically optimized ventralis intermedius nucleus DBS were enrolled. Objective measures were obtained over 3 h while ON BiP stimulation. RESULTS There was observed benefit in the Fahn-Tolosa Tremor Rating Scale (TRS) for BiP conditions when compared to the DBS off condition and to ClinDBS setting. Total TRS scores during the DBS OFF condition (28.5 IQR = 24.5-35.25) were significantly higher than the other time points. Following active DBS, TRS improved to (20 IQR = 13.8-24.3) at ClinDBS setting and to (16.5 IQR = 12-20.75) at the 3 h period ON BiP stimulation (p = 0.001). Accelerometer recordings revealed improvement in tremor at rest (χ2 = 16.1, p = 0.006), posture (χ2 = 15.9, p = 0.007) and with action (χ2 = 32.1, p=<0.001) when comparing median total scores at ClinDBS and OFF DBS conditions to 3 h ON BiP stimulation. There were no adverse effects and gait was not impacted. CONCLUSION BiP was safe, tolerable and effective on the tremor symptoms when tested up to 3 h. This study demonstrated the feasibility of applying a novel DBS waveform in the clinic setting. Larger prospective studies with longer clinical follow-up will be required.
Collapse
|
30
|
Consales C, Merla C, Marino C, Benassi B. The epigenetic component of the brain response to electromagnetic stimulation in Parkinson's Disease patients: A literature overview. Bioelectromagnetics 2017; 39:3-14. [PMID: 28990199 DOI: 10.1002/bem.22083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/20/2017] [Indexed: 12/12/2022]
Abstract
Modulations of epigenetic machinery, namely DNA methylation pattern, histone modification, and non-coding RNAs expression, have been recently included among the key determinants contributing to Parkinson's Disease (PD) aetiopathogenesis and response to therapy. Along this line of reasoning, a set of experimental findings are highlighting the epigenetic-based response to electromagnetic (EM) therapies used to alleviate PD symptomatology, mainly Deep Brain Stimulation (DBS) and Transcranial Magnetic Stimulation (TMS). Notwithstanding the proven efficacy of EM therapies, the precise molecular mechanisms underlying the brain response to these types of stimulations are still far from being elucidated. In this review we provide an overview of the epigenetic changes triggered by DBS and TMS in both PD patients and neurons from different experimental animal models. Furthermore, we also propose a critical overview of the exposure modalities currently applied, in order to evaluate the technical robustness and dosimetric control of the stimulation, which are key issues to be carefully assessed when new molecular findings emerge from experimental studies. Bioelectromagnetics. 39:3-14, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claudia Consales
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Caterina Merla
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy.,CNRS, Gustave Roussy, University of Paris-Sud, Université Paris-Saclay, Villejuif, France
| | - Carmela Marino
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Barbara Benassi
- ENEA-Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| |
Collapse
|
31
|
DBS Programming: An Evolving Approach for Patients with Parkinson's Disease. PARKINSONS DISEASE 2017; 2017:8492619. [PMID: 29147598 PMCID: PMC5632902 DOI: 10.1155/2017/8492619] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/03/2017] [Accepted: 07/19/2017] [Indexed: 11/18/2022]
Abstract
Deep brain stimulation (DBS) surgery is a well-established therapy for control of motor symptoms in Parkinson's disease. Despite an appropriate targeting and an accurate placement of DBS lead, a thorough and efficient programming is critical for a successful clinical outcome. DBS programming is a time consuming and laborious manual process. The current approach involves use of general guidelines involving determination of the lead type, electrode configuration, impedance check, and battery check. However there are no validated and well-established programming protocols. In this review, we will discuss the current practice and the recent advances in DBS programming including the use of interleaving, fractionated current, directional steering of current, and the use of novel DBS pulses. These technological improvements are focused on achieving a more efficient control of clinical symptoms with the least possible side effects. Other promising advances include the introduction of computer guided programming which will likely impact the efficiency of programming for the clinicians and the possibility of remote Internet based programming which will improve access to DBS care for the patients.
Collapse
|
32
|
Shah VV, Goyal S, Palanthandalam-Madapusi HJ. A Possible Explanation of How High-Frequency Deep Brain Stimulation Suppresses Low-Frequency Tremors in Parkinson's Disease. IEEE Trans Neural Syst Rehabil Eng 2017; 25:2498-2508. [PMID: 28866595 DOI: 10.1109/tnsre.2017.2746623] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder of the central nervous system and one of its key symptoms is rest tremor. Deep brain stimulation (DBS) effectively suppresses rest tremor in Parkinson's disease. Despite being a successful treatment option, its underlying principle and the mechanism by which it attenuates tremors is not yet fully understood. Since existing methods for tuning DBS parameters are largely trial and error, understanding how DBS works can help to reduce time and costs, and could also ultimately lead to better treatment strategies for PD. In this paper, we set out to analyze how a high-frequency stimulation applied through DBS can help reduce the low-frequency rest tremors observed in PD patients. We identify key elements in the sensorimotor loop (the feedback loop consisting of sensory feedbacks and motor responses) that play a role in the interaction of high-frequency DBS signal and the low-frequency tremor. Based on the analysis of these elements, we draw insights about the working of DBS and the role of frequency and the nature of stimulation. We verify these observations with numerical examples and a bench top experimental example.
Collapse
|
33
|
Lee HM, Howell B, Grill WM, Ghovanloo M. Stimulation Efficiency With Decaying Exponential Waveforms in a Wirelessly Powered Switched-Capacitor Discharge Stimulation System. IEEE Trans Biomed Eng 2017; 65:1095-1106. [PMID: 28829301 DOI: 10.1109/tbme.2017.2741107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The purpose of this study was to test the feasibility of using a switched-capacitor discharge stimulation (SCDS) system for electrical stimulation, and, subsequently, determine the overall energy saved compared to a conventional stimulator. We have constructed a computational model by pairing an image-based volume conductor model of the cat head with cable models of corticospinal tract (CST) axons and quantified the theoretical stimulation efficiency of rectangular and decaying exponential waveforms, produced by conventional and SCDS systems, respectively. Subsequently, the model predictions were tested in vivo by activating axons in the posterior internal capsule and recording evoked electromyography (EMG) in the contralateral upper arm muscles. Compared to rectangular waveforms, decaying exponential waveforms with time constants >500 μs were predicted to require 2%-4% less stimulus energy to activate directly models of CST axons and 0.4%-2% less stimulus energy to evoke EMG activity in vivo. Using the calculated wireless input energy of the stimulation system and the measured stimulus energies required to evoke EMG activity, we predict that an SCDS implantable pulse generator (IPG) will require 40% less input energy than a conventional IPG to activate target neural elements. A wireless SCDS IPG that is more energy efficient than a conventional IPG will reduce the size of an implant, require that less wireless energy be transmitted through the skin, and extend the lifetime of the battery in the external power transmitter.
Collapse
|
34
|
Daneshzand M, Faezipour M, Barkana BD. Computational Stimulation of the Basal Ganglia Neurons with Cost Effective Delayed Gaussian Waveforms. Front Comput Neurosci 2017; 11:73. [PMID: 28848417 PMCID: PMC5550730 DOI: 10.3389/fncom.2017.00073] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022] Open
Abstract
Deep brain stimulation (DBS) has compelling results in the desynchronization of the basal ganglia neuronal activities and thus, is used in treating the motor symptoms of Parkinson's disease (PD). Accurate definition of DBS waveform parameters could avert tissue or electrode damage, increase the neuronal activity and reduce energy cost which will prolong the battery life, hence avoiding device replacement surgeries. This study considers the use of a charge balanced Gaussian waveform pattern as a method to disrupt the firing patterns of neuronal cell activity. A computational model was created to simulate ganglia cells and their interactions with thalamic neurons. From the model, we investigated the effects of modified DBS pulse shapes and proposed a delay period between the cathodic and anodic parts of the charge balanced Gaussian waveform to desynchronize the firing patterns of the GPe and GPi cells. The results of the proposed Gaussian waveform with delay outperformed that of rectangular DBS waveforms used in in-vivo experiments. The Gaussian Delay Gaussian (GDG) waveforms achieved lower number of misses in eliciting action potential while having a lower amplitude and shorter length of delay compared to numerous different pulse shapes. The amount of energy consumed in the basal ganglia network due to GDG waveforms was dropped by 22% in comparison with charge balanced Gaussian waveforms without any delay between the cathodic and anodic parts and was also 60% lower than a rectangular charged balanced pulse with a delay between the cathodic and anodic parts of the waveform. Furthermore, by defining a Synchronization Level metric, we observed that the GDG waveform was able to reduce the synchronization of GPi neurons more effectively than any other waveform. The promising results of GDG waveforms in terms of eliciting action potential, desynchronization of the basal ganglia neurons and reduction of energy consumption can potentially enhance the performance of DBS devices.
Collapse
Affiliation(s)
- Mohammad Daneshzand
- D-BEST Lab, Departments of Computer Science and Engineering and Biomedical Engineering, University of BridgeportBridgeport, CT, United States
| | - Miad Faezipour
- D-BEST Lab, Departments of Computer Science and Engineering and Biomedical Engineering, University of BridgeportBridgeport, CT, United States
| | - Buket D Barkana
- Department of Electrical Engineering, University of BridgeportBridgeport, CT, United States
| |
Collapse
|
35
|
Popovych OV, Lysyansky B, Tass PA. Closed-loop deep brain stimulation by pulsatile delayed feedback with increased gap between pulse phases. Sci Rep 2017; 7:1033. [PMID: 28432303 PMCID: PMC5430852 DOI: 10.1038/s41598-017-01067-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/27/2017] [Indexed: 01/15/2023] Open
Abstract
Computationally it was shown that desynchronizing delayed feedback stimulation methods are effective closed-loop techniques for the control of synchronization in ensembles of interacting oscillators. We here computationally design stimulation signals for electrical stimulation of neuronal tissue that preserve the desynchronizing delayed feedback characteristics and comply with mandatory charge deposit-related safety requirements. For this, the amplitude of the high-frequency (HF) train of biphasic charge-balanced pulses used by the standard HF deep brain stimulation (DBS) is modulated by the smooth feedback signals. In this way we combine the desynchronizing delayed feedback approach with the HF DBS technique. We show that such a pulsatile delayed feedback stimulation can effectively and robustly desynchronize a network of model neurons comprising subthalamic nucleus and globus pallidus external and suggest this approach for desynchronizing closed-loop DBS. Intriguingly, an interphase gap introduced between the recharging phases of the charge-balanced biphasic pulses can significantly improve the stimulation-induced desynchronization and reduce the amount of the administered stimulation. In view of the recent experimental and clinical studies indicating a superiority of the closed-loop DBS to open-loop HF DBS, our results may contribute to a further development of effective stimulation methods for the treatment of neurological disorders characterized by abnormal neuronal synchronization.
Collapse
Affiliation(s)
- Oleksandr V Popovych
- Institute of Neuroscience and Medicine - Neuromodulation, Jülich Research Center, Jülich, Germany.
| | - Borys Lysyansky
- Institute of Neuroscience and Medicine - Neuromodulation, Jülich Research Center, Jülich, Germany
| | - Peter A Tass
- Institute of Neuroscience and Medicine - Neuromodulation, Jülich Research Center, Jülich, Germany.,Department of Neurosurgery, Stanford University, Stanford, California, USA.,Department of Neuromodulation, University of Cologne, Cologne, Germany
| |
Collapse
|
36
|
Almeida L, Martinez-Ramirez D, Ahmed B, Deeb W, Jesus SD, Skinner J, Terza MJ, Akbar U, Raike RS, Hass CJ, Okun MS. A pilot trial of square biphasic pulse deep brain stimulation for dystonia: The BIP dystonia study. Mov Disord 2017; 32:615-618. [PMID: 28195407 DOI: 10.1002/mds.26906] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 11/21/2016] [Accepted: 11/27/2016] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Dystonia often has inconsistent benefits and requires more energy-demanding DBS settings. Studies suggest that squared biphasic pulses could provide significant clinical benefit; however, dystonia patients have not been explored. OBJECTIVES To assess safety and tolerability of square biphasic DBS in dystonia patients. METHODS This study included primary generalized or cervical dystonia patients with bilateral GPi DBS. Square biphasic pulses were implemented and patients were assessed at baseline, immediately postwashout, post-30-minute washout, 1 hour post- and 2 hours postinitiation of investigational settings. RESULTS Ten participants completed the study. There were no patient-reported or clinician-observed side effects. There was improvement across time on the Toronto Western Spasmodic Torticollis Rating Scale (χ2 = 10.7; P = 0.031). Similar improvement was detected in objective gait measurements. CONCLUSIONS Square biphasic stimulation appears safe and feasible in dystonia patients with GPi DBS. Further studies are needed to evaluate possible effectiveness particularly in cervical and gait features. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Leonardo Almeida
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Department of Neurology, Gainesville, Florida, USA
| | - Daniel Martinez-Ramirez
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Department of Neurology, Gainesville, Florida, USA
| | - Bilal Ahmed
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Department of Neurology, Gainesville, Florida, USA
| | - Wissam Deeb
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Department of Neurology, Gainesville, Florida, USA
| | - Sol De Jesus
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Department of Neurology, Gainesville, Florida, USA
| | - Jared Skinner
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Matthew J Terza
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Umer Akbar
- Department of Neurology, Brown University, Providence, Rhode Island, USA
| | - Robert S Raike
- Neuromodulation Global Research, Medtronic Inc, Minneapolis, Minnesota, USA
| | - Chris J Hass
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA
| | - Michael S Okun
- Department of Neurology, Center for Movement Disorders and Neurorestoration, University of Florida, Department of Neurology, Gainesville, Florida, USA
| |
Collapse
|
37
|
Klooster DCW, de Louw AJA, Aldenkamp AP, Besseling RMH, Mestrom RMC, Carrette S, Zinger S, Bergmans JWM, Mess WH, Vonck K, Carrette E, Breuer LEM, Bernas A, Tijhuis AG, Boon P. Technical aspects of neurostimulation: Focus on equipment, electric field modeling, and stimulation protocols. Neurosci Biobehav Rev 2016; 65:113-41. [PMID: 27021215 DOI: 10.1016/j.neubiorev.2016.02.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/05/2016] [Accepted: 02/17/2016] [Indexed: 12/31/2022]
Abstract
Neuromodulation is a field of science, medicine, and bioengineering that encompasses implantable and non-implantable technologies for the purpose of improving quality of life and functioning of humans. Brain neuromodulation involves different neurostimulation techniques: transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), vagus nerve stimulation (VNS), and deep brain stimulation (DBS), which are being used both to study their effects on cognitive brain functions and to treat neuropsychiatric disorders. The mechanisms of action of neurostimulation remain incompletely understood. Insight into the technical basis of neurostimulation might be a first step towards a more profound understanding of these mechanisms, which might lead to improved clinical outcome and therapeutic potential. This review provides an overview of the technical basis of neurostimulation focusing on the equipment, the present understanding of induced electric fields, and the stimulation protocols. The review is written from a technical perspective aimed at supporting the use of neurostimulation in clinical practice.
Collapse
Affiliation(s)
- D C W Klooster
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - A J A de Louw
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; Department of Neurology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - A P Aldenkamp
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; Department of Neurology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - R M H Besseling
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - R M C Mestrom
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - S Carrette
- Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - S Zinger
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - J W M Bergmans
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - W H Mess
- Departments of Clinical Neurophysiology, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands.
| | - K Vonck
- Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - E Carrette
- Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - L E M Breuer
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands.
| | - A Bernas
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - A G Tijhuis
- Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
| | - P Boon
- Kempenhaeghe Academic Center for Epileptology, P.O. Box 61, 5590 AB Heeze, The Netherlands; Department of Electrical Engineering, University of Technology Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; Department of Neurology, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
38
|
Akbar U, Raike RS, Hack N, Hess CW, Skinner J, Martinez-Ramirez D, DeJesus S, Okun MS. Randomized, Blinded Pilot Testing of Nonconventional Stimulation Patterns and Shapes in Parkinson's Disease and Essential Tremor: Evidence for Further Evaluating Narrow and Biphasic Pulses. Neuromodulation 2016; 19:343-56. [PMID: 27000764 PMCID: PMC4914444 DOI: 10.1111/ner.12397] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Evidence suggests that nonconventional programming may improve deep brain stimulation (DBS) therapy for movement disorders. The primary objective was to assess feasibility of testing the tolerability of several nonconventional settings in Parkinson's disease (PD) and essential tremor (ET) subjects in a single office visit. Secondary objectives were to explore for potential efficacy signals and to assess the energy demand on the implantable pulse-generators (IPGs). MATERIALS AND METHODS A custom firmware (FW) application was developed and acutely uploaded to the IPGs of eight PD and three ET subjects, allowing delivery of several nonconventional DBS settings, including narrow pulse widths, square biphasic pulses, and irregular pulse patterns. Standard clinical rating scales and several objective measures were used to compare motor outcomes with sham, clinically-optimal and nonconventional settings. Blinded and randomized testing was conducted in a traditional office setting. RESULTS Overall, the nonconventional settings were well tolerated. Under these conditions it was also possible to detect clinically-relevant differences in DBS responses using clinical rating scales but not objective measures. Compared to the clinically-optimal settings, some nonconventional settings appeared to offer similar benefit (e.g., narrow pulse widths) and others lesser benefit. Moreover, the results suggest that square biphasic pulses may deliver greater benefit. No unexpected IPG efficiency disadvantages were associated with delivering nonconventional settings. CONCLUSIONS It is feasible to acutely screen nonconventional DBS settings using controlled study designs in traditional office settings. Simple IPG FW upgrades may provide more DBS programming options for optimizing therapy. Potential advantages of narrow and biphasic pulses deserve follow up.
Collapse
Affiliation(s)
- Umer Akbar
- University of Florida Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA.,Department of Neurology, Brown University, Providence, RI, USA
| | - Robert S Raike
- Neuromodulation Global Research, Medtronic Inc., Minneapolis, MN, USA
| | - Nawaz Hack
- University of Florida Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA.,US Naval Hospital, Okinawa, Japan
| | - Christopher W Hess
- University of Florida Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA
| | - Jared Skinner
- University of Florida Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA
| | - Daniel Martinez-Ramirez
- University of Florida Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA
| | - Sol DeJesus
- University of Florida Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA
| | - Michael S Okun
- University of Florida Center for Movement Disorders and Neurorestoration, Gainesville, FL, USA.,Departments of Neurology and Neurosurgery, University of Florida, Gainesville, FL, USA
| |
Collapse
|
39
|
Horne CDF, Sumner CJ, Seeber BU. A Phenomenological Model of the Electrically Stimulated Auditory Nerve Fiber: Temporal and Biphasic Response Properties. Front Comput Neurosci 2016; 10:8. [PMID: 26903850 PMCID: PMC4744847 DOI: 10.3389/fncom.2016.00008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/18/2016] [Indexed: 11/13/2022] Open
Abstract
We present a phenomenological model of electrically stimulated auditory nerve fibers (ANFs). The model reproduces the probabilistic and temporal properties of the ANF response to both monophasic and biphasic stimuli, in isolation. The main contribution of the model lies in its ability to reproduce statistics of the ANF response (mean latency, jitter, and firing probability) under both monophasic and cathodic-anodic biphasic stimulation, without changing the model's parameters. The response statistics of the model depend on stimulus level and duration of the stimulating pulse, reproducing trends observed in the ANF. In the case of biphasic stimulation, the model reproduces the effects of pseudomonophasic pulse shapes and also the dependence on the interphase gap (IPG) of the stimulus pulse, an effect that is quantitatively reproduced. The model is fitted to ANF data using a procedure that uniquely determines each model parameter. It is thus possible to rapidly parameterize a large population of neurons to reproduce a given set of response statistic distributions. Our work extends the stochastic leaky integrate and fire (SLIF) neuron, a well-studied phenomenological model of the electrically stimulated neuron. We extend the SLIF neuron so as to produce a realistic latency distribution by delaying the moment of spiking. During this delay, spiking may be abolished by anodic current. By this means, the probability of the model neuron responding to a stimulus is reduced when a trailing phase of opposite polarity is introduced. By introducing a minimum wait period that must elapse before a spike may be emitted, the model is able to reproduce the differences in the threshold level observed in the ANF for monophasic and biphasic stimuli. Thus, the ANF response to a large variety of pulse shapes are reproduced correctly by this model.
Collapse
Affiliation(s)
- Colin D F Horne
- Medical Research Council Institute of Hearing Research, University Park Nottingham, UK
| | - Christian J Sumner
- Medical Research Council Institute of Hearing Research, University Park Nottingham, UK
| | - Bernhard U Seeber
- Audio Information Processing, Department of Electrical and Computer Engineering, Technische Universität München Munich, Germany
| |
Collapse
|
40
|
Herrington TM, Cheng JJ, Eskandar EN. Mechanisms of deep brain stimulation. J Neurophysiol 2015; 115:19-38. [PMID: 26510756 DOI: 10.1152/jn.00281.2015] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/22/2015] [Indexed: 12/31/2022] Open
Abstract
Deep brain stimulation (DBS) is widely used for the treatment of movement disorders including Parkinson's disease, essential tremor, and dystonia and, to a lesser extent, certain treatment-resistant neuropsychiatric disorders including obsessive-compulsive disorder. Rather than a single unifying mechanism, DBS likely acts via several, nonexclusive mechanisms including local and network-wide electrical and neurochemical effects of stimulation, modulation of oscillatory activity, synaptic plasticity, and, potentially, neuroprotection and neurogenesis. These different mechanisms vary in importance depending on the condition being treated and the target being stimulated. Here we review each of these in turn and illustrate how an understanding of these mechanisms is inspiring next-generation approaches to DBS.
Collapse
Affiliation(s)
- Todd M Herrington
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Jennifer J Cheng
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neurosurgery, The Johns Hopkins Hospital, Baltimore, Maryland
| | - Emad N Eskandar
- Nayef Al-Rodhan Laboratories, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
41
|
Model-based analysis and design of waveforms for efficient neural stimulation. PROGRESS IN BRAIN RESEARCH 2015; 222:147-62. [PMID: 26541380 DOI: 10.1016/bs.pbr.2015.07.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The design space for electrical stimulation of the nervous system is extremely large, and because the response to stimulation is highly nonlinear, the selection of stimulation parameters to achieve a desired response is a challenging problem. Computational models of the response of neurons to extracellular stimulation allow analysis of the effects of stimulation parameters on neural excitation and provide an approach to select or design optimal parameters of stimulation. Here, I review the use of computational models to understand the effects of stimulation waveform on the energy efficiency of neural excitation and to design novel stimulation waveforms to increase the efficiency of neural stimulation.
Collapse
|
42
|
Chang J, Paydarfar D. Optimal stimulus waveforms for eliciting a spike: How close is the spike-triggered average? INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING : [PROCEEDINGS]. INTERNATIONAL IEEE EMBS CONFERENCE ON NEURAL ENGINEERING 2015; 2015:414-417. [PMID: 28163829 DOI: 10.1109/ner.2015.7146647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Computing the average input stimulus preceding a spike, the spike-triggered average (STA), has been a powerful tool for discovering a neuron's 'preferred' stimulus feature that enables efficient encoding of sensory information. Recent work in the squid giant axon has shown that STA waveforms can be remarkably similar to the energetically optimal stimulus waveforms for eliciting a spike. In the present study, we show using the Hodgkin-Huxley model that the STA can deviate from the global optimal solution if there is averaging of multiple solutions across different time scales and of multiple modes of spike induction. These findings inform attempts to develop model-free stochastic algorithms for finding energy-optimal stimuli, which is relevant to the efficient delivery of exogenous therapeutic stimuli in neurological diseases.
Collapse
Affiliation(s)
- Joshua Chang
- University of Massachusetts Medical School, Worcester, MA 01604 USA
| | - David Paydarfar
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01604 USA and the Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 USA
| |
Collapse
|
43
|
van Dongen MN, Hoebeek FE, Koekkoek SKE, De Zeeuw CI, Serdijn WA. High frequency switched-mode stimulation can evoke post synaptic responses in cerebellar principal neurons. FRONTIERS IN NEUROENGINEERING 2015; 8:2. [PMID: 25798105 PMCID: PMC4351622 DOI: 10.3389/fneng.2015.00002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 02/17/2015] [Indexed: 11/16/2022]
Abstract
This paper investigates the efficacy of high frequency switched-mode neural stimulation. Instead of using a constant stimulation amplitude, the stimulus is switched on and off repeatedly with a high frequency (up to 100 kHz) duty cycled signal. By means of tissue modeling that includes the dynamic properties of both the tissue material as well as the axon membrane, it is first shown that switched-mode stimulation depolarizes the cell membrane in a similar way as classical constant amplitude stimulation. These findings are subsequently verified using in vitro experiments in which the response of a Purkinje cell is measured due to a stimulation signal in the molecular layer of the cerebellum of a mouse. For this purpose a stimulator circuit is developed that is able to produce a monophasic high frequency switched-mode stimulation signal. The results confirm the modeling by showing that switched-mode stimulation is able to induce similar responses in the Purkinje cell as classical stimulation using a constant current source. This conclusion opens up possibilities for novel stimulation designs that can improve the performance of the stimulator circuitry. Care has to be taken to avoid losses in the system due to the higher operating frequency.
Collapse
Affiliation(s)
- Marijn N van Dongen
- Section Bioelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology Delft, Netherlands
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus Medical Center Rotterdam Rotterdam, Netherlands
| | - S K E Koekkoek
- Department of Neuroscience, Erasmus Medical Center Rotterdam Rotterdam, Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center Rotterdam Rotterdam, Netherlands ; Netherlands Institute for Neuroscience, Royal Dutch Academy of Art and Science Amsterdam, Netherlands
| | - Wouter A Serdijn
- Section Bioelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology Delft, Netherlands
| |
Collapse
|
44
|
Maciejasz P, Badia J, Boretius T, Andreu D, Stieglitz T, Jensen W, Navarro X, Guiraud D. Delaying discharge after the stimulus significantly decreases muscle activation thresholds with small impact on the selectivity: an in vivo study using TIME. Med Biol Eng Comput 2015; 53:371-9. [PMID: 25652078 DOI: 10.1007/s11517-015-1244-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 01/22/2015] [Indexed: 10/24/2022]
Abstract
The number of devices for electrical stimulation of nerve fibres implanted worldwide for medical applications is constantly increasing. Stimulation charge is one of the most important parameters of stimulation. High stimulation charge may cause tissue and electrode damage and also compromise the battery life of the electrical stimulators. Therefore, the objective of minimizing stimulation charge is an important issue. Delaying the second phase of biphasic stimulation waveform may decrease the charge required for fibre activation, but its impact on stimulation selectivity is not known. This information is particularly relevant when transverse intrafascicular multichannel electrode (TIME) is used, since it has been designed to provide for high selectivity. In this in vivo study, the rat sciatic nerve was electrically stimulated using monopolar and bipolar configurations with TIME. The results demonstrated that the inclusion of a 100-μs delay between the cathodic and the anodic phase of the stimulus allows to reduce charge requirements by around 30 %, while only slightly affecting stimulation selectivity. This study shows that adding a delay to the typical stimulation waveform significantly ([Formula: see text]) reduces the charge required for nerve fibres activation. Therefore, waveforms with the delayed discharge phase are more suitable for electrical stimulation of nerve fibres.
Collapse
Affiliation(s)
- Paweł Maciejasz
- DEMAR Team, LIRMM, INRIA, University of Montpellier 2, Montpellier, France,
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kumar G, Ching S. Maximizing relaxation time in oscillator networks with implications for neurostimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:6589-92. [PMID: 25571506 DOI: 10.1109/embc.2014.6945138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
High frequency deep brain stimulation (HF-DBS) is a pervasive clinical neurostimulation paradigm in which rapid (> 100Hz) pulses of electrical current are invasively delivered to the brain. Here, we use dynamical systems analysis to provide hypotheses regarding the frequency-specificity of the therapeutic effects of HF-DBS. Using phase oscillator-based models, we study the relaxation time of a synchronized network following impulsive stimulation. In particular, by approximating a standard DBS pulse by a finite-energy (Dirac) delta function, we show the existence of a minimum bound on the frequency of stimulation necessary to keep the network in a desynchronized regime. If, as evidence suggests, pathological synchronization is central to the pathology in DBS-responsive disorders, then the analysis gives conceptual insight into why lower frequency and/or randomized stimulation therapy is less effective, and provides a way to study alternative design strategies.
Collapse
|
46
|
Ebert M, Hauptmann C, Tass PA. Coordinated reset stimulation in a large-scale model of the STN-GPe circuit. Front Comput Neurosci 2014; 8:154. [PMID: 25505882 PMCID: PMC4245901 DOI: 10.3389/fncom.2014.00154] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 11/05/2014] [Indexed: 11/15/2022] Open
Abstract
Synchronization of populations of neurons is a hallmark of several brain diseases. Coordinated reset (CR) stimulation is a model-based stimulation technique which specifically counteracts abnormal synchrony by desynchronization. Electrical CR stimulation, e.g., for the treatment of Parkinson's disease (PD), is administered via depth electrodes. In order to get a deeper understanding of this technique, we extended the top-down approach of previous studies and constructed a large-scale computational model of the respective brain areas. Furthermore, we took into account the spatial anatomical properties of the simulated brain structures and incorporated a detailed numerical representation of 2 · 104 simulated neurons. We simulated the subthalamic nucleus (STN) and the globus pallidus externus (GPe). Connections within the STN were governed by spike-timing dependent plasticity (STDP). In this way, we modeled the physiological and pathological activity of the considered brain structures. In particular, we investigated how plasticity could be exploited and how the model could be shifted from strongly synchronized (pathological) activity to strongly desynchronized (healthy) activity of the neuronal populations via CR stimulation of the STN neurons. Furthermore, we investigated the impact of specific stimulation parameters especially the electrode position on the stimulation outcome. Our model provides a step forward toward a biophysically realistic model of the brain areas relevant to the emergence of pathological neuronal activity in PD. Furthermore, our model constitutes a test bench for the optimization of both stimulation parameters and novel electrode geometries for efficient CR stimulation.
Collapse
Affiliation(s)
- Martin Ebert
- Institute of Neuroscience and Medicine - Neuromodulation, Juelich Research Center GmbH Juelich, Germany ; Department of Physics, Institute of Nuclear Physics, University of Cologne Cologne, Germany
| | - Christian Hauptmann
- Institute of Neuroscience and Medicine - Neuromodulation, Juelich Research Center GmbH Juelich, Germany
| | - Peter A Tass
- Institute of Neuroscience and Medicine - Neuromodulation, Juelich Research Center GmbH Juelich, Germany ; Department of Neurosurgery, Stanford University Stanford, CA, USA ; Department of Neuromodulation, University of Cologne Cologne, Germany
| |
Collapse
|
47
|
Energy-optimal electrical-stimulation pulses shaped by the Least-Action Principle. PLoS One 2014; 9:e90480. [PMID: 24625822 PMCID: PMC3953645 DOI: 10.1371/journal.pone.0090480] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 01/30/2014] [Indexed: 12/03/2022] Open
Abstract
Electrical stimulation (ES) devices interact with excitable neural tissue toward eliciting action potentials (AP’s) by specific current patterns. Low-energy ES prevents tissue damage and loss of specificity. Hence to identify optimal stimulation-current waveforms is a relevant problem, whose solution may have significant impact on the related medical (e.g. minimized side-effects) and engineering (e.g. maximized battery-life) efficiency. This has typically been addressed by simulation (of a given excitable-tissue model) and iterative numerical optimization with hard discontinuous constraints - e.g. AP’s are all-or-none phenomena. Such approach is computationally expensive, while the solution is uncertain - e.g. may converge to local-only energy-minima and be model-specific. We exploit the Least-Action Principle (LAP). First, we derive in closed form the general template of the membrane-potential’s temporal trajectory, which minimizes the ES energy integral over time and over any space-clamp ionic current model. From the given model we then obtain the specific energy-efficient current waveform, which is demonstrated to be globally optimal. The solution is model-independent by construction. We illustrate the approach by a broad set of example situations with some of the most popular ionic current models from the literature. The proposed approach may result in the significant improvement of solution efficiency: cumbersome and uncertain iteration is replaced by a single quadrature of a system of ordinary differential equations. The approach is further validated by enabling a general comparison to the conventional simulation and optimization results from the literature, including one of our own, based on finite-horizon optimal control. Applying the LAP also resulted in a number of general ES optimality principles. One such succinct observation is that ES with long pulse durations is much more sensitive to the pulse’s shape whereas a rectangular pulse is most frequently optimal for short pulse durations.
Collapse
|
48
|
Tahayori B, Dokos S. Optimal stimulus profiles for neuroprosthetic devices: monophasic versus biphasic stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2013:5978-81. [PMID: 24111101 DOI: 10.1109/embc.2013.6610914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Designing stimulation signals for neuroprosthetic devices can be cast as an optimal control problem. Rectangular Lilly-type stimulation waveforms have been used extensively in these devices. In this paper, we rigorously formulate the charge optimization problem from a control perspective and distinguish between monophasic and biphasic stimuli. We show that for a monophasic stimulus, the important factor in stimulating a neuron is the total delivered charge per unit cell membrane. This factor is a consequence of the subthreshold linear behavior of the neural membrane. On the other hand, biphasic pulses, which are ubiquitous in the neuron stimulation context, can stimulate a neuron in its non-linear range, thereby challenging the finding that total charge delivery is the only critical factor. As a result, there may be even more optimal stimulus profiles than Lilly-type rectangular waveforms for biphasic stimulation. Furthermore, solving the charge minimization problem also will reduce the risk of electrode corrosion, which is an important factor in improving the performance of neuroprosthetic devices.
Collapse
|
49
|
Tahayori B, Dokos S. Optimal stimulus current waveshape for a Hodgkin-Huxley model neuron. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:4627-30. [PMID: 23366959 DOI: 10.1109/embc.2012.6346998] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Traditionally, rectangular Lilly-type current pulses have been employed to electrically stimulate a neuron. In this paper, we utilize a least squares optimisation approach to assess the optimality of rectangular pulses in the context of electrical current stimulation. To this end, an appropriate cost function to minimise the total charge delivered to a neuron while keeping the waveshape sufficiently smooth, is developed and applied to a Hodgkin-Huxley ionic model of the neural action potential. Cubic spline parameters were utilized to find the optimal stimulation profile for a fixed peak current. Simulation results demonstrate that the optimal stimulation profile for a specified single neuron is a non-rectangular pulse whose shape depends upon the maximum allowable current as well as the stimulus duration.
Collapse
Affiliation(s)
- Bahman Tahayori
- NeuroEngineering Laboratory, Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
| | | |
Collapse
|
50
|
Yousif N, Borisyuk R, Pavese N, Nandi D, Bain P. Spatiotemporal visualization of deep brain stimulation-induced effects in the subthalamic nucleus. Eur J Neurosci 2012; 36:2252-9. [PMID: 22805069 DOI: 10.1111/j.1460-9568.2012.08086.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deep brain stimulation (DBS) is a successful surgical therapy used to treat the disabling symptoms of movement disorders such as Parkinson's disease. It involves the chronic stimulation of disorder-specific nuclei. However, the mechanisms that lead to clinical improvements remain unclear. Consequently, this slows the optimization of present-day DBS therapy and hinders its future development and application. We used a computational model to calculate the distribution of electric potential induced by DBS and study the effect of stimulation on the spiking activity of a subthalamic nucleus (STN) projection neuron. We previously showed that such a model can reveal detailed spatial effects of stimulation in the vicinity of the electrode. However, this multi-compartmental STN neuron model can fire in either a burst or tonic mode and, in this study, we hypothesized that the firing mode of the cell will have a major impact on the DBS-induced effects. Our simulations showed that the bursting model exhibits behaviour observed in studies of high-frequency stimulation of STN neurons, such as the presence of a silent period at stimulation offset and frequency-dependent stimulation effects. We validated the model by simulating the clinical parameter settings used for a Parkinsonian patient and showed, in a patient-specific anatomical model, that the region of affected tissue is consistent with clinical observations of the optimal DBS site. Our results demonstrated a method of quantitatively assessing neuronal changes induced by DBS, to maximize therapeutic benefit and minimize unwanted side effects.
Collapse
Affiliation(s)
- Nada Yousif
- Centre for Neuroscience, Imperial College London, Charing Cross Hospital, London, UK.
| | | | | | | | | |
Collapse
|