1
|
Marcuse LV, Langan M, Hof PR, Panov F, Saez I, Jimenez-Shahed J, Figee M, Mayberg H, Yoo JY, Ghatan S, Balchandani P, Fields MC. The thalamus: Structure, function, and neurotherapeutics. Neurotherapeutics 2025:e00550. [PMID: 39956708 DOI: 10.1016/j.neurot.2025.e00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/18/2025] Open
Abstract
The complexity and expansive nature of thalamic research has led to numerous interventions for varied disease states. At the same time, this complexity along with siloed areas of study can hinder a comprehensive understanding. The goal of this paper is to give the reader a broader and more detailed perspective on the thalamus. In order to accomplish this goal, the paper begins with a summary of the function, electrophysiology, and anatomy of the normal thalamus. With this foundation, thalamic involvement in neurological diseases is discussed with a focus on epilepsy. Therapeutic interventions in the thalamus for epilepsy as well as movement disorders, psychiatric conditions and disorders of consciousness are described. Lastly limitations in the field and future models of data sharing and cooperation are explored.
Collapse
Affiliation(s)
- Lara V Marcuse
- Department of Neurology, Epilepsy Division, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA.
| | - Mackenzie Langan
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY 10029, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 787 11th Avenue New York, NY 10019, USA
| | - Fedor Panov
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1000 10th Ave, New York, NY 10019, USA
| | - Igancio Saez
- Department of Neurology, Epilepsy Division, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA; Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 787 11th Avenue New York, NY 10019, USA; Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1000 10th Ave, New York, NY 10019, USA; Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA
| | - Joohi Jimenez-Shahed
- Department of Neurology, Movement Disorders Division, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA
| | - Martijn Figee
- Department of Neurology, Movement Disorders Division, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA
| | - Helen Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA
| | - Ji Yeoun Yoo
- Department of Neurology, Epilepsy Division, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA
| | - Saadi Ghatan
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, 1000 10th Ave, New York, NY 10019, USA
| | - Priti Balchandani
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY 10029, USA
| | - Madeline C Fields
- Department of Neurology, Epilepsy Division, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, 1000 10th Ave, New York, NY 10019, USA
| |
Collapse
|
2
|
Curot J, Dornier V, Valton L, Denuelle M, Robin A, Rulquin F, Sol JC, De Barros A, Trébuchon A, Bénar C, Bartolomei F, Barbeau EJ. Complex memories induced by intracranial electrical brain stimulation are related to complex networks. Cortex 2025; 183:349-372. [PMID: 39741056 DOI: 10.1016/j.cortex.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/01/2024] [Accepted: 11/18/2024] [Indexed: 01/02/2025]
Abstract
The precise and fleeting moment of rich recollection triggered by an environmental cue is difficult to reproduce in the lab. However, epilepsy patients can experience sudden reminiscences after intracranial electrical brain stimulation (EBS). In these cases, the transient brain state related to the activation of the engram and its conscious perception can be recorded using intracerebral EEG (iEEG). We collected various EBS-induced reminiscences for iEEG analysis, classifying them as follows: no or weak details (familiarity); moderate details and context (semantic and personal semantic memories); high details and context (episodic). Nine brain areas were selected within the temporal lobes (including the hippocampus and temporal neocortex, ipsi- and contralateral) and the insula, defining a network (each area as a node). Functional connectivity was measured by estimating pair-wise non-linear correlations between signals recorded from these brain regions during different memory events. Seventeen reminiscences in six patients (2 episodic, 10 personal semantic, 2 semantic memories, 5 familiar objects, 1 déjà-rêvé) were compared to 18 control experiential phenomena (unrelated to reminiscence), 18 negative EBS (which failed to elicit memories or other phenomena) in the same locations, and pre-EBS baseline activity. The global functional connectivity in the network was higher following EBS-induced reminiscences than during baseline activity, control phenomena, or negative EBS. The degree of connectivity increased with the complexity of memories; it was higher for detailed and contextualized memories like episodic memories. More significant links compared to baseline (edges with higher non-linear correlation relative to baseline) were observed for episodic memories than for less contextualized memories. These increases in connectivity occurred in all frequency bands, except the delta band. Our results support understanding declarative memory retrieval as having a multiplexed organization. They also show that richer memories activated by intracranial EBS are related to more complex connectivity patterns across medial and neocortical temporal lobe structures.
Collapse
Affiliation(s)
- Jonathan Curot
- Toulouse University Hospital, France; Brain Research and Cognition Center (CerCo), CNRS, UMR5549, France; University of Toulouse, Faculty of Health, France.
| | - Vincent Dornier
- Brain Research and Cognition Center (CerCo), CNRS, UMR5549, France; University of Toulouse, Faculty of Health, France
| | - Luc Valton
- Toulouse University Hospital, France; Brain Research and Cognition Center (CerCo), CNRS, UMR5549, France
| | - Marie Denuelle
- Toulouse University Hospital, France; Brain Research and Cognition Center (CerCo), CNRS, UMR5549, France
| | | | | | - Jean-Christophe Sol
- Toulouse University Hospital, France; University of Toulouse, Faculty of Health, France; INSERM, U1214, TONIC, Toulouse Mind and Brain Institute, France
| | - Amaury De Barros
- Toulouse University Hospital, France; University of Toulouse, Faculty of Health, France; INSERM, U1214, TONIC, Toulouse Mind and Brain Institute, France
| | - Agnès Trébuchon
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France; Marseille University Hospital, France
| | - Christian Bénar
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille University, INSERM, INS, Inst Neurosci Syst, Marseille, France; Marseille University Hospital, France
| | - Emmanuel J Barbeau
- Brain Research and Cognition Center (CerCo), CNRS, UMR5549, France; University of Toulouse, Faculty of Health, France
| |
Collapse
|
3
|
Chandran AS, Joshi S, Suresh S, Savarraj J, Snyder K, Vasconcellos FDN, Vakilna YS, Modiano YA, Pati S, Tandon N. Efficacy of neuromodulation of the pulvinar nucleus for drug-resistant epilepsy. Epilepsia 2025. [PMID: 39797738 DOI: 10.1111/epi.18244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025]
Abstract
OBJECTIVE The pulvinar nucleus of the thalamus has extensive cortical connections with the temporal, parietal, and occipital lobes. Deep brain stimulation (DBS) targeting the pulvinar nucleus, therefore, carries the potential for therapeutic benefit in patients with drug-resistant posterior quadrant epilepsy (PQE) and neocortical temporal lobe epilepsy (TLE). Here, we present a single-center experience of patients managed via bilateral DBS of the pulvinar nucleus. METHODS A single-institution retrospective review of five patients who underwent bilateral pulvinar DBS for drug-resistant TLE or PQE was performed. Stimulation parameters were adjusted monthly as needed, and side effects were monitored. The primary outcome was the percentage reduction in patient-reported seizure frequency in comparison to the preimplant baseline. The location of the active electrode contacts in relation to pulvinar thalami that produced the best seizure outcome was identified. Chronic sensing of the pulvinar local field potentials (LFPs) and circadian pattern of modulation of the LFP amplitudes were analyzed. RESULTS Four patients (80%) experienced a >70% reduction in seizure frequency, whereas one patient had >50% reduction in seizure. Mean seizure reduction was 79% at a median follow-up of 13 months (range = 9-21 months). No significant side effects were noted. Of all the pulvinar subnuclei, stimulation of the medial pulvinar nucleus (MPN) produced the best seizure outcome in all patients except for two, in whom active contacts in the MPN but also in more lateral and inferior locations resulted in the most significant reduction in seizures. Chronic timeline data identified changes in LFP amplitude associated with stimulation and seizure occurrences. SIGNIFICANCE In this first ever report on a series of patients undergoing bilateral pulvinar DBS for drug-resistant epilepsy, we demonstrate that stimulation of the pulvinar and in particular the MPN is a safe and viable option for patients with nonlesional PQE or TLE. The optimal target for stimulation and relative merits of open versus closed loop stimulation should be delineated in future studies.
Collapse
Affiliation(s)
- Arjun Suresh Chandran
- Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Stuti Joshi
- Texas Comprehensive Epilepsy Program, Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Surya Suresh
- Texas Comprehensive Epilepsy Program, Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jude Savarraj
- Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kathryn Snyder
- Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Fernando De Nigris Vasconcellos
- Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yash S Vakilna
- Texas Comprehensive Epilepsy Program, Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yosefa A Modiano
- Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sandipan Pati
- Texas Comprehensive Epilepsy Program, Department of Neurology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Nitin Tandon
- Texas Comprehensive Epilepsy Program, Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
4
|
Wang T, Dong H, Li K, Feng T, Yang Y, Chen S, Lu D, Wei P, Shan Y, Zhao G. Trends and hotspots of stereoelectroencephalogram from 2002 to 2023: a bibliometric analysis. Front Neurol 2024; 15:1464657. [PMID: 39741704 PMCID: PMC11686363 DOI: 10.3389/fneur.2024.1464657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025] Open
Abstract
Background Stereoelectroencephalography (SEEG), as a minimally invasive method that can stably collect intracranial electroencephalographic information over long periods, has increasingly been applied in the diagnosis and treatment of intractable epilepsy in recent years. Over the past 20 years, with the advancement of materials science and computer science, the application scenarios of SEEG have greatly expanded. Bibliometrics, as a method of scientifically analyzing published literature, can summarize the evolutionary process in the SEEG field and offer insights into its future development prospects. Methods This article selected all the literature records retrieved on November 4, 2024, from the Web of Science Core Collection (WoSCC). The search terms were as follows: "Stereo-electroencephalography" or "Stereo electroencephalography" or "Stereo-EEG" or "Stereo EEG" or "SEEG." The document types included were research articles and reviews. For analysis, VOSviewer, CiteSpace, and the R package "bibliometrix" were employed to analyze various aspects of the SEEG field, including authors, institutions, countries and regions, and research hotspots. Results We reviewed a total of 1,383 non-duplicate literature records from 2002 to 2023, including 1,241 research articles, 116 review articles and 26 letters. Observing the annual publication trends, there has been an overall increase since 2002. The most influential journal in this field is Epilepsia. Other journals with considerable impact include Clinical Neurophysiology, Epileptic Disorders, Epilepsy Research, NeuroImage, and Epilepsy & Behavior. The top 5 most influential scholars are Bartolomei F, Tassi L, Nobili L, Russo GL, and Mc Gonigal A. As for the analysis of countries and regions, France occupies a leading position in this field with its early start, while China and the United States have also emerged as focal points since 2020. Research on SEEG has expanded beyond its initial use for localizing epileptic foci and thermo-coagulation treatments and have been employed as a medium to facilitate real-time prediction of epileptic seizures and enabling the exploration of brain network connectivity. Conclusion As a minimally invasive tool for collecting intracranial electroencephalographic signals, SEEG continues to offer vast potential for development and application. Advances in electrode materials and robotic-assisted stereotactic techniques, have enabled SEEG to simultaneously sample multiple brain regions, acquire electrical signals from deep brain structures. These advantages significantly enhance the precision of epileptic focus localization in diagnosis and treatment, addressing the limitations of subdural electrodes. Through bibliometric analysis, this paper traces the developmental trajectory of SEEG and identifying key technological milestones, thereby providing a reference for scholarly research directions.
Collapse
Affiliation(s)
- Tianren Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Hengxin Dong
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Kaiwei Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Yanfeng Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Sichang Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Di Lu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (CHINA-INI), Beijing, China
- Institute for Brain Disorder, Beijing, China
| |
Collapse
|
5
|
Pizzo F, Carron R, Laguitton V, Clement A, Giusiano B, Bartolomei F. Medial pulvinar stimulation for focal drug-resistant epilepsy: interim 12-month results of the PULSE study. Front Neurol 2024; 15:1480819. [PMID: 39719976 PMCID: PMC11667892 DOI: 10.3389/fneur.2024.1480819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/08/2024] [Indexed: 12/26/2024] Open
Abstract
Objective This study aims to evaluate the efficacy and safety of deep brain stimulation (DBS) of the medial pulvinar nucleus (PuM) in reducing seizure frequency and addressing comorbidities in patients with drug and vagal nerve-resistant focal epilepsy. Methods This is an open-label prospective treatment trial with a planned enrollment of 12 patients suffering from medically refractory epilepsy (Clinical trial gov NCT04692701), for which the interim 12-month post-implantation results for the first 6 patients are being reported. Inclusion criteria were focal epilepsy not suitable for or after failed surgical intervention and previous failure of neurostimulation therapies (vagus nerve stimulation or anterior thalamic nucleus DBS). Evaluations included seizure diaries, neuropsychological assessments, and scales for depression, anxiety, quality of life, and seizure severity. PuM DBS was performed using ROSA robotic assistance, with follow-ups every 3 months for 1 year. Results Out of six patients, five completed 1-year follow-up (one patient died prematurely). A non-significant trend toward seizure reduction was observed at 6 months, becoming more pronounced at 1 year (mean reduction: 45%; responders: 2/5). Seizure severity significantly improved (p = 0.02), with a reduction in the NHS3 scale scores. Quality of life improved significantly at 1 year (p = 0.03). Psychiatric assessments indicated a non-significant trend toward improvement in depression (mean improvement: 26%) and anxiety (mean improvement: 20%) scores. Neuropsychological testing showed stable or improved cognitive performance in three out of five patients. Adverse events included one case of cerebral hemorrhage, one infection leading to device removal, and one possible SUDEP. Significance Preliminary results suggest that PuM DBS may offer a promising therapeutic option for reducing seizure severity and improving quality of life and cognitive functions in patients with drug-resistant epilepsy. Despite the small sample size and the presence of serious adverse events, the findings warrant further investigation with larger cohorts to confirm these trends and optimize the treatment protocol.
Collapse
Affiliation(s)
- Francesca Pizzo
- Department of Epileptology and Cerebral Rhythmology, APHM, Timone Hospital, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Romain Carron
- Department of Epileptology and Cerebral Rhythmology, APHM, Timone Hospital, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Virginie Laguitton
- Department of Epileptology and Cerebral Rhythmology, APHM, Timone Hospital, Marseille, France
| | - Audrey Clement
- Department of Epileptology and Cerebral Rhythmology, APHM, Timone Hospital, Marseille, France
| | - Bernard Giusiano
- Department of Epileptology and Cerebral Rhythmology, APHM, Timone Hospital, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Fabrice Bartolomei
- Department of Epileptology and Cerebral Rhythmology, APHM, Timone Hospital, Marseille, France
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| |
Collapse
|
6
|
McGinn R, Von Stein EL, Datta A, Wu T, Lusk Z, Nam S, Dilts-Garcha M, Fisher RS, Buch V, Parvizi J. Ictal Involvement of the Pulvinar and the Anterior Nucleus of the Thalamus in Patients With Refractory Epilepsy. Neurology 2024; 103:e210039. [PMID: 39531602 PMCID: PMC11551723 DOI: 10.1212/wnl.0000000000210039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Deep brain stimulation (DBS) targeting the anterior nucleus of the thalamus (ANT) has been shown to be effective in treating some patients with medically refractory epilepsy. However, it remains unknown how seizures spread through the ANT relative to other thalamic nuclei. This study aimed to investigate, through simultaneous recordings from both ANT and pulvinar (PLV) nucleus, their roles in seizure propagation. Our goal was to determine whether the ANT is the primary site of seizure propagation in the human thalamus, especially for focal seizure originating in the medial temporal lobe. METHODS In a retrospective design, we studied EEGs and clinical notes of patients with refractory epilepsy who were implanted with stereo-EEG (sEEG) electrodes across cortical regions, some of which were extended to reach various sites of the thalamus (i.e., multisite thalamic recordings). We selected patients from the Stanford Comprehensive Epilepsy Center with both ANT and PLV electrodes and collected information about the timing and anatomy of seizure activity in the seizure onset zones, usually temporal, and the 2 thalamic sites. RESULTS We recruited 17 (5 female, mean age 32 years) adult patients with simultaneous ipsilateral ANT and PLV recordings. In all patients, the procedure was safe without any complications. In 100% of patients, the thalamus was involved during seizures (in 88% both ANT and PLV and in 82% first the PLV). In patients with confirmed hippocampal or amygdalar onset seizures, 62% had initial involvement and 100% had subsequent involvement of the PLV nucleus. Only 31% showed initial propagation to ANT. All focal-to-bilateral tonic-clonic seizures and most of the focal impaired awareness seizures had early involvement of both ANT and PLV, with rapid spread to the contralateral nuclei. DISCUSSION sEEG of thalamic nuclei simultaneously provides an opportunity to understand propagation patterns of seizures with respect to each thalamic subdivision at the individual level. The patterns of seizure propagation, as we report here, provide insights about the prominent involvement of the PLV nucleus during seizure propagation. This may motivate future prospective work in larger cohorts of patients to understand how thalamic propagation may predict response to resective/ablative surgery or whether personalization of DBS (for instance, PLV instead of, or together with, ANT) could improve clinical outcomes.
Collapse
Affiliation(s)
- Ryan McGinn
- From the Department of Neurology and Neurological Sciences (R.M., E.L.V.S., Z.L., S.N., M.D.-G., R.S.F., J.P.) and Department of Neurosurgery (A.D., V.B.), Stanford University School of Medicine; Department of Neurology (R.M.), University of Southern California, Los Angeles; and California Pacific Medical Center (T.W.), San Francisco
| | - Erica Leah Von Stein
- From the Department of Neurology and Neurological Sciences (R.M., E.L.V.S., Z.L., S.N., M.D.-G., R.S.F., J.P.) and Department of Neurosurgery (A.D., V.B.), Stanford University School of Medicine; Department of Neurology (R.M.), University of Southern California, Los Angeles; and California Pacific Medical Center (T.W.), San Francisco
| | - Anjali Datta
- From the Department of Neurology and Neurological Sciences (R.M., E.L.V.S., Z.L., S.N., M.D.-G., R.S.F., J.P.) and Department of Neurosurgery (A.D., V.B.), Stanford University School of Medicine; Department of Neurology (R.M.), University of Southern California, Los Angeles; and California Pacific Medical Center (T.W.), San Francisco
| | - Teresa Wu
- From the Department of Neurology and Neurological Sciences (R.M., E.L.V.S., Z.L., S.N., M.D.-G., R.S.F., J.P.) and Department of Neurosurgery (A.D., V.B.), Stanford University School of Medicine; Department of Neurology (R.M.), University of Southern California, Los Angeles; and California Pacific Medical Center (T.W.), San Francisco
| | - Zoe Lusk
- From the Department of Neurology and Neurological Sciences (R.M., E.L.V.S., Z.L., S.N., M.D.-G., R.S.F., J.P.) and Department of Neurosurgery (A.D., V.B.), Stanford University School of Medicine; Department of Neurology (R.M.), University of Southern California, Los Angeles; and California Pacific Medical Center (T.W.), San Francisco
| | - Spencer Nam
- From the Department of Neurology and Neurological Sciences (R.M., E.L.V.S., Z.L., S.N., M.D.-G., R.S.F., J.P.) and Department of Neurosurgery (A.D., V.B.), Stanford University School of Medicine; Department of Neurology (R.M.), University of Southern California, Los Angeles; and California Pacific Medical Center (T.W.), San Francisco
| | - Manveer Dilts-Garcha
- From the Department of Neurology and Neurological Sciences (R.M., E.L.V.S., Z.L., S.N., M.D.-G., R.S.F., J.P.) and Department of Neurosurgery (A.D., V.B.), Stanford University School of Medicine; Department of Neurology (R.M.), University of Southern California, Los Angeles; and California Pacific Medical Center (T.W.), San Francisco
| | - Robert S Fisher
- From the Department of Neurology and Neurological Sciences (R.M., E.L.V.S., Z.L., S.N., M.D.-G., R.S.F., J.P.) and Department of Neurosurgery (A.D., V.B.), Stanford University School of Medicine; Department of Neurology (R.M.), University of Southern California, Los Angeles; and California Pacific Medical Center (T.W.), San Francisco
| | - Vivek Buch
- From the Department of Neurology and Neurological Sciences (R.M., E.L.V.S., Z.L., S.N., M.D.-G., R.S.F., J.P.) and Department of Neurosurgery (A.D., V.B.), Stanford University School of Medicine; Department of Neurology (R.M.), University of Southern California, Los Angeles; and California Pacific Medical Center (T.W.), San Francisco
| | - Josef Parvizi
- From the Department of Neurology and Neurological Sciences (R.M., E.L.V.S., Z.L., S.N., M.D.-G., R.S.F., J.P.) and Department of Neurosurgery (A.D., V.B.), Stanford University School of Medicine; Department of Neurology (R.M.), University of Southern California, Los Angeles; and California Pacific Medical Center (T.W.), San Francisco
| |
Collapse
|
7
|
Gonzalez-Martinez J, Damiani A, Nouduri S, Ho J, Salazar S, Jegou A, Reedy E, Ikegaya N, Sarma S, Aung T, Pirondini E. Thalamocortical Hodology to Personalize Electrical Stimulation for Focal Epilepsy. RESEARCH SQUARE 2024:rs.3.rs-5507011. [PMID: 39649170 PMCID: PMC11623769 DOI: 10.21203/rs.3.rs-5507011/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Targeted electrical stimulation to specific thalamic regions offers a therapeutic approach for patients with refractory focal and generalized epilepsy who are not candidates for resective surgery. However, clinical outcome varies significantly, in particular for focal epilepsy, influenced by several factors, notably the precise anatomical and functional alignment between cortical regions generating epileptic discharges and the targeted thalamic stimulation sites. Here we hypothesized that targeting thalamic nuclei with precise anatomical and functional connections to epileptic cortical areas (an approach that we refer to as hodological matching) could enhance neuromodulatory effects on focal epileptic discharges. To investigate this, we examined three thalamic subnuclei (pulvinar nucleus, anterior nucleus, and ventral intermediate nucleus/ventral oral posterior nuclei) in a retrospective study involving 32 focal epilepsy patients. Specifically, we first identified hodologically organized thalamocortical fibers connecting these nuclei to individual seizure onset zones (SOZs), combining neuroimaging and electrophysiological techniques. Further, analysis of 216 spontaneous seizures revealed the critical role of matched thalamic nuclei in seizure development and termination. Importantly, electrical stimulation of hodologically-matched thalamic nuclei immediately suppressed intracortical interictal epileptiform discharges, contrasting with ineffective outcomes from stimulation of unmatched targets. Finally, we retrospectively evaluated 7 patients with a chronic hodologically-matched neurostimulation system, which led to a clinically relevant reduction in seizure frequency (median reduction 86.5%), that outstands the current clinical practice of unmatched targets (39%). Our results underscore the potential of hodological thalamic targeting to modulate epileptiform activity in specific cortical regions, highlighting the promise of precision medicine in thalamic neuromodulation for focal refractory epilepsy.
Collapse
|
8
|
Doss DJ, Johnson GW, Makhoul GS, Rashingkar RV, Shless JS, Bibro CE, Paulo DL, Gummadavelli A, Ball TJ, Reddy SB, Naftel RP, Haas KF, Dawant BM, Constantinidis C, Roberson SW, Bick SK, Morgan VL, Englot DJ. Network signatures define consciousness state during focal seizures. Epilepsia 2024; 65:2686-2699. [PMID: 39056406 PMCID: PMC11534508 DOI: 10.1111/epi.18074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVE Epilepsy is a common neurological disorder affecting 1% of the global population. Loss of consciousness in focal impaired awareness seizures (FIASs) and focal-to-bilateral tonic-clonic seizures (FBTCSs) can be devastating, but the mechanisms are not well understood. Although ictal activity and interictal connectivity changes have been noted, the network states of focal aware seizures (FASs), FIASs, and FBTCSs have not been thoroughly evaluated with network measures ictally. METHODS We obtained electrographic data from 74 patients with stereoelectroencephalography (SEEG). Sliding window band power, functional connectivity, and segregation were computed on preictal, ictal, and postictal data. Five-minute epochs of wake, rapid eye movement sleep, and deep sleep were also extracted. Connectivity of subcortical arousal structures was analyzed in a cohort of patients with both SEEG and functional magnetic resonance imaging (fMRI). Given that custom neuromodulation of seizures is predicated on detection of seizure type, a convolutional neural network was used to classify seizure types. RESULTS We found that in the frontoparietal association cortex, an area associated with consciousness, both consciousness-impairing seizures (FIASs and FBTCSs) and deep sleep had increases in slow wave delta (1-4 Hz) band power. However, when network measures were employed, we found that only FIASs and deep sleep exhibited an increase in delta segregation and a decrease in gamma segregation. Furthermore, we found that only patients with FIASs had reduced subcortical-to-neocortical functional connectivity with fMRI versus controls. Finally, our deep learning network demonstrated an area under the curve of .75 for detecting consciousness-impairing seizures. SIGNIFICANCE This study provides novel insights into ictal network measures in FASs, FIASs, and FBTCSs. Importantly, although both FIASs and FBTCSs result in loss of consciousness, our results suggest that ictal network changes in FIASs uniquely resemble those that occur during deep sleep. Our results may inform novel neuromodulation strategies for preservation of consciousness in epilepsy.
Collapse
Affiliation(s)
- Derek J. Doss
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Surgery and Engineering, Nashville, Tennessee, USA
| | - Graham W. Johnson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Surgery and Engineering, Nashville, Tennessee, USA
| | - Ghassan S. Makhoul
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Surgery and Engineering, Nashville, Tennessee, USA
| | - Rohan V. Rashingkar
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jared S. Shless
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Camden E. Bibro
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Danika L. Paulo
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Abhijeet Gummadavelli
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tyler J. Ball
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Shilpa B. Reddy
- Department of Pediatrics, Vanderbilt Children's Hospital, Nashville, Tennessee, USA
| | - Robert P. Naftel
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kevin F. Haas
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Benoit M. Dawant
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Surgery and Engineering, Nashville, Tennessee, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Shawniqua Williams Roberson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sarah K. Bick
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Victoria L. Morgan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Surgery and Engineering, Nashville, Tennessee, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dario J. Englot
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Surgery and Engineering, Nashville, Tennessee, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
9
|
Samanta D, Aungaroon G, Albert GW, Karakas C, Joshi CN, Singh RK, Oluigbo C, Perry MS, Naik S, Reeders PC, Jain P, Abel TJ, Pati S, Shaikhouni A, Haneef Z. Advancing thalamic neuromodulation in epilepsy: Bridging adult data to pediatric care. Epilepsy Res 2024; 205:107407. [PMID: 38996686 DOI: 10.1016/j.eplepsyres.2024.107407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Thalamic neuromodulation has emerged as a treatment option for drug-resistant epilepsy (DRE) with widespread and/or undefined epileptogenic networks. While deep brain stimulation (DBS) and responsive neurostimulation (RNS) depth electrodes offer means for electrical stimulation of the thalamus in adult patients with DRE, the application of thalamic neuromodulation in pediatric epilepsy remains limited. To address this gap, the Neuromodulation Expert Collaborative was established within the Pediatric Epilepsy Research Consortium (PERC) Epilepsy Surgery Special Interest Group. In this expert review, existing evidence and recommendations for thalamic neuromodulation modalities using DBS and RNS are summarized, with a focus on the anterior (ANT), centromedian(CMN), and pulvinar nuclei of the thalamus. To-date, only DBS of the ANT is FDA approved for treatment of DRE in adult patients based on the results of the pivotal SANTE (Stimulation of the Anterior Nucleus of Thalamus for Epilepsy) study. Evidence for other thalamic neurmodulation indications and targets is less abundant. Despite the lack of evidence, positive responses to thalamic stimulation in adults with DRE have led to its off-label use in pediatric patients. Although caution is warranted due to differences between pediatric and adult epilepsy, the efficacy and safety of pediatric neuromodulation appear comparable to that in adults. Indeed, CMN stimulation is increasingly accepted for generalized and diffuse onset epilepsies, with recent completion of one randomized trial. There is also growing interest in using pulvinar stimulation for temporal plus and posterior quadrant epilepsies with one ongoing clinical trial in Europe. The future of thalamic neuromodulation holds promise for revolutionizing the treatment landscape of childhood epilepsy. Ongoing research, technological advancements, and collaborative efforts are poised to refine and improve thalamic neuromodulation strategies, ultimately enhancing the quality of life for children with DRE.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| | - Gewalin Aungaroon
- Comprehensive Epilepsy Center, Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gregory W Albert
- Department of Neurosurgery, University of Arkansas for Medical Sciences, USA
| | - Cemal Karakas
- Division of Pediatric Neurology, Department of Neurology, Norton Children's Hospital, University of Louisville, Louisville, KY 40202, USA
| | - Charuta N Joshi
- Division of Pediatric Neurology, Childrens Medical Center Dallas, UTSW, USA
| | - Rani K Singh
- Department of Pediatrics, Atrium Health-Levine Children's; Wake Forest University School of Medicine, USA
| | - Chima Oluigbo
- Department of Neurosurgery, Children's National Hospital, Washington, DC, USA
| | - M Scott Perry
- Jane and John Justin Institute for Mind Health, Cook Children's Medical Center, Ft Worth, TX, USA
| | - Sunil Naik
- Department of Pediatrics and Neurology, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Puck C Reeders
- Brain Institute, Nicklaus Children's Hospital, Miami, FL, USA
| | - Puneet Jain
- Epilepsy Program, Division of Neurology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Taylor J Abel
- Department of Neurological Surgery, University of Pittsburgh School of Medicine and Department of Bioengineering, University of Pittsburgh
| | - Sandipan Pati
- The University of Texas Health Science Center at Houston, USA
| | - Ammar Shaikhouni
- Department of Pediatric Neurosurgery, Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Zulfi Haneef
- Neurology Care Line, VA Medical Center, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
10
|
Connolly MJ, Jiang S, Samuel LC, Gutekunst CA, Gross RE, Devergnas A. Seizure onset and offset pattern determine the entrainment of the cortex and substantia nigra in the nonhuman primate model of focal temporal lobe seizures. PLoS One 2024; 19:e0307906. [PMID: 39197026 PMCID: PMC11356443 DOI: 10.1371/journal.pone.0307906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/13/2024] [Indexed: 08/30/2024] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of drug-resistant epilepsy. A major focus of human and animal studies on TLE network has been the limbic circuit. However, there is also evidence suggesting an active role of the basal ganglia in the propagation and control of temporal lobe seizures. Here, we characterize the involvement of the substantia nigra (SN) and somatosensory cortex (SI) during temporal lobe (TL) seizures induced by penicillin injection in the hippocampus (HPC) of two nonhuman primates. The seizure onset and offset patterns were manually classified and spectral power and coherence were calculated. We then compared the 3-second segments recorded in pre-ictal, onset, offset and post-ictal periods based on the seizure onset and offset patterns. Our results demonstrated an involvement of the SN and SI dependent on the seizure onset and offset pattern. We found that low amplitude fast activity (LAF) and high amplitude slow activity (HAS) onset patterns were associated with an increase in activity of the SN while the change in activity was limited to LAF seizures in the SI. However, the increase in HPC/SN coherence was specific to the farther-spreading LAF onset pattern. As for the role of the SN in seizure cessation, we observed that the coherence between the HPC/SN was reduced during burst suppression (BS) compared to other termination phases. Additionally, we found that this coherence returned to normal levels after the seizure ended, with no significant difference in post-ictal periods among the three types of seizure offsets. This study constitutes the first demonstration of TL seizures entraining the SN in the primate brain. Moreover, these findings provide evidence that this entrainment is dependent on the onset and offset pattern and support the hypothesis that the SN might play a role in the maintenance and termination of some specific temporal lobe seizure.
Collapse
Affiliation(s)
- Mark J. Connolly
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States of America
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Sujin Jiang
- Emory College of Arts & Sciences, Emory University, Atlanta, GA, United States of America
| | - Lim C. Samuel
- Emory College of Arts & Sciences, Emory University, Atlanta, GA, United States of America
| | - Claire-Anne Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Robert E. Gross
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States of America
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States of America
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States of America
| | - Annaelle Devergnas
- Emory National Primate Research Center, Emory University, Atlanta, GA, United States of America
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States of America
| |
Collapse
|
11
|
Lyu D, Stiger J, Lusk Z, Buch V, Parvizi J. Causal Cortical and Thalamic Connections in the Human Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.22.600166. [PMID: 38979261 PMCID: PMC11230252 DOI: 10.1101/2024.06.22.600166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The brain's functional architecture is intricately shaped by causal connections between its cortical and subcortical structures. Here, we studied 27 participants with 4864 electrodes implanted across the anterior, mediodorsal, and pulvinar thalamic regions, and the cortex. Using data from electrical stimulation procedures and a data-driven approach informed by neurophysiological standards, we dissociated three unique spectral patterns generated by the perturbation of a given brain area. Among these, a novel waveform emerged, marked by delayed-onset slow oscillations in both ipsilateral and contralateral cortices following thalamic stimulations, suggesting a mechanism by which a thalamic site can influence bilateral cortical activity. Moreover, cortical stimulations evoked earlier signals in the thalamus than in other connected cortical areas suggesting that the thalamus receives a copy of signals before they are exchanged across the cortex. Our causal connectivity data can be used to inform biologically-inspired computational models of the functional architecture of the brain.
Collapse
Affiliation(s)
- Dian Lyu
- Laboratory of Behavioral and Cognitive Neuroscience, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California USA
| | - James Stiger
- Laboratory of Behavioral and Cognitive Neuroscience, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California USA
| | - Zoe Lusk
- Laboratory of Behavioral and Cognitive Neuroscience, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California USA
| | - Vivek Buch
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California USA
| | - Josef Parvizi
- Laboratory of Behavioral and Cognitive Neuroscience, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California USA
| |
Collapse
|
12
|
Parvizi J, Lyu D, Stieger J, Lusk Z, Buch V. Causal Cortical and Thalamic Connections in the Human Brain. RESEARCH SQUARE 2024:rs.3.rs-4366486. [PMID: 38853954 PMCID: PMC11160924 DOI: 10.21203/rs.3.rs-4366486/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The brain's functional architecture is intricately shaped by causal connections between its cortical and subcortical structures. Here, we studied 27 participants with 4864 electrodes implanted across the anterior, mediodorsal, and pulvinar thalamic regions, and the cortex. Using data from electrical stimulation procedures and a data-driven approach informed by neurophysiological standards, we dissociated three unique spectral patterns generated by the perturbation of a given brain area. Among these, a novel waveform emerged, marked by delayed-onset slow oscillations in both ipsilateral and contralateral cortices following thalamic stimulations, suggesting a mechanism by which a thalamic site can influence bilateral cortical activity. Moreover, cortical stimulations evoked earlier signals in the thalamus than in other connected cortical areas suggesting that the thalamus receives a copy of signals before they are exchanged across the cortex. Our causal connectivity data can be used to inform biologically-inspired computational models of the functional architecture of the brain.
Collapse
|
13
|
Frauscher B, Bartolomei F, Baud MO, Smith RJ, Worrell G, Lundstrom BN. Stimulation to probe, excite, and inhibit the epileptic brain. Epilepsia 2023; 64 Suppl 3:S49-S61. [PMID: 37194746 PMCID: PMC10654261 DOI: 10.1111/epi.17640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/18/2023]
Abstract
Direct cortical stimulation has been applied in epilepsy for nearly a century and has experienced a renaissance, given unprecedented opportunities to probe, excite, and inhibit the human brain. Evidence suggests stimulation can increase diagnostic and therapeutic utility in patients with drug-resistant epilepsies. However, choosing appropriate stimulation parameters is not a trivial issue, and is further complicated by epilepsy being characterized by complex brain state dynamics. In this article derived from discussions at the ICTALS 2022 Conference (International Conference on Technology and Analysis for Seizures), we succinctly review the literature on cortical stimulation applied acutely and chronically to the epileptic brain for localization, monitoring, and therapeutic purposes. In particular, we discuss how stimulation is used to probe brain excitability, discuss evidence on the usefulness of stimulation to trigger and stop seizures, review therapeutic applications of stimulation, and finally discuss how stimulation parameters are impacted by brain dynamics. Although research has advanced considerably over the past decade, there are still significant hurdles to optimizing use of this technique. For example, it remains unclear to what extent short timescale diagnostic biomarkers can predict long-term outcomes and to what extent these biomarkers add information to already existing biomarkers from passive electroencephalographic recordings. Further questions include the extent to which closed loop stimulation offers advantages over open loop stimulation, what the optimal closed loop timescales may be, and whether biomarker-informed stimulation can lead to seizure freedom. The ultimate goal of bioelectronic medicine remains not just to stop seizures but rather to cure epilepsy and its comorbidities.
Collapse
Affiliation(s)
- Birgit Frauscher
- Analytical Neurophysiology Lab, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada
| | - Fabrice Bartolomei
- Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, France. AP-HM, Service de Neurophysiologie Clinique, Hôpital de la Timone, Marseille, France
| | - Maxime O. Baud
- Sleep-Wake-Epilepsy Center, NeuroTec and Center for Experimental Neurology, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern
| | - Rachel J. Smith
- University of Alabama at Birmingham, Electrical and Computer Engineering Department, Birmingham, Alabama, US. University of Alabama at Birmingham, Neuroengineering Program, Birmingham, Alabama, US
| | - Greg Worrell
- Department of Neurology, Mayo Clinic, Rochester, US
| | | |
Collapse
|
14
|
Aiello G, Ledergerber D, Dubcek T, Stieglitz L, Baumann C, Polanìa R, Imbach L. Functional network dynamics between the anterior thalamus and the cortex in deep brain stimulation for epilepsy. Brain 2023; 146:4717-4735. [PMID: 37343140 DOI: 10.1093/brain/awad211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/10/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
Owing to its unique connectivity profile with cortical brain regions, and its suggested role in the subcortical propagation of seizures, the anterior nucleus of the thalamus (ANT) has been proposed as a key deep brain stimulation (DBS) target in drug-resistant epilepsy. However, the spatio-temporal interaction dynamics of this brain structure, and the functional mechanisms underlying ANT DBS in epilepsy remain unknown. Here, we study how the ANT interacts with the neocortex in vivo in humans and provide a detailed neurofunctional characterization of mechanisms underlying the effectiveness of ANT DBS, aiming at defining intraoperative neural biomarkers of responsiveness to therapy, assessed at 6 months post-implantation as the reduction in seizure frequency. A cohort of 15 patients with drug-resistant epilepsy (n = 6 males, age = 41.6 ± 13.79 years) underwent bilateral ANT DBS implantation. Using intraoperative cortical and ANT simultaneous electrophysiological recordings, we found that the ANT is characterized by high amplitude θ (4-8 Hz) oscillations, mostly in its superior part. The strongest functional connectivity between the ANT and the scalp EEG was also found in the θ band in ipsilateral centro-frontal regions. Upon intraoperative stimulation in the ANT, we found a decrease in higher EEG frequencies (20-70 Hz) and a generalized increase in scalp-to-scalp connectivity. Crucially, we observed that responders to ANT DBS treatment were characterized by higher EEG θ oscillations, higher θ power in the ANT, and stronger ANT-to-scalp θ connectivity, highlighting the crucial role of θ oscillations in the dynamical network characterization of these structures. Our study provides a comprehensive characterization of the interaction dynamic between the ANT and the cortex, delivering crucial information to optimize and predict clinical DBS response in patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Giovanna Aiello
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Epilepsy Center (Klinik Lengg), 8008 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Debora Ledergerber
- Swiss Epilepsy Center (Klinik Lengg), 8008 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Tena Dubcek
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Epilepsy Center (Klinik Lengg), 8008 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Lennart Stieglitz
- Department of Neurosurgery, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Christian Baumann
- Department of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Rafael Polanìa
- Decision Neuroscience Lab, Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| | - Lukas Imbach
- Swiss Epilepsy Center (Klinik Lengg), 8008 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
15
|
Wu TQ, Kaboodvand N, McGinn RJ, Veit M, Davey Z, Datta A, Graber KD, Meador KJ, Fisher R, Buch V, Parvizi J. Multisite thalamic recordings to characterize seizure propagation in the human brain. Brain 2023; 146:2792-2802. [PMID: 37137813 PMCID: PMC10316776 DOI: 10.1093/brain/awad121] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/22/2023] [Accepted: 03/23/2023] [Indexed: 05/05/2023] Open
Abstract
Neuromodulation of the anterior nuclei of the thalamus (ANT) has shown to be efficacious in a subset of patients with refractory focal epilepsy. One important uncertainty is to what extent thalamic subregions other than the ANT could be recruited more prominently in the propagation of focal onset seizures. We designed the current study to simultaneously monitor the engagement of the ANT, mediodorsal (MD) and pulvinar (PUL) nuclei during seizures in patients who could be candidates for thalamic neuromodulation. We studied 11 patients with clinical manifestations of presumed temporal lobe epilepsy (TLE) undergoing invasive stereo-encephalography (sEEG) monitoring to confirm the source of their seizures. We extended cortical electrodes to reach the ANT, MD and PUL nuclei of the thalamus. More than one thalamic subdivision was simultaneously interrogated in nine patients. We recorded seizures with implanted electrodes across various regions of the brain and documented seizure onset zones (SOZ) in each recorded seizure. We visually identified the first thalamic subregion to be involved in seizure propagation. Additionally, in eight patients, we applied repeated single pulse electrical stimulation in each SOZ and recorded the time and prominence of evoked responses across the implanted thalamic regions. Our approach for multisite thalamic sampling was safe and caused no adverse events. Intracranial EEG recordings confirmed SOZ in medial temporal lobe, insula, orbitofrontal and temporal neocortical sites, highlighting the importance of invasive monitoring for accurate localization of SOZs. In all patients, seizures with the same propagation network and originating from the same SOZ involved the same thalamic subregion, with a stereotyped thalamic EEG signature. Qualitative visual reviews of ictal EEGs were largely consistent with the quantitative analysis of the corticothalamic evoked potentials, and both documented that thalamic nuclei other than ANT could have the earliest participation in seizure propagation. Specifically, pulvinar nuclei were involved earlier and more prominently than ANT in more than half of the patients. However, which specific thalamic subregion first demonstrated ictal activity could not be reliably predicted based on clinical semiology or lobar localization of SOZs. Our findings document the feasibility and safety of bilateral multisite sampling from the human thalamus. This may allow more personalized thalamic targets to be identified for neuromodulation. Future studies are needed to determine if a personalized thalamic neuromodulation leads to greater improvements in clinical outcome.
Collapse
Affiliation(s)
- Teresa Q Wu
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
- Human Intracranial Cognitive Electrophysiology Program, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
| | - Neda Kaboodvand
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
- Human Intracranial Cognitive Electrophysiology Program, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
| | - Ryan J McGinn
- Department of Neurology and Neurological Sciences, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
| | - Mike Veit
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
- Human Intracranial Cognitive Electrophysiology Program, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
| | - Zachary Davey
- Department of Neurology and Neurological Sciences, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
| | - Anjali Datta
- Human Intracranial Cognitive Electrophysiology Program, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
- Department of Neurosurgery, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
| | - Kevin D Graber
- Department of Neurology and Neurological Sciences, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
| | - Kimford J Meador
- Department of Neurology and Neurological Sciences, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
| | - Robert Fisher
- Department of Neurology and Neurological Sciences, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
| | - Vivek Buch
- Human Intracranial Cognitive Electrophysiology Program, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
- Department of Neurosurgery, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
| | - Josef Parvizi
- Laboratory of Behavioral and Cognitive Neuroscience, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
- Human Intracranial Cognitive Electrophysiology Program, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
- Department of Neurosurgery, Stanford University, Stanford School of Medicine, Palo Alto, CA 94305, USA
| |
Collapse
|
16
|
Carron R, Pizzo F, Trébuchon A, Bartolomei F. Letter to the Editor. Thalamic sEEG and epilepsy. J Neurosurg 2023; 138:1172-1173. [PMID: 36461824 DOI: 10.3171/2022.9.jns222169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Fisher RS. Deep brain stimulation of thalamus for epilepsy. Neurobiol Dis 2023; 179:106045. [PMID: 36809846 DOI: 10.1016/j.nbd.2023.106045] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Neuromodulation (neurostimulation) is a relatively new and rapidly growing treatment for refractory epilepsy. Three varieties are approved in the US: vagus nerve stimulation (VNS), deep brain stimulation (DBS) and responsive neurostimulation (RNS). This article reviews thalamic DBS for epilepsy. Among many thalamic sub-nuclei, DBS for epilepsy has been targeted to the anterior nucleus (ANT), centromedian nucleus (CM), dorsomedial nucleus (DM) and pulvinar (PULV). Only ANT is FDA-approved, based upon a controlled clinical trial. Bilateral stimulation of ANT reduced seizures by 40.5% at three months in the controlled phase (p = .038) and 75% by 5 years in the uncontrolled phase. Side effects related to paresthesias, acute hemorrhage, infection, occasional increased seizures, and usually transient effects on mood and memory. Efficacy was best documented for focal onset seizures in temporal or frontal lobe. CM stimulation may be useful for generalized or multifocal seizures and PULV for posterior limbic seizures. Mechanisms of DBS for epilepsy are largely unknown, but animal work points to changes in receptors, channels, neurotransmitters, synapses, network connectivity and neurogenesis. Personalization of therapies, in terms of connectivity of the seizure onset zone to the thalamic sub- nucleus and individual characteristics of the seizures, might lead to improved efficacy. Many questions remain about DBS, including the best candidates for different types of neuromodulation, the best targets, the best stimulation parameters, how to minimize side effects and how to deliver current noninvasively. Despite the questions, neuromodulation provides useful new opportunities to treat people with refractory seizures not responding to medicines and not amenable to resective surgery.
Collapse
Affiliation(s)
- Robert S Fisher
- Department of Neurology and Neurological Sciences and Neurosurgery by Courtesy, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Room 4865, Palo Alto, CA 94304, USA.
| |
Collapse
|
18
|
Kalamatianos T, Mavrovounis G, Skouras P, Pandis D, Fountas K, Stranjalis G. Medial Pulvinar Stimulation in Temporal Lobe Epilepsy: A Literature Review and a Hypothesis Based on Neuroanatomical Findings. Cureus 2023; 15:e35772. [PMID: 37025746 PMCID: PMC10071339 DOI: 10.7759/cureus.35772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2023] [Indexed: 03/07/2023] Open
Abstract
While bilateral stimulation of the anterior thalamic nuclei remains the only approved deep brain stimulation (DBS) option for focal epilepsy, two additional thalamic targets have been proposed. Earlier work indicated the potential of centromedian thalamic nucleus stimulation with recent findings highlighting the medial pulvinar nucleus. The latter has been shown to exhibit electrophysiological and imaging alterations in patients with partial status epilepticus and temporal lobe epilepsy. On this basis, recent studies have begun assessing the feasibility and efficacy of pulvinar stimulation, with encouraging results on the reduction of seizure frequency and severity. Building on existing neuroanatomical knowledge, indicating that the medial pulvinar is connected to the temporal lobe via the temporopulvinar bundle of Arnold, we hypothesize that this is one of the routes through which medial pulvinar stimulation affects temporal lobe structures. We suggest that further anatomic, imaging, and electrophysiologic studies are warranted to deepen our understanding of the subject and guide future clinical applications.
Collapse
|
19
|
Maher C, D'Souza A, Zeng R, Barnett M, Kavehei O, Nikpour A, Wang C. White matter alterations in focal to bilateral tonic-clonic seizures. Front Neurol 2022; 13:972590. [PMID: 36188403 PMCID: PMC9515421 DOI: 10.3389/fneur.2022.972590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
We examined the white matter of patients with and without focal to bilateral tonic-clonic seizures (FBTCS), and control participants. A neural network based tract segmentation model (Tractseg) was used to isolate tract-specific, track-weighted tensor-based measurements from the tracts of interest. We compared the group differences in the track-weighted tensor-based measurements derived from whole and hemispheric tracts. We identified several regions that displayed significantly altered white matter in patients with focal epilepsy compared to controls. Furthermore, patients without FBTCS showed significantly increased white matter disruption in the inferior fronto-occipital fascicle and the striato-occipital tract. In contrast, the track-weighted tensor-based measurements from the FBTCS cohort exhibited a stronger resemblance to the healthy controls (compared to the non-FBTCS group). Our findings revealed marked alterations in a range of subcortical tracts considered critical in the genesis of seizures in focal epilepsy. Our novel application of tract-specific, track-weighted tensor-based measurements to a new clinical dataset aided the elucidation of specific tracts that may act as a predictive biomarker to distinguish patients likely to develop FBTCS.
Collapse
Affiliation(s)
- Christina Maher
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Training Centre for Innovative BioEngineering, The University of Sydney, Sydney, NSW, Australia
| | - Arkiev D'Souza
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Translational Research Collective, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Rui Zeng
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Translational Research Collective, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Michael Barnett
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia
| | - Omid Kavehei
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
- Australian Research Council Training Centre for Innovative BioEngineering, The University of Sydney, Sydney, NSW, Australia
| | - Armin Nikpour
- Department of Neurology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Chenyu Wang
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Translational Research Collective, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Sydney Neuroimaging Analysis Centre, Camperdown, NSW, Australia
| |
Collapse
|
20
|
Pizzo F, Carron R, Bartolomei F. Letter to Brain-responsive corticothalamic stimulation in the pulvinar nucleus for the treatment of regional neocortical epilepsy: A case series. Epilepsia Open 2022; 7:541-542. [PMID: 35917183 PMCID: PMC9436297 DOI: 10.1002/epi4.12611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/09/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Francesca Pizzo
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
| | - Romain Carron
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone Hospital, Stereotactic and Functional Neurosurgery, Marseille, France
| | - Fabrice Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.,APHM, Timone Hospital, Epileptology and Cerebral Rhythmology, Marseille, France
| |
Collapse
|
21
|
Gentiletti D, de Curtis M, Gnatkovsky V, Suffczynski P. Focal seizures are organized by feedback between neural activity and ion concentration changes. eLife 2022; 11:68541. [PMID: 35916367 PMCID: PMC9377802 DOI: 10.7554/elife.68541] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Human and animal EEG data demonstrate that focal seizures start with low-voltage fast activity, evolve into rhythmic burst discharges and are followed by a period of suppressed background activity. This suggests that processes with dynamics in the range of tens of seconds govern focal seizure evolution. We investigate the processes associated with seizure dynamics by complementing the Hodgkin-Huxley mathematical model with the physical laws that dictate ion movement and maintain ionic gradients. Our biophysically realistic computational model closely replicates the electrographic pattern of a typical human focal seizure characterized by low voltage fast activity onset, tonic phase, clonic phase and postictal suppression. Our study demonstrates, for the first time in silico, the potential mechanism of seizure initiation by inhibitory interneurons via the initial build-up of extracellular K+ due to intense interneuronal spiking. The model also identifies ionic mechanisms that may underlie a key feature in seizure dynamics, i.e., progressive slowing down of ictal discharges towards the end of seizure. Our model prediction of specific scaling of inter-burst intervals is confirmed by seizure data recorded in the whole guinea pig brain in vitro and in humans, suggesting that the observed termination pattern may hold across different species. Our results emphasize ionic dynamics as elementary processes behind seizure generation and indicate targets for new therapeutic strategies.
Collapse
|
22
|
Feigen CM, Eskandar EN. Responsive Thalamic Neurostimulation: A Systematic Review of a Promising Approach for Refractory Epilepsy. Front Hum Neurosci 2022; 16:910345. [PMID: 35865353 PMCID: PMC9294465 DOI: 10.3389/fnhum.2022.910345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Responsive neurostimulation is an evolving therapeutic option for patients with treatment-refractory epilepsy. Open-loop, continuous stimulation of the anterior thalamic nuclei is the only approved modality, yet chronic stimulation rarely induces complete seizure remission and is associated with neuropsychiatric adverse effects. Accounts of off-label responsive stimulation in thalamic nuclei describe significant improvements in patients who have failed multiple drug regimens, vagal nerve stimulation, and other invasive measures. This systematic review surveys the currently available data supporting the use of responsive thalamic neurostimulation in primary and secondary generalized, treatment-refractory epilepsy. Materials and Methods A systematic review was performed using the following combination of keywords and controlled vocabulary: (“Seizures”[Mesh] AND “Thalamus”[Mesh] AND “Deep Brain Stimulation”[Mesh]) OR (responsive neurostim* AND (thalamus[MeSH])) OR [responsive neurostimulation AND thalamus AND (epilepsy OR seizures)]. In addition, a search of the publications listed under the PubMed “cited by” tab was performed for all publications that passed title/abstract screening in addition to manually searching their reference lists. Results Ten publications were identified describing a total of 29 subjects with a broad range of epilepsy disorders treated with closed-loop thalamic neurostimulation. The median age of subjects was 31 years old (range 10–65 years). Of the 29 subjects, 15 were stimulated in the anterior, 11 in the centromedian, and 3 in the pulvinar nuclei. Excluding 5 subjects who were treated for 1 month or less, median time on stimulation was 19 months (range 2.4–54 months). Of these subjects, 17/24 experienced greater than or equal to 50%, 11/24 least 75%, and 9/24 at least 90% reduction in seizures. Although a minority of patients did not exhibit significant clinical improvement by follow-up, there was a general trend of increasing treatment efficacy with longer periods on closed-loop thalamic stimulation. Conclusion The data supporting off-label closed-loop thalamic stimulation for refractory epilepsy is limited to 29 adult and pediatric patients, many of whom experienced significant improvement in seizure duration and frequency. This encouraging progress must be verified in larger studies.
Collapse
|
23
|
Li Z, Huang J, Wei W, Jiang S, Liu H, Luo H, Ruan J. EEG Oscillatory Networks in Peri-Ictal Period of Absence Epilepsy. Front Neurol 2022; 13:825225. [PMID: 35547382 PMCID: PMC9081722 DOI: 10.3389/fneur.2022.825225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/28/2022] [Indexed: 11/15/2022] Open
Abstract
Objective To investigate the dynamical brain network changes before and after an absence seizure episode in absence epilepsy (AE). Methods 21 AE patients with a current high frequency of seizures and 21 sex- and age-matched health control (HC) who reported no history of neurological or psychiatric disorders and visited the hospital for routine physical examinations were included. Each included subject underwent a 2-h and 19-channel video EEG examination. For AE patients, five epochs of 10-s EEG data in inter-ictal, pre-ictal, and post-ictal states were collected. For the HC group, five 10-s resting-state EEG epochs were extracted. Functional independent components analysis (ICA) was carried out using the LORETA KEY tool. Results Compared with the resting-state EEG data of the HC group, the EEG data from AE patients during inter-ictal periods showed decreased alpha oscillations in regions involving the superior frontal gyrus (SFG) (BA11). From inter-ictal to pre-ictal, SFG (BA10) showed maximum decreased delta oscillations. Additionally, from pre-ictal to post-ictal, superior temporal gyrus (STG) (BA 22) presented maximum increased neural activity in the alpha band. Moreover, compared with inter-ictal EEG, post-ictal EEG showed significantly decreased theta activity in SFG (BA8). Conclusion The changes in SFG alpha oscillations are the key brain network differences between inter-ictal EEG of AE patients and resting-state EEG of HCs. The brain networks of EEG oscillatory during peri-ictal episodes are mainly involving SFG and STG. Our study suggests that altered EEG brain networks dynamics exist between inter-ictal EEG of AE patients and resting-state EEG of HCs and between pre- and post-ictal EEG in AE patients.
Collapse
Affiliation(s)
- Zhiye Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Jialing Huang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Wei Wei
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Sili Jiang
- Department of Neurology, Suining Central Hospital, Suining, China
| | - Hong Liu
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Hua Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| | - Jianghai Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Function, Luzhou, China
| |
Collapse
|
24
|
Chimakurthy AK, Villemarette-Pittman NR, Levy MH, Olejniczak PW, Mader EC. Electroclinical Mismatch During EEG Acquisition: What It Might Mean, What We Might Need to Do. Cureus 2022; 14:e23122. [PMID: 35425674 PMCID: PMC9004610 DOI: 10.7759/cureus.23122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2022] [Indexed: 11/30/2022] Open
Abstract
An electroclinical mismatch is present if the electroencephalogram (EEG) shows evidence of moderate to severe diffuse encephalopathy but the patient’s mental status is only mildly altered. We describe five cases in which seizure or status epilepticus was suspected due to electroclinical mismatch. In all five cases, EEG was ordered to rule out nonconvulsive status epilepticus as the cause of the altered mental status. EEG initially showed generalized delta activity (GDA), with variable degrees of rhythmicity, with or without superimposed theta activity, with or without sporadic epileptiform discharges. During EEG acquisition, all patients followed commands and answered questions. The mental status change was limited to mild inattention and temporal disorientation. Benzodiazepine challenge was performed by administering lorazepam 2-mg IV. Within 10 minutes of injection, GDA started to break up and subsequently disappeared. EEG showed prominent sleep spindles in three patients and background changes, indicating drowsiness in two patients. The assessment of clinical response to lorazepam was confounded by sleepiness in all patients. Serial EEG recording or continuous EEG monitoring revealed reemergence of GDA, at times appearing more rhythmic than the GDA in the baseline study. All patients received nonsedating antiseizure drugs. GDA completely resolved and mental status normalized two to five days after starting antiseizure medication. In cases of electroclinical mismatch, the absence of clear-cut epileptiform discharges does not exclude the possibility that cortical hyperexcitability is contributing to the encephalopathic process. A positive response to benzodiazepine challenge suggests the presence of cortical hyperexcitability and the need to start, or increase the dosage of, antiseizure drugs.
Collapse
|
25
|
Karakis I. Using stereo-electroencephalography to unlock the ictal secrets of the thalamus. Clin Neurophysiol 2022; 137:177-178. [DOI: 10.1016/j.clinph.2022.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/03/2022]
|
26
|
Salami P, Borzello M, Kramer MA, Westover MB, Cash SS. Quantifying seizure termination patterns reveals limited pathways to seizure end. Neurobiol Dis 2022; 165:105645. [PMID: 35104646 PMCID: PMC8860887 DOI: 10.1016/j.nbd.2022.105645] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/06/2022] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Despite their possible importance in the design of novel neuromodulatory approaches and in understanding status epilepticus, the dynamics and mechanisms of seizure termination are not well studied. We examined intracranial recordings from patients with epilepsy to differentiate seizure termination patterns and investigated whether these patterns are indicative of different underlying mechanisms. METHODS Seizures were classified into one of two termination patterns: (a) those that end simultaneously across the brain (synchronous), and (b) those whose termination is piecemeal across the cortex (asynchronous). Both types ended with either a burst suppression pattern, or continuous seizure activity. These patterns were quantified and compared using burst suppression ratio, absolute energy, and network connectivity. RESULTS Seizures with electrographic generalization showed burst suppression patterns in 90% of cases, compared with only 60% of seizures which remained focal. Interestingly, we found similar absolute energy and burst suppression ratios in seizures with synchronous and asynchronous termination, while seizures with continuous seizure activity were found to be different from seizures with burst suppression, showing lower energy during seizure and lower burst suppression ratio at the start and end of seizure. Finally, network density was observed to increase with seizure progression, with significantly lower densities in seizures with continuous seizure activity compared to seizures with burst suppression. SIGNIFICANCE Based on this spatiotemporal classification scheme, we suggest that there are a limited number of seizure termination patterns and dynamics. If this bears out, it would imply that the number of mechanisms underlying seizure termination is also constrained. Seizures with different termination patterns exhibit different dynamics even before their start. This may provide useful clues about how seizures may be managed, which in turn may lead to more targeted modes of therapy for seizure control.
Collapse
Affiliation(s)
- Pariya Salami
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Mia Borzello
- Department of Cognitive Science, University of California, San Diego, CA, USA; Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mark A Kramer
- Department of Mathematics and Statistics, Boston University, Boston, MA, USA
| | - M Brandon Westover
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Ryvlin P, Rheims S, Hirsch LJ, Sokolov A, Jehi L. Neuromodulation in epilepsy: state-of-the-art approved therapies. Lancet Neurol 2021; 20:1038-1047. [PMID: 34710360 DOI: 10.1016/s1474-4422(21)00300-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022]
Abstract
Three neuromodulation therapies have been appropriately tested and approved in refractory focal epilepsies: vagus nerve stimulation (VNS), deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS), and closed-loop responsive neurostimulation of the epileptogenic zone or zones. These therapies are primarily palliative. Only a few individuals have achieved complete freedom from seizures for more than 12 months with these therapies, whereas more than half have benefited from long-term reduction in seizure frequency of more than 50%. Implantation-related adverse events primarily include infection and pain at the implant site. Intracranial haemorrhage is a frequent adverse event for ANT-DBS and responsive neurostimulation. Other stimulation-specific side-effects are observed with VNS and ANT-DBS. Biomarkers to predict response to neuromodulation therapies are not available, and high-level evidence to aid decision making about when and for whom these therapies should be preferred over other antiepileptic treatments is scant. Future studies are thus needed to address these shortfalls in knowledge, approve other forms of neuromodulation, and develop personalised closed-loop therapies with embedded machine learning. Until then, neuromodulation could be considered for individuals with intractable seizures, ideally after the possibility of curative surgical treatment has been carefully assessed and ruled out or judged less appropriate.
Collapse
Affiliation(s)
- Philippe Ryvlin
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| | - Sylvain Rheims
- Department of Functional Neurology and Epileptology, Hospices Civils de Lyon, Lyon 1 University Lyon Neuroscience Research Center, Institut National de la Santé et de la Recherche Médicale U1028/CNRS UMR 5292 Epilepsy Institute, Lyon, France
| | - Lawrence J Hirsch
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Arseny Sokolov
- Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Lara Jehi
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
28
|
Intracranial EEG seizure onset and termination patterns and their association. Epilepsy Res 2021; 176:106739. [PMID: 34455176 DOI: 10.1016/j.eplepsyres.2021.106739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/19/2021] [Accepted: 08/12/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The study of seizure onset and termination patterns has the potential to enhance our understanding of the underlying mechanisms of seizure generation and cessation. It is largely unclear whether seizures with distinct onset patterns originate from varying network interactions and terminate through different termination pathways. METHODS We investigated the morphology and location of 103 intracranial EEG seizure onset and termination patterns from 20 patients with drug-resistant focal epilepsy. We determined if seizure onset patterns were associated with specific termination patterns. Finally, we looked at network interactions prior to the generation of distinct seizure onset patterns by calculating directed functional connectivity matrices. RESULTS We identified nine seizure onset and six seizure termination patterns. The most common onset pattern was Low-Voltage Fast Activity (36 %), and the most frequent termination pattern was Burst Suppression (44 %). All seizures with fast (>13 Hz) termination patterns had a fast (>13 Hz) onset pattern type. Almost any onset pattern could terminate with the Burst Suppression and rhythmic Spike/PolySpike and Wave (rSW/rPSW) termination patterns. Seizures with a fast activity onset had higher inflow to the seizure onset zone from other regions in the gamma and high gamma frequency ranges prior to their generation compared to seizures with a slow onset. SIGNIFICANCE Our observations suggest that different mechanisms underlie the generation of different seizure onset patterns although seizure onset patterns can share a common termination pattern. Possible mechanisms underlying these patterns are discussed.
Collapse
|
29
|
Chaitanya G, Romeo AK, Ilyas A, Irannejad A, Toth E, Elsayed G, Bentley JN, Riley KO, Pati S. Robot-assisted stereoelectroencephalography exploration of the limbic thalamus in human focal epilepsy: implantation technique and complications in the first 24 patients. Neurosurg Focus 2021; 48:E2. [PMID: 32234983 DOI: 10.3171/2020.1.focus19887] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/24/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Despite numerous imaging studies highlighting the importance of the thalamus in a patient's surgical prognosis, human electrophysiological studies involving the limbic thalamic nuclei are limited. The objective of this study was to evaluate the safety and accuracy of robot-assisted stereotactic electrode placement in the limbic thalamic nuclei of patients with suspected temporal lobe epilepsy (TLE). METHODS After providing informed consent, 24 adults with drug-resistant, suspected TLE undergoing evaluation with stereoelectroencephalography (SEEG) were enrolled in the prospective study. The trajectory of one electrode planned for clinical sampling of the operculoinsular cortex was modified to extend it to the thalamus, thereby preventing the need for additional electrode placement for research. The anterior nucleus of the thalamus (ANT) (n = 13) and the medial group of thalamic nuclei (MED) (n = 11), including the mediodorsal and centromedian nuclei, were targeted. The postimplantation CT scan was coregistered to the preoperative MR image, and Morel's thalamic atlas was used to confirm the accuracy of implantation. RESULTS Ten (77%) of 13 patients in the ANT group and 10 (91%) of 11 patients in the MED group had electrodes accurately placed in the thalamic nuclei. None of the patients had a thalamic hemorrhage. However, trace asymptomatic hemorrhages at the cortical-level entry site were noted in 20.8% of patients, who did not require additional surgical intervention. SEEG data from all the patients were interpretable and analyzable. The trajectories for the ANT implant differed slightly from those of the MED group at the entry point-i.e., the precentral gyrus in the former and the postcentral gyrus in the latter. CONCLUSIONS Using judiciously planned robot-assisted SEEG, the authors demonstrate the safety of electrophysiological sampling from various thalamic nuclei for research recordings, presenting a technique that avoids implanting additional depth electrodes or compromising clinical care. With these results, we propose that if patients are fully informed of the risks involved, there are potential benefits of gaining mechanistic insights to seizure genesis, which may help to develop neuromodulation therapies.
Collapse
Affiliation(s)
- Ganne Chaitanya
- 1Department of Neurology.,2Epilepsy and Cognitive Neurophysiology Laboratory, and
| | - Andrew K Romeo
- 3Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | - Adeel Ilyas
- 2Epilepsy and Cognitive Neurophysiology Laboratory, and.,3Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | - Auriana Irannejad
- 1Department of Neurology.,2Epilepsy and Cognitive Neurophysiology Laboratory, and
| | - Emilia Toth
- 1Department of Neurology.,2Epilepsy and Cognitive Neurophysiology Laboratory, and
| | - Galal Elsayed
- 3Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | - J Nicole Bentley
- 3Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | - Kristen O Riley
- 3Department of Neurosurgery, University of Alabama at Birmingham, Alabama
| | - Sandipan Pati
- 1Department of Neurology.,2Epilepsy and Cognitive Neurophysiology Laboratory, and
| |
Collapse
|
30
|
Wills KE, González HFJ, Johnson GW, Haas KF, Morgan VL, Narasimhan S, Englot DJ. People with mesial temporal lobe epilepsy have altered thalamo-occipital brain networks. Epilepsy Behav 2021; 115:107645. [PMID: 33334720 PMCID: PMC7882020 DOI: 10.1016/j.yebeh.2020.107645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/05/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
While temporal lobe epilepsy (TLE) is a focal epilepsy, previous work demonstrates that TLE causes widespread brain-network disruptions. Impaired visuospatial attention and learning in TLE may be related to thalamic arousal nuclei connectivity. Our prior preliminary work in a smaller patient cohort suggests that patients with TLE demonstrate abnormal functional connectivity between central lateral (CL) thalamic nucleus and medial occipital lobe. Others have shown pulvinar connectivity disturbances in TLE, but it is incompletely understood how TLE affects pulvinar subnuclei. Also, the effects of epilepsy surgery on thalamic functional connectivity remains poorly understood. In this study, we examine the effects of TLE on functional connectivity of two key thalamic arousal-nuclei: lateral pulvinar (PuL) and CL. We evaluate resting-state functional connectivity of the PuL and CL in 40 patients with TLE and 40 controls using fMRI. In 25 patients, postoperative images (>1 year) were also compared with preoperative images. Compared to controls, patients with TLE exhibit loss of normal positive connectivity between PuL and lateral occipital lobe (p < 0.05), and a loss of normal negative connectivity between CL and medial occipital lobe (p < 0.01, paired t-tests). FMRI amplitude of low-frequency fluctuation (ALFF) in TLE trended higher in ipsilateral PuL (p = 0.06), but was lower in the lateral occipital (p < 0.01) and medial occipital lobe in patients versus controls (p < 0.05, paired t-tests). More abnormal ALFF in the ipsilateral lateral occipital lobe is associated with worse preoperative performance on Rey Complex Figure Test Immediate (p < 0.05, r = 0.381) and Delayed scores (p < 0.05, r = 0.413, Pearson's Correlations). After surgery, connectivity between PuL and lateral occipital lobe remains abnormal in patients (p < 0.01), but connectivity between CL and medial occipital lobe improves and is no longer different from control values (p > 0.05, ANOVA, post hoc Fischer's LSD). In conclusion, thalamic arousal nuclei exhibit abnormal connectivity with occipital lobe in TLE, and some connections may improve after surgery. Studying thalamic arousal centers may help explain distal network disturbances in TLE.
Collapse
Affiliation(s)
- Kristin E Wills
- Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Hernán F J González
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Biomedical Engineering Vanderbilt University, Nashville, TN, USA
| | - Graham W Johnson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Biomedical Engineering Vanderbilt University, Nashville, TN, USA
| | - Kevin F Haas
- Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Victoria L Morgan
- Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Biomedical Engineering Vanderbilt University, Nashville, TN, USA; Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Saramati Narasimhan
- Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dario J Englot
- Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Biomedical Engineering Vanderbilt University, Nashville, TN, USA; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
31
|
Pizzo F, Roehri N, Giusiano B, Lagarde S, Carron R, Scavarda D, McGonigal A, Filipescu C, Lambert I, Bonini F, Trebuchon A, Bénar CG, Bartolomei F. The Ictal Signature of Thalamus and Basal Ganglia in Focal Epilepsy: A SEEG Study. Neurology 2020; 96:e280-e293. [PMID: 33024023 DOI: 10.1212/wnl.0000000000011003] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/26/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine the involvement of subcortical regions in human epilepsy by analyzing direct recordings from these regions during epileptic seizures using stereo-EEG (SEEG). METHODS We studied the SEEG recordings of a large series of patients (74 patients, 157 seizures) with an electrode sampling the thalamus and in some cases also the basal ganglia (caudate nucleus, 22 patients; and putamen, 4 patients). We applied visual analysis and signal quantification methods (Epileptogenicity Index [EI]) to their ictal recordings and compared electrophysiologic with clinical data. RESULTS We found that in 86% of patients, thalamus was involved during seizures (visual analysis) and 20% showed high values of epileptogenicity (EI >0.3). Basal ganglia may also disclose high values of epileptogenicity (9% in caudate nucleus) but to a lesser degree than thalamus (p < 0.01). We observed different seizure onset patterns including low voltage high frequency activities. We found high values of thalamic epileptogenicity in different epilepsy localizations, including opercular and motor epilepsies. We found no difference between epilepsy etiologies (cryptogenic vs malformation of cortical development, p = 0.77). Thalamic epileptogenicity was correlated with the extension of epileptogenic networks (p = 0.02, ρ 0.32). We found a significant effect (p < 0.05) of thalamic epileptogenicity regarding the postsurgical outcome (higher thalamic EI corresponding to higher probability of surgical failure). CONCLUSIONS Thalamic involvement during seizures is common in different seizure types. The degree of thalamic epileptogenicity is a possible marker of the epileptogenic network extension and of postsurgical prognosis.
Collapse
Affiliation(s)
- Francesca Pizzo
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris.
| | - Nicolas Roehri
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris
| | - Bernard Giusiano
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris
| | - Stanislas Lagarde
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris
| | - Romain Carron
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris
| | - Didier Scavarda
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris
| | - Aileen McGonigal
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris
| | - Cristina Filipescu
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris
| | - Isabelle Lambert
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris
| | - Francesca Bonini
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris
| | - Agnes Trebuchon
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris
| | - Christian-George Bénar
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris
| | - Fabrice Bartolomei
- From the Epileptology Department (F.P., S.L., A.M., I.L., F. Bonini, A.T., F. Bartolomei), Functional and Stereotactic Neurosurgery (R.C.), and Pediatric Neurosurgery (D.S.), APHM, Timone Hospital, Institut de Neurosciences des Systèmes (F.P., N.R., B.G., S.L., R.C., D.S., A.M., I.L., F. Bonini, A.T., C.-G.B, F. Bartolomei), INSERM, Aix Marseille Universite; and Psychiatrie et Neurosciences (C.F.), GHU Paris, St Anne, Paris.
| |
Collapse
|
32
|
Maidana Capitán M, Cámpora N, Sigvard CS, Kochen S, Samengo I. Time- and frequency-resolved covariance analysis for detection and characterization of seizures from intracraneal EEG recordings. BIOLOGICAL CYBERNETICS 2020; 114:461-471. [PMID: 32656680 DOI: 10.1007/s00422-020-00840-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
The amount of power in different frequency bands of the electroencephalogram (EEG) carries information about the behavioral state of a subject. Hence, neurologists treating epileptic patients monitor the temporal evolution of the different bands. We propose a covariance-based method to detect and characterize epileptic seizures operating on the band-filtered EEG signal. The algorithm is unsupervised and performs a principal component analysis of intra-cranial EEG recordings, detecting transient fluctuations of the power in each frequency band. Its simplicity makes it suitable for online implementation. Good sampling of the non-ictal periods is required, while no demands are imposed on the amount of data during ictal activity. We tested the method with 32 seizures registered in 5 patients. The area below the resulting receiver-operating characteristic curves was 87% for the detection of seizures and 91% for the detection of recruited electrodes. To identify the behaviorally relevant correlates of the physiological signal, we identified transient changes in the variance of each band that were correlated with the degree of loss of consciousness, the latter assessed by the so-called Consciousness Seizure Scale, summarizing the performance of the subject in a number of behavioral tests requested during seizures. We concluded that those crisis with maximal impairment of consciousness tended to exhibit an increase in variance approximately 40 s after seizure onset, with predominant power in the theta and alpha bands and reduced delta and beta activity.
Collapse
Affiliation(s)
- Melisa Maidana Capitán
- Instituto Balseiro and Departamento de Física Médica, Centro Atómico Bariloche, San Carlos de Bariloche, Río Negro, Argentina
| | - Nuria Cámpora
- Neurosciences and Complex Systems Unit (ENyS), Consejo Nacional de Investigaciones Científicas y Técnicas, Hospital El Cruce "Néstor Kirchner", Universidad Nacional Arturo Jauretche, Florencio Varela, Argentina
| | - Claudio Sebastián Sigvard
- Instituto Balseiro and Departamento de Física Médica, Centro Atómico Bariloche, San Carlos de Bariloche, Río Negro, Argentina
| | - Silvia Kochen
- Neurosciences and Complex Systems Unit (ENyS), Consejo Nacional de Investigaciones Científicas y Técnicas, Hospital El Cruce "Néstor Kirchner", Universidad Nacional Arturo Jauretche, Florencio Varela, Argentina
| | - Inés Samengo
- Instituto Balseiro and Departamento de Física Médica, Centro Atómico Bariloche, San Carlos de Bariloche, Río Negro, Argentina.
| |
Collapse
|
33
|
Santana RF, Silva LARD, Achar E, Ballester G, Ribeiro Junior MAF, Ortiz SRM. C-Fos expression in epileptogenic areas of nephropathic rats undergoing star fruit poisoning. Acta Cir Bras 2020; 35:e202000705. [PMID: 32785417 PMCID: PMC7433670 DOI: 10.1590/s0102-865020200070000005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/22/2020] [Indexed: 11/22/2022] Open
Abstract
Purpose Studies have demonstrated that star fruit consumption by nephropathic patients triggers severe neurotoxic effects that can lead to convulsions or even death. Brain areas likely susceptible to star fruit poisoning have not been investigated. The objective of the present study was to map possible epileptogenic areas susceptible to star fruit intoxication in nephropathic rats. Methods The study analyzed 25 rats (5 groups). Rats in the experimental group underwent bilateral ureteral obstruction surgery and orogastric gavages with star fruit juice. An electroencephalogram was used to confirm convulsive seizures. Urea and creatinine levels were used to confirm the uremia model. Immunohistochemical analysis was used to map cells with c-Fos protein (c-Fos+ cells) to identify brain areas with increased neuronal activity. Control groups included non-nephropathic and nephropathic rats that did not receive star fruit. Results A statistically significant increase (p<0.01) in c-Fos+ cells was noted in nephropathic animals receiving star fruit juice compared to control groups, in brain areas commonly related to epileptogenic neural circuits including the hippocampus, amygdala, rhinal cortex, anterior cingulate area, piriform area, and medial dorsal thalamus. Conclusion These data corroborate the neurotoxic capacity of star fruit in nephropathic patients.
Collapse
Affiliation(s)
| | | | - Eduardo Achar
- UNICID, Brazil; Universidade de São Caetano do Sul, Brazil
| | | | | | | |
Collapse
|
34
|
|
35
|
Aupy J, Wendling F, Taylor K, Bulacio J, Gonzalez-Martinez J, Chauvel P. Cortico-striatal synchronization in human focal seizures. Brain 2020; 142:1282-1295. [PMID: 30938430 DOI: 10.1093/brain/awz062] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 11/12/2022] Open
Abstract
Although a number of experimental and clinical studies have pointed out participation or an even more prominent role of basal ganglia in focal seizures, the mode of interaction between cortical and striatal signals remains unclear. In the present study, we took stereoelectroencephalographic (SEEG) recordings in drug-resistant epilepsy patients, to qualitatively and quantitatively analyse the ictal striatum activity as well as its synchronization with cerebral cortex. Eleven patients who underwent SEEG evaluation were prospectively included if they fulfilled two inclusion criteria: (i) at least one orthogonal intracerebral electrode contact explored the basal ganglia, in either their putaminal or caudate part; and (ii) at least two SEEG seizures were recorded. Cortical and subcortical regions of interest were defined and different periods of interest were analysed. SEEG was visually inspected and h2 non-linear correlation analysis performed to study functional connectivity between cortical region of interest and striatum. Six correlation indices were calculated. Two main patterns of striatal activation were recorded: the most frequent was characterized by an early alpha/beta activity that started within the first 5 s after seizure onset, sometimes concomitant with it. The second one was characterized by late, slower, theta/delta activity. A significant difference in h2 correlation indices was observed during the preictal and seizure onset period compared to background for global striatal index, mesio-temporal/striatal index, latero-temporal/striatal index, insular/striatal index, prefrontal/striatal index. In addition, a significant difference in h2 correlation indices was observed during the seizure termination period compared to all the other periods of interest for the six indices calculated. These results indicate that cortico-striatal synchronization can arise from the start of focal seizures. Depending on the ictal frequency pattern, desynchronization can occur later, but a late and terminal hypersynchronization progressively takes over. These changes in synchronization level between cortical and striatal activity might be part of an endogenous mechanism controlling the duration of abnormal oscillations within the striato-thalamo-cortical loop and thereby their termination. Pathophysiology of basal ganglia in focal seizures appears to be much more interlinked with the cortex than expected. Beyond the stereotypical features they could imprint to seizure semiology, their role in strengthening mechanisms underlying cessation of ictal propagation should inspire new rationales for deep brain stimulation in patients with intractable focal epilepsies.
Collapse
Affiliation(s)
- Jerome Aupy
- Cleveland Clinic, Neurological Institute, Epilepsy Center, Cleveland, OH, USA.,University of Bordeaux, Bordeaux Neurocampus, IMN, UMR CNRS, Bordeaux, France.,Bordeaux University Hospital, Department of Clinical Neurosciences, Bordeaux, France
| | - Fabrice Wendling
- Inserm, Rennes I University, LTSI - UMR 1099, F-35000 Rennes, France
| | - Kenneth Taylor
- Cleveland Clinic, Neurological Institute, Epilepsy Center, Cleveland, OH, USA
| | - Juan Bulacio
- Cleveland Clinic, Neurological Institute, Epilepsy Center, Cleveland, OH, USA
| | | | - Patrick Chauvel
- Cleveland Clinic, Neurological Institute, Epilepsy Center, Cleveland, OH, USA
| |
Collapse
|
36
|
González-Ramírez LR, Mauro AJ. Investigating the role of gap junctions in seizure wave propagation. BIOLOGICAL CYBERNETICS 2019; 113:561-577. [PMID: 31696304 DOI: 10.1007/s00422-019-00809-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
The effect of gap junctions as well as the biological mechanisms behind seizure wave propagation is not completely understood. In this work, we use a simple neural field model to study the possible influence of gap junctions specifically on cortical wave propagation that has been observed in vivo preceding seizure termination. We consider a voltage-based neural field model consisting of an excitatory and an inhibitory population as well as both chemical and gap junction-like synapses. We are able to approximate important properties of cortical wave propagation previously observed in vivo before seizure termination. This model adds support to existing evidence from models and clinical data suggesting a key role of gap junctions in seizure wave propagation. In particular, we found that in this model gap junction-like connectivity determines the propagation of one-bump or two-bump traveling wave solutions with features consistent with the clinical data. For sufficiently increased gap junction connectivity, wave solutions cease to exist. Moreover, gap junction connectivity needs to be sufficiently low or moderate to permit the existence of linearly stable solutions of interest.
Collapse
Affiliation(s)
- Laura R González-Ramírez
- Departamento de Formación Básica Disciplinaria, Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Hidalgo, San Agustín Tlaxiaca, Hidalgo, Mexico.
| | - Ava J Mauro
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
37
|
Lamb GV, Green RJ, Olorunju S. Tracking epilepsy and autism. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2019. [DOI: 10.1186/s41983-019-0103-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
38
|
Yu T, Wang X, Li Y, Zhang G, Worrell G, Chauvel P, Ni D, Qiao L, Liu C, Li L, Ren L, Wang Y. High-frequency stimulation of anterior nucleus of thalamus desynchronizes epileptic network in humans. Brain 2019; 141:2631-2643. [PMID: 29985998 DOI: 10.1093/brain/awy187] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 05/26/2018] [Indexed: 12/14/2022] Open
Abstract
Epilepsy has been classically seen as a brain disorder resulting from abnormally enhanced neuronal excitability and synchronization. Although it has been described since antiquity, there are still significant challenges achieving the therapeutic goal of seizure freedom. Deep brain stimulation of the anterior nucleus of the thalamus has emerged as a promising therapy for focal drug-resistant epilepsy; the basic mechanism of action, however, remains unclear. Here, we show that desynchronization is a potential mechanism of deep brain stimulation of the anterior nucleus of the thalamus by studying local field potentials recordings from the cortex during high-frequency stimulation (130 Hz) of the anterior nucleus of the thalamus in nine patients with drug-resistant focal epilepsy. We demonstrate that high-frequency stimulation applied to the anterior nucleus of the thalamus desynchronizes ipsilateral hippocampal background electrical activity over a broad frequency range, and reduces pathological epileptic discharges including interictal spikes and high-frequency oscillations. Furthermore, high-frequency stimulation of the anterior nucleus of the thalamus is capable of decoupling large-scale neural activity involving the hippocampus and distributed cortical areas. We found that stimulation frequencies ranging from 15 to 45 Hz were associated with synchronization of hippocampal local field potentials, whereas higher frequencies (>45 Hz) promoted desynchronization of ipsilateral hippocampal activity. Moreover, reciprocal effective connectivity between the anterior nucleus of the thalamus and the hippocampus was demonstrated by hippocampal-thalamic evoked potentials and thalamic-hippocampal evoked potentials. In summary, high-frequency stimulation of the anterior nucleus of the thalamus is shown to desynchronize focal and large-scale epileptic networks, and here is proposed as the mechanism for reducing seizure generation and propagation. Our data also demonstrate position-specific correlation between deep brain stimulation applied to the anterior nucleus of the thalamus and patients with temporal lobe epilepsy and seizure onset zone within the Papaz circuit or limbic system. Our observation may prove useful for guiding electrode implantation to increase clinical efficacy.
Collapse
Affiliation(s)
- Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Xueyuan Wang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Yongjie Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Gregory Worrell
- Mayo Systems Electrophysiology Laboratory, Departments of Neurology and Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Patrick Chauvel
- UMR 1106 INSERM, Institut de Neurosciences des Systemes, Aix-Marseille University, Marseille, France; Epilepsy Center, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Duanyu Ni
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Liang Qiao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Chang Liu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Liping Li
- Comprehensive Epilepsy Center of Beijing, The Beijing Key Laboratory of Neuromodulation, Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Liankun Ren
- Comprehensive Epilepsy Center of Beijing, The Beijing Key Laboratory of Neuromodulation, Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Yuping Wang
- Comprehensive Epilepsy Center of Beijing, The Beijing Key Laboratory of Neuromodulation, Department of Neurology, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| |
Collapse
|
39
|
Jiang W, Wu C, Xiang J, Miao A, Qiu W, Tang L, Huang S, Chen Q, Hu Z, Wang X. Dynamic Neuromagnetic Network Changes of Seizure Termination in Absence Epilepsy: A Magnetoencephalography Study. Front Neurol 2019; 10:703. [PMID: 31338058 PMCID: PMC6626921 DOI: 10.3389/fneur.2019.00703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/14/2019] [Indexed: 11/28/2022] Open
Abstract
Objective: With increasing efforts devoted to investigating the generation and propagation mechanisms of spontaneous spike and wave discharges (SWDs), little attention has been paid to network mechanisms associated with termination patterns of SWDs to date. In the current study, we aimed to identify the frequency-dependent neural network dynamics during the offset of absence seizures. Methods: Fifteen drug-naïve patients with childhood absence epilepsy (CAE) were assessed with a 275-Channel Magnetoencephalography (MEG) system. MEG data were recorded during and between seizures at a sampling rate of 6,000 Hz and analyzed in seven frequency bands. Source localization was performed with accumulated source imaging. Granger causality analysis was used to evaluate effective connectivity networks of the entire brain at the source level. Results: At the low-frequency (1–80 Hz) bands, activities were predominantly distributed in the frontal cortical and parieto–occipito–temporal junction at the offset transition periods. The high-frequency oscillations (HFOs, 80–500 Hz) analysis indicated significant source localization in the medial frontal cortex and deep brain areas (mainly thalamus) during both the termination transition and interictal periods. Furthermore, an enhanced positive cortico–thalamic effective connectivity was observed around the discharge offset at all of the seven analyzed bands, the direction of which was primarily from various cortical regions to the thalamus. Conclusions: Seizure termination is a gradual process that involves both the cortices and the thalamus in CAE. Cortico–thalamic coupling is observed at the termination transition periods, and the cerebral cortex acts as the driving force.
Collapse
Affiliation(s)
- Wenwen Jiang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Caiyun Wu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Jing Xiang
- Division of Neurology, MEG Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Ailiang Miao
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Wenchao Qiu
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Lu Tang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Shuyang Huang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qiqi Chen
- MEG Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Hu
- Department of Neurology, Nanjing Children's Hospital, Nanjing, China
| | - Xiaoshan Wang
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
40
|
Pizzo F, Roehri N, Medina Villalon S, Trébuchon A, Chen S, Lagarde S, Carron R, Gavaret M, Giusiano B, McGonigal A, Bartolomei F, Badier JM, Bénar CG. Deep brain activities can be detected with magnetoencephalography. Nat Commun 2019; 10:971. [PMID: 30814498 PMCID: PMC6393515 DOI: 10.1038/s41467-019-08665-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 01/12/2019] [Indexed: 12/22/2022] Open
Abstract
The hippocampus and amygdala are key brain structures of the medial temporal lobe, involved in cognitive and emotional processes as well as pathological states such as epilepsy. Despite their importance, it is still unclear whether their neural activity can be recorded non-invasively. Here, using simultaneous intracerebral and magnetoencephalography (MEG) recordings in patients with focal drug-resistant epilepsy, we demonstrate a direct contribution of amygdala and hippocampal activity to surface MEG recordings. In particular, a method of blind source separation, independent component analysis, enabled activity arising from large neocortical networks to be disentangled from that of deeper structures, whose amplitude at the surface was small but significant. This finding is highly relevant for our understanding of hippocampal and amygdala brain activity as it implies that their activity could potentially be measured non-invasively.
Collapse
Affiliation(s)
- F Pizzo
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, 13005, France.
- APHM, Timone Hospital, Epileptology and cerebral rhythmology, Marseille, 13005, France.
| | - N Roehri
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, 13005, France
| | - S Medina Villalon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, 13005, France
- APHM, Timone Hospital, Epileptology and cerebral rhythmology, Marseille, 13005, France
| | - A Trébuchon
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, 13005, France
- APHM, Timone Hospital, Epileptology and cerebral rhythmology, Marseille, 13005, France
| | - S Chen
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, 13005, France
| | - S Lagarde
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, 13005, France
- APHM, Timone Hospital, Epileptology and cerebral rhythmology, Marseille, 13005, France
| | - R Carron
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, 13005, France
- APHM, Timone Hospital, Functional and Stereotactic Neurosurgery, Marseille, 13005, France
| | - M Gavaret
- INSERM UMR894, Paris Descartes university, GHU Paris Psychiatrie Neurosciences, 75013, Paris, France
| | - B Giusiano
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, 13005, France
| | - A McGonigal
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, 13005, France
- APHM, Timone Hospital, Epileptology and cerebral rhythmology, Marseille, 13005, France
| | - F Bartolomei
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, 13005, France
- APHM, Timone Hospital, Epileptology and cerebral rhythmology, Marseille, 13005, France
| | - J M Badier
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, 13005, France
| | - C G Bénar
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, 13005, France.
| |
Collapse
|
41
|
Filipescu C, Lagarde S, Lambert I, Pizzo F, Trébuchon A, McGonigal A, Scavarda D, Carron R, Bartolomei F. The effect of medial pulvinar stimulation on temporal lobe seizures. Epilepsia 2019; 60:e25-e30. [DOI: 10.1111/epi.14677] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/02/2019] [Accepted: 01/29/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Cristina Filipescu
- Clinical Neurophysiology and Epileptology Department Timone Hospital Assitance Publique Hôpitaux de Marseille Marseille France
| | - Stanislas Lagarde
- Clinical Neurophysiology and Epileptology Department Timone Hospital Assitance Publique Hôpitaux de Marseille Marseille France
- National Institute of Health and Medical Research Institut de Neurosciences des Systèmes Aix‐Marseille University Marseille France
| | - Isabelle Lambert
- Clinical Neurophysiology and Epileptology Department Timone Hospital Assitance Publique Hôpitaux de Marseille Marseille France
- National Institute of Health and Medical Research Institut de Neurosciences des Systèmes Aix‐Marseille University Marseille France
| | - Francesca Pizzo
- Clinical Neurophysiology and Epileptology Department Timone Hospital Assitance Publique Hôpitaux de Marseille Marseille France
- National Institute of Health and Medical Research Institut de Neurosciences des Systèmes Aix‐Marseille University Marseille France
| | - Agnès Trébuchon
- Clinical Neurophysiology and Epileptology Department Timone Hospital Assitance Publique Hôpitaux de Marseille Marseille France
- National Institute of Health and Medical Research Institut de Neurosciences des Systèmes Aix‐Marseille University Marseille France
| | - Aileen McGonigal
- Clinical Neurophysiology and Epileptology Department Timone Hospital Assitance Publique Hôpitaux de Marseille Marseille France
- National Institute of Health and Medical Research Institut de Neurosciences des Systèmes Aix‐Marseille University Marseille France
| | - Didier Scavarda
- National Institute of Health and Medical Research Institut de Neurosciences des Systèmes Aix‐Marseille University Marseille France
- Pediatric Neurosurgery Department Timone Hospital Assitance Publique Hôpitaux de Marseille Marseille France
| | - Romain Carron
- National Institute of Health and Medical Research Institut de Neurosciences des Systèmes Aix‐Marseille University Marseille France
- Functional and Stereotactic Neurosurgery Assitance Publique Hôpitaux de Marseille Marseille France
| | - Fabrice Bartolomei
- Clinical Neurophysiology and Epileptology Department Timone Hospital Assitance Publique Hôpitaux de Marseille Marseille France
- National Institute of Health and Medical Research Institut de Neurosciences des Systèmes Aix‐Marseille University Marseille France
| |
Collapse
|
42
|
Park KM, Lee BI, Shin KJ, Ha SY, Park J, Kim SE, Kim SE. Pivotal Role of Subcortical Structures as a Network Hub in Focal Epilepsy: Evidence from Graph Theoretical Analysis Based on Diffusion-Tensor Imaging. J Clin Neurol 2019; 15:68-76. [PMID: 30618219 PMCID: PMC6325361 DOI: 10.3988/jcn.2019.15.1.68] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 12/02/2022] Open
Abstract
Background and Purpose There is accumulating evidence that epilepsy is caused by network dysfunction. We evaluated the hub reorganization of subcortical structures in patients with focal epilepsy using graph theoretical analysis based on diffusion-tensor imaging (DTI). In addition, we investigated differences in the values of diffusion tensors and scalars, fractional anisotropy (FA), and mean diffusivity (MD) of subcortical structures between patients with focal epilepsy and healthy subjects. Methods One hundred patients with focal epilepsy and normal magnetic resonance imaging (MRI) findings and 80 age- and sex-matched healthy subjects were recruited prospectively. All subjects underwent DTI to obtain data suitable for graph theoretical analysis. We investigated the differences in the node strength, cluster coefficient, eigenvector centrality, page-rank centrality measures, FA, and MD of subcortical structures between patients with epilepsy and healthy subjects. Results After performing multiple corrections, the cluster coefficient and the eigenvector centrality of the globus pallidus were higher in patients with epilepsy than in healthy subjects (p=0.006 and p=0.008, respectively). In addition, the strength and the page-rank centrality of the globus pallidus tended to be higher in patients with epilepsy than in healthy subjects (p=0.092 and p=0.032, respectively). The cluster coefficient of the putamen was lower in patients with epilepsy than in healthy subjects (p=0.004). The FA values of the caudate nucleus and thalamus were significantly lower in patients with epilepsy than in healthy subjects (p=0.009 and p=0.007, respectively), whereas the MD value of the thalamus was higher than that in healthy subjects (p=0.005). Conclusions We discovered the presence of hub reorganization of subcortical structures in focal epilepsy patients with normal MRI findings, suggesting that subcortical structures play a pivotal role as a hub in the epilepsy network. These findings further reinforce the idea that epilepsy is a network disease.
Collapse
Affiliation(s)
- Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Byung In Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Kyong Jin Shin
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Sam Yeol Ha
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - JinSe Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Si Eun Kim
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Sung Eun Kim
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea.
| |
Collapse
|
43
|
Subcortical SISCOM hyperperfusion: Should we pay more attention to it? Seizure 2018; 62:43-48. [PMID: 30278347 DOI: 10.1016/j.seizure.2018.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 11/20/2022] Open
|
44
|
Phase Synchronization Dynamics of Neural Network during Seizures. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2018; 2018:1354915. [PMID: 30410569 PMCID: PMC6205102 DOI: 10.1155/2018/1354915] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/13/2018] [Indexed: 11/19/2022]
Abstract
Epilepsy has been considered as a network-level disorder characterized by recurrent seizures, which result from network reorganization with evolution of synchronization. In this study, the brain networks were established by calculating phase synchronization based on electrocorticogram (ECoG) signals from eleven refractory epilepsy patients. Results showed that there was a significant increase of synchronization prior to seizure termination and no significant difference of the transitions of network states among the preseizure, seizure, and postseizure periods. Those results indicated that synchronization might participate in termination of seizures, and the network states transitions might not dominate the seizure evolution.
Collapse
|
45
|
Aracri P, de Curtis M, Forcaia G, Uva L. Enhanced thalamo-hippocampal synchronization during focal limbic seizures. Epilepsia 2018; 59:1774-1784. [DOI: 10.1111/epi.14521] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Patrizia Aracri
- Epilepsy Unit; Fondazione Istituto Neurologico Carlo Besta; Milano Italy
| | - Marco de Curtis
- Epilepsy Unit; Fondazione Istituto Neurologico Carlo Besta; Milano Italy
| | - Greta Forcaia
- Epilepsy Unit; Fondazione Istituto Neurologico Carlo Besta; Milano Italy
| | - Laura Uva
- Epilepsy Unit; Fondazione Istituto Neurologico Carlo Besta; Milano Italy
| |
Collapse
|
46
|
Park KM, Kim TH, Mun CW, Shin KJ, Ha SY, Park J, Lee BI, Lee HJ, Kim SE. Reduction of ipsilateral thalamic volume in temporal lobe epilepsy with hippocampal sclerosis. J Clin Neurosci 2018; 55:76-81. [PMID: 29958756 DOI: 10.1016/j.jocn.2018.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/03/2018] [Accepted: 06/06/2018] [Indexed: 10/28/2022]
Abstract
The thalamus plays an important role in the modulation of both focal and generalized seizures, but the mechanisms related to seizures may be different among epilepsy syndromes. The aim of this study is to investigate the thalamic atrophy in different epilepsy syndromes. We enrolled a total of 72 patients with epilepsy (22 patients with temporal lobe epilepsy with hippocampal sclerosis, 21 patients with extra-temporal lobe epilepsy, and 29 patients with juvenile myoclonic epilepsy). We analyzed structural volumes of the brain with FreeSurfer 5.1 software, and compared them among subgroups of epilepsy and normal control subjects. Moreover, we quantified correlations between the duration of epilepsy and the structural volumes with age and sex as covariates. The volumes of the ipsilateral hippocampus in temporal lobe epilepsy with hippocampal sclerosis were significantly smaller than those in extra-temporal lobe epilepsy and normal control subjects [analysis of variance (ANOVA), p < 0.001]. Although the volumes of the ipsilateral thalamus were not different from those of normal control subjects, the volumes of the ipsilateral thalamus were negatively correlated with duration of epilepsy in temporal lobe epilepsy with hippocampal sclerosis (r = -0.5, p = 0.02). However, the volumes of interest in extra-temporal lobe epilepsy and juvenile myoclonic epilepsy were not different from those in normal control subjects, and none of these structures were correlated with duration of epilepsy. These findings suggest that the role of the thalamus may be different in thalamo-limbic circuits among epilepsy syndromes.
Collapse
Affiliation(s)
- Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Tae Hyung Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University, Yangsan, Republic of Korea
| | - Chi Woong Mun
- Department of Biomedical Engineering/u-HARC, Inje University, Gimhae, Republic of Korea
| | - Kyong Jin Shin
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Sam Yeol Ha
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - JinSe Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Byung In Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Sung Eun Kim
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
47
|
Smelick C, Britton JW, Tatum WO, Feyissa AM. Unusual seizure evolution: Focal-general-focal-general. EPILEPSY & BEHAVIOR CASE REPORTS 2018; 10:54-56. [PMID: 29984173 PMCID: PMC6031237 DOI: 10.1016/j.ebcr.2018.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/02/2018] [Accepted: 02/13/2018] [Indexed: 11/03/2022]
Abstract
Seizure types have been described that do not conform to traditional classification schemes. We present another unusual type characterized by focal onset with secondary generalization, that is followed immediately by continued focal activity that generalizes again without an intervening break. Better understanding of these seizure types may allow improved targeted therapies and help shed light on the mechanistic underpinnings of epilepsy.
Collapse
Affiliation(s)
- Christopher Smelick
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA
| | - Jeffrey W Britton
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - William O Tatum
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA
| | - Anteneh M Feyissa
- Department of Neurology, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224, USA
| |
Collapse
|
48
|
Fan D, Wang Q, Su J, Xi H. Stimulus-induced transitions between spike-wave discharges and spindles with the modulation of thalamic reticular nucleus. J Comput Neurosci 2017; 43:203-225. [PMID: 28939929 DOI: 10.1007/s10827-017-0658-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 08/11/2017] [Accepted: 09/04/2017] [Indexed: 12/19/2022]
Abstract
It is believed that thalamic reticular nucleus (TRN) controls spindles and spike-wave discharges (SWD) in seizure or sleeping processes. The dynamical mechanisms of spatiotemporal evolutions between these two types of activity, however, are not well understood. In light of this, we first use a single-compartment thalamocortical neural field model to investigate the effects of TRN on occurrence of SWD and its transition. Results show that the increasing inhibition from TRN to specific relay nuclei (SRN) can lead to the transition of system from SWD to slow-wave oscillation. Specially, it is shown that stimulations applied in the cortical neuronal populations can also initiate the SWD and slow-wave oscillation from the resting states under the typical inhibitory intensity from TRN to SRN. Then, we expand into a 3-compartment coupled thalamocortical model network in linear and circular structures, respectively, to explore the spatiotemporal evolutions of wave states in different compartments. The main results are: (i) for the open-ended model network, SWD induced by stimulus in the first compartment can be transformed into sleep-like slow UP-DOWN and spindle states as it propagates into the downstream compartments; (ii) for the close-ended model network, weak stimulations performed in the first compartment can result in the consistent experimentally observed spindle oscillations in all three compartments; in contrast, stronger periodic single-pulse stimulations applied in the first compartment can induce periodic transitions between SWD and spindle oscillations. Detailed investigations reveal that multi-attractor coexistence mechanism composed of SWD, spindles and background state underlies these state evolutions. What's more, in order to demonstrate the state evolution stability with respect to the topological structures of neural network, we further expand the 3-compartment coupled network into 10-compartment coupled one, with linear and circular structures, and nearest-neighbor (NN) coupled network as well as its realization of small-world (SW) topology via random rewiring, respectively. Interestingly, for the cases of linear and circular connetivities, qualitatively similar results were obtained in addition to the more irregularity of firings. However, SWD can be eventually transformed into the consistent low-amplitude oscillations for both NN and SW networks. In particular, SWD evolves into the slow spindling oscillations and background tonic oscillations within the NN and SW network, respectively. Our modeling and simulation studies highlight the effect of network topology in the evolutions of SWD and spindling oscillations, which provides new insights into the mechanisms of cortical seizures development.
Collapse
Affiliation(s)
- Denggui Fan
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qingyun Wang
- Department of Dynamics and Control, Beihang University, Beijing, 100191, China.
| | - Jianzhong Su
- Department of Mathematics, University of Texas at Arlington, Arlington, TX, 76019-0408, USA
| | - Hongguang Xi
- Department of Mathematics, University of Texas at Arlington, Arlington, TX, 76019-0408, USA
| |
Collapse
|
49
|
Bartolomei F, Lagarde S, Wendling F, McGonigal A, Jirsa V, Guye M, Bénar C. Defining epileptogenic networks: Contribution of SEEG and signal analysis. Epilepsia 2017; 58:1131-1147. [DOI: 10.1111/epi.13791] [Citation(s) in RCA: 262] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Fabrice Bartolomei
- Institut de Neurosciences des Systèmes; Aix Marseille University; Marseille France
- AP-HM; Service de Neurophysiologie Clinique; Hôpital de la Timone; Marseille France
| | - Stanislas Lagarde
- Institut de Neurosciences des Systèmes; Aix Marseille University; Marseille France
- AP-HM; Service de Neurophysiologie Clinique; Hôpital de la Timone; Marseille France
| | - Fabrice Wendling
- U1099; INSERM; Rennes France
- Laboratoire de Traitement du Signal et de l'Image; Université de Rennes 1; Rennes France
| | - Aileen McGonigal
- Institut de Neurosciences des Systèmes; Aix Marseille University; Marseille France
- AP-HM; Service de Neurophysiologie Clinique; Hôpital de la Timone; Marseille France
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes; Aix Marseille University; Marseille France
| | - Maxime Guye
- Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM); APHM; Hôpitaux de la Timone; Marseille France
| | - Christian Bénar
- Institut de Neurosciences des Systèmes; Aix Marseille University; Marseille France
| |
Collapse
|
50
|
Towards Operational Definition of Postictal Stage: Spectral Entropy as a Marker of Seizure Ending. ENTROPY 2017. [DOI: 10.3390/e19020081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|