1
|
Tan HT, Smith PF, Zheng Y. Time-dependent effects of acoustic trauma and tinnitus on extracellular levels of amino acids in the inferior colliculus of rats. Hear Res 2024; 443:108948. [PMID: 38219615 DOI: 10.1016/j.heares.2024.108948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/16/2024]
Abstract
Chronic tinnitus is a debilitating condition with very few management options. Acoustic trauma that causes tinnitus has been shown to induce neuronal hyperactivity in multiple brain areas in the auditory pathway, including the inferior colliculus. This neuronal hyperactivity could be attributed to an imbalance between excitatory and inhibitory neurotransmission. However, it is not clear how the levels of neurotransmitters, especially neurotransmitters in the extracellular space, change over time following acoustic trauma and the development of tinnitus. In the present study, a range of amino acids were measured in the inferior colliculus of rats during acoustic trauma as well as at 1 week and 5 months post-trauma using in vivo microdialysis and high-performance liquid chromatography. Amino acid levels in response to sound stimulation were also measured at 1 week and 5 months post-trauma. It was found that unilateral exposure to a 16 kHz pure tone at 115 dB SPL for 1 h caused immediate hearing loss in all the animals and chronic tinnitus in 58 % of the animals. Comparing to the sham condition, extracellular levels of GABA were significantly increased at both the acute and 1 week time points after acoustic trauma. However, there was no significant difference in any of the amino acid levels measured between sham, tinnitus positive and tinnitus negative animals at 5 months post-trauma. There was also no clear pattern in the relationship between neurochemical changes and sound frequency/acoustic trauma/tinnitus status, which might be due to the relatively poorer temporal resolution of the microdialysis compared to electrophysiological responses.
Collapse
Affiliation(s)
- Huey Tieng Tan
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Eisdell Moore Centre for Research on Hearing and Balance Disorders, University of Auckland, New Zealand
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Eisdell Moore Centre for Research on Hearing and Balance Disorders, University of Auckland, New Zealand
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Eisdell Moore Centre for Research on Hearing and Balance Disorders, University of Auckland, New Zealand.
| |
Collapse
|
2
|
Mavedatnia D, Levin M, Lee JW, Hamour AF, Dizon K, Le T. Cannabis use amongst tinnitus patients: consumption patterns and attitudes. J Otolaryngol Head Neck Surg 2023; 52:19. [PMID: 36823672 PMCID: PMC9951523 DOI: 10.1186/s40463-022-00603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/20/2022] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Tinnitus has a significant impact on quality of life and causes considerable psychological distress. Cannabis is known to modulate neuron hyperexcitability, provide protection against auditory damage, and has been used for treatment for many diseases which have physiological similarities with tinnitus. The objective of this study was to survey patients presenting with tinnitus regarding their perspectives and usage patterns of cannabis. METHODS Patients with a primary presenting complaint of tinnitus in a tertiary neuro-otology clinic completed a 18-item questionnaire assessing perception, attitudes, and cannabis usage patterns. RESULTS Forty five patients completed the survey (mean age: 54.5 years, 31 females and 14 males). Overall, 96% of patients reported that they would consider cannabis as treatment for their tinnitus. Patients considered cannabis use for auditory symptoms (91%), and symptoms related to their tinnitus, such as emotional complaints (60%), sleep disturbances (64%), and functional disturbances (56%). 36% of patients had previously used cannabis and 22% of patients reported cannabis use at the time of the study. 80% of patients that were actively using cannabis reported that it helped with tinnitus-related symptoms, such as dizziness, anxiety, bodily pain, and sleep disturbances. Most patients would prefer to use edibles (62%), tablet (58%) and cream (47%) formulations of cannabis. Patients were concerned about the cost (29%), potential physical health implications (53%) and psychosocial side effects (60%) of cannabis. Over half of patients learned about cannabis from a friend or family member and only 22% of patients learned about cannabis from a physician or nurse. CONCLUSION Cannabis use is common amongst patients with tinnitus and current users of cannabis reported that it helped with their symptoms. Most patients would consider its use as a potential treatment to alleviate their tinnitus-related symptoms and are interested in learning more regarding its use. By understanding how cannabis is perceived by tinnitus patients, healthcare providers can provide appropriate patient education.
Collapse
Affiliation(s)
- Dorsa Mavedatnia
- grid.28046.380000 0001 2182 2255Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| | - Marc Levin
- grid.17063.330000 0001 2157 2938Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, ON Canada
| | - Jong Wook Lee
- grid.17063.330000 0001 2157 2938Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, ON Canada
| | - Amr F. Hamour
- grid.17063.330000 0001 2157 2938Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, ON Canada
| | - Kaye Dizon
- grid.413104.30000 0000 9743 1587Sunnybrook Health Sciences Center, Toronto, ON Canada
| | - Trung Le
- Department of Otolaryngology - Head and Neck Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Guerra J, Naidoo V, Cacabelos R. Potential effects of cannabinoids on audiovestibular function: A narrative review. Front Pharmacol 2022; 13:1010296. [PMID: 36605398 PMCID: PMC9807921 DOI: 10.3389/fphar.2022.1010296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
The growing interest in the development of drugs that target the endocannabinoid system has extended to conditions that affect the audiovestibular pathway. The expression of cannabinoid (CB) receptors in that pathway has been widely demonstrated, indicating a therapeutic potential for drug development at this level. These medications may be beneficial for conditions such as noise-induced hearing loss, ototoxicity, or various forms of vertigo of central or peripheral origin. The therapeutic targets of interest include natural or synthetic compounds that act as CB1/CB2 receptor agonists/antagonists, and inhibitors of the endocannabinoid-degrading enzymes FAAH and MAGL. Furthermore, genetic variations implicated in the response to treatment and the development of related disorders such as epilepsy or migraine have been identified. Direct methods of administering these medications should be examined beyond the systemic strategy.
Collapse
Affiliation(s)
- Joaquin Guerra
- Neuro-Otolaryngology Unit, EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Bergondo, Corunna, Spain,*Correspondence: Joaquin Guerra,
| | - Vinogran Naidoo
- Department of Neuroscience, International Center of Neuroscience and Genomic Medicine, EuroEspes Biomedical Research Center, Bergondo, Corunna, Spain
| | - Ramon Cacabelos
- Genomic Medicine, EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, Bergondo, Corunna, Spain
| |
Collapse
|
4
|
Barth SW, Lehner MD, Dietz GPH, Schulze H. Pharmacologic treatments in preclinical tinnitus models with special focus on Ginkgo biloba leaf extract EGb 761®. Mol Cell Neurosci 2021; 116:103669. [PMID: 34560255 DOI: 10.1016/j.mcn.2021.103669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/26/2021] [Accepted: 09/17/2021] [Indexed: 02/09/2023] Open
Abstract
Tinnitus is defined as the perception of sound in the absence of external acoustic stimuli. Frequent comorbidities or associated factors are depression, anxiety, concentration problems, insomnia, resignation, helplessness, headache, bruxism, or social isolation, just to name a few. Although many therapeutic approaches have already been tested with varying success, there still is no cure available for tinnitus. The search for an effective treatment has been hampered by the fact that the mechanisms of tinnitus development are still not fully understood, although several models are available and discussed in this review. Our review will give a brief overview about preclinical models, presenting the heterogeneity of tinnitus sub-types depending on the different inner ear and brain structures involved in tinnitus etiology and pathogenesis. Based on these models we introduce the different target structures and transmitter systems implicated in tinnitus development and provide an extensive overview on preclinical drug-based therapeutic approaches that have been explored in various animal models. As the special extract from Ginkgo biloba leaves EGb 761® has been the most widely tested drug in both non-clinical tinnitus models as well as in clinical trials, a special focus will be given to EGb 761®. The efficacy of terpene lactones, flavone glycosides and proanthocyanidines with their distinct contribution to the overall efficacy profile of the multi-constituent drug EGb 761® will be discussed.
Collapse
Affiliation(s)
- Stephan W Barth
- Department of Global Medical Affairs, Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany.
| | - Martin D Lehner
- Department of Preclinical Research & Development, Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany.
| | - Gunnar P H Dietz
- Department of Global Medical Affairs, Dr. Willmar Schwabe GmbH & Co. KG, Karlsruhe, Germany.
| | - Holger Schulze
- Experimental Otolaryngology, ENT-Hospital, Head and Neck Surgery, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
5
|
Ghosh S, Stansak K, Walters BJ. Cannabinoid Signaling in Auditory Function and Development. Front Mol Neurosci 2021; 14:678510. [PMID: 34079440 PMCID: PMC8165240 DOI: 10.3389/fnmol.2021.678510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022] Open
Abstract
Plants of the genus Cannabis have been used by humans for millennia for a variety of purposes. Perhaps most notable is the use of certain Cannabis strains for their psychoactive effects. More recently, several biologically active molecules within the plants of these Cannabis strains, called phytocannabinoids or simply cannabinoids, have been identified. Furthermore, within human cells, endogenous cannabinoids, or endocannabinoids, as well as the receptors and secondary messengers that give rise to their neuromodulatory effects, have also been characterized. This endocannabinoid system (ECS) is composed of two primary ligands-anandamide and 2-arachidonyl glycerol; two primary receptors-cannabinoid receptors 1 and 2; and several enzymes involved in biosynthesis and degradation of endocannabinoid ligands including diacylglycerol lipase (DAGL) and monoacylglycerol lipase (MAGL). Here we briefly summarize cannabinoid signaling and review what has been discerned to date with regard to cannabinoid signaling in the auditory system and its roles in normal physiological function as well as pathological conditions. While much has been uncovered regarding cannabinoid signaling in the central nervous system, less attention has been paid to the auditory system specifically. Still, evidence is emerging to suggest that cannabinoid signaling is critical for the development, maturation, function, and survival of cochlear hair cells (HCs) and spiral ganglion neurons (SGNs). Furthermore, cannabinoid signaling can have profound effects on synaptic connectivity in CNS structures related to auditory processing. While clinical cases demonstrate that endogenous and exogenous cannabinoids impact auditory function, this review highlights several areas, such as SGN development, where more research is warranted.
Collapse
Affiliation(s)
- Sumana Ghosh
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Kendra Stansak
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Bradley J Walters
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States.,Department of Otolaryngology-Head and Neck Surgery, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
6
|
Colón-Cruz L, Rodriguez-Morales R, Santana-Cruz A, Cantres-Velez J, Torrado-Tapias A, Lin SJ, Yudowski G, Kensler R, Marie B, Burgess SM, Renaud O, Varshney GK, Behra M. Cnr2 Is Important for Ribbon Synapse Maturation and Function in Hair Cells and Photoreceptors. Front Mol Neurosci 2021; 14:624265. [PMID: 33958989 PMCID: PMC8093779 DOI: 10.3389/fnmol.2021.624265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/24/2021] [Indexed: 02/04/2023] Open
Abstract
The role of the cannabinoid receptor 2 (CNR2) is still poorly described in sensory epithelia. We found strong cnr2 expression in hair cells (HCs) of the inner ear and the lateral line (LL), a superficial sensory structure in fish. Next, we demonstrated that sensory synapses in HCs were severely perturbed in larvae lacking cnr2. Appearance and distribution of presynaptic ribbons and calcium channels (Cav1.3) were profoundly altered in mutant animals. Clustering of membrane-associated guanylate kinase (MAGUK) in post-synaptic densities (PSDs) was also heavily affected, suggesting a role for cnr2 for maintaining the sensory synapse. Furthermore, vesicular trafficking in HCs was strongly perturbed suggesting a retrograde action of the endocannabinoid system (ECs) via cnr2 that was modulating HC mechanotransduction. We found similar perturbations in retinal ribbon synapses. Finally, we showed that larval swimming behaviors after sound and light stimulations were significantly different in mutant animals. Thus, we propose that cnr2 is critical for the processing of sensory information in the developing larva.
Collapse
Affiliation(s)
- Luis Colón-Cruz
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Roberto Rodriguez-Morales
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Alexis Santana-Cruz
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Juan Cantres-Velez
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Aranza Torrado-Tapias
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Guillermo Yudowski
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico.,School of Medicine, Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico
| | - Robert Kensler
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Bruno Marie
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico.,School of Medicine, Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico
| | - Shawn M Burgess
- Developmental Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Olivier Renaud
- Cell and Tissue Imaging Facility (PICT-IBiSA, FranceBioImaging), Institut Curie, PSL Research University, U934/UMR3215, Paris, France
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Martine Behra
- Department of Anatomy and Neurobiology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| |
Collapse
|
7
|
Metabolic changes in the brain and blood of rats following acoustic trauma, tinnitus and hyperacusis. PROGRESS IN BRAIN RESEARCH 2021; 262:399-430. [PMID: 33931189 DOI: 10.1016/bs.pbr.2020.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
It has been increasingly recognized that tinnitus is likely to be generated by complex network changes. Acoustic trauma that causes tinnitus induces significant changes in multiple metabolic pathways in the brain. However, it is not clear whether those metabolic changes in the brain could also be reflected in blood samples and whether metabolic changes could discriminate acoustic trauma, hyperacusis and tinnitus. We analyzed brain and serum metabolic changes in rats following acoustic trauma or a sham procedure using metabolomics. Hearing levels were recorded before and after acoustic trauma and behavioral measures to quantify tinnitus and hyperacusis were conducted at 4 weeks following acoustic trauma. Tissues from 11 different brain regions and serum samples were collected at about 3 months following acoustic trauma. Among the acoustic trauma animals, eight exhibited hyperacusis-like behavior and three exhibited tinnitus-like behavior. Using Gas chromatography-mass spectrometry and multivariate statistical analysis, significant metabolic changes were found in acoustic trauma animals in both the brain and serum samples with a number of metabolic pathways significantly perturbated. Furthermore, metabolic changes in the serum were able to differentiate sham from acoustic trauma animals, as well as sham from hyperacusis animals, with high accuracy. Our results suggest that serum metabolic profiling in combination with machine learning analysis may be a promising approach for identifying biomarkers for acoustic trauma, hyperacusis and potentially, tinnitus.
Collapse
|
8
|
Narwani V, Bourdillon A, Nalamada K, Manes RP, Hildrew DM. Does cannabis alleviate tinnitus? A review of the current literature. Laryngoscope Investig Otolaryngol 2020; 5:1147-1155. [PMID: 33364406 PMCID: PMC7752070 DOI: 10.1002/lio2.479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Endocannabinoid pathways have been proposed to affect the underlying pathophysiology of tinnitus. The aim of this study is to evaluate the scope and findings of existing literature on the relationship between cannabis and cannabinoid pathways and tinnitus. METHODS We conducted a review of animal, clinical and survey studies investigating the relationship between the use of cannabis-derived agents and tinnitus. Using pertinent keywords and MeSH terms on PubMed, relevant studies were identified, yielding four animal studies, two large cross-sectional survey studies, one clinical cross-over study, and one case report. RESULTS Animal studies revealed that cannabinoid receptor expression in the cochlear nucleus varied with tinnitus symptomatology and the use of cannabinoid agents either increased or had no effect on tinnitus-related behavior. Survey studies yielded conflicting results between cannabis use and tinnitus in the general population. Clinical data is largely lacking, although a small cohort study showed a dose-dependent relationship between tetrahydrocannabinol consumption and frequency of tinnitus episodes in patients receiving treatment for cancer. CONCLUSION While animal studies have revealed that cannabinoid receptors likely have a role in modulating auditory signaling, there is no compelling data either from animal or human studies for the use of cannabinoids to alleviate tinnitus. Further research is necessary to elucidate their precise role to guide development of therapeutic interventions. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
- Vishal Narwani
- Division of Otolaryngology – Head and Neck Surgery, Department of SurgeryYale University School of MedicineNew HavenConnecticutUSA
| | | | - Keerthana Nalamada
- Department of NeurologyUniversity of ConnecticutFarmingtonConnecticutUSA
| | - R. Peter Manes
- Division of Otolaryngology – Head and Neck Surgery, Department of SurgeryYale University School of MedicineNew HavenConnecticutUSA
| | - Douglas M. Hildrew
- Division of Otolaryngology – Head and Neck Surgery, Department of SurgeryYale University School of MedicineNew HavenConnecticutUSA
- Division of Otolaryngology – Head and Neck Surgery, Department of SurgeryVA Connecticut Healthcare SystemWest HavenConnecticutUSA
| |
Collapse
|
9
|
Domarecka E, Olze H, Szczepek AJ. Auditory Brainstem Responses (ABR) of Rats during Experimentally Induced Tinnitus: Literature Review. Brain Sci 2020; 10:brainsci10120901. [PMID: 33255266 PMCID: PMC7760291 DOI: 10.3390/brainsci10120901] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 12/31/2022] Open
Abstract
Tinnitus is a subjective phantom sound perceived only by the affected person and a symptom of various auditory and non-auditory conditions. The majority of methods used in clinical and basic research for tinnitus diagnosis are subjective. To better understand tinnitus-associated changes in the auditory system, an objective technique measuring auditory sensitivity-the auditory brainstem responses (ABR)-has been suggested. Therefore, the present review aimed to summarize ABR's features in a rat model during experimentally induced tinnitus. PubMed, Web of Science, Science Direct, and Scopus databanks were searched using Medical Subject Heading (MeSH) terms: auditory brainstem response, tinnitus, rat. The search identified 344 articles, and 36 of them were selected for the full-text analyses. The experimental protocols and results were evaluated, and the gained knowledge was synthesized. A high level of heterogeneity between the studies was found regarding all assessed areas. The most consistent finding of all studies was a reduction in the ABR wave I amplitude following exposure to noise and salicylate. Simultaneously, animals with salicylate-induced but not noise-induced tinnitus had an increased amplitude of wave IV. Furthermore, the present study identified a need to develop a consensus experimental ABR protocol applied in future tinnitus studies using the rat model.
Collapse
Affiliation(s)
- Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (E.D.); (H.O.)
| | - Heidi Olze
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (E.D.); (H.O.)
| | - Agnieszka J. Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (E.D.); (H.O.)
- Faculty of Medicine and Health Sciences, University of Zielona Gora, 65-046 Zielona Gora, Poland
- Correspondence:
| |
Collapse
|
10
|
Perin P, Mabou Tagne A, Enrico P, Marino F, Cosentino M, Pizzala R, Boselli C. Cannabinoids, Inner Ear, Hearing, and Tinnitus: A Neuroimmunological Perspective. Front Neurol 2020; 11:505995. [PMID: 33329293 PMCID: PMC7719758 DOI: 10.3389/fneur.2020.505995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 08/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cannabis has been used for centuries for recreational and therapeutic purposes. Whereas, the recreative uses are based on the psychotropic effect of some of its compounds, its therapeutic effects range over a wide spectrum of actions, most of which target the brain or the immune system. Several studies have found cannabinoid receptors in the auditory system, both at peripheral and central levels, thus raising the interest in cannabinoid signaling in hearing, and especially in tinnitus, which is affected also by anxiety, memory, and attention circuits where cannabinoid effects are well described. Available studies on animal models of tinnitus suggest that cannabinoids are not likely to be helpful in tinnitus treatment and could even be harmful. However, the pharmacology of cannabinoids is very complex, and most studies focused on neural CB1R-based responses. Cannabinoid effects on the immune system (where CB2Rs predominate) are increasingly recognized as essential in understanding nervous system pathological responses, and data on immune cannabinoid targets have emerged in the auditory system as well. In addition, nonclassical cannabinoid targets (such as TRP channels) appear to play an important role in the auditory system as well. This review will focus on neuroimmunological mechanisms for cannabinoid effects and their possible use as protective and therapeutic agents in the ear and auditory system, especially in tinnitus.
Collapse
Affiliation(s)
- Paola Perin
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | | | | | | | | | - Roberto Pizzala
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
11
|
Qian ZJ, Alyono JC. An association between marijuana use and tinnitus. Am J Otolaryngol 2020; 41:102314. [PMID: 31732310 DOI: 10.1016/j.amjoto.2019.102314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE While some advocates have argued for marijuana as a treatment for tinnitus, the relationship between marijuana use and tinnitus is unknown. The objective of this study was to evaluate associations between marijuana use and the prevalence, severity, and rate of occurrence of tinnitus. STUDY DESIGN Cross-sectional analysis of nationally representative data. SETTING National Health and Nutrition Examination Survey 2011-2012. SUBJECTS AND METHODS Statistical analysis was performed on data collected from 2705 non-institutionalized adults aged 20-69 who underwent audiometric testing and were administered questionnaires about hearing, drug use, current health status, and medical history. RESULTS The use of marijuana at least once per month for the previous 12 months was significantly associated with experiencing tinnitus during that 12-month month (X2(1) = 19.41, p < 0.001). Subjects who used marijuana were more likely to experience tinnitus after accounting for covariables including age, gender, audiometric hearing loss, noise exposure history, depression, anxiety, smoking, salicylate use, cardiovascular disease, hypertension, and diabetes (OR = 1.75, 95% CI 1.02-3.01, p = 0.043). There were no associations between the severity or frequency of tinnitus occurrence and the quantity or frequency of marijuana use. Use of other substances such as alcohol, cocaine, methamphetamine, and heroin was not associated with tinnitus. CONCLUSION Regular marijuana use is associated with prevalent tinnitus. However, no dose response between marijuana use and tinnitus was observed. The relationship between marijuana use and tinnitus is complex and is likely modulated by psychosocial factors.
Collapse
|
12
|
Zheng Y, McTavish J, Smith PF. Pharmacological Evaluation of Drugs in Animal Models of Tinnitus. Curr Top Behav Neurosci 2020; 51:51-82. [PMID: 33590458 DOI: 10.1007/7854_2020_212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the pressing need for effective drug treatments for tinnitus, currently, there is no single drug that is approved by the FDA for this purpose. Instead, a wide range of unproven over-the-counter tinnitus remedies are available on the market with little or no benefit for tinnitus but with potential harm and adverse effects. Animal models of tinnitus have played a critical role in exploring the pathophysiology of tinnitus, identifying therapeutic targets and evaluating novel and existing drugs for tinnitus treatment. This review summarises and compares the studies on pharmacological evaluation of tinnitus treatment in different animal models based on the pharmacological properties of the drug and provides insights into future directions for tinnitus drug discovery.
Collapse
Affiliation(s)
- Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand. .,Brain Research New Zealand, Auckland, New Zealand. .,Brain Health Research Centre, University of Otago, Dunedin, New Zealand. .,Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand.
| | - Jessica McTavish
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand, Auckland, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Research New Zealand, Auckland, New Zealand.,Brain Health Research Centre, University of Otago, Dunedin, New Zealand.,Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Valentino WL, McKinnon BJ. What is the evidence for cannabis use in otolaryngology?: A narrative review. Am J Otolaryngol 2019; 40:770-775. [PMID: 31174932 DOI: 10.1016/j.amjoto.2019.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Review of the English literature for all studies involving cannabis and Otolaryngology. METHODS PubMed was searched using a combination of the terms cannabis, marijuana, otolaryngology, hearing, tinnitus, vestibular, rhinology, sinusitis, laryngology, voice, airway, head and neck, head and neck cancer, facial trauma, spasm, pediatric otolaryngology, sleep medicine, obstructive sleep apnea, and other variations. Literature included in the review provided substantive research on cannabis in Otolaryngology. RESULTS Seventy-nine unique publications were found in the literature. The majority were published in the last decade and pertain to the subspecialty of Head and Neck; specifically, its association with incident cancers. A small number of studies exist that suggest cannabis may be a useful therapy for Otolaryngological patients suffering from blepharospasm, the effects of radiation, and the psychological sequelae of receiving a cancer diagnosis. CONCLUSION Further research is required to determine the potential therapeutic roles and adverse effects of cannabis on conditions related to Otolaryngology. This study serves the Otolaryngological researcher with the most current, comprehensive literature review for the exploration into possible projects to undertake.
Collapse
Affiliation(s)
| | - Brian J McKinnon
- Department of Otolaryngology - Head and Neck Surgery, Department of Neurosurgery, Drexel University College of Medicine, United States of America.
| |
Collapse
|
14
|
Enhancement of Endocannabinoid-dependent Depolarization-induced Suppression of Excitation in Glycinergic Neurons by Prolonged Exposure to High Doses of Salicylate. Neuroscience 2018; 376:72-79. [DOI: 10.1016/j.neuroscience.2018.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 01/14/2023]
|
15
|
Smith PF. A Guerilla Guide to Common Problems in 'Neurostatistics': Essential Statistical Topics in Neuroscience. JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2017; 16:R1-R12. [PMID: 29371855 PMCID: PMC5777851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
Effective inferential statistical analysis is essential for high quality studies in neuroscience. However, recently, neuroscience has been criticised for the poor use of experimental design and statistical analysis. Many of the statistical issues confronting neuroscience are similar to other areas of biology; however, there are some that occur more regularly in neuroscience studies. This review attempts to provide a succinct overview of some of the major issues that arise commonly in the analyses of neuroscience data. These include: the non-normal distribution of the data; inequality of variance between groups; extensive correlation in data for repeated measurements across time or space; excessive multiple testing; inadequate statistical power due to small sample sizes; pseudo-replication; and an over-emphasis on binary conclusions about statistical significance as opposed to effect sizes. Statistical analysis should be viewed as just another neuroscience tool, which is critical to the final outcome of the study. Therefore, it needs to be done well and it is a good idea to be proactive and seek help early, preferably before the study even begins.
Collapse
Affiliation(s)
- Paul F. Smith
- Dept. of Pharmacology and Toxicology, School of Biomedical Sciences, and Brain Health Research Centre, University of Otago, Dunedin, New Zealand, Brain Research New Zealand Centre of Research Excellence, and the Eisdell Moore Centre for Hearing and Balance Research, University of Auckland
| |
Collapse
|
16
|
Berger JI, Coomber B, Hill S, Alexander SPH, Owen W, Palmer AR, Wallace MN. Effects of the cannabinoid CB 1 agonist ACEA on salicylate ototoxicity, hyperacusis and tinnitus in guinea pigs. Hear Res 2017; 356:51-62. [PMID: 29108871 PMCID: PMC5714060 DOI: 10.1016/j.heares.2017.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/09/2017] [Accepted: 10/30/2017] [Indexed: 11/25/2022]
Abstract
Cannabinoids have been suggested as a therapeutic target for a variety of brain disorders. Despite the presence of their receptors throughout the auditory system, little is known about how cannabinoids affect auditory function. We sought to determine whether administration of arachidonyl-2′-chloroethylamide (ACEA), a highly-selective CB1 agonist, could attenuate a variety of auditory effects caused by prior administration of salicylate, and potentially treat tinnitus. We recorded cortical resting-state activity, auditory-evoked cortical activity and auditory brainstem responses (ABRs), from chronically-implanted awake guinea pigs, before and after salicylate + ACEA. Salicylate-induced reductions in click-evoked ABR amplitudes were smaller in the presence of ACEA, suggesting that the ototoxic effects of salicylate were less severe. ACEA also abolished salicylate-induced changes in cortical alpha band (6–10 Hz) oscillatory activity. However, salicylate-induced increases in cortical evoked activity (suggestive of the presence of hyperacusis) were still present with salicylate + ACEA. ACEA administered alone did not induce significant changes in either ABR amplitudes or oscillatory activity, but did increase cortical evoked potentials. Furthermore, in two separate groups of non-implanted animals, we found no evidence that ACEA could reverse behavioural identification of salicylate- or noise-induced tinnitus. Together, these data suggest that while ACEA may be potentially otoprotective, selective CB1 agonists are not effective in diminishing the presence of tinnitus or hyperacusis. CB1 agonist (ACEA) effects were assessed in awake guinea pigs following salicylate. Salicylate-induced decreases in brainstem response amplitudes were tempered by ACEA. Decreases in alpha band oscillations were not evident following salicylate + ACEA. ACEA did not eliminate salicylate-induced increases in cortical evoked potentials. ACEA failed to prevent or reverse salicylate- or noise-induced tinnitus behaviour.
Collapse
Affiliation(s)
- Joel I Berger
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom.
| | - Ben Coomber
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Samantha Hill
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Steve P H Alexander
- School of Life Sciences, Medical School, The University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - William Owen
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Alan R Palmer
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Mark N Wallace
- Medical Research Council Institute of Hearing Research, School of Medicine, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
17
|
Thijssen S, Rashid B, Gopal S, Nyalakanti P, Calhoun VD, Kiehl KA. Regular cannabis and alcohol use is associated with resting-state time course power spectra in incarcerated adolescents. Drug Alcohol Depend 2017; 178:492-500. [PMID: 28715777 PMCID: PMC5561725 DOI: 10.1016/j.drugalcdep.2017.05.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 05/31/2017] [Accepted: 05/31/2017] [Indexed: 12/24/2022]
Abstract
Cannabis and alcohol are believed to have widespread effects on the brain. Although adolescents are at increased risk for substance use, the adolescent brain may also be particularly vulnerable to the effects of drug exposure due to its rapid maturation. Here, we examined the association between cannabis and alcohol use duration and resting-state functional connectivity in a large sample of male juvenile delinquents. The present sample was drawn from the Southwest Advanced Neuroimaging Cohort, Youth sample, and from a youth detention facility in Wisconsin. All participants were scanned at the maximum-security facilities using The Mind Research Network's 1.5T Avanto SQ Mobile MRI scanner. Information on cannabis and alcohol regular use duration was collected using self-report. Resting-state networks were computed using group independent component analysis in 201 participants. Associations with cannabis and alcohol use were assessed using Mancova analyses controlling for age, IQ, smoking and psychopathy scores in the complete case sample of 180 male juvenile delinquents. No associations between alcohol or cannabis use and network spatial maps were found. Longer cannabis use was associated with decreased low frequency power of the default mode network, the executive control networks (ECNs), and several sensory networks, and with decreased functional network connectivity. Duration of alcohol use was associated with decreased low frequency power of the right frontoparietal network, salience network, dorsal attention network, and several sensory networks. Our findings suggest that adolescent cannabis and alcohol use are associated with widespread differences in resting-state time course power spectra, which may persist even after abstinence.
Collapse
Affiliation(s)
- Sandra Thijssen
- School of Pedagogical and Educational Sciences, Erasmus University of Rotterdam, The Netherlands; Center for Child and Family Studies, Leiden University, The Netherlands
| | - Barnaly Rashid
- The Mind Research Network, Albuquerque, NM, USA; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Shruti Gopal
- The Mind Research Network, Albuquerque, NM, USA; Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, NY, USA
| | | | - Vince D Calhoun
- The Mind Research Network, Albuquerque, NM, USA; Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA; Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, NY, USA
| | - Kent A Kiehl
- The Mind Research Network, Albuquerque, NM, USA; Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM, USA; Departments of Psychology, Neuroscience, and Law, University Of New Mexico, Albuquerque, NM, United States.
| |
Collapse
|
18
|
He J, Zhu Y, Aa J, Smith PF, De Ridder D, Wang G, Zheng Y. Brain Metabolic Changes in Rats following Acoustic Trauma. Front Neurosci 2017; 11:148. [PMID: 28392756 PMCID: PMC5364180 DOI: 10.3389/fnins.2017.00148] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/09/2017] [Indexed: 12/14/2022] Open
Abstract
Acoustic trauma is the most common cause of hearing loss and tinnitus in humans. However, the impact of acoustic trauma on system biology is not fully understood. It has been increasingly recognized that tinnitus caused by acoustic trauma is unlikely to be generated by a single pathological source, but rather a complex network of changes involving not only the auditory system but also systems related to memory, emotion and stress. One obvious and significant gap in tinnitus research is a lack of biomarkers that reflect the consequences of this interactive "tinnitus-causing" network. In this study, we made the first attempt to analyse brain metabolic changes in rats following acoustic trauma using metabolomics, as a pilot study prior to directly linking metabolic changes to tinnitus. Metabolites in 12 different brain regions collected from either sham or acoustic trauma animals were profiled using a gas chromatography mass spectrometry (GC/MS)-based metabolomics platform. After deconvolution of mass spectra and identification of the molecules, the metabolomic data were processed using multivariate statistical analysis. Principal component analysis showed that metabolic patterns varied among different brain regions; however, brain regions with similar functions had a similar metabolite composition. Acoustic trauma did not change the metabolite clusters in these regions. When analyzed within each brain region using the orthogonal projection to latent structures discriminant analysis sub-model, 17 molecules showed distinct separation between control and acoustic trauma groups in the auditory cortex, inferior colliculus, superior colliculus, vestibular nucleus complex (VNC), and cerebellum. Further metabolic pathway impact analysis and the enrichment overview with network analysis suggested the primary involvement of amino acid metabolism, including the alanine, aspartate and glutamate metabolic pathways, the arginine and proline metabolic pathways and the purine metabolic pathway. Our results provide the first metabolomics evidence that acoustic trauma can induce changes in multiple metabolic pathways. This pilot study also suggests that the metabolomic approach has the potential to identify acoustic trauma-specific metabolic shifts in future studies where metabolic changes are correlated with the animal's tinnitus status.
Collapse
Affiliation(s)
- Jun He
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, Jiangsu, China
| | - Yejin Zhu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, Jiangsu, China
| | - Jiye Aa
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, Jiangsu, China
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of OtagoDunedin, New Zealand; Brain Health Research Centre, University of OtagoDunedin, New Zealand; Brain Research New ZealandDunedin, New Zealand; Eisdell Moore Centre for Hearing and Balance Research, University of AucklandAuckland, New Zealand
| | - Dirk De Ridder
- Brain Health Research Centre, University of OtagoDunedin, New Zealand; Brain Research New ZealandDunedin, New Zealand; Eisdell Moore Centre for Hearing and Balance Research, University of AucklandAuckland, New Zealand; Department of Neurosurgery, Dunedin Medical School, University of OtagoOtago, New Zealand
| | - Guangji Wang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University Nanjing, Jiangsu, China
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of OtagoDunedin, New Zealand; Brain Health Research Centre, University of OtagoDunedin, New Zealand; Brain Research New ZealandDunedin, New Zealand; Eisdell Moore Centre for Hearing and Balance Research, University of AucklandAuckland, New Zealand
| |
Collapse
|
19
|
Zugaib J, Leão RM. Inhibitors of oxidative and hydrolytic endocannabinoid degradation do not enhance depolarization-induced suppression of excitation on dorsal cochlear nucleus glycinergic neurons. Synapse 2017; 71. [DOI: 10.1002/syn.21954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/07/2016] [Accepted: 12/07/2016] [Indexed: 12/27/2022]
Affiliation(s)
- João Zugaib
- Department of Physiology, School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto, São Paulo Brazil
- Research Group on the Dynamics of the Neuromusculoskeletal System, Bahiana School of Medicine and Public Health; Salvador Bahia Brazil
| | - Ricardo M. Leão
- Department of Physiology, School of Medicine of Ribeirão Preto; University of São Paulo; Ribeirão Preto, São Paulo Brazil
| |
Collapse
|
20
|
Pace E, Luo H, Bobian M, Panekkad A, Zhang X, Zhang H, Zhang J. A Conditioned Behavioral Paradigm for Assessing Onset and Lasting Tinnitus in Rats. PLoS One 2016; 11:e0166346. [PMID: 27835697 PMCID: PMC5105995 DOI: 10.1371/journal.pone.0166346] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/27/2016] [Indexed: 01/19/2023] Open
Abstract
Numerous behavioral paradigms have been developed to assess tinnitus-like behavior in animals. Nevertheless, they are often limited by prolonged training requirements, as well as an inability to simultaneously assess onset and lasting tinnitus behavior, tinnitus pitch or duration, or tinnitus presence without grouping data from multiple animals or testing sessions. To enhance behavioral testing of tinnitus, we developed a conditioned licking suppression paradigm to determine the pitch(s) of both onset and lasting tinnitus-like behavior within individual animals. Rats learned to lick water during broadband or narrowband noises, and to suppress licking to avoid footshocks during silence. After noise exposure, rats significantly increased licking during silent trials, suggesting onset tinnitus-like behavior. Lasting tinnitus-behavior, however, was exhibited in about half of noise-exposed rats through 7 weeks post-exposure tested. Licking activity during narrowband sound trials remained unchanged following noise exposure, while ABR hearing thresholds fully recovered and were comparable between tinnitus(+) and tinnitus(-) rats. To assess another tinnitus inducer, rats were injected with sodium salicylate. They demonstrated high pitch tinnitus-like behavior, but later recovered by 5 days post-injection. Further control studies showed that 1): sham noise-exposed rats tested with footshock did not exhibit tinnitus-like behavior, and 2): noise-exposed or sham rats tested without footshocks showed no fundamental changes in behavior compared to those tested with shocks. Together, these results demonstrate that this paradigm can efficiently test the development of noise- and salicylate-induced tinnitus behavior. The ability to assess tinnitus individually, over time, and without averaging data enables us to realistically address tinnitus in a clinically relevant way. Thus, we believe that this optimized behavioral paradigm will facilitate investigations into the mechanisms of tinnitus and development of effective treatments.
Collapse
Affiliation(s)
- Edward Pace
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, United States of America
| | - Hao Luo
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, United States of America
| | - Michael Bobian
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, United States of America
| | - Ajay Panekkad
- Department of Electrical Engineering, Wayne State College of Engineering, 5050 Anthony Wayne Drive, Detroit, Michigan 48202, United States of America
| | - Xueguo Zhang
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, United States of America
| | - Huiming Zhang
- Department of Biological Sciences, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, Canada
| | - Jinsheng Zhang
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, 4201 Saint Antoine, Detroit, Michigan 48201, United States of America
- Department of Communication Sciences & Disorders, Wayne State University College of Liberal Arts & Sciences, 60 Farnsworth St., Detroit, Michigan 48202, United States of America
- * E-mail:
| |
Collapse
|
21
|
Spontaneous Cannabinoid Receptor 2 (CB2) Expression in the Cochlea of Adult Albino Rat and Its Up-Regulation after Cisplatin Treatment. PLoS One 2016; 11:e0161954. [PMID: 27564061 PMCID: PMC5001640 DOI: 10.1371/journal.pone.0161954] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/15/2016] [Indexed: 12/22/2022] Open
Abstract
We provide evidence for the presence of cannabinoid CB2 receptors in some cellular types of the cochlea of the adult albino rat. Cannabinoids and their receptors are increasingly being studied because of their high potential for clinical use. As a hyperspecialized portion of the peripheral nervous system, study of the expression and function of cannabinoid receptors in the hearing organ is of high interest. Stria vascularis and inner hair cells express CB2 receptor, as well as neurites and cell bodies of the spiral ganglion. Cellular types such as supporting cells and outer hair cells, in which the expression of other types of functional receptors has been reported, do not significantly express CB2 receptors in this study. An up-regulation of CB2 gene expression was detected after an ototoxic event such as cisplatin treatment, probably due to pro-inflammatory events triggered by the drug. That fact suggests promising potential of CB2 receptor as a therapeutic target for new treatments to palliate cisplatin-induced hearing loss and other ototoxic events which triggers inflammatory pathways.
Collapse
|
22
|
Liu T, Zheng Q, Qian Z, Wang H, Liu Z, Ren W, Zhang X, Han J. Cannabinoid-Elicited Conditioned Place Preference in a Modified Behavioral Paradigm. Biol Pharm Bull 2016; 39:747-53. [DOI: 10.1248/bpb.b15-00834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tao Liu
- Key Laboratory of MOE for Modern Teaching Technology, Shaanxi Normal University
- College of Life Sciences, Shaanxi Normal University
| | - Qiaohua Zheng
- Key Laboratory of MOE for Modern Teaching Technology, Shaanxi Normal University
| | - Zhaoqiang Qian
- Key Laboratory of MOE for Modern Teaching Technology, Shaanxi Normal University
| | - Haoquan Wang
- Key Laboratory of MOE for Modern Teaching Technology, Shaanxi Normal University
| | - Zhiqiang Liu
- Key Laboratory of MOE for Modern Teaching Technology, Shaanxi Normal University
| | - Wei Ren
- Key Laboratory of MOE for Modern Teaching Technology, Shaanxi Normal University
| | - Xia Zhang
- University of Ottawa Institute of Mental Health Research
| | - Jing Han
- Key Laboratory of MOE for Modern Teaching Technology, Shaanxi Normal University
| |
Collapse
|
23
|
Toal KL, Radziwon KE, Holfoth DP, Xu-Friedman MA, Dent ML. Audiograms, gap detection thresholds, and frequency difference limens in cannabinoid receptor 1 knockout mice. Hear Res 2015; 332:217-222. [PMID: 26427583 DOI: 10.1016/j.heares.2015.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/17/2015] [Accepted: 09/18/2015] [Indexed: 11/19/2022]
Abstract
The cannabinoid receptor 1 (CB1R) is found at several stages in the auditory pathway, but its role in hearing is unknown. Hearing abilities were measured in CB1R knockout mice and compared to those of wild-type mice. Operant conditioning and the psychophysical Method of Constant Stimuli were used to measure audiograms, gap detection thresholds, and frequency difference limens in trained mice using the same methods and stimuli as in previous experiments. CB1R knockout mice showed deficits at frequencies above 8 kHz in their audiograms relative to wild-type mice. CB1R knockouts showed enhancements for detecting gaps in low-pass noisebursts relative to wild-type mice, but were similar for other noise conditions. Finally, the two groups of mice did not differ in their frequency discrimination abilities as measured by the frequency difference limens task. These experiments suggest that the CB1R is involved in auditory processing and lay the groundwork for future physiological experiments.
Collapse
MESH Headings
- Acoustic Stimulation
- Animals
- Audiometry, Pure-Tone
- Auditory Pathways/metabolism
- Auditory Pathways/physiopathology
- Auditory Perception
- Behavior, Animal
- Conditioning, Operant
- Cues
- Genotype
- Mice, Inbred CBA
- Mice, Knockout
- Noise/adverse effects
- Perceptual Masking
- Phenotype
- Pitch Perception
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB1/genetics
- Signal Detection, Psychological
- Time Factors
Collapse
Affiliation(s)
- Katrina L Toal
- Department of Psychology, University at Buffalo SUNY, Buffalo, NY 14260, USA.
| | - Kelly E Radziwon
- Department of Psychology, University at Buffalo SUNY, Buffalo, NY 14260, USA.
| | - David P Holfoth
- Department of Psychology, University at Buffalo SUNY, Buffalo, NY 14260, USA.
| | - Matthew A Xu-Friedman
- Department of Biological Sciences, University at Buffalo SUNY, Buffalo, NY 14260, USA.
| | - Micheal L Dent
- Department of Psychology, University at Buffalo SUNY, Buffalo, NY 14260, USA.
| |
Collapse
|