1
|
Lohitaksha K, Kumari D, Shukla M, Byagari L, Ashireddygari VR, Tammineni P, Reddanna P, Gorla M. Eicosanoid signaling in neuroinflammation associated with Alzheimer's disease. Eur J Pharmacol 2024; 976:176694. [PMID: 38821162 DOI: 10.1016/j.ejphar.2024.176694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative condition affecting a substantial portion of the global population. It is marked by a complex interplay of factors, including the accumulation of amyloid plaques and tau tangles within the brain, leading to neuroinflammation and neuronal damage. Recent studies have underscored the role of free lipids and their derivatives in the initiation and progression of AD. Eicosanoids, metabolites of polyunsaturated fatty acids like arachidonic acid (AA), emerge as key players in this scenario. Remarkably, eicosanoids can either promote or inhibit the development of AD, and this multifaceted role is determined by how eicosanoid signaling influences the immune responses within the brain. However, the precise molecular mechanisms dictating the dual role of eicosanoids in AD remain elusive. In this comprehensive review, we explore the intricate involvement of eicosanoids in neuronal function and dysfunction. Furthermore, we assess the therapeutic potential of targeting eicosanoid signaling pathways as a viable strategy for mitigating or halting the progression of AD.
Collapse
Affiliation(s)
| | - Deepika Kumari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer, Rajasthan, India
| | - Manas Shukla
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Lavanya Byagari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Prasad Tammineni
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Pallu Reddanna
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India; Brane Enterprises Private Limited, Hyderabad, India.
| | - Madhavi Gorla
- National Institute of Animal Biotechnology, Hyderabad, India.
| |
Collapse
|
2
|
Nango H, Tsuruta K, Miyagishi H, Aono Y, Saigusa T, Kosuge Y. Update on the pathological roles of prostaglandin E 2 in neurodegeneration in amyotrophic lateral sclerosis. Transl Neurodegener 2023; 12:32. [PMID: 37337289 DOI: 10.1186/s40035-023-00366-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by selective degeneration of upper and lower motor neurons. The pathogenesis of ALS remains largely unknown; however, inflammation of the spinal cord is a focus of ALS research and an important pathogenic process in ALS. Prostaglandin E2 (PGE2) is a major lipid mediator generated by the arachidonic-acid cascade and is abundant at inflammatory sites. PGE2 levels are increased in the postmortem spinal cords of ALS patients and in ALS model mice. Beneficial therapeutic effects have been obtained in ALS model mice using cyclooxygenase-2 inhibitors to inhibit the biosynthesis of PGE2, but the usefulness of this inhibitor has not yet been proven in clinical trials. In this review, we present current evidence on the involvement of PGE2 in the progression of ALS and discuss the potential of microsomal prostaglandin E synthase (mPGES) and the prostaglandin receptor E-prostanoid (EP) 2 as therapeutic targets for ALS. Signaling pathways involving prostaglandin receptors mediate toxic effects in the central nervous system. In some situations, however, the receptors mediate neuroprotective effects. Our recent studies demonstrated that levels of mPGES-1, which catalyzes the final step of PGE2 biosynthesis, are increased at the early-symptomatic stage in the spinal cords of transgenic ALS model mice carrying the G93A variant of superoxide dismutase-1. In addition, in an experimental motor-neuron model used in studies of ALS, PGE2 induces the production of reactive oxygen species and subsequent caspase-3-dependent cytotoxicity through activation of the EP2 receptor. Moreover, this PGE2-induced EP2 up-regulation in motor neurons plays a role in the death of motor neurons in ALS model mice. Further understanding of the pathophysiological role of PGE2 in neurodegeneration may provide new insights to guide the development of novel therapies for ALS.
Collapse
Affiliation(s)
- Hiroshi Nango
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Komugi Tsuruta
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Hiroko Miyagishi
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan
| | - Yuri Aono
- Department of Pharmacology, School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaechonishi, Matsudo-Shi, Chiba, 271-8587, Japan
| | - Tadashi Saigusa
- Department of Pharmacology, School of Dentistry at Matsudo, Nihon University, 2-870-1 Sakaechonishi, Matsudo-Shi, Chiba, 271-8587, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-Shi, Chiba, 274-8555, Japan.
| |
Collapse
|
3
|
Rodríguez-Giraldo M, González-Reyes RE, Ramírez-Guerrero S, Bonilla-Trilleras CE, Guardo-Maya S, Nava-Mesa MO. Astrocytes as a Therapeutic Target in Alzheimer's Disease-Comprehensive Review and Recent Developments. Int J Mol Sci 2022; 23:13630. [PMID: 36362415 PMCID: PMC9654484 DOI: 10.3390/ijms232113630] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/20/2023] Open
Abstract
Alzheimer's disease (AD) is a frequent and disabling neurodegenerative disorder, in which astrocytes participate in several pathophysiological processes including neuroinflammation, excitotoxicity, oxidative stress and lipid metabolism (along with a critical role in apolipoprotein E function). Current evidence shows that astrocytes have both neuroprotective and neurotoxic effects depending on the disease stage and microenvironmental factors. Furthermore, astrocytes appear to be affected by the presence of amyloid-beta (Aβ), with alterations in calcium levels, gliotransmission and proinflammatory activity via RAGE-NF-κB pathway. In addition, astrocytes play an important role in the metabolism of tau and clearance of Aβ through the glymphatic system. In this review, we will discuss novel pharmacological and non-pharmacological treatments focused on astrocytes as therapeutic targets for AD. These interventions include effects on anti-inflammatory/antioxidant systems, glutamate activity, lipid metabolism, neurovascular coupling and glymphatic system, calcium dysregulation, and in the release of peptides which affects glial and neuronal function. According to the AD stage, these therapies may be of benefit in either preventing or delaying the progression of the disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Mauricio O. Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111711, Colombia
| |
Collapse
|
4
|
Karaky M, Boucher G, Mola S, Foisy S, Beauchamp C, Rivard ME, Burnette M, Gosselin H, Bitton A, Charron G, Goyette P, Rioux JD. Prostaglandins and calprotectin are genetically and functionally linked to the Inflammatory Bowel Diseases. PLoS Genet 2022; 18:e1010189. [PMID: 36155972 PMCID: PMC9536535 DOI: 10.1371/journal.pgen.1010189] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 10/06/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Genome wide association studies (GWAS) have identified and validated more than 200 genomic loci associated with the inflammatory bowel disease (IBD), although for most the causal gene remains unknown. Given the importance of myeloid cells in IBD pathogenesis, the current study aimed to uncover the role of genes within IBD genetic loci that are endogenously expressed in this cell lineage. METHODS The open reading frames (ORF) of 42 genes from IBD-associated loci were expressed via lentiviral transfer in the THP-1 model of human monocytes and the impact of each of these on the cell's transcriptome was analyzed using a RNA sequencing-based approach. We used a combination of genetic and pharmacologic approaches to validate our findings in the THP-1 line with further validation in human induced pluripotent stem cell (hiPSC)-derived-monocytes. RESULTS This functional genomics screen provided evidence that genes in four IBD GWAS loci (PTGIR, ZBTB40, SLC39A11 and NFKB1) are involved in controlling S100A8 and S100A9 gene expression, which encode the two subunits of calprotectin (CP). We demonstrated that increasing PTGIR expression and/or stimulating PTGIR signaling resulted in increased CP expression in THP-1. This was further validated in hiPSC-derived monocytes. Conversely, knocking-down PTGIR endogenous expression and/or inhibiting PTGIR signaling led to decreased CP expression. These analyses were extended to the known IBD gene PTGER4, whereby its specific agonist also led to increased CP expression. Furthermore, we demonstrated that the PTGIR and PTGER4 mediated control of CP expression was dependent on signaling via adenylate cyclase and STAT3. Finally, we demonstrated that LPS-mediated increases in CP expression could be potentiated by agonists of PTGIR and PTGER4, and diminished by their antagonists. CONCLUSION Our results support a causal role for the PTGIR, PTGER4, ZBTB40, SLC39A11 and NFKB1 genes in IBD, with all five genes regulating the expression of CP in myeloid cells, as well as potential roles for the prostacyclin/prostaglandin biogenesis and signaling pathways in IBD susceptibility and pathogenesis.
Collapse
Affiliation(s)
- Mohamad Karaky
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | | | - Saraï Mola
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | - Sylvain Foisy
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | | | - Marie-Eve Rivard
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | - Melanie Burnette
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | - Hugues Gosselin
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | - iGenoMed Consortium
- A complete list of members and their affiliations can be found at the end of the manuscript
| | - Alain Bitton
- McGill University Health Centre, Division of Gastroenterology, Montreal, Quebec, Canada
| | - Guy Charron
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | - Philippe Goyette
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | - John D. Rioux
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
- Université de Montréal, Faculty of Medicine, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Sakata R, Chang PY, Sung KR, Kim TW, Wang TH, Perera SA, Cantor LB. Prostaglandin-associated periorbitopathy syndrome (PAPS): Addressing an unmet clinical need. Semin Ophthalmol 2021; 37:447-454. [PMID: 34793279 DOI: 10.1080/08820538.2021.2003824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Topical prostaglandin analogs (PGAs) are widely approved and preferred first-line options for glaucoma and elevated intraocular pressure (IOP). However, prostaglandin-associated periorbitopathy syndrome (PAPS) is now a well-recognized clinical and cosmetic concern for patients receiving PGAs, especially during long-term and unilateral therapy. PGA-associated periocular changes occur in a substantial proportion of patients, with older patients (>60 years) at greater risk of clinical presentation. PAPS may hinder long-term management of glaucoma, including treatment adherence, ophthalmic surgery outcomes, and reliable IOP measurements. RECOMMENDATION New therapeutic approaches may address this unmet clinical need. Omidenepag isopropyl (OMDI) is a novel, non-prostaglandin, selective EP2 receptor agonist in ongoing development, which provides a unique pharmacological mechanism of action. OMDI appears to provide IOP reductions comparable to PGAs, but without PAPS-related undesirable effects. OMDI may offer a suitable long-term option for patients who demonstrate decreased efficacy, or failure, of PGAs, plus patients with significant PAPS, while fulfilling international guidelines.
Collapse
Affiliation(s)
- Rei Sakata
- Department of Ophthalmology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Pei-Yao Chang
- Department of Ophthalmology, Far Eastern Memorial Hospital, Ban-Chiao, New Taipei City, Taiwan.,Department of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kyung Rim Sung
- College of Medicine, University of Ulsan, Asan Medical Center, Seoul, South Korea
| | - Tae-Woo Kim
- Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Tsing-Hong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shamira A Perera
- Glaucoma Service, Singapore National Eye Centre, Singapore; Duke-NUS Graduate Medical School, Singapore
| | - Louis B Cantor
- Eugene & Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
6
|
Ouellette J, Lacoste B. From Neurodevelopmental to Neurodegenerative Disorders: The Vascular Continuum. Front Aging Neurosci 2021; 13:749026. [PMID: 34744690 PMCID: PMC8570842 DOI: 10.3389/fnagi.2021.749026] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Structural and functional integrity of the cerebral vasculature ensures proper brain development and function, as well as healthy aging. The inability of the brain to store energy makes it exceptionally dependent on an adequate supply of oxygen and nutrients from the blood stream for matching colossal demands of neural and glial cells. Key vascular features including a dense vasculature, a tightly controlled environment, and the regulation of cerebral blood flow (CBF) all take part in brain health throughout life. As such, healthy brain development and aging are both ensured by the anatomical and functional interaction between the vascular and nervous systems that are established during brain development and maintained throughout the lifespan. During critical periods of brain development, vascular networks remodel until they can actively respond to increases in neural activity through neurovascular coupling, which makes the brain particularly vulnerable to neurovascular alterations. The brain vasculature has been strongly associated with the onset and/or progression of conditions associated with aging, and more recently with neurodevelopmental disorders. Our understanding of cerebrovascular contributions to neurological disorders is rapidly evolving, and increasing evidence shows that deficits in angiogenesis, CBF and the blood-brain barrier (BBB) are causally linked to cognitive impairment. Moreover, it is of utmost curiosity that although neurodevelopmental and neurodegenerative disorders express different clinical features at different stages of life, they share similar vascular abnormalities. In this review, we present an overview of vascular dysfunctions associated with neurodevelopmental (autism spectrum disorders, schizophrenia, Down Syndrome) and neurodegenerative (multiple sclerosis, Huntington's, Parkinson's, and Alzheimer's diseases) disorders, with a focus on impairments in angiogenesis, CBF and the BBB. Finally, we discuss the impact of early vascular impairments on the expression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Julie Ouellette
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
7
|
Vitaliti G, Falsaperla R. Chorioamnionitis, Inflammation and Neonatal Apnea: Effects on Preterm Neonatal Brainstem and on Peripheral Airways: Chorioamnionitis and Neonatal Respiratory Functions. CHILDREN-BASEL 2021; 8:children8100917. [PMID: 34682182 PMCID: PMC8534519 DOI: 10.3390/children8100917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/01/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022]
Abstract
Background: The present manuscript aims to be a narrative review evaluating the association between inflammation in chorioamnionitis and damage on respiratory centers, peripheral airways, and lungs, explaining the pathways responsible for apnea in preterm babies born by delivery after chorioamnionitis. Methods: A combination of keywords and MESH words was used, including: "inflammation", "chorioamnionitis", "brainstem", "cytokines storm", "preterm birth", "neonatal apnea", and "apnea physiopathology". All identified papers were screened for title and abstracts by the two authors to verify whether they met the proper criteria to write the topic. Results: Chorioamnionitis is usually associated with Fetal Inflammatory Response Syndrome (FIRS), resulting in injury of brain and lungs. Literature data have shown that infections causing chorioamnionitis are mostly associated with inflammation and consequent hypoxia-mediated brain injury. Moreover, inflammation and infection induce apneic episodes in neonates, as well as in animal samples. Chorioamnionitis-induced inflammation favors the systemic secretion of pro-inflammatory cytokines that are involved in abnormal development of the respiratory centers in the brainstem and in alterations of peripheral airways and lungs. Conclusions: Preterm birth shows a suboptimal development of the brainstem and abnormalities and altered development of peripheral airways and lungs. These alterations are responsible for reduced respiratory control and apnea. To date, mostly animal studies have been published. Therefore, more clinical studies on the role of chorioamninitis-induced inflammation on prematurity and neonatal apnea are necessary.
Collapse
Affiliation(s)
- Giovanna Vitaliti
- Unit of Pediatrics, Department of Medical Sciences, Section of Pediatrics, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-34-0471-0614
| | - Raffaele Falsaperla
- Pediatrics and Pediatric Emergency Operative Unit, Azienda Ospedaliero Universitaria Policlinico G.Rodolico-San Marco, San Marco Hospital, University of Catania, 95124 Catania, Italy;
- Neonatal Intensive Care Unit, Azienda Ospedaliero Universitaria Policlinico G.Rodolico-San Marco, San Marco Hospital, San Marco Hospital, University of Catania, 95124 Catania, Italy
| |
Collapse
|
8
|
Nango H, Kosuge Y. Present State and Future Perspectives of Prostaglandins as a Differentiation Factor in Motor Neurons. Cell Mol Neurobiol 2021; 42:2097-2108. [PMID: 34032949 DOI: 10.1007/s10571-021-01104-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/18/2021] [Indexed: 11/28/2022]
Abstract
Spinal motor neurons have the longest axons that innervate the skeletal muscles of the central nervous system. Motor neuron diseases caused by spinal motor neuron cell death are incurable due to the unique and irreplaceable nature of their neural circuits. Understanding the mechanisms of neurogenesis, neuritogenesis, and synaptogenesis in motor neurons will allow investigators to develop new in vitro models and regenerative therapies for motor neuron diseases. In particular, small molecules can directly reprogram and convert into neural stem cells and neurons, and promote neuron-like cell differentiation. Prostaglandins are known to have a role in the differentiation and tissue regeneration of several cell types and organs. However, the involvement of prostaglandins in the differentiation of motor neurons from neural stem cells is poorly understood. The general cell line used in research on motor neuron diseases is the mouse neuroblastoma and spinal motor neuron fusion cell line NSC-34. Recently, our laboratory reported that prostaglandin E2 and prostaglandin D2 enhanced the conversion of NSC-34 cells into motor neuron-like cells with neurite outgrowth. Moreover, we found that prostaglandin E2-differentiated NSC-34 cells had physiological and electrophysiological properties of mature motor neurons. In this review article, we provide contemporary evidence on the effects of prostaglandins, particularly prostaglandin E2 and prostaglandin D2, on differentiation and neural conversion. We also discuss the potential of prostaglandins as candidates for the development of new therapeutic drugs for motor neuron diseases.
Collapse
Affiliation(s)
- Hiroshi Nango
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba, 274-8555, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi-shi, Chiba, 274-8555, Japan.
| |
Collapse
|
9
|
Hsueh PJ, Wang MH, Hsiao CJ, Chen CK, Lin FL, Huang SH, Yen JL, Tsai PH, Kuo YH, Hsiao G. Ergosta-7,9(11),22-trien-3β-ol Alleviates Intracerebral Hemorrhage-Induced Brain Injury and BV-2 Microglial Activation. Molecules 2021; 26:molecules26102970. [PMID: 34067678 PMCID: PMC8156058 DOI: 10.3390/molecules26102970] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/02/2021] [Accepted: 05/07/2021] [Indexed: 01/19/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating neurological disorder characterized by an exacerbation of neuroinflammation and neuronal injury, for which few effective therapies are available at present. Inhibition of excessive neuroglial activation has been reported to alleviate ICH-related brain injuries. In the present study, the anti-ICH activity and microglial mechanism of ergosta-7,9(11),22-trien-3β-ol (EK100), a bioactive ingredient from Asian medicinal herb Antrodia camphorate, were evaluated. Post-treatment of EK100 significantly attenuated neurobehavioral deficit and MRI-related brain lesion in the mice model of collagenase-induced ICH. Additionally, EK100 alleviated the inducible expression of cyclooxygenase (COX)-2 and the activity of matrix metalloproteinase (MMP)-9 in the ipsilateral brain regions. Consistently, it was shown that EK100 concentration-dependently inhibited the expression of COX-2 protein in Toll-like receptor (TLR)-4 activator lipopolysaccharide (LPS)-activated microglial BV-2 and primary microglial cells. Furthermore, the production of microglial prostaglandin E2 and reactive oxygen species were attenuated by EK100. EK100 also attenuated the induction of astrocytic MMP-9 activation. Among several signaling pathways, EK100 significantly and concentration-dependently inhibited activation of c-Jun N-terminal kinase (JNK) MAPK in LPS-activated microglial BV-2 cells. Consistently, ipsilateral JNK activation was markedly inhibited by post-ICH-treated EK100 in vivo. In conclusion, EK100 exerted the inhibitory actions on microglial JNK activation, and attenuated brain COX-2 expression, MMP-9 activation, and brain injuries in the mice ICH model. Thus, EK100 may be proposed and employed as a potential therapeutic agent for ICH.
Collapse
Affiliation(s)
- Po-Jen Hsueh
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-J.H.); (C.-J.H.); (S.-H.H.); (J.-L.Y.)
| | - Mong-Heng Wang
- Department of Physiology, Medical College of Georgia, Augusta University, GA 30912, USA;
| | - Che-Jen Hsiao
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-J.H.); (C.-J.H.); (S.-H.H.); (J.-L.Y.)
- Laboratory of Neural Repair, Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Chih-Kuang Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital at Tayouan, Taoyuan 33378, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Fan-Li Lin
- Menzies Institute for Medical Research, University of Tasmania, Hobart 7000, Tasmania, Australia;
| | - Shu-Hsien Huang
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-J.H.); (C.-J.H.); (S.-H.H.); (J.-L.Y.)
| | - Jing-Lun Yen
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-J.H.); (C.-J.H.); (S.-H.H.); (J.-L.Y.)
| | - Ping-Huei Tsai
- Translational Imaging Research Center, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Medical Imaging and Radiological Sciences, Chung Shang Medical University, Taichung 40201, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, Asia University, Taichung 40402, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
- Correspondence: (Y.-H.K.); (G.H.); Tel./Fax: +886-2-23778620 (G.H.)
| | - George Hsiao
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (P.-J.H.); (C.-J.H.); (S.-H.H.); (J.-L.Y.)
- Correspondence: (Y.-H.K.); (G.H.); Tel./Fax: +886-2-23778620 (G.H.)
| |
Collapse
|
10
|
Fujino H. Why PGD 2 has different functions from PGE 2. Bioessays 2020; 43:e2000213. [PMID: 33165991 DOI: 10.1002/bies.202000213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 01/08/2023]
Abstract
Prostaglandin (PG) D2 and PGE2 are positional isomers; however, they sometimes exhibit opposite physiological functions, such as in cancer development. Because DP receptors are considered to be a duplicated copy of EP2 receptors, PGD2 and PGE2 cross-react with both receptors. These prostanoids may act as biased agonists for each receptor. In reviewing this field, a hypothesis was proposed to explain the opposed effects of these prostanoids from the viewpoints of the evolution of, mutations in, and biased activities of their receptors. Previous findings showing more mutations/variations in DP receptors than EP2 receptors among individuals worldwide indicate that DP receptors are still in a rapid evolutionary stage. The opposing effects of these prostanoids on cancer development may be attributed to the biased activity of PGE2 for DP receptors, which may incidentally develop during the process of the old ligand, PGE2 gaining selectivity to newly diverged DP receptors.
Collapse
Affiliation(s)
- Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
11
|
Norel X, Sugimoto Y, Ozen G, Abdelazeem H, Amgoud Y, Bouhadoun A, Bassiouni W, Goepp M, Mani S, Manikpurage HD, Senbel A, Longrois D, Heinemann A, Yao C, Clapp LH. International Union of Basic and Clinical Pharmacology. CIX. Differences and Similarities between Human and Rodent Prostaglandin E 2 Receptors (EP1-4) and Prostacyclin Receptor (IP): Specific Roles in Pathophysiologic Conditions. Pharmacol Rev 2020; 72:910-968. [PMID: 32962984 PMCID: PMC7509579 DOI: 10.1124/pr.120.019331] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins are derived from arachidonic acid metabolism through cyclooxygenase activities. Among prostaglandins (PGs), prostacyclin (PGI2) and PGE2 are strongly involved in the regulation of homeostasis and main physiologic functions. In addition, the synthesis of these two prostaglandins is significantly increased during inflammation. PGI2 and PGE2 exert their biologic actions by binding to their respective receptors, namely prostacyclin receptor (IP) and prostaglandin E2 receptor (EP) 1-4, which belong to the family of G-protein-coupled receptors. IP and EP1-4 receptors are widely distributed in the body and thus play various physiologic and pathophysiologic roles. In this review, we discuss the recent advances in studies using pharmacological approaches, genetically modified animals, and genome-wide association studies regarding the roles of IP and EP1-4 receptors in the immune, cardiovascular, nervous, gastrointestinal, respiratory, genitourinary, and musculoskeletal systems. In particular, we highlight similarities and differences between human and rodents in terms of the specific roles of IP and EP1-4 receptors and their downstream signaling pathways, functions, and activities for each biologic system. We also highlight the potential novel therapeutic benefit of targeting IP and EP1-4 receptors in several diseases based on the scientific advances, animal models, and human studies. SIGNIFICANCE STATEMENT: In this review, we present an update of the pathophysiologic role of the prostacyclin receptor, prostaglandin E2 receptor (EP) 1, EP2, EP3, and EP4 receptors when activated by the two main prostaglandins, namely prostacyclin and prostaglandin E2, produced during inflammatory conditions in human and rodents. In addition, this comparison of the published results in each tissue and/or pathology should facilitate the choice of the most appropriate model for the future studies.
Collapse
Affiliation(s)
- Xavier Norel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yukihiko Sugimoto
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Gulsev Ozen
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Heba Abdelazeem
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yasmine Amgoud
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amel Bouhadoun
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Wesam Bassiouni
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Marie Goepp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Salma Mani
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Hasanga D Manikpurage
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amira Senbel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Dan Longrois
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Akos Heinemann
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Chengcan Yao
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Lucie H Clapp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| |
Collapse
|
12
|
Wu F, Zhang C, Zhao C, Wu H, Teng Z, Jiang T, Wang Y. Prostaglandin E1 Inhibits GLI2 Amplification-Associated Activation of the Hedgehog Pathway and Drug Refractory Tumor Growth. Cancer Res 2020; 80:2818-2832. [PMID: 32371475 DOI: 10.1158/0008-5472.can-19-2052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 03/29/2020] [Accepted: 04/30/2020] [Indexed: 11/16/2022]
Abstract
Aberrant activation of the Hedgehog (HH) signaling pathway underlines the initiation and progression of a multitude of cancers. The effectiveness of the leading drugs vismodegib (GDC-0449) and sonidegib (LDE225), both Smoothened (SMO) antagonists, is compromised by acquisition of mutations that alter pathway components, notably secondary mutations in SMO and amplification of GLI2, a transcriptional mediator at the end of the pathway. Pharmacologic blockade of GLI2 activity could ultimately overcome these diversified refractory mechanisms, which would also be effective in a broader spectrum of primary tumors than current SMO antagonists. To this end, we conducted a high-content screening directly analyzing the ciliary translocation of GLI2, a key event for GLI2 activation in HH signal transduction. Several prostaglandin compounds were shown to inhibit accumulation of GLI2 within the primary cilium (PC). In particular, prostaglandin E1 (PGE1), an FDA-approved drug, is a potent GLI2 antagonist that overcame resistance mechanisms of both SMO mutagenesis and GLI2 amplification. Consistent with a role in HH pathway regulation, EP4 receptor localized to the PC. Mechanistically, PGE1 inhibited HH signaling through the EP4 receptor, enhancing cAMP-PKA activity, which promoted phosphorylation and degradation of GLI2 via the ubiquitination pathway. PGE1 also effectively inhibited the growth of drug refractory human medulloblastoma xenografts. Together, these results identify PGE1 and other prostaglandins as potential templates for complementary therapeutic development to circumvent resistance to current generation SMO antagonists in use in the clinic. SIGNIFICANCE: These findings show that PGE1 exhibits pan-inhibition against multiple drug refractory activities for Hedgehog-targeted therapies and elicits significant antitumor effects in xenograft models of drug refractory human medulloblastoma mimicking GLI2 amplification.
Collapse
Affiliation(s)
- Fujia Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chenze Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chen Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hao Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhaoqian Teng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China. .,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Catlin J, Leclerc JL, Shukla K, Marini SM, Doré S. Role of the PGE 2 receptor subtypes EP1, EP2, and EP3 in repetitive traumatic brain injury. CNS Neurosci Ther 2019; 26:628-635. [PMID: 31617678 PMCID: PMC7248542 DOI: 10.1111/cns.13228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 01/02/2023] Open
Abstract
Aims The goal was to explore the signaling pathways of PGE2 to investigate therapeutic effects against secondary injuries following TBI. Methods Young (4.9 ± 1.0 months) and aged (20.4 ± 1.4 months) male wild type (WT) C57BL/6 and PGE2 EP1, 2, and 3 receptor knockout mice were selected to either receive sham or repetitive concussive head injury. Immunohistochemistry protocols with Iba1 and GFAP were performed to evaluate microgliosis and astrogliosis in the hippocampus, two critical components of neuroinflammation. Passive avoidance test measured memory function associated with the hippocampus. Results No differences in hippocampal microgliosis were found when aged EP2−/− and EP3−/− mice were compared with aged WT mice. However, the aged EP1−/− mice had 69.2 ± 7.5% less hippocampal microgliosis in the contralateral hemisphere compared with WT aged mice. Compared with aged EP2−/− and EP3−/−, EP1−/− aged mice had 78.9 ± 5.1% and 74.7 ± 6.2% less hippocampal microgliosis in the contralateral hemisphere. Within the EP1−/− mice, aged mice had 90.7 ± 2.7% and 81.1 ± 5.6% less hippocampal microgliosis compared with EP1−/− young mice in the contralateral and ipsilateral hemispheres, respectively. No differences were noted in all groups for astrogliosis. There was a significant difference in latency time within EP1−/−, EP2−/−, and EP3−/− on day 1 and day 2 in aged and young mice. Conclusion These findings demonstrate that the PGE2 EP receptors may be potential therapeutic targets to treat repetitive concussions and other acute brain injuries.
Collapse
Affiliation(s)
- James Catlin
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA
| | - Jenna L Leclerc
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA
| | - Krunal Shukla
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA
| | - Sarah M Marini
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA.,Department of Neurology, Psychiatry, and Pharmaceutics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
Shao Z, Tu S, Shao A. Pathophysiological Mechanisms and Potential Therapeutic Targets in Intracerebral Hemorrhage. Front Pharmacol 2019; 10:1079. [PMID: 31607923 PMCID: PMC6761372 DOI: 10.3389/fphar.2019.01079] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a subtype of hemorrhagic stroke with high mortality and morbidity. The resulting hematoma within brain parenchyma induces a series of adverse events causing primary and secondary brain injury. The mechanism of injury after ICH is very complicated and has not yet been illuminated. This review discusses some key pathophysiology mechanisms in ICH such as oxidative stress (OS), inflammation, iron toxicity, and thrombin formation. The corresponding therapeutic targets and therapeutic strategies are also reviewed.
Collapse
Affiliation(s)
- Zhiwei Shao
- Department of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- Department of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Ahmad AS, Ottallah H, Maciel CB, Strickland M, Doré S. Role of the L-PGDS-PGD2-DP1 receptor axis in sleep regulation and neurologic outcomes. Sleep 2019; 42:zsz073. [PMID: 30893431 PMCID: PMC6559173 DOI: 10.1093/sleep/zsz073] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/16/2019] [Indexed: 12/18/2022] Open
Abstract
To meet the new challenges of modern lifestyles, we often compromise a good night's sleep. In preclinical models as well as in humans, a chronic lack of sleep is reported to be among the leading causes of various physiologic, psychologic, and neurocognitive deficits. Thus far, various endogenous mediators have been implicated in inter-regulatory networks that collectively influence the sleep-wake cycle. One such mediator is the lipocalin-type prostaglandin D2 synthase (L-PGDS)-Prostaglandin D2 (PGD2)-DP1 receptor (L-PGDS-PGD2-DP1R) axis. Findings in preclinical models confirm that DP1R are predominantly expressed in the sleep-regulating centers. This finding led to the discovery that the L-PGDS-PGD2-DP1R axis is involved in sleep regulation. Furthermore, we showed that the L-PGDS-PGD2-DP1R axis is beneficial in protecting the brain from ischemic stroke. Protein sequence homology was also performed, and it was found that L-PGDS and DP1R share a high degree of homology between humans and rodents. Based on the preclinical and clinical data thus far pertaining to the role of the L-PGDS-PGD2-DP1R axis in sleep regulation and neurologic conditions, there is optimism that this axis may have a high translational potential in human therapeutics. Therefore, here the focus is to review the regulation of the homeostatic component of the sleep process with a special focus on the L-PGDS-PGD2-DP1R axis and the consequences of sleep deprivation on health outcomes. Furthermore, we discuss whether the pharmacological regulation of this axis could represent a tool to prevent sleep disturbances and potentially improve outcomes, especially in patients with acute brain injuries.
Collapse
Affiliation(s)
- Abdullah Shafique Ahmad
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Haneen Ottallah
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
| | - Carolina B Maciel
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL
| | - Michael Strickland
- Division of Biology and Biomedical Sciences, Washington University in Saint Louis, Saint Louis, MO
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida College of Medicine, Gainesville, FL
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL
- McKnight Brain Institute, University of Florida, Gainesville, FL
- Department of Psychiatry, University of Florida, Gainesville, FL
- Department of Pharmaceutics, University of Florida, Gainesville, FL
- Department of Psychology, University of Florida, Gainesville, FL
- Department of Neuroscience, University of Florida, Gainesville, FL
| |
Collapse
|
16
|
Corwin C, Nikolopoulou A, Pan AL, Nunez-Santos M, Vallabhajosula S, Serrano P, Babich J, Figueiredo-Pereira ME. Prostaglandin D2/J2 signaling pathway in a rat model of neuroinflammation displaying progressive parkinsonian-like pathology: potential novel therapeutic targets. J Neuroinflammation 2018; 15:272. [PMID: 30236122 PMCID: PMC6146649 DOI: 10.1186/s12974-018-1305-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Prostaglandins are products of the cyclooxygenase pathway, which is implicated in Parkinson's disease (PD). Limited knowledge is available on mechanisms by which prostaglandins contribute to PD neurodegeneration. To address this gap, we focused on the prostaglandin PGD2/J2 signaling pathway, because PGD2 is the most abundant prostaglandin in the brain, and the one that increases the most under pathological conditions. Moreover, PGJ2 is spontaneously derived from PGD2. METHODS In this study, we determined in rats the impact of unilateral nigral PGJ2-microinfusions on COX-2, lipocalin-type PGD2 synthase (L-PGDS), PGD2/J2 receptor 2 (DP2), and 15 hydroxyprostaglandin dehydrogenase (15-PGDH). Nigral dopaminergic (DA) and microglial distribution and expression levels of these key factors of the prostaglandin D2/J2 pathway were evaluated by immunohistochemistry. PGJ2-induced motor deficits were assessed with the cylinder test. We also determined whether oral treatment with ibuprofen improved the PD-like pathology induced by PGJ2. RESULTS PGJ2 treatment induced progressive PD-like pathology in the rats. Concomitant with DA neuronal loss in the substantia nigra pars compacta (SNpc), PGJ2-treated rats exhibited microglia and astrocyte activation and motor deficits. In DA neurons, COX-2, L-PGDS, and 15-PGDH levels increased significantly in PGJ2-treated rats compared to controls, while DP2 receptor levels were unchanged. In microglia, DP2 receptors were basically non-detectable, while COX-2 and L-PGDS levels increased upon PGJ2-treatment, and 15-PGDH remained unchanged. 15-PGDH was also detected in oligodendrocytes. Notably, ibuprofen prevented most PGJ2-induced PD-like pathology. CONCLUSIONS The PGJ2-induced rat model develops progressive PD pathology, which is a hard-to-mimic aspect of this disorder. Moreover, prevention of most PGJ2-induced PD-like pathology with ibuprofen suggests a positive feedback mechanism between PGJ2 and COX-2 that could lead to chronic neuroinflammation. Notably, this is the first study that analyzes the nigral dopaminergic and microglial distribution and levels of factors of the PGD2/J2 signaling pathway in rodents. Our findings support the notions that upregulation of COX-2 and L-PGDS may be important in the PGJ2 evoked PD-like pathology, and that neuronal DP2 receptor antagonists and L-PGDS inhibitors may be novel pharmacotherapeutics to relieve neuroinflammation-mediated neurodegeneration in PD, circumventing the adverse side effects of cyclooxygenase inhibitors.
Collapse
Affiliation(s)
- Chuhyon Corwin
- Department of Biological Sciences, Hunter College, Neuroscience Collaborative Program, Graduate Center, The City University of New York, 695 Park Ave., New York, NY, 10065, USA
| | | | - Allen L Pan
- Department of Biological Sciences, Hunter College, Neuroscience Collaborative Program, Graduate Center, The City University of New York, 695 Park Ave., New York, NY, 10065, USA
| | - Mariela Nunez-Santos
- Department of Biological Sciences, Hunter College, Neuroscience Collaborative Program, Graduate Center, The City University of New York, 695 Park Ave., New York, NY, 10065, USA
| | | | - Peter Serrano
- Department of Psychology, Hunter College, The City University of New York, New York, NY, USA
| | - John Babich
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Maria E Figueiredo-Pereira
- Department of Biological Sciences, Hunter College, Neuroscience Collaborative Program, Graduate Center, The City University of New York, 695 Park Ave., New York, NY, 10065, USA.
| |
Collapse
|
17
|
Zhang X, Luo Y, Wang C, Ding X, Yang X, Wu D, Silva F, Yang Z, Zhou Q, Wang L, Wang X, Zhou J, Boyd N, Spafford M, Burge M, Yang XO, Liu M. Adipose mTORC1 Suppresses Prostaglandin Signaling and Beige Adipogenesis via the CRTC2-COX-2 Pathway. Cell Rep 2018; 24:3180-3193. [PMID: 30232001 PMCID: PMC6287973 DOI: 10.1016/j.celrep.2018.08.055] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/30/2018] [Accepted: 08/17/2018] [Indexed: 01/02/2023] Open
Abstract
Beige adipocytes are present in white adipose tissue (WAT) and have thermogenic capacity to orchestrate substantial energy metabolism and counteract obesity. However, adipocyte-derived signals that act on progenitor cells to control beige adipogenesis remain poorly defined. Here, we show that adipose-specific depletion of Raptor, a key component of mTORC1, promoted beige adipogenesis through prostaglandins (PGs) synthesized by cyclooxygenase-2 (COX-2). Moreover, Raptor-deficient mice were resistant to diet-induced obesity and COX-2 downregulation. Mechanistically, mTORC1 suppressed COX-2 by phosphorylation of CREB-regulated transcription coactivator 2 (CRTC2) and subsequent dissociation of CREB to cox-2 promoter in adipocytes. PG treatment stimulated PKA and promoted differentiation of progenitor cells to beige adipocytes in culture. Ultimately, we show that pharmacological inhibition or suppression of COX-2 attenuated mTORC1 inhibition-induced thermogenic gene expression in inguinal WAT in vivo and in vitro. Our study identifies adipocyte-derived PGs as key regulators of white adipocyte browning, which occurs through mTORC1 and CRTC2.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Yan Luo
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunqing Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Xiaofeng Ding
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Xin Yang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Dandan Wu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Floyd Silva
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Zijiang Yang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Qin Zhou
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Lu Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Xiaoqing Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianlin Zhou
- Key Laboratory of Protein Chemistry and Development Biology of State Education Ministry of China, College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Nathan Boyd
- Department of Surgery, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Michael Spafford
- Department of Surgery, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Mark Burge
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Xuexian O Yang
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
18
|
Mohan S, Koller EJ, Fazal JA, De Oliveria G, Pawlowicz AI, Doré S. Genetic Deletion of PGF 2α-FP Receptor Exacerbates Brain Injury Following Experimental Intracerebral Hemorrhage. Front Neurosci 2018; 12:556. [PMID: 30233287 PMCID: PMC6134069 DOI: 10.3389/fnins.2018.00556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/23/2018] [Indexed: 01/17/2023] Open
Abstract
Background: The release of inflammatory molecules such as prostaglandins (e.g., PGF2α) is associated with brain damage following an intracerebral hemorrhagic (ICH) stroke; however, the role of PGF2α and its cognate FP receptor in ICH remains unclear. This study focused on investigating the role of the FP receptor as a target for novel neuroprotective drugs in a preclinical model of ICH, aiming to investigate the contribution of the PGF2α-FP axis in modulating functional recovery and anatomical outcomes following ICH. Results: Neurological deficit scores in FP−/− mice were significantly higher compared to WT mice 72 h after ICH (6.1 ± 0.7 vs. 3.1 ± 0.8; P < 0.05). Assessing motor skills, the total time mice stayed on the rotating rod was significantly less in FP−/−mice compared to WT mice 24 h after ICH (27.0 ± 7.5 vs. 52.4 ± 11.2 s; P < 0.05). Using grip strength to quantify forepaw strength, results showed that the FP−/− mice had significantly less strength compared to WT mice 72 h after ICH (96.4 ± 17.0 vs. 129.6 ± 5.9 g; P < 0.01). In addition to the behavioral outcomes, histopathological measurements were made. In Cresyl violet stained brain sections, the FP−/− mice showed a significantly larger lesion volume compared to the WT (15.0 ± 2.2 vs. 3.2 ± 1.7 mm3; P < 0.05 mice.) To estimate the presence of ferric iron in the peri-hematoma area, Perls' staining was performed, which revealed that FP−/− mice had significantly greater staining than the WT mice (186.3 ± 34.4% vs. 86.9 ± 13.0% total positive pixel counts, P < 0.05). Immunoreactivity experiments on brain sections from FP−/− and WT mice post-ICH were performed to monitor changes in microgliosis and astrogliosis using antibodies against Iba1 and GFAP respectively. These experiments showed that FP−/− mice had a trend toward greater astrogliosis than WT mice post-ICH. Conclusion: We showed that deletion of the PGF2α FP receptor exacerbates behavioral impairments and increases lesion volumes following ICH compared to WT-matched controls.Detailed mechanisms responsible for these novel results are actively being pursued.
Collapse
Affiliation(s)
- Shekher Mohan
- Department of Pharmaceutical Sciences, Manchester University, College of Pharmacy, Natural and Health Sciences, Fort Wayne, IN, United States
| | - Emily J Koller
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, FL, United States
| | - Jawad A Fazal
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, FL, United States
| | - Gabriela De Oliveria
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, FL, United States
| | - Anna I Pawlowicz
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, FL, United States
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, College of Medicine, Gainesville, FL, United States.,Departments of Neurology, Psychiatry, Psychology, Pharmaceutics and Neuroscience, Center for Translational Research in Neurodegenerative Disease, McKnight Brain Institute, University of Florida, College of Medicine, Gainesville, FL, United States
| |
Collapse
|
19
|
Stojanovska V, Miller SL, Hooper SB, Polglase GR. The Consequences of Preterm Birth and Chorioamnionitis on Brainstem Respiratory Centers: Implications for Neurochemical Development and Altered Functions by Inflammation and Prostaglandins. Front Cell Neurosci 2018; 12:26. [PMID: 29449803 PMCID: PMC5799271 DOI: 10.3389/fncel.2018.00026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/17/2018] [Indexed: 11/16/2022] Open
Abstract
Preterm birth is a major cause for neonatal morbidity and mortality, and is frequently associated with adverse neurological outcomes. The transition from intrauterine to extrauterine life at birth is particularly challenging for preterm infants. The main physiological driver for extrauterine transition is the establishment of spontaneous breathing. However, preterm infants have difficulty clearing lung liquid, have insufficient surfactant levels, and underdeveloped lungs. Further, preterm infants have an underdeveloped brainstem, resulting in reduced respiratory drive. These factors facilitate the increased requirement for respiratory support. A principal cause of preterm birth is intrauterine infection/inflammation (chorioamnionitis), and infants with chorioamnionitis have an increased risk and severity of neurological damage, but also demonstrate impaired autoresuscitation capacity and prevalent apnoeic episodes. The brainstem contains vital respiratory centers which provide the neural drive for breathing, but the impact of preterm birth and/or chorioamnionitis on this brain region is not well understood. The aim of this review is to provide an overview of the role and function of the brainstem respiratory centers, and to highlight the proposed mechanisms of how preterm birth and chorioamnionitis may affect central respiratory functions.
Collapse
Affiliation(s)
- Vanesa Stojanovska
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University and Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University and Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Monash University and Hudson Institute of Medical Research, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Ahmad AS, Mendes M, Hernandez D, Doré S. Efficacy of Laropiprant in Minimizing Brain Injury Following Experimental Intracerebral Hemorrhage. Sci Rep 2017; 7:9489. [PMID: 28842638 PMCID: PMC5573370 DOI: 10.1038/s41598-017-09994-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/01/2017] [Indexed: 12/31/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is one of the most devastating and disabling forms of stroke, yet effective treatments are still lacking. Prostaglandins and their receptors have been implicated in playing vital roles in ICH outcomes. Recently, laropiprant, a DP1 receptor antagonist, has been used in combination with niacin to abolish the prostaglandin D2-(PGD2)-induced flushing. Here, we test the hypothesis that laropiprant limits bleeding and rescues the brain from ICH. Wildtype (WT) and DP1-/- mice were subjected ICH and neurologic deficits and hemorrhagic lesion outcomes were evaluated at 72 hours after the ICH. To test the therapeutic potential of laropiprant, WT mice subjected to ICH were treated with laropiprant at 1 hour after the ICH. The putative effect of laropiprant on limiting hematoma expansion was tested by an in vivo tail bleeding cessation method and an ex vivo coagulation method. Finally, the roles of laropiprant on gliosis and iron accumulation were also investigated. A significant decrease in the injury volume was observed in DP1-/- as well as laropiprant-treated WT mice. The tail bleeding time was significantly lower in laropiprant group as compared with the vehicle group. Significantly lower Iba-1 and Perls' iron staining in DP1-/- and laropiprant-treated WT groups were observed. Altogether, the data suggest that laropiprant treatment post-ICH attenuates brain damage by targeting primary as well as secondary injuries.
Collapse
Affiliation(s)
- Abdullah Shafique Ahmad
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA.
- Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | - Monique Mendes
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Damian Hernandez
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA.
- Center for Translational Research in Neurodegenerative Disease and McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Departments of Neurology, Psychiatry, Pharmaceutics, Psychology, and Neuroscience, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
21
|
C5a/C5aR Pathway Plays a Vital Role in Brain Inflammatory Injury via Initiating Fgl-2 in Intracerebral Hemorrhage. Mol Neurobiol 2016; 54:6187-6197. [PMID: 27709492 DOI: 10.1007/s12035-016-0141-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/19/2016] [Indexed: 01/05/2023]
Abstract
Intracerebral hemorrhage (ICH) is a serious emergency with high mortality and morbidity. Up to date, a limited understanding of ICH pathogenesis is difficult to implement effective therapeutic strategy. Much evidence demonstrates that the complement cascade is activated after experimental ICH. However, the exact mechanism has not been well studied in ICH. In the current study, C57BL/6J mice were injected with autologous whole blood. C5a/C5aR levels, microglia infiltration, inflammatory cytokine, and fibrinogen-like protein 2 (Fgl-2) expression in the perihematomal region were analyzed following ICH. In addition, brain water content and neurological dysfunction were detected following ICH. Our data demonstrated that ICH induced complement activation, along with an increase of C5a/C5aR levels, microglia infiltration, and inflammatory cytokine levels. However, C5aR-/- mice exhibited significant attenuation of inflammatory reaction, accompanied by a remarkable reduction of Fgl-2, brain water content, and neurological dysfunction. Furthermore, inhibiting extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 efficiently inhibited C5a-mediated Fgl-2 production following ICH. Taken together, these data suggest that C5a/C5aR plays a vital role in the ICH-induced inflammatory damage via Fgl-2, and ERK1/2 and p38 pathways also are involved in the pathogenesis of ICH. Therefore, inhibition of C5a/C5aR activation might enlarge our insights in ICH therapy.
Collapse
|
22
|
Microglial Polarization and Inflammatory Mediators After Intracerebral Hemorrhage. Mol Neurobiol 2016; 54:1874-1886. [PMID: 26894396 DOI: 10.1007/s12035-016-9785-6] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/08/2016] [Indexed: 12/21/2022]
Abstract
Intracerebral hemorrhage (ICH) is a subtype of stroke with high mortality and morbidity. When a diseased artery within the brain bursts, expansion and absorption of the resulting hematoma trigger a series of reactions that cause primary and secondary brain injury. Microglia are extremely important for removing the hematoma and clearing debris, but they are also a source of ongoing inflammation. This article discusses the role of microglial activation/polarization and related inflammatory mediators, such as Toll-like receptor 4, matrix metalloproteinases, high-mobility group protein box-1, nuclear factor erythroid 2-related factor 2, heme oxygenase, and iron, in secondary injury after ICH and highlights the potential targets for ICH treatment.
Collapse
|
23
|
Du Y, Kemper T, Qiu J, Jiang J. Defining the therapeutic time window for suppressing the inflammatory prostaglandin E2 signaling after status epilepticus. Expert Rev Neurother 2016; 16:123-30. [PMID: 26689339 DOI: 10.1586/14737175.2016.1134322] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neuroinflammation is a common feature in nearly all neurological and some psychiatric disorders. Resembling its extraneural counterpart, neuroinflammation can be both beneficial and detrimental depending on the responding molecules. The overall effect of inflammation on disease progression is highly dependent on the extent of inflammatory mediator production and the duration of inflammatory induction. The time-dependent aspect of inflammatory responses suggests that the therapeutic time window for quelling neuroinflammation might vary with molecular targets and injury types. Therefore, it is important to define the therapeutic time window for anti-inflammatory therapeutics, as contradicting or negative results might arise when different treatment regimens are utilized even in similar animal models. Herein, we discuss a few critical factors that can help define the therapeutic time window and optimize treatment paradigm for suppressing the cyclooxygenase-2/prostaglandin-mediated inflammation after status epilepticus. These determinants should also be relevant to other anti-inflammatory therapeutic strategies for the CNS diseases.
Collapse
Affiliation(s)
- Yifeng Du
- a Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy , University of Cincinnati , Cincinnati , OH , United States
| | - Timothy Kemper
- a Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy , University of Cincinnati , Cincinnati , OH , United States
| | - Jiange Qiu
- a Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy , University of Cincinnati , Cincinnati , OH , United States
| | - Jianxiong Jiang
- a Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy , University of Cincinnati , Cincinnati , OH , United States
| |
Collapse
|
24
|
Leclerc JL, Ahmad AS, Singh N, Soshnik-Schierling L, Greene E, Dang A, Doré S. Intracerebral hemorrhage outcomes following selective blockade or stimulation of the PGE2 EP1 receptor. BMC Neurosci 2015; 16:48. [PMID: 26232001 PMCID: PMC4521449 DOI: 10.1186/s12868-015-0182-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 07/13/2015] [Indexed: 01/18/2023] Open
Abstract
Background Inflammation following intracerebral hemorrhage (ICH) significantly contributes to secondary brain damage and poor outcomes. Prostaglandin E2 (PGE2) is known to modulate neuroinflammatory responses and is upregulated in response to brain injury as a result of changes in inducible cyclooxygenase 2 (COX-2) and the membrane-bound type of PGE synthase. Inhibition of COX-2 activity has been reported to attenuate ICH-induced brain injury; however, the clinical utility of such drugs is limited due to the potential for severe side effects. Therefore, it is now important to search for downstream targets capable of preferentially modulating PGE2 signaling, and the four E prostanoid receptors, EP1-4, which are the main targets of PGE2, remain a viable therapeutic option. We have previously shown that EP1 receptor deletion aggravates ICH-induced brain injury and impairs functional recovery, thus the current study aimed to elaborate on these results by including a pharmacologic approach targeting the EP1 receptor. Results Chronic post-treatment with the selective EP1 receptor antagonist, SC-51089, increased lesion volume by 30.1 ± 14.5% (p < 0.05) and treatment with the EP1 agonist, 17-pt-PGE2, improved neuromuscular functional recovery on grip strength (p < 0.01) and hanging wire (p < 0.05) behavioral testing. To begin identifying the mechanisms involved in EP1-mediated neuroprotection after ICH, histology was performed to assess ferric iron content, neuroinflammation, leukocyte transendothelial migratory potential, and peripheral neutrophil and immunoglobulin infiltration. Following ICH, mice treated with the antagonist displayed increased ferric iron (p < 0.05) and cortical microgliosis (p < 0.05), whereas treatment with the agonist decreased cortical (p < 0.01) and striatal (p < 0.001) astrogliosis, leukocyte transendothelial migratory potential (p < 0.01), neutrophil infiltration (p < 0.05), and blood brain barrier breakdown (p < 0.05). Conclusions In agreement with our previous results, selective antagonism of the EP1 receptor aggravated ICH-induced brain injury. Furthermore, EP1 receptor agonism improved anatomical outcomes and functional recovery. Thus, the present data continues to reinforce a putative role for EP1 as a new and more selective therapeutic target for the treatment of ICH that could reduce the side effects associated with COX-2 inhibition while still exploiting the beneficial effects.
Collapse
Affiliation(s)
- Jenna L Leclerc
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA. .,Department of Neuroscience, University of Florida, Gainesville, FL, USA.
| | - Abdullah S Ahmad
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA.
| | - Nilendra Singh
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA.
| | | | - Ellis Greene
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA.
| | - Alex Dang
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA.
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA. .,Department of Neuroscience, University of Florida, Gainesville, FL, USA. .,Departments of Neurology, Psychiatry, Psychology and Pharmaceutics, University of Florida, Gainesville, FL, USA. .,University of Florida College of Medicine, 1275 Center Drive, Gainesville, FL, 32610-0159, USA.
| |
Collapse
|
25
|
Reuquén P, Oróstica ML, Rojas I, Díaz P, Parada-Bustamante A, Orihuela PA. Estradiol increases IP3 by a nongenomic mechanism in the smooth muscle cells from the rat oviduct. Reproduction 2015; 150:331-41. [PMID: 26159830 DOI: 10.1530/rep-15-0137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/09/2015] [Indexed: 12/20/2022]
Abstract
Estradiol (E2) accelerates egg transport by a nongenomic action, requiring activation of estrogen receptor (ER) and successive cAMP and IP3 production in the rat oviduct. Furthermore, E2 increases IP3 production in primary cultures of oviductal smooth muscle cells. As smooth muscle cells are the mechanical effectors for the accelerated oocyte transport induced by E2 in the oviduct, herein we determined the mechanism by which E2 increases IP3 in these cells. Inhibition of protein synthesis by Actinomycin D did not affect the E2-induced IP3 increase, although this was blocked by the ER antagonist ICI182780 and the inhibitor of phospholipase C (PLC) ET-18-OCH3. Immunoelectron microscopy for ESR1 or ESR2 showed that these receptors were associated with the plasma membrane, indicating compatible localization with E2 nongenomic actions in the smooth muscle cells. Furthermore, ESR1 but not ESR2 agonist mimicked the effect of E2 on the IP3 level. Finally, E2 stimulated the activity of a protein associated with the contractile tone, calcium/calmodulin-dependent protein kinase II (CaMKII), in the smooth muscle cells. We conclude that E2 increases IP3 by a nongenomic action operated by ESR1 and that involves the activation of PLC in the smooth muscle cells of the rat oviduct. This E2 effect is associated with CaMKII activation in the smooth muscle cells, suggesting that IP3 and CaMKII are involved in the contractile activity necessary to accelerate oviductal egg transport.
Collapse
Affiliation(s)
- Patricia Reuquén
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile
| | - María L Oróstica
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile
| | - Israel Rojas
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile
| | - Patricia Díaz
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile
| | - Alexis Parada-Bustamante
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile
| | - Pedro A Orihuela
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNAInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Alameda 3363, Casilla 40, Correo 33 Santiago, Chile
| |
Collapse
|
26
|
Leclerc JL, Lampert AS, Diller MA, Doré S. Genetic deletion of the prostaglandin E2 E prostanoid receptor subtype 3 improves anatomical and functional outcomes after intracerebral hemorrhage. Eur J Neurosci 2015; 41:1381-91. [PMID: 25847406 PMCID: PMC4696550 DOI: 10.1111/ejn.12909] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/05/2015] [Accepted: 03/30/2015] [Indexed: 12/11/2022]
Abstract
Intracerebral hemorrhage (ICH) is a stroke subtype associated with high mortality and morbidity. Following ICH, excitotoxicity and inflammation significantly contribute to secondary brain injury and poor outcomes. Prostaglandin E2 (PGE2 ) levels rise locally with insult to the nervous system, and PGE2 is known to modulate these processes mainly through its E prostanoid (EP) receptors, EP1-4. EP receptor subtype 3 (EP3) is the most abundant EP receptor in the brain and we have previously shown that signaling through the PGE2 -EP3 axis exacerbates excitotoxicity and ischemic stroke outcomes. This study aimed to investigate the contribution of this pathway in modulating anatomical outcomes and functional recovery following ICH. Genetic deletion of EP3 resulted in 48.2 ± 7.3% less ICH-induced brain injury (P < 0.005) and improved functional recovery (P < 0.05), as identified by neurological deficit scoring. To start investigating the mechanisms involved in neuroprotection with impaired PGE2 -EP3 signaling, histological staining was performed to evaluate blood and ferric iron accumulation, neuroinflammation, blood-brain barrier dysfunction, and peripheral neutrophil infiltration. After ICH, EP3 knockout mice demonstrated 49.5 ± 8.8% and 42.8 ± 13.1% less blood (P < 0.01) and ferric iron (P < 0.05), respectively. Furthermore, EP3 knockout mice had significantly reduced astrogliosis, microglial activation, blood-brain barrier breakdown, and neutrophil infiltration. Collectively, these results suggest an injurious role for the PGE2 -EP3 signaling axis in modulating brain injury, inflammation, and neurological functional recovery after ICH. Modulation of the PGE2 -EP3 signaling axis may represent a putative therapeutic avenue for the treatment of ICH.
Collapse
Affiliation(s)
- Jenna L Leclerc
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Andrew S Lampert
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA
| | - Matthew A Diller
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
- Departments of Neurology, Psychiatry, and Pharmaceutics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
27
|
Sun J, Wei ZZ, Gu X, Zhang JY, Zhang Y, Li J, Wei L. Intranasal delivery of hypoxia-preconditioned bone marrow-derived mesenchymal stem cells enhanced regenerative effects after intracerebral hemorrhagic stroke in mice. Exp Neurol 2015; 272:78-87. [PMID: 25797577 DOI: 10.1016/j.expneurol.2015.03.011] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 12/11/2022]
Abstract
Intracerebral hemorrhagic stroke (ICH) causes high mortality and morbidity with very limited treatment options. Cell-based therapy has emerged as a novel approach to replace damaged brain tissues and promote regenerative processes. In this study we tested the hypothesis that intranasally delivered hypoxia-preconditioned BMSCs could reach the brain, promote tissue repair and improve functional recovery after ICH. Hemorrhagic stroke was induced in adult C57/B6 mice by injection of collagenase IV into the striatum. Animals were randomly divided into three groups: sham group, intranasal BMSC treatment group, and vehicle treatment group. BMSCs were pre-treated with hypoxic preconditioning (HP) and pre-labeled with Hoechst before transplantation. Behavior tests, including the mNSS score, rotarod test, adhesive removal test, and locomotor function evaluation were performed at varying days, up to 21days, after ICH to evaluate the therapeutic effects of BMSC transplantation. Western blots and immunohistochemistry were performed to analyze the neurotrophic effects. Intranasally delivered HP-BMSCs were identified in peri-injury regions. NeuN+/BrdU+ co-labeled cells were markedly increased around the hematoma region, and growth factors, including BDNF, GDNF, and VEGF were significantly upregulated in the ICH brain after BMSC treatment. The BMSC treatment group showed significant improvement in behavioral performance compared with the vehicle group. Our data also showed that intranasally delivered HP-BMSCs migrated to peri-injury regions and provided growth factors to increase neurogenesis after ICH. We conclude that intranasal administration of BMSC is an effective treatment for ICH, and that it enhanced neuroregenerative effects and promoted neurological functional recovery after ICH. Overall, the investigation supports the potential therapeutic strategy for BMSC transplantation therapy against hemorrhagic stroke.
Collapse
Affiliation(s)
- Jinmei Sun
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zheng Zachory Wei
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - James Ya Zhang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yongbo Zhang
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jimei Li
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China.
| | - Ling Wei
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Laboratories of Stem Cell Biology and Neural Regeneration and Function Recovery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
28
|
Wang H, Ye M, Yu L, Wang J, Guo Y, Lei W, Yang J. Hippocampal neuronal cyclooxygenase-2 downstream signaling imbalance in a rat model of chronic aluminium gluconate administration. Behav Brain Funct 2015; 11:8. [PMID: 25888969 PMCID: PMC4336726 DOI: 10.1186/s12993-015-0054-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 01/21/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute and chronic brain damages including neurodegenerative diseases are a group of neuroinflammation-associated diseases characterized by cognitive function defect and progressive neuron loss. The pathophysiological procession of brain damages involves the overexpression of cyclooxygenase (COX)-2. Owing to the limited benefit to chronic brain damage and the late adverse effect of COX-2 inhibitors, the COX downstream signaling pathway has become a focus in neurological research. In order to explore the mechanism of aluminum neurotoxicity and the importance of COX2 downstream signaling pathways to chronic brain damage, the present study was designed to simultaneously observe the prostaglandin (PG) contents, and the expressions of PG synthases and PG receptors of hippocampus in a rat model induced by chronic administration of aluminium gluconate. METHODS A rat model of chronic brain damage was established by chronic intragastric administration of aluminium gluconate (Al3+ 200 mg/kg per day, 5d a week for 20 weeks). PG contents, the expressions of PG synthases, and the expressions of PG receptors in rats were measured by ELISA, RT-PCR and Western blotting, respectively. RESULTS Chronic aluminium gluconate administration resulted in hippocampal neuron injury and learning and memory disorders in rats. Aluminium gluconate administration also resulted in increased levels of PGE2, PGD2, TXA2, PGI2, and PGF2α in rat hippocampus. The DP1, EP2, IP, mPGES-1, EP4, PGIS and TXAS mRNA expressions, and the DP1, EP2 and IP protein expressions significantly increased in the Al-treated hippocampus, while the EP3 and FP mRNA and protein expressions and the TP mRNA expression decreased. CONCLUSIONS The PGS/PGs/PG receptors signaling pathway in chronic aluminium gluconate-overloaded rat hippocampus is disturbed, which may be involved in the mechanism of aluminium neurotoxicity.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400016, China.
| | - Mengliang Ye
- Department of Biostatistics, School of Public Health, Chongqing Medical University, Chongqing, Chongqing, 400016, China.
| | - Lijuan Yu
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400016, China.
| | - Jianfeng Wang
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400016, China.
| | - Yuanxin Guo
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400016, China.
| | - Wenjuan Lei
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400016, China.
| | - Junqing Yang
- Department of Pharmacology, Chongqing Medical University, Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing, 400016, China.
| |
Collapse
|
29
|
Jiang J, Yang MS, Quan Y, Gueorguieva P, Ganesh T, Dingledine R. Therapeutic window for cyclooxygenase-2 related anti-inflammatory therapy after status epilepticus. Neurobiol Dis 2015; 76:126-136. [PMID: 25600211 DOI: 10.1016/j.nbd.2014.12.032] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 12/12/2014] [Accepted: 01/09/2015] [Indexed: 11/17/2022] Open
Abstract
As a prominent inflammatory effector of cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2) mediates brain inflammation and injury in many chronic central nervous system (CNS) conditions including seizures and epilepsy, largely through its receptor subtype EP2. However, EP2 receptor activation might also be neuroprotective in models of excitotoxicity and ischemia. These seemingly incongruent observations expose the delicacy of immune and inflammatory signaling in the brain; thus the therapeutic window for quelling neuroinflammation might vary with injury type and target molecule. Here, we identify a therapeutic window for EP2 antagonism to reduce delayed mortality and functional morbidity after status epilepticus (SE) in mice. Importantly, treatment must be delayed relative to SE onset to be effective, a finding that could be explained by the time-course of COX-2 induction after SE and compound pharmacokinetics. A large number of inflammatory mediators were upregulated in hippocampus after SE with COX-2 and IL-1β temporally leading many others. Thus, EP2 antagonism represents a novel anti-inflammatory strategy to treat SE with a tightly-regulated therapeutic window.
Collapse
Affiliation(s)
- Jianxiong Jiang
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, GA 30322, United States; Division of Pharmaceutical sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, United States.
| | - Myung-Soon Yang
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Yi Quan
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Paoula Gueorguieva
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Thota Ganesh
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Raymond Dingledine
- Department of Pharmacology, School of Medicine, Emory University, Atlanta, GA 30322, United States
| |
Collapse
|
30
|
Mohan S, Narumiya S, Doré S. Neuroprotective role of prostaglandin PGE2 EP2 receptor in hemin-mediated toxicity. Neurotoxicology 2015; 46:53-9. [PMID: 25451967 PMCID: PMC4681391 DOI: 10.1016/j.neuro.2014.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/18/2014] [Accepted: 10/23/2014] [Indexed: 01/01/2023]
Abstract
Heme (Fe(2+) protoporphyrin IX) and hemin (Fe(3+)), the prosthetic group of hemoprotein, are cytotoxic due to their ability to contribute to the production of reactive oxygen species, increased intracellular calcium levels, and stimulate glutamate-mediated excitotoxicity. Previous work by our group showed that blockade of the prostaglandin E2 (PGE2)-EP1 receptor reduced hemin-induced cytotoxicity in primary cortical neuronal cultures. However, the role of the prostaglandin E2 (PGE2)-EP2 receptor in hemin neurotoxicity remains unclear. Activation of the EP2 receptor in neurons results in increased cyclic AMP (cAMP) and protein kinase A signaling; therefore, we hypothesized that the activation of the EP2 receptor decreases hemin neurotoxicity. Using postnatal primary cortical neurons cultured from wildtype-control (WT) and EP2(-/-) mice, we investigated the role of the EP2 receptor in hemin neurotoxicity by monitoring cell survival with the Calcein-AM live-cell and lactate dehydrogenase assays. MitoTracker staining was also performed to determine how mitochondria were affected by hemin. Hemin neurotoxicity in EP2(-/-) neurons was 37.2 ± 17.0% greater compared to WT neurons. Of interest, cotreatment with the EP2 receptor agonist, butaprost (1 and 10 μM), significantly attenuated hemin neurotoxicity by 55.7 ± 21.1% and 60.1 ± 14.8%, respectively. To further investigate signaling mechanisms related to EP2 receptor mediating cytoprotection, neurons were cotreated with hemin and activators/inhibitors of both the cAMP-protein kinase A/exchange protein directly activated by cAMP (Epac) pathways. Forskolin, a cAMP activator, and 8-pCPT-cAMP, an Epac activator, both attenuated hemin neurotoxicity by 78.8 ± 22.2% and 58.4 ± 9.8%, respectively, as measured using the lactate dehydrogenase assay. Together, the results reveal that activation of the EP2 receptor is protective against hemin neurotoxicity in vitro and these findings suggest that neuroprotection occurs through the cAMP-Epac pathway in neuronal cultures. Therefore, activation of the EP2 receptor could be used to minimize neuronal damage following exposure to supraphysiological levels of hemin.
Collapse
MESH Headings
- Adjuvants, Immunologic/pharmacology
- Alprostadil/analogs & derivatives
- Alprostadil/pharmacology
- Analysis of Variance
- Animals
- Animals, Newborn
- Cell Survival/drug effects
- Cerebral Cortex/cytology
- Colforsin/pharmacology
- Cyclic AMP/analogs & derivatives
- Cyclic AMP/pharmacology
- Dose-Response Relationship, Drug
- Excitatory Amino Acid Agonists/pharmacology
- Glutamic Acid/pharmacology
- Hemin/toxicity
- L-Lactate Dehydrogenase/metabolism
- Mice
- Mice, Knockout
- Neurons/drug effects
- Neuroprotective Agents/pharmacology
- Receptors, Prostaglandin E, EP2 Subtype/agonists
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Thionucleotides/pharmacology
Collapse
Affiliation(s)
- Shekher Mohan
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA
| | - Shuh Narumiya
- Department of Pharmacology, Kyoto University, Kyoto, Japan
| | - Sylvain Doré
- Department of Anesthesiology, University of Florida, Gainesville, FL, USA; Departments of Neurology, Psychiatry, and Neuroscience, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
31
|
Role of the prostaglandin E2 EP1 receptor in traumatic brain injury. PLoS One 2014; 9:e113689. [PMID: 25426930 PMCID: PMC4245217 DOI: 10.1371/journal.pone.0113689] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 10/27/2014] [Indexed: 11/19/2022] Open
Abstract
Brain injuries promote upregulation of so-called proinflammatory prostaglandins, notably prostaglandin E2 (PGE2), leading to overactivation of a class of its cognate G-protein-coupled receptors, including EP1, which is considered a promising target for treatment of ischemic stroke. However, the role of the EP1 receptor is complex and depends on the type of brain injury. This study is focused on the investigation of the role of the EP1 receptor in a controlled cortical impact (CCI) model, a preclinical model of traumatic brain injury (TBI). The therapeutic effects of post-treatments with a widely studied EP1 receptor antagonist, SC-51089, were examined in wildtype and EP1 receptor knockout C57BL/6 mice. Neurological deficit scores (NDS) were assessed 24 and 48 h following CCI or sham surgery, and brain immunohistochemical pathology was assessed 48 h after surgery. In wildtype mice, CCI resulted in an obvious cortical lesion and localized hippocampal edema with an associated significant increase in NDS compared to sham-operated animals. Post-treatments with the selective EP1 receptor antagonist SC-51089 or genetic knockout of EP1 receptor had no significant effects on cortical lesions and hippocampal swelling or on the NDS 24 and 48 h after CCI. Immunohistochemistry studies revealed CCI-induced gliosis and microglial activation in selected ipsilateral brain regions that were not affected by SC-51089 or in the EP1 receptor-deleted mice. This study provides further clarification on the respective contribution of the EP1 receptor in TBI and suggests that, under this experimental paradigm, the EP1 receptor would have limited effects in modulating acute neurological and anatomical pathologies following contusive brain trauma. Findings from this protocol, in combination with previous studies demonstrating differential roles of EP1 receptor in ischemic, neurotoxic, and hemorrhagic conditions, provide scientific background and further clarification of potential therapeutic application of prospective prostaglandin G-protein-coupled receptor drugs in the clinic for treatment of TBI and other acute brain injuries.
Collapse
|
32
|
Cho JS, Han IH, Lee HR, Lee HM. Prostaglandin E2 Induces IL-6 and IL-8 Production by the EP Receptors/Akt/NF-κB Pathways in Nasal Polyp-Derived Fibroblasts. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2014; 6:449-57. [PMID: 25229003 PMCID: PMC4161687 DOI: 10.4168/aair.2014.6.5.449] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/08/2013] [Accepted: 01/16/2014] [Indexed: 12/23/2022]
Abstract
Purpose Interleukin 6 (IL-6) and IL-8 participate in the pathogenesis of chronic rhinosinusitis with nasal polyps, and their levels are increased by prostaglandin E2 (PGE2) in different cell types. The purposes of this study were to determine whether PGE2 has any effect on the increase in the levels of IL-6 and IL-8 in nasal polyp-derived fibroblasts (NPDFs) and subsequently investigate the possible mechanism of this effect. Methods Different concentrations of PGE2 were used to stimulate NPDFs at different time intervals. NPDFs were treated with agonists and antagonists of E prostanoid (EP) receptors. To determine the signaling pathway for the expression of PGE2-induced IL-6 and IL-8, PGE2 was treated with Akt and NF-κB inhibitors in NPDFs. Reverse transcription-polymerase chain reaction for IL-6 and IL-8 mRNAs was performed. IL-6 and IL-8 levels were measured byenzyme-linked immunosorbent assay (ELISA). The activation of Akt and NF-κB was evaluated by western blot analysis. Results PGE2 significantly increased the mRNA and protein expression levels of IL-6 and IL-8 in NPDFs. The EP2 and EP4 agonists and antagonists induced and inhibited IL-6 expression. However, the EP4 agonist and antagonist were only observed to induce and inhibit IL-8 expression level. The Akt and NF-κB inhibitors significantly blocked PGE2-induced expression of IL-6 and IL-8. Conclusions PGE2 increases IL-6 expression via EP2 and EP4 receptors, and IL-8 expression via the EP4 receptor in NPDFs. It also activates the Akt and NF-κB signal pathways for the production of IL-6 and IL-8 in NPDFs. These results suggest that signaling pathway for IL-6 and IL-8 expression induced by PGE2 might be a useful therapeutic target for the treatment of nasal polyposis.
Collapse
Affiliation(s)
- Jung-Sun Cho
- Brain Korea 21 Plus for Biomedical Science, Korea University College of Medicine, Seoul, Korea. ; Institute for Medical Devices Clinical Trial Center, Guro Hospital, Korea University, Seoul, Korea
| | - In-Hye Han
- Brain Korea 21 Plus for Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Hye Rim Lee
- Brain Korea 21 Plus for Biomedical Science, Korea University College of Medicine, Seoul, Korea
| | - Heung-Man Lee
- Brain Korea 21 Plus for Biomedical Science, Korea University College of Medicine, Seoul, Korea. ; Institute for Medical Devices Clinical Trial Center, Guro Hospital, Korea University, Seoul, Korea. ; Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Korea University, Seoul, Korea
| |
Collapse
|
33
|
Glushakov AV, Robbins SW, Bracy CL, Narumiya S, Doré S. Prostaglandin F2α FP receptor antagonist improves outcomes after experimental traumatic brain injury. J Neuroinflammation 2013; 10:132. [PMID: 24172576 DOI: 10.1186/1742-2094-10-132] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/04/2013] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Injuries to the brain promote upregulation of prostaglandins, notably the proinflammatory PGF2α, and overactivation of their cognate G-protein-coupled FP receptor, which could exacerbate neuronal damage. Our study is focused on investigation of the FP receptor as a target for novel neuroprotective drugs in a preclinical animal traumatic brain injury (TBI) model. METHODS Accordingly, the effects of acute intraperitoneal post-treatment with selective FP antagonist AL-8810 were studied in wildtype (WT) and FP receptor knockout (FP-/-) mice after controlled cortical impact (CCI). Neurological impairments were evaluated using neurological deficit scores (NDS) and the grip strength test. Cortical lesions and overall brain pathology were assessed using immunohistochemistry. RESULTS Morphological analyses of cerebral vasculature and anastomoses revealed no differences between WT and FP-/- mice. CCI produced cortical lesions characterized by cavitation, neuronal loss, and hematoma with a volume of 20.0 ± 1.0 mm(3) and significant hippocampal swelling (146.5 ± 7.4% of contralateral) compared with sham (P < 0.05). Post-treatment with AL-8810 (1 to 10 mg/kg) had no significant effect on cortical lesions, which suggests the irreversible effect of primary CCI injury, but significantly reduced hippocampal swelling to a size not significantly different from the sham group. Post-treatment with AL-8810 at a dose of 10 mg/kg significantly improved NDS at 24 and 48 hours after CCI (P < 0.001 and P < 0.01, respectively). In the AL-8810 group, CCI-induced decrease in grip strength was three-fold (2.93 ± 1.71) less and significantly different than in the saline-treated group. The FP-/- mice had significantly less hippocampal swelling, but not NDS, compared with WT mice. In addition, immunohistochemistry showed that pharmacologic blockade and genetic deletion of FP receptor led to attenuation of CCI-induced gliosis and microglial activation in selected brain regions. CONCLUSION This study provides, for the first time, demonstration of the unique role of the FP receptor as a potential target for disease-modifying CNS drugs for treatment of acute traumatic injury.
Collapse
Affiliation(s)
- Alexander V Glushakov
- Department of Anesthesiology, University of Florida College of Medicine, PO Box 100159, Gainesville, FL 32610, USA.
| | | | | | | | | |
Collapse
|
34
|
Mohan S, Glushakov AV, Decurnou A, Narumiya S, Doré S. Contribution of PGE2 EP1 receptor in hemin-induced neurotoxicity. Front Mol Neurosci 2013; 6:31. [PMID: 24109429 PMCID: PMC3791386 DOI: 10.3389/fnmol.2013.00031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/09/2013] [Indexed: 11/27/2022] Open
Abstract
Although hemin-mediated neurotoxicity has been linked to the production of free radicals and glutamate excitotoxicity, the role of the prostaglandin E2 (PGE2)-EP1 receptor remains unclear. Activation of the EP1 receptor in neurons results in increased intracellular calcium levels; therefore, we hypothesize that the blockade of the EP1 receptor reduces hemin neurotoxicity. Using postnatal primary cortical neurons cultured from wild-type (WT) and EP1−/− mice, we investigated the EP1 receptor role in hemin neurotoxicity measured by lactate dehydrogenase (LDH) cell survival assay. Hemin (75 μM) induced greater release of LDH in WT (34.7 ± 4.5%) than in EP1−/− (27.6 ± 3.3%) neurons. In the presence of the EP1 receptor antagonist SC-51089, the hemin-induced release of LDH decreased. To further investigate potential mechanisms of action, we measured changes in the intracellular calcium level [Ca2+]i following treatment with 17-phenyl trinor PGE2 (17-pt-PGE2) a selective EP1 agonist. In the WT neurons, 17-pt-PGE2 dose-dependently increased [Ca2+]i. However, in EP1−/− neurons, [Ca2+]i was significantly attenuated. We also revealed that hemin dose-dependently increased [Ca2+]i in WT neurons, with a significant decrease in EP1−/− neurons. Both 17-pt-PGE2 and hemin-induced [Ca2+]i were abolished by N-methyl-D-aspartic (NMDA) acid receptor and ryanodine receptor blockers. These results suggest that blockade of the EP1 receptor may be protective against hemin neurotoxicity in vitro. We speculate that the mechanism of hemin neuronal death involves [Ca2+]i mediated by NMDA acid receptor-mediated extracellular Ca2+ influx and EP1 receptor-mediated intracellular release from ryanodine receptor-operated Ca2+ stores. Therefore, blockade of the EP1 receptor could be used to minimize neuronal damage following exposure to supraphysiological levels of hemin.
Collapse
Affiliation(s)
- Shekher Mohan
- Department of Anesthesiology, Center for Translational Research in Neurodegenerative Disease, University of Florida Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
35
|
Jiang J, Dingledine R. Prostaglandin receptor EP2 in the crosshairs of anti-inflammation, anti-cancer, and neuroprotection. Trends Pharmacol Sci 2013; 34:413-23. [PMID: 23796953 DOI: 10.1016/j.tips.2013.05.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/05/2013] [Accepted: 05/10/2013] [Indexed: 10/26/2022]
Abstract
Modulation of a specific prostanoid synthase or receptor provides therapeutic alternatives to nonsteroidal anti-inflammatory drugs (NSAIDs) for treating pathological conditions governed by cyclooxygenase-2 (COX-2 or PTGS2). Among the COX-2 downstream signaling pathways, the prostaglandin E2 (PGE2) receptor EP2 subtype (PTGER2) is emerging as a crucial mediator of many physiological and pathological events. Genetic ablation strategies and recent advances in chemical biology provide tools for a better understanding of EP2 signaling. In the brain, the EP2 receptor modulates some beneficial effects, including neuroprotection, in acute models of excitotoxicity, neuroplasticity, and spatial learning via cAMP-PKA signaling. Conversely, EP2 activation accentuates chronic inflammation mainly through the cAMP-Epac pathway, likely contributing to delayed neurotoxicity. EP2 receptor activation also engages β-arrestin in a G-protein-independent pathway that promotes tumor cell growth and migration. Understanding the conditions under which multiple EP2 signaling pathways are engaged might suggest novel therapeutic strategies to target this key inflammatory prostaglandin receptor.
Collapse
Affiliation(s)
- Jianxiong Jiang
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | |
Collapse
|
36
|
PGE2 EP1 receptor deletion attenuates 6-OHDA-induced Parkinsonism in mice: old switch, new target. Neurotox Res 2013; 23:260-6. [PMID: 23385625 DOI: 10.1007/s12640-013-9381-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/21/2012] [Accepted: 01/23/2013] [Indexed: 10/27/2022]
Abstract
Recent experimental data on Parkinson's disease (PD) predicts the critical role of inflammation in the progression of neurodegeneration and the promising preventive effects of nonsteroidal anti-inflammatory drugs (NSAIDs). Previous studies suggest that NSAIDs minimize cyclooxygenase-2 (COX-2) activity and thereby attenuate free radical generation. Prostaglandin E2 (PGE2) is an important product of COX activity and plays an important role in various physiologic and pathophysiologic conditions through its EP receptors (EP1-EP4). Part of the toxic effect of PGE2 in the central nervous system has been reported to be through the EP1 receptor; however, the effect of the EP1 receptor in PD remains elusive. Therefore, in our pursuit to determine if deletion of the PGE2 EP1 receptor will attenuate 6-hydroxy dopamine (6-OHDA)-induced Parkinsonism, mice were given a unilateral 6-OHDA injection into the medial forebrain bundle. We found that apomorphine-induced contralateral rotations were significantly attenuated in the 6-OHDA-lesioned EP1(-/-) mice compared with the 6-OHDA-lesioned WT mice. Quantitative analysis showed significant protection of dopaminergic neurons in the substantia nigra pars compacta of the 6-OHDA-lesioned EP1(-/-) mice. To the best of our knowledge, this is the first in vivo study to implicate the PGE2 EP1 receptor in toxin-induced Parkinsonism. We propose the PGE2 EP1 receptor as a new target to better understand some of the mechanisms leading to PD.
Collapse
|