1
|
Kumari S, Rana B, Senthil Kumaran S, Chaudhary S, Jain S, Srivastava AK, Rajan R. Gray Matter Atrophy in a 6-OHDA-induced Model of Parkinson's Disease. Neuroscience 2024; 551:217-228. [PMID: 38843989 DOI: 10.1016/j.neuroscience.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
INTRODUCTION Magnetic resonance imaging (MRI) based brain morphometric changes in unilateral 6-hydroxydopamine (6-OHDA) induced Parkinson's disease (PD) model can be elucidated using voxel-based morphometry (VBM), study of alterations in gray matter volume and Machine Learning (ML) based analyses. METHODS We investigated gray matter atrophy in 6-OHDA induced PD model as compared to sham control using statistical and ML based analysis. VBM and atlas-based volumetric analysis was carried out at regional level. Support vector machine (SVM)-based algorithms wherein features (volume) extracted from (a) each of the 150 brain regions (b) statistically significant features (only) and (c) volumes of each cluster identified after application of VBM (VBM_Vol) were used for training the decision model. The lesion of the 6-OHDA model was validated by estimating the net contralateral rotational behaviour by the injection of apomorphine drug and motor impairment was assessed by rotarod and open field test. RESULTS AND DISCUSSION In PD, gray matter volume (GMV) atrophy was noted in bilateral cortical and subcortical brain regions, especially in the internal capsule, substantia nigra, midbrain, primary motor cortex and basal ganglia-thalamocortical circuits in comparison with sham control. Behavioural results revealed an impairment in motor performance. SVM analysis showed 100% classification accuracy, sensitivity and specificity at both 3 and 7 weeks using VBM_Vol. CONCLUSION Unilateral 6-OHDA induced GMV changes in both hemispheres at 7th week may be associated with progression of the disease in the PD model. SVM based approaches provide an increased classification accuracy to elucidate GMV atrophy.
Collapse
Affiliation(s)
- Sadhana Kumari
- Department of NMR, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Bharti Rana
- Department of Computer Science, University of Delhi, Delhi 110007, India
| | - S Senthil Kumaran
- Department of NMR, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| | - Shefali Chaudhary
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT 06510, USA.
| | - Suman Jain
- Department of Physiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Achal Kumar Srivastava
- Department of Neurology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Roopa Rajan
- Department of Neurology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India.
| |
Collapse
|
2
|
Correa A, Ponzi A, Calderón VM, Migliore R. Pathological cell assembly dynamics in a striatal MSN network model. Front Comput Neurosci 2024; 18:1410335. [PMID: 38903730 PMCID: PMC11188713 DOI: 10.3389/fncom.2024.1410335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Under normal conditions the principal cells of the striatum, medium spiny neurons (MSNs), show structured cell assembly activity patterns which alternate sequentially over exceedingly long timescales of many minutes. It is important to understand this activity since it is characteristically disrupted in multiple pathologies, such as Parkinson's disease and dyskinesia, and thought to be caused by alterations in the MSN to MSN lateral inhibitory connections and in the strength and distribution of cortical excitation to MSNs. To understand how these long timescales arise we extended a previous network model of MSN cells to include synapses with short-term plasticity, with parameters taken from a recent detailed striatal connectome study. We first confirmed the presence of sequentially switching cell clusters using the non-linear dimensionality reduction technique, Uniform Manifold Approximation and Projection (UMAP). We found that the network could generate non-stationary activity patterns varying extremely slowly on the order of minutes under biologically realistic conditions. Next we used Simulation Based Inference (SBI) to train a deep net to map features of the MSN network generated cell assembly activity to MSN network parameters. We used the trained SBI model to estimate MSN network parameters from ex-vivo brain slice calcium imaging data. We found that best fit network parameters were very close to their physiologically observed values. On the other hand network parameters estimated from Parkinsonian, decorticated and dyskinetic ex-vivo slice preparations were different. Our work may provide a pipeline for diagnosis of basal ganglia pathology from spiking data as well as for the design pharmacological treatments.
Collapse
Affiliation(s)
- Astrid Correa
- Institute of Biophysics, National Research Council, Palermo, Italy
| | - Adam Ponzi
- Institute of Biophysics, National Research Council, Palermo, Italy
- Center for Human Nature, Artificial Intelligence, and Neuroscience, Hokkaido University, Sapporo, Japan
| | - Vladimir M. Calderón
- Department of Developmental Neurobiology and Neurophysiology, Neurobiology Institute, National Autonomous University of Mexico, Querétaro, Mexico
| | - Rosanna Migliore
- Institute of Biophysics, National Research Council, Palermo, Italy
| |
Collapse
|
3
|
Cao X, Gan C, Zhang H, Yuan Y, Sun H, Zhang L, Wang L, Zhang L, Zhang K. Altered perivascular spaces in subcortical white matter in Parkinson's disease patients with levodopa-induced dyskinesia. NPJ Parkinsons Dis 2024; 10:71. [PMID: 38548788 PMCID: PMC10978930 DOI: 10.1038/s41531-024-00688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
Dilated perivascular spaces (PVS) have emerged as a pathological hallmark in various neurological conditions, including Parkinson's disease (PD). Levodopa-induced dyskinesia (LID), an intractable motor complication of PD, remains enigmatic regarding the distribution patterns of PVS. Our objective was to scrutinize the percent PVS (pPVS) changes within PD patients with LID (PD-LID). In total, 132 individuals were enrolled, including PD-LID (n = 42), PD patients without LID (PD-nLID, n = 45), and healthy controls (HCs, n = 45). Employing an automated approach for PVS quantification based on structural magnetic resonance imaging, we comprehensively evaluated total pPVS in subcortical white matter globally and regionally. A significant increase in global pPVS was observed in PD patients versus HCs, particularly evident in PD-LID relative to HCs. Within the PD-LID group, elevated pPVS was discerned in the right inferior frontal gyrus region (rIFG) (pars opercularis), contrasting with PD-nLID and HCs. Moreover, PD patients exhibited increased pPVS in bilateral superior temporal regions compared to HCs. Notably, pPVS in the rIFG positively correlated with dyskinetic symptoms and could well identify LID. Our findings unveiled PVS alternations in subcortical white matter in PD-LID at both global and regional levels, highlighting the increased pPVS in rIFG as a prospective imaging marker for LID.
Collapse
Affiliation(s)
- Xingyue Cao
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Caiting Gan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Heng Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yongsheng Yuan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Huimin Sun
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Li Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lina Wang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lian Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Kezhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
4
|
Cheng J, Zheng H, Liu C, Jin J, Xing Z, Wu Y. Age-Associated UBE2O Reduction Promotes Neuronal Death in Alzheimer's Disease. J Alzheimers Dis 2023:JAD221143. [PMID: 37182872 DOI: 10.3233/jad-221143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common neurodegenerative disease leading to dementia in the elderly. Ubiquitin proteasome system (UPS) is critical for protein homeostasis, while the functional decline of UPS with age contributes to the pathogenesis of AD. Ubiquitin-conjugating enzyme E2O (UBE2O), an E2-E3 hybrid enzyme, is a major component of UPS. However, its role in AD pathogenesis has not been fully defined. OBJECTIVE We aimed to identify the age-associated expression of UBE2O and its role AD pathogenesis. METHODS Western blot analysis were used to assess expression of UBE2O in organs/tissues and cell lines. Immunofluorescence staining was performed to examine the cellular distribution of UBE2O. Neuronal death was determined by the activity of lactate dehydrogenase. RESULTS UBE2O is highly expressed in the cortex and hippocampus. It is predominantly expressed in neurons but not in glial cells. The peak expression of UBE2O is at postnatal day 17 and 14 in the cortex and hippocampus, respectively. Moreover its expression is gradually reduced with age. Importantly, UBE2O is significantly reduced in both cortex and hippocampus of AD mice. Consistently, overexpression of amyloid-β protein precursor (AβPP) with a pathogenic mutation (AβPPswe) for AD reduces the expression of UBE2O and promotes neuronal death, while increased expression of UBE2O rescues AβPPswe-induced neuronal death. CONCLUSION Our study indicates that age-associated reduction of UBE2O may facilitates neuronal death in AD, while increasing UBE2O expression or activity may be a potential approach for AD treatment by inhibiting neuronal death.
Collapse
Affiliation(s)
- Jing Cheng
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Huancheng Zheng
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Chenyu Liu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, Alberta Institute, School of Mental Health and The Affiliated Kangning Hospital, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Jiabin Jin
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Wenzhou Kangning Hospital, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Zhenkai Xing
- Shandong Key Laboratory of Behavioral Medicine, School of Mental Health, Jining Medical University, Jining, China
| | - Yili Wu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Wenzhou Kangning Hospital, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
- Shandong Collaborative Innovation Center for Diagnosis, Treatment & Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
| |
Collapse
|
5
|
Striatal neuronal ensembles reveal differential actions of amantadine and clozapine to ameliorate mice L-DOPA-induced dyskinesia. Neuroscience 2022; 492:92-107. [PMID: 35367290 DOI: 10.1016/j.neuroscience.2022.03.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/03/2022] [Accepted: 03/26/2022] [Indexed: 12/23/2022]
Abstract
Amantadine and clozapine have proved to reduce abnormal involuntary movements (AIMs) in preclinical and clinical studies of L-DOPA-Induced Dyskinesias (LID). Even though both drugs decrease AIMs, they may have different action mechanisms by using different receptors and signaling profiles. Here we asked whether there are differences in how they modulate neuronal activity of multiple striatal neurons within the striatal microcircuit at histological level during the dose-peak of L-DOPA in ex-vivo brain slices obtained from dyskinetic mice. To answer this question, we used calcium imaging to record the activity of dozens of neurons of the dorsolateral striatum before and after drugs administration in vitro. We also developed an analysis framework to extract encoding insights from calcium imaging data by quantifying neuronal activity, identifying neuronal ensembles by linking neurons that coactivate using hierarchical cluster analysis and extracting network parameters using Graph Theory. The results show that while both drugs reduce LIDs scores behaviorally in a similar way, they have several different and specific actions on modulating the dyskinetic striatal microcircuit. The extracted features were highly accurate in separating amantadine and clozapine effects by means of principal components analysis (PCA) and support vector machine (SVM) algorithms. These results predict possible synergistic actions of amantadine and clozapine on the dyskinetic striatal microcircuit establishing a framework for a bioassay to test novel antidyskinetic drugs or treatments in vitro.
Collapse
|
6
|
Betrouni N, Moreau C, Rolland AS, Carrière N, Viard R, Lopes R, Kuchcinski G, Eusebio A, Thobois S, Hainque E, Hubsch C, Rascol O, Brefel C, Drapier S, Giordana C, Durif F, Maltête D, Guehl D, Hopes L, Rouaud T, Jarraya B, Benatru I, Tranchant C, Tir M, Chupin M, Bardinet E, Defebvre L, Corvol JC, Devos D. Can Dopamine Responsiveness Be Predicted in Parkinson's Disease Without an Acute Administration Test? JOURNAL OF PARKINSON'S DISEASE 2022; 12:2179-2190. [PMID: 35871363 DOI: 10.3233/jpd-223334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Dopamine responsiveness (dopa-sensitivity) is an important parameter in the management of patients with Parkinson's disease (PD). For quantification of this parameter, patients undergo a challenge test with acute Levodopa administration after drug withdrawal, which may lead to patient discomfort and use of significant resources. OBJECTIVE Our objective was to develop a predictive model combining clinical scores and imaging. METHODS 350 patients, recruited by 13 specialist French centers and considered for deep brain stimulation, underwent an acute L-dopa challenge (dopa-sensitivity > 30%), full assessment, and MRI investigations, including T1w and R2* images. Data were randomly divided into a learning base from 10 centers and data from the remaining centers for testing. A machine selection approach was applied to choose the optimal variables and these were then used in regression modeling. Complexity of the modelling was incremental, while the first model considered only clinical variables, the subsequent included imaging features. The performances were evaluated by comparing the estimated values and actual valuesResults:Whatever the model, the variables age, sex, disease duration, and motor scores were selected as contributors. The first model used them and the coefficients of determination (R2) was 0.60 for the testing set and 0.69 in the learning set (p < 0.001). The models that added imaging features enhanced the performances: with T1w (R2 = 0.65 and 0.76, p < 0.001) and with R2* (R2 = 0.60 and 0.72, p < 0.001). CONCLUSION These results suggest that modeling is potentially a simple way to estimate dopa-sensitivity, but requires confirmation in a larger population, including patients with dopa-sensitivity < 30.
Collapse
Affiliation(s)
- Nacim Betrouni
- University Lille, INSERM, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, LICEND, Lille, France
| | - Caroline Moreau
- University Lille, INSERM, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, LICEND, Lille, France
- CHU Lille, Neurology and Movement Disorders Department, Reference Center for Parkinson's Disease, Lille, France; NS-Park French Network
| | - Anne-Sophie Rolland
- University Lille, INSERM, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, LICEND, Lille, France
| | - Nicolas Carrière
- University Lille, INSERM, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, LICEND, Lille, France
- CHU Lille, Neurology and Movement Disorders Department, Reference Center for Parkinson's Disease, Lille, France; NS-Park French Network
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Lille, France; NS-Park French Network
| | - Romain Viard
- University Lille, INSERM, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, LICEND, Lille, France
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Lille, France; NS-Park French Network
| | - Renaud Lopes
- University Lille, INSERM, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, LICEND, Lille, France
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41 - UMS 2014 - PLBS, Lille, France; NS-Park French Network
| | - Gregory Kuchcinski
- University Lille, INSERM, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, LICEND, Lille, France
- CHU Lille, Neuroradioloy Department, Lille, France
| | - Alexandre Eusebio
- Aix Marseille Universitë, AP-HM, Hôpital de La Timone, Service de Neurologie et Pathologie du Mouvement, UMR CNRS 7289, Institut de Neuroscience de La Timone, Marseille, France; NS-Park French Network
| | - Stephane Thobois
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Neurologie C, Bron, France
| | - Elodie Hainque
- Dëpartement de Neurologie, Hôpital Pitië-Salpêtrière, AP-HP, Paris, France; NS-Park French Network
| | - Cecile Hubsch
- Fondation Ophtalmologique A de Rothschild, Unitë James Parkinson, Paris, France; NS-Park French Network
| | - Olivier Rascol
- University of Toulouse 3, University Hospital of Toulouse, INSERM, Departments of Neuroscience and Clinical Pharmacology, Clinical Investigation Center CIC 1436, Toulouse Parkinson Expert Center, NS-NeuroToul Center of Excellence for Neurodegenerative Disorders (COEN), Toulouse, France; NS-Park French Network
| | - Christine Brefel
- University of Toulouse 3, University Hospital of Toulouse, INSERM, Departments of Neuroscience and Clinical Pharmacology, Clinical Investigation Center CIC 1436, Toulouse Parkinson Expert Center, NS-NeuroToul Center of Excellence for Neurodegenerative Disorders (COEN), Toulouse, France; NS-Park French Network
| | - Sophie Drapier
- Service de Neurologie, CHU Pont Chaillou, 2 rue Henri le Guilloux, Rennes cedex, France; NS-Park French Network
| | - Caroline Giordana
- Universitë Clermont Auvergne, EA7280, Clermont-Ferrand University Hospital, Neurology Department, Clermont-Ferrand, France; NS-Park French Network
| | - Franck Durif
- Universitë Clermont Auvergne, EA7280, Clermont-Ferrand University Hospital, Neurology Department, Clermont-Ferrand, France; NS-Park French Network
| | - David Maltête
- Department of Neurology, Rouen University Hospital and University of Rouen, France; INSERM U1239, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Mont-Saint-Aignan, France; NS-Park French Network
| | - Dominique Guehl
- Service d'Explorations Fonctionnelles du Système Nerveux, Institut des Maladies Neurodëgënëratives Cliniques, CHU de Bordeaux, Bordeaux, France; NS-Park French Network
| | - Lucie Hopes
- Neurology Department, Nancy University Hospital, Nancy, France; NS-Park French Network
| | - Tiphaine Rouaud
- Clinique Neurologique, Hôpital Guillaume et Renë Laennec, Boulevard Jacques Monod, Nantes Cedex, France; NS-Park French Network
| | - Bechir Jarraya
- Movement Disorders Unit, Foch Hospital, Universitë Paris-Saclay (UVSQ), INSERM U992, NeuroSpin, CEA Paris-Saclay, Suresnes, France; NS-Park French Network
| | - Isabelle Benatru
- Service de Neurologie, Centre Expert Parkinson, CIC-INSERM 1402, CHU Poitiers, Poitiers, France; NS-Park French Network
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Institut de Gënëtique et de Biologie Molëculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Universitë de Strasbourg, Illkirch, France; Fëdëration de Mëdecine Translationnelle de Strasbourg (FMTS), Universitë de Strasbourg, Strasbourg, France; NS-Park French Network
| | - Melissa Tir
- Department of Neurosurgery, Amiens University Hospital, Amiens, France; Medical Imaging Unit, Amiens University Hospital, Amiens, France; BioFlowImage Research Group, Jules Verne University of Picardie, Amiens, France; NS-Park French Network
| | - Marie Chupin
- CATI, Institut du Cerveau et de le Moelle Epinière, ICM, INSERM U1127, CNRS UMR7225, Sorbonne Universitë, Paris, France
| | - Eric Bardinet
- Institut du Cerveau et de le Moelle Epinière, ICM, INSERM U1127, CNRS UMR7225, Sorbonne Universitë, Paris, France
| | - Luc Defebvre
- University Lille, INSERM, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, LICEND, Lille, France
- CHU Lille, Neurology and Movement Disorders Department, Reference Center for Parkinson's Disease, Lille, France; NS-Park French Network
| | - Jean-Christophe Corvol
- Dëpartement de Neurologie, Hôpital Pitië-Salpêtrière, AP-HP, Paris, France; NS-Park French Network
- Facultë de Mëdecine de Sorbonne Universitë, UMR S 1127, INSERM U 1127, and CNRS UMR 7225, and Institut du Cerveau et de la Moëlle Epinière, Paris, France; NS-Park French Network
| | - David Devos
- University Lille, INSERM, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, LICEND, Lille, France
- CHU Lille, Neurology and Movement Disorders Department, Reference Center for Parkinson's Disease, Lille, France; NS-Park French Network
| |
Collapse
|
7
|
Elabi OF, Pass R, Sormonta I, Nolbrant S, Drummond N, Kirkeby A, Kunath T, Parmar M, Lane EL. Human Embryonic Stem Cell-Derived Dopaminergic Grafts Alleviate L-DOPA Induced Dyskinesia. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1881-1896. [PMID: 35466951 DOI: 10.3233/jpd-212920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND First-in-human studies to test the efficacy and safety of human embryonic stem cells (hESC)-derived dopaminergic cells in the treatment of Parkinson's disease (PD) are imminent. Pre-clinical studies using hESC-derived dopamine neuron transplants in rat models have indicated that the benefits parallel those shown with fetal tissue but have thus far failed to consider how ongoing L-DOPA administration might impact on the graft. OBJECTIVE To determine whether L-DOPA impacts on survival and functional recovery following grafting of hESC-derived dopaminergic neurons. METHODS Unilateral 6-OHDA lesioned rats were administered with either saline or L-DOPA prior to, and for 18 weeks following surgical implantation of dopaminergic neural progenitors derived from RC17 hESCs according to two distinct protocols in independent laboratories. RESULTS Grafts from both protocols elicited reduction in amphetamine-induced rotations. Reduced L-DOPA-induced dyskinesia preceded the improvement in amphetamine-induced rotations. Furthermore, L-DOPA had no effect on overall survival (HuNu) or dopaminergic neuron content of the graft (TH positive cells) but did lead to an increase in the number of GIRK2 positive neurons. CONCLUSION Critically, we found that L-DOPA was not detrimental to graft function, potentially enhancing graft maturation and promoting an A9 phenotype. Early improvement of L-DOPA-induced dyskinesia suggests that grafts may support the handling of exogenously supplied dopamine earlier than improvements in amphetamine-induced behaviours indicate. Given that one of the protocols will be employed in the production of cells for the European STEM-PD clinical trial, this is vital information for the management of patients and achieving optimal outcomes following transplantation of hESC-derived grafts for PD.
Collapse
Affiliation(s)
- Osama F Elabi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Rachel Pass
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Irene Sormonta
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Sara Nolbrant
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Nicola Drummond
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Agnete Kirkeby
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Neuroscience and The Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Malin Parmar
- Developmental and Regenerative Neurobiology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Emma L Lane
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
8
|
Zhang X, Chen W, Wu Y, Zeng W, Yuan Y, Cheng C, Yang X, Wang J, Yang X, Xu Y, Lei H, Cao X, Xu Y. Histological Correlates of Neuroanatomical Changes in a Rat Model of Levodopa-Induced Dyskinesia Based on Voxel-Based Morphometry. Front Aging Neurosci 2021; 13:759934. [PMID: 34776935 PMCID: PMC8581620 DOI: 10.3389/fnagi.2021.759934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/07/2021] [Indexed: 11/22/2022] Open
Abstract
Long-term therapy with levodopa (L-DOPA) in patients with Parkinson’s disease (PD) often triggers motor complications termed as L-DOPA-induced dyskinesia (LID). However, few studies have explored the pathogenesis of LID from the perspective of neuroanatomy. This study aimed to investigate macroscopic structural changes in a rat model of LID and the underlying histological mechanisms. First, we established the hemiparkinsonism rat model through stereotaxic injection of 6-hydroxydopamine (6-OHDA) into the right medial forebrain bundle, followed by administration of saline (PD) or L-DOPA to induce LID. Magnetic resonance imaging (MRI) and behavioral evaluations were performed at different time points. Histological analysis was conducted to assess the correlations between MRI signal changes and cellular contributors. Voxel-based morphometry (VBM) analysis revealed progressive bilateral volume reduction in the cortical and subcortical areas in PD rats compared with the sham rats. These changes were partially reversed by chronic L-DOPA administration; moreover, there was a significant volume increase mainly in the dorsolateral striatum, substantia nigra, and piriform cortex of the lesioned side compared with that of PD rats. At the striatal cellular level, glial fibrillary acidic protein-positive (GFAP+) astrocytes were significantly increased in the lesioned dorsolateral striatum of PD rats compared with the intact side and the sham group. Prolonged L-DOPA treatment further increased GFAP levels. Neither 6-OHDA damage nor L-DOPA treatment influenced the striatal expression of vascular endothelial growth factor (VEGF). Additionally, there was a considerable increase in synapse-associated proteins (SYP, PSD95, and SAP97) in the lesioned striatum of LID rats relative to the PD rats. Golgi-Cox staining analysis of the dendritic spine morphology revealed an increased density of dendritic spines after chronic L-DOPA treatment. Taken together, our findings suggest that striatal volume changes in LID rats involve astrocyte activation, enrichment of synaptic ultrastructure and signaling proteins in the ipsilateral striatum. Meanwhile, the data highlight the enormous potential of structural MRI, especially VBM analysis, in determining the morphological phenotype of rodent models of LID.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, National Center for Magnetic Resonance in Wuhan, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqi Zeng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhao Yuan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chi Cheng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoman Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jialing Wang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaomei Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, National Center for Magnetic Resonance in Wuhan, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xuebing Cao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Tirozzi A, Modugno N, Palomba NP, Ferese R, Lombardi A, Olivola E, Gialluisi A, Esposito T. Analysis of Genetic and Non-genetic Predictors of Levodopa Induced Dyskinesia in Parkinson's Disease. Front Pharmacol 2021; 12:640603. [PMID: 33995045 PMCID: PMC8118664 DOI: 10.3389/fphar.2021.640603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/14/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Levodopa (L-Dopa), representing the therapeutic gold standard for the treatment of Parkinson disease (PD), is associated with side effects like L-Dopa induced dyskinesia (LID). Although several non-genetic and genetic factors have been investigated for association with LID risk, contrasting results were reported and its genetic basis remain largely unexplored. Methods: In an Italian PD cohort (N = 460), we first performed stepwise multivariable Cox Proportional Hazard regressions modeling LID risk as a function of gender, PD familiarity, clinical subtype, weight, age-at-onset (AAO) and years-of-disease (YOD), L-Dopa dosage, severity scores, and scales assessing motor (UPDRS-III), cognitive (MoCA), and non-motor symptoms (NMS). Then we enriched the resulting model testing two variants—rs356219 and D4S3481—increasing the expression of the SNCA gene, previously suggested as a potential mechanism of LID onset. To account for more complex (non-linear) relations of these variables with LID risk, we built a survival random forest (SRF) algorithm including all the covariates mentioned above. Results: Among tested variables (N = 460 case-complete, 211 LID events; total follow-up 31,361 person-months, median 61 months), disease duration showed significant association (p < 0.005), with 6 (3–8)% decrease of LID risk per additional YOD. Other nominally significant associations were observed for gender—with women showing a 39 (5–82)% higher risk of LID—and AAO, with 2 (0.3–3)% decrease of risk for each year increase of PD onset. The SRF algorithm confirmed YOD as the most prominent feature influencing LID risk, with a variable importance of about 8% in the model. In genetic models, no statistically significant effects on incident LID risk was observed. Conclusions: This evidence supports a protective effect of late PD onset and gender (men) against LID risk and suggests a new independent protective factor, YOD. Moreover, it underlines the importance of personalized therapeutic protocols for PD patients in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Teresa Esposito
- IRCCS Neuromed, Pozzilli, Italy.,Institute of Genetics and Biophysics, CNR, Naples, Italy
| |
Collapse
|
10
|
Fletcher EJR, Finlay CJ, Amor Lopez A, Crum WR, Vernon AC, Duty S. Neuroanatomical and Microglial Alterations in the Striatum of Levodopa-Treated, Dyskinetic Hemi-Parkinsonian Rats. Front Neurosci 2020; 14:567222. [PMID: 33041762 PMCID: PMC7522511 DOI: 10.3389/fnins.2020.567222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/17/2020] [Indexed: 02/02/2023] Open
Abstract
Dyskinesia associated with chronic levodopa treatment in Parkinson’s disease is associated with maladaptive striatal plasticity. The objective of this study was to examine whether macroscale structural changes, as captured by magnetic resonance imaging (MRI) accompany this plasticity and to identify plausible cellular contributors in a rodent model of levodopa-induced dyskinesia. Adult male Sprague-Dawley rats were rendered hemi-parkinsonian by stereotaxic injection of 6-hydroxydopamine into the left medial forebrain bundle prior to chronic treatment with saline (control) or levodopa to induce abnormal involuntary movements (AIMs), reflective of dyskinesia. Perfusion-fixed brains underwent ex vivo structural MRI before sectioning and staining for cellular markers. Chronic treatment with levodopa induced significant AIMs (p < 0.0001 versus saline). The absolute volume of the ipsilateral, lesioned striatum was increased in levodopa-treated rats resulting in a significant difference in percentage volume change when compared to saline-treated rats (p < 0.01). Moreover, a significant positive correlation was found between this volume change and AIMs scores for individual levodopa-treated rats (r = 0.96; p < 0.01). The density of Iba1+ cells was increased within the lesioned versus intact striatum (p < 0.01) with no difference between treatment groups. Conversely, Iba1+ microglia soma size was significantly increased (p < 0.01) in the lesioned striatum of levodopa-treated but not saline-treated rats. Soma size was not, however, significantly correlated with either AIMs or MRI volume change. Although GFAP+ astrocytes were elevated in the lesioned versus intact striatum (p < 0.001), there was no difference between treatment groups. No statistically significant effects of either lesion or treatment on RECA1, a marker for blood vessels, were observed. Collectively, these data suggest chronic levodopa treatment in 6-hydroxydopamine lesioned rats is associated with increased striatal volume that correlates with the development of AIMs. The accompanying increase in number and size of microglia, however, cannot alone explain this volume expansion. Further multi-modal studies are warranted to establish the brain-wide effects of chronic levodopa treatment.
Collapse
Affiliation(s)
- Edward J R Fletcher
- Wolfson Centre for Age Related Diseases, Wolfson Wing, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Clare J Finlay
- Wolfson Centre for Age Related Diseases, Wolfson Wing, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Ana Amor Lopez
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - William R Crum
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Susan Duty
- Wolfson Centre for Age Related Diseases, Wolfson Wing, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
11
|
Donzuso G, Agosta F, Canu E, Filippi M. MRI of Motor and Nonmotor Therapy-Induced Complications in Parkinson's Disease. Mov Disord 2020; 35:724-740. [PMID: 32181946 DOI: 10.1002/mds.28025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/28/2022] Open
Abstract
Levodopa therapy remains the most effective drug for the treatment of Parkinson's disease, and it is associated with the greatest improvement in motor function as assessed by the Unified Parkinson's Disease Rating Scale. Dopamine agonists have also proven their efficacy as monotherapy in early Parkinson's disease but also as adjunct therapy. However, the chronic use of dopaminergic therapy is associated with disabling motor and nonmotor side effects and complications, among which levodopa-induced dyskinesias and impulse control behaviors are the most common. The underlying mechanisms of these disorders are not fully understood. In the last decade, classic neuroimaging methods and more sophisticated techniques, such as analysis of gray-matter structural imaging and functional magnetic resonance imaging, have given access to anatomical and functional abnormalities, respectively, in the brain. This review presents an overview of structural and functional brain changes associated with motor and nonmotor therapy-induced complications in Parkinson's disease. Magnetic resonance imaging may offer structural and/or functional neuroimaging biomarkers that could be used as predictive signs of development, maintenance, and progression of these complications. Neurophysiological tools, such as theta burst stimulation and transcranial magnetic stimulation, might help us to integrate neuroimaging findings and clinical features and could be used as therapeutic options, translating neuroimaging data into clinical practice. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Giulia Donzuso
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Department "G.F. Ingrassia," Section of Neurosciences, University of Catania, Catania, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
12
|
Zhi Y, Wang M, Yuan YS, Shen YT, Ma KW, Gan CT, Si QQ, Wang LN, Cao SW, Zhang KZ. The increased gray matter volumes of precentral gyri in Parkinson's disease patients with diphasic dyskinesia. Aging (Albany NY) 2019; 11:9661-9671. [PMID: 31699957 PMCID: PMC6874449 DOI: 10.18632/aging.102412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/28/2019] [Indexed: 01/11/2023]
Abstract
Abnormal dopaminergic modulation of the cortico-basal ganglia motor loops results in the emergence of levodopa-induced dyskinesia (LID). We focused on alterations in the gray matter (GM) volume and the cortical thickness of the brain, especially in cortico-basal ganglia motor loops, in Parkinson’s disease (PD) with diphasic dyskinesia. 48 PD patients with diphasic dyskinesia, 60 PD patients without dyskinesia and 48 healthy controls (HC) were included. Voxel-based morphometry (VBM) was applied to get GM images from MRI brain images. FreeSurfer was used to get cortical thickness. Distinct analyses of covariance (ANCOVA) and linear contrasts were performed for early- and late-onset PD groups. The severity of diphasic dyskinesia was evaluated by the Unified Dyskinesia Rating Scale (UDysRS). Finally, the correlations between mean volumes of clusters showing differences and the UDysRS scores were performed by Pearson’s correlation. The GM volumes of precentral gyri were increased in PD patients with diphasic dyskinesia when compared with those without dyskinesia, which were positively correlated with UDysRS scores in PD patients with diphasic dyskinesia. However, there was no significant difference in cortical thickness among groups. The increased precentral gyri GM volumes might be associated with the pathogenesis and the severity of diphasic dyskinesia.
Collapse
Affiliation(s)
- Yan Zhi
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Min Wang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Yong-Sheng Yuan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Yu-Ting Shen
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Ke-Wei Ma
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Cai-Ting Gan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Qian-Qian Si
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Li-Na Wang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Sheng-Wu Cao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Ke-Zhong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| |
Collapse
|
13
|
Wood TC, Edye ME, Harte MK, Neill JC, Prinssen EP, Vernon AC. Mapping the impact of exposure to maternal immune activation on juvenile Wistar rat brain macro- and microstructure during early post-natal development. Brain Neurosci Adv 2019; 3:2398212819883086. [PMID: 31742236 PMCID: PMC6861131 DOI: 10.1177/2398212819883086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Maternal immune activation is consistently associated with elevated risk for multiple psychiatric disorders in the affected offspring. Related to this, an important goal of our work is to explore the impact of maternal immune activation effects across the lifespan. In this context, we recently reported the effects of polyriboinosinic-polyribocytidylic acid-induced maternal immune activation at gestational day 15, immediately prior to birth, at gestational day 21 and again at post-natal day 21, providing a systematic assessment of plasma interleukin 6, body temperature and weight alterations in pregnant rats and preliminary evidence for gross morphological changes and microglial neuropathology in both male and female offsprings at these time points. Here, we sought to complement and extend these data by characterising in more detail the mesoscale impact of gestational polyriboinosinic-polyribocytidylic acid exposure at gestational day 15 on the neuroanatomy of the juvenile (post-natal day 21) rat brain using high-resolution, ex vivo anatomical magnetic resonance imaging in combination with atlas-based segmentation. Our preliminary data suggest subtle neuroanatomical effects of gestational polyriboinosinic-polyribocytidylic acid exposure (n = 10) relative to saline controls (n = 10) at this time-point. Specifically, we found an increase in the relative volume of the diagonal domain in polyriboinosinic-polyribocytidylic acid offspring (p < 0.01 uncorrected), which just failed to pass stringent multiple comparisons correction (actual q = 0.07). No statistically significant microstructural alterations were detectable using diffusion tensor imaging. Further studies are required to map the proximal effects of maternal immune activation on the developing rodent brain from foetal to early post-natal life and confirm our findings herein.
Collapse
Affiliation(s)
- Tobias C Wood
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Michelle E Edye
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Michael K Harte
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Joanna C Neill
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Eric P Prinssen
- Roche Innovation Centre Basel, Grenzacherstrasse, Switzerland
| | - Anthony C Vernon
- Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,MRC Centre for Neurodevelopmental Disorders, Guy's Hospital Campus, King's College London, London, UK
| |
Collapse
|
14
|
Magnetic resonance imaging and tensor-based morphometry in the MPTP non-human primate model of Parkinson's disease. PLoS One 2017; 12:e0180733. [PMID: 28738061 PMCID: PMC5524324 DOI: 10.1371/journal.pone.0180733] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 06/20/2017] [Indexed: 12/30/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder producing a variety of motor and cognitive deficits with the causes remaining largely unknown. The gradual loss of the nigrostriatal pathway is currently considered the pivotal pathological event. To better understand the progression of PD and improve treatment management, defining the disease on a structural basis and expanding brain analysis to extra-nigral structures is indispensable. The anatomical complexity and the presence of neuromelanin, make the use of non-human primates an essential element in developing putative imaging biomarkers of PD. To this end, ex vivo T2-weighted magnetic resonance images were acquired from control and 1-methyl-4 phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated marmosets. Volume measurements of the caudate, putamen, and substantia nigra indicated significant atrophy and cortical thinning. Tensor-based morphometry provided a more extensive and hypothesis free assessment of widespread changes caused by the toxin insult to the brain, especially highlighting regional cortical atrophy. The results highlight the importance of developing imaging biomarkers of PD in non-human primate models considering their distinct neuroanatomy. It is essential to further develop these biomarkers in vivo to provide non-invasive tools to detect pre-symptomatic PD and to monitor potential disease altering therapeutics.
Collapse
|
15
|
Espadas-Alvarez AJ, Bannon MJ, Orozco-Barrios CE, Escobedo-Sanchez L, Ayala-Davila J, Reyes-Corona D, Soto-Rodriguez G, Escamilla-Rivera V, De Vizcaya-Ruiz A, Eugenia Gutierrez-Castillo M, Padilla-Viveros A, Martinez-Fong D. Regulation of human GDNF gene expression in nigral dopaminergic neurons using a new doxycycline-regulated NTS-polyplex nanoparticle system. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:1363-1375. [PMID: 28219741 DOI: 10.1016/j.nano.2017.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/24/2017] [Accepted: 02/03/2017] [Indexed: 01/02/2023]
Abstract
The human glial-cell derived neurotrophic factor (hGDNF) gene transfer by neurotensin (NTS)-polyplex nanoparticles functionally restores the dopamine nigrostriatal system in experimental Parkinson's disease models. However, high levels of sustained expression of GDNF eventually can cause harmful effects. Herein, we report an improved NTS-polyplex nanoparticle system that enables regulation of hGDNF expression within dopaminergic neurons. We constructed NTS-polyplex nanoparticles containing a single bifunctional plasmid that codes for the reverse tetracycline-controlled transactivator advanced (rtTA-Adv) under the control of NBRE3x promoter, and for hGDNF under the control of tetracycline-response element (TRE). Another bifunctional plasmid contained the enhanced green fluorescent protein (GFP) gene. Transient transfection experiments in N1E-115-Nurr1 cells showed that doxycycline (100 ng/mL) activates hGDNF and GFP expression. Doxycycline (5 mg/kg, i.p.) administration in rats activated hGDNF expression only in transfected dopaminergic neurons, whereas doxycycline withdrawal silenced transgene expression. Our results offer a specific doxycycline-regulated system suitable for nanomedicine-based treatment of Parkinson's disease.
Collapse
Affiliation(s)
| | - Michael J Bannon
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Carlos E Orozco-Barrios
- CONACYT - Medical Research Unit in Neurological Diseases, National Medical Center "Siglo XXI", IMSS, Mexico City, Mexico
| | | | - Jose Ayala-Davila
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV, Mexico City, Mexico
| | - David Reyes-Corona
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV, Mexico City, Mexico
| | | | | | | | | | - America Padilla-Viveros
- Knowledge transfer and commercialization office, the 3C agency, CINVESTAV, Mexico City, Mexico
| | - Daniel Martinez-Fong
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV, Mexico City, Mexico; PhD Program on Nanoscience and Nanotechnology (DNyN), CINVESTAV, Mexico City, Mexico.
| |
Collapse
|
16
|
Characterization of gray matter atrophy following 6-hydroxydopamine lesion of the nigrostriatal system. Neuroscience 2016; 334:166-179. [PMID: 27506141 DOI: 10.1016/j.neuroscience.2016.07.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The unilaterally-lesioned 6-hydroxydopamine (6-OHDA) rat is one of the most commonly used experimental models of Parkinson's disease (PD). Here we investigated whether magnetic resonance imaging (MRI) that is widely used in human PD research, has the potential to non-invasively detect macroscopic structural brain changes in the 6-OHDA rat in ways translatable to humans. METHODS We measured the gray matter (GM) composition in the unilateral 6-OHDA rat in comparison to sham animals using whole-brain voxel-based morphometry (VBM) - an unbiased MR image analysis technique. The number of nigral dopamine (DA) neurons and the density of their cortical projections were examined post-mortem using immunohistochemistry. RESULTS VBM revealed widespread bilateral changes in gray matter volume (GMV) on a topographic scale in the brains of 6-OHDA rats, compared to sham-operated rats. The greatest changes were in the lesioned hemisphere, which displayed reductions of GMV in motor, cingulate and somatosensory cortex. Histopathological results revealed dopaminergic cell loss in the substantia nigra (SN) and a denervation in the striatum, as well as in the frontal, somatosensory and cingulate cortices. CONCLUSION Unilateral nigrostriatal 6-OHDA lesioning leads to widespread GMV changes, which extend beyond the nigrostriatal system and resemble advanced Parkinsonism. This study highlights the potential of structural MRI, and VBM in particular, for the system-level phenotyping of rodent models of Parkinsonism and provides a methodological framework for future studies in novel rodent models as they become available to the research community.
Collapse
|
17
|
Morphometric changes in the reward system of Parkinson's disease patients with impulse control disorders. J Neurol 2015; 262:2653-61. [PMID: 26410743 DOI: 10.1007/s00415-015-7892-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/29/2015] [Accepted: 08/28/2015] [Indexed: 12/28/2022]
Abstract
Impulse control disorders (ICDs) occur in a subset of patients with Parkinson's disease (PD) who are receiving dopamine replacement therapy. In this study, we aimed to investigate structural abnormalities within the mesocortical and limbic cortices and subcortical structures in PD patients with ICDs. We studied 18 PD patients with ICDs, 18 PD patients without ICDs and a group of 24 age and sex-matched healthy controls. Cortical thickness (CTh) and subcortical nuclei volume analyses were carried out using the automated surface-based analysis package FreeSurfer (version 5.3.0). We found significant differences in MRI measures between the three groups. There was volume loss in the nucleus accumbens of both PD patients with ICDs and without ICDs compared to the control group. In addition, PD patients with ICDs showed significant atrophy in caudate, hippocampus and amygdala compared to the group of healthy controls. PD patients with ICDs had significant increased cortical thickness in rostral anterior cingulate cortex and frontal pole compared to PD patients without ICDs. Cortical thickness in rostral anterior cingulate and frontal pole was increased in PD patients with ICDs compared to the control group, but the differences failed to reach corrected levels of statistical significance. PD patients with ICDs showed increased cortical thickness in medial prefrontal regions. We speculate that these findings reflect either a pre-existing neural trait vulnerability to impulsivity or the expression of a maladaptive synaptic plasticity under non-physiological dopaminergic stimulation.
Collapse
|
18
|
Single-dose intravenous administration of antiepileptic drugs induces rapid and reversible remodeling in the brain: Evidence from a voxel-based morphometry evaluation of valproate and levetiracetam in rhesus monkeys. Neuroscience 2015. [DOI: 10.1016/j.neuroscience.2015.07.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
19
|
Bastide MF, Meissner WG, Picconi B, Fasano S, Fernagut PO, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko WKD, Simola N, Morelli M, Groc L, Rodriguez MC, Gurevich EV, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman AR, Kang UJ, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Prog Neurobiol 2015. [PMID: 26209473 DOI: 10.1016/j.pneurobio.2015.07.002] [Citation(s) in RCA: 350] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Involuntary movements, or dyskinesia, represent a debilitating complication of levodopa (L-dopa) therapy for Parkinson's disease (PD). L-dopa-induced dyskinesia (LID) are ultimately experienced by the vast majority of patients. In addition, psychiatric conditions often manifested as compulsive behaviours, are emerging as a serious problem in the management of L-dopa therapy. The present review attempts to provide an overview of our current understanding of dyskinesia and other L-dopa-induced dysfunctions, a field that dramatically evolved in the past twenty years. In view of the extensive literature on LID, there appeared a critical need to re-frame the concepts, to highlight the most suitable models, to review the central nervous system (CNS) circuitry that may be involved, and to propose a pathophysiological framework was timely and necessary. An updated review to clarify our understanding of LID and other L-dopa-related side effects was therefore timely and necessary. This review should help in the development of novel therapeutic strategies aimed at preventing the generation of dyskinetic symptoms.
Collapse
Affiliation(s)
- Matthieu F Bastide
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wassilios G Meissner
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | - Barbara Picconi
- Laboratory of Neurophysiology, Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - Stefania Fasano
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pierre-Olivier Fernagut
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michael Feyder
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Francardo
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Cristina Alcacer
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Yunmin Ding
- Department of Neurology, Columbia University, New York, USA
| | - Riccardo Brambilla
- Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gilberto Fisone
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre and National Parkinson Foundation Centre of Excellence, University of British Columbia, Vancouver, Canada
| | - Mathieu Bourdenx
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Michel Engeln
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Sylvia Navailles
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Philippe De Deurwaerdère
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Wai Kin D Ko
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - Nicola Simola
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuropsychopharmacology, Cagliari University, 09124 Cagliari, Italy
| | - Laurent Groc
- Univ. de Bordeaux, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France; CNRS, Institut Interdisciplinaire de neurosciences, UMR 5297, 33000 Bordeaux, France
| | - Maria-Cruz Rodriguez
- Department of Neurology, Hospital Universitario Donostia and Neuroscience Unit, Bio Donostia Research Institute, San Sebastian, Spain
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Maryka Quik
- Center for Health Sciences, SRI International, CA 94025, USA
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Manuela Mellone
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Fabrizio Gardoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20133 Milano, Italy
| | - Elisabetta Tronci
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - Dominique Guehl
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France
| | - François Tison
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Department of Neurology, University Hospital Bordeaux, France
| | | | - Un Jung Kang
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Kathy Steece-Collier
- Michigan State University, College of Human Medicine, Department of Translational Science and Molecular Medicine & The Udall Center of Excellence in Parkinson's Disease Research, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| | - Susan Fox
- Morton & Gloria Shulman Movement Disorders Center, Toronto Western Hospital, Toronto, Ontario M4T 2S8, Canada
| | - Manolo Carta
- Department of Biomedical Sciences, Physiology Section, Cagliari University, Cagliari, Italy
| | - M Angela Cenci
- Basal Ganglia Pathophysiology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Erwan Bézard
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000 Bordeaux, France; Motac Neuroscience Ltd, Manchester, UK.
| |
Collapse
|
20
|
Cerasa A, Koch G, Fasano A, Morgante F. Future scenarios for levodopa-induced dyskinesias in Parkinson's disease. Front Neurol 2015; 6:76. [PMID: 25883587 PMCID: PMC4381644 DOI: 10.3389/fneur.2015.00076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/19/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Giacomo Koch
- Laboratorio di Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS , Rome , Italy
| | - Alfonso Fasano
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Division of Neurology, Toronto Western Hospital, UHN, University of Toronto , Toronto, ON , Canada
| | - Francesca Morgante
- Dipartimento di Medicina Clinica e Sperimentale, Università di Messina , Messina , Italy
| |
Collapse
|
21
|
Campbell JC, Jeyamohan SB, Cruz PDL, Chen N, Shin D, Pilitsis JG. Place conditioning to apomorphine in rat models of Parkinson's disease: Differences by dose and side-effect expression. Behav Brain Res 2014; 275:114-9. [DOI: 10.1016/j.bbr.2014.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/11/2014] [Accepted: 09/01/2014] [Indexed: 12/27/2022]
|