1
|
McLouth CJ, Maglinger B, Frank JA, Hazelwood HS, Harp JP, Cranford W, Pahwa S, Sheikhi L, Dornbos D, Trout AL, Stowe AM, Fraser JF, Pennypacker KR. The differential proteomic response to ischemic stroke in appalachian subjects treated with mechanical thrombectomy. J Neuroinflammation 2024; 21:205. [PMID: 39154085 PMCID: PMC11330053 DOI: 10.1186/s12974-024-03201-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
INTRODUCTION The Appalachia region of North America is known to have significant health disparities, specifically, worse risk factors and outcomes for stroke. Appalachians are more likely to have comorbidities related to stroke, such as diabetes, obesity, and tobacco use, and are often less likely to have stroke interventions, such as mechanical thrombectomy (MT), for emergent large vessel occlusion (ELVO). As our Comprehensive Stroke Center directly serves stroke subjects from both Appalachian and non-Appalachian areas, inflammatory proteomic biomarkers were identified associated with stroke outcomes specific to subjects residing in Appalachia. METHODS There were 81 subjects that met inclusion criteria for this study. These subjects underwent MT for ELVO, and carotid arterial blood samples acquired at time of intervention were sent for proteomic analysis. Samples were processed in accordance with the Blood And Clot Thrombectomy Registry And Collaboration (BACTRAC; clinicaltrials.gov; NCT03153683). Statistical analyses were utilized to examine whether relationships between protein expression and outcomes differed by Appalachian status for functional (NIH Stroke Scale; NIHSS and Modified Rankin Score; mRS), and cognitive outcomes (Montreal Cognitive Assessment; MoCA). RESULTS No significant differences were found in demographic data or co-morbidities when comparing Appalachian to non-Appalachian subjects. However, time from stroke onset to treatment (last known normal) was significantly longer and edema volume significantly higher in patients from Appalachia. Further, when comparing Appalachian to non-Appalachian subjects, there were significant unadjusted differences in the NIHSS functional outcome. A comprehensive analysis of 184 proteins from Olink proteomic (92 Cardiometabolic and 92 Inflammation panels) showed that the association between protein expression outcomes significantly differed by Appalachian status for seven proteins for the NIHSS, two proteins for the MoCA, and three for the mRS. CONCLUSION Our study utilizes an ELVO tissue bank and registry to investigate the intracranial/intravascular proteomic environment occurring at the time of thrombectomy. We found that patients presenting from Appalachian areas have different levels of proteomic expression at the time of MT when compared to patients presenting from non-Appalachian areas. These proteins differentially relate to stroke outcome and could be used as prognostic biomarkers, or as targets for novel therapies. The identification of a disparate proteomic response in Appalachian patients provides initial insight to the biological basis for health disparity. Nevertheless, further investigations through community-based studies are imperative to elucidate the underlying causes of this differential response.
Collapse
Affiliation(s)
- Christopher J McLouth
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Benton Maglinger
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jacqueline A Frank
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, Department of Neurology and Neuroscience Building BBSRB Office B463, University of Kentucky, Lexington, KY, 40536, USA
| | | | - Jordan P Harp
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, Department of Neurology and Neuroscience Building BBSRB Office B463, University of Kentucky, Lexington, KY, 40536, USA
| | - Will Cranford
- Department of Biostatistics, University of Kentucky, Lexington, KY, USA
| | - Shivani Pahwa
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Lila Sheikhi
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - David Dornbos
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Amanda L Trout
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, Department of Neurology and Neuroscience Building BBSRB Office B463, University of Kentucky, Lexington, KY, 40536, USA
| | - Ann M Stowe
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, Department of Neurology and Neuroscience Building BBSRB Office B463, University of Kentucky, Lexington, KY, 40536, USA
| | - Justin F Fraser
- Department of Neurology, University of Kentucky, Lexington, KY, USA
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
- Department of Radiology, University of Kentucky, Lexington, KY, USA
- Center for Advanced Translational Stroke Science, Department of Neurology and Neuroscience Building BBSRB Office B463, University of Kentucky, Lexington, KY, 40536, USA
| | - Keith R Pennypacker
- Department of Neurology, University of Kentucky, Lexington, KY, USA.
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA.
- Center for Advanced Translational Stroke Science, Department of Neurology and Neuroscience Building BBSRB Office B463, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
2
|
Hu B, Pei J, Wan C, Liu S, Xu Z, Zou Y, Li Z, Tang Z. Mechanisms of Postischemic Stroke Angiogenesis: A Multifaceted Approach. J Inflamm Res 2024; 17:4625-4646. [PMID: 39045531 PMCID: PMC11264385 DOI: 10.2147/jir.s461427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
Ischemic stroke constitutes a significant global health care challenge, and a comprehensive understanding of its recovery mechanisms is imperative for the development of innovative therapeutic strategies. Angiogenesis, a pivotal element of ischemic tissue repair, facilitates the restoration of blood flow to damaged regions, thereby promoting neuronal regeneration and functional recovery. Nevertheless, the mechanisms underlying postischemic stroke angiogenesis remain incompletely elucidated. This review meticulously examines the constituents of the neurovascular unit, ion channels, molecular mediators, and signaling pathways implicated in angiogenesis following stroke. Furthermore, it delves into prospective therapeutic strategies informed by these factors. Our objective is to provide detailed and exhaustive information on the intricate mechanisms governing postischemic stroke angiogenesis, thus providing a robust scientific foundation for the advancement of novel neurorepair therapies.
Collapse
Affiliation(s)
- Bin Hu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Jingchun Pei
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Cheng Wan
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
- Department of Medical Imaging, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Shuangshuang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, People’s Republic of China
- School of Basic Medical Sciences, Qujing Medical College, Qujing, People’s Republic of China
| | - Yongwei Zou
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhigao Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Zhiwei Tang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
3
|
Jashire Nezhad N, Safari A, Namavar MR, Nami M, Karimi-Haghighi S, Pandamooz S, Dianatpour M, Azarpira N, Khodabandeh Z, Zare S, Hooshmandi E, Bayat M, Owjfard M, Zafarmand SS, Fadakar N, Jaberi AR, Salehi MS, Borhani-Haghighi A. Short-term beneficial effects of human dental pulp stem cells and their secretome in a rat model of mild ischemic stroke. J Stroke Cerebrovasc Dis 2023; 32:107202. [PMID: 37354874 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/01/2023] [Accepted: 05/29/2023] [Indexed: 06/26/2023] Open
Abstract
Although cell therapy has been applied in regenerative medicine for decades, recent years have seen greatly increased attention being given to the use of stem cell-based derivatives such as cell-free secretome. Dental pulp stem cells (DPSCs) are widely available, easily accessible, and have high neuroprotective and angiogenic properties. In addition, DPSC-derived secretome contains a rich mixture of trophic factors. The current investigation evaluated the short-term therapeutic effects of human DPSCs and their secretome in a rat model of mild ischemic stroke. Mild ischemic stroke was induced by 30 min middle cerebral artery occlusion, and hDPSCs or their secretome was administered intra-arterially and intranasally. Neurological function, infarct size, spatial working memory, and relative expression of seven target genes in two categories of neurotrophic and angiogenic factors were assessed three days after stroke. In the short-term, all treatments reduced the severity of neurological and histological deficits caused by ischemic stroke. Moreover, transient middle cerebral artery occlusion led to the striatal and cortical over-expression of BDNF, NT-3, and angiogenin, while NGF and VEGF expression was reduced. Almost all interventions were able to modulate the expression of target genes after stroke. The obtained data revealed that single intra-arterial administration of hDPSCs or their secretome, single intranasal transplantation of hDPSCs, or repeated intranasal administration of hDPSC-derived secretome was able to ameliorate the devastating effects of a mild stroke, at least in the short-term.
Collapse
Affiliation(s)
- Nahid Jashire Nezhad
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Histomorphometry & Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran; Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Nami
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nima Fadakar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Rahimi Jaberi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
4
|
Sharma K, Maity K, Goel S, Kanwar S, Anand A. Common Yoga Protocol Increases Peripheral Blood CD34+ Cells: An Open-Label Single-Arm Exploratory Trial. J Multidiscip Healthc 2023; 16:1721-1736. [PMID: 37377666 PMCID: PMC10290939 DOI: 10.2147/jmdh.s377869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/07/2022] [Indexed: 06/29/2023] Open
Abstract
Purpose Physical inactivity can be a cause of various lifestyle disorders including atherosclerosis, diabetes, hypertension, and cardiovascular diseases (CVDs). Lifestyle modification by the inclusion of Yoga and similar activities has shown beneficial effects on disease prevention and psychological management. However, the molecular mechanism at the cellular level is unknown. This study aims to identify the molecular response at systemic level generated after three months of Common Yoga Protocol (CYP) practice. Methods A total of 25 healthy adult females were recruited for this study (25 to 55 years). After the drop out of 6 participants at baseline and 2 participants after 1 month; blood samples of 17 participants were assessed. Blood samples were assessed for lipid profile, CD34+ cell enumeration and angiogenesis markers (ie, VEGF, Angiogenin and BDNF) at baseline (before intervention), after one month and after three months of Common Yoga Protocol (CYP) practice. The psychological health of the participants was assessed at baseline and after three months of CYP practice. The psychological tests used were General Health Questionnaire (GHQ), State-Trait Anxiety Inventory (STAI), Trail Making Test A & B, Digit symbol test, Digit symbol substitution test. Results After 3 months of intervention, blood samples of 17 participants were collected and following results were reported (1) percentage of CD34+ cells increased significantly after 3 months of CYP practice (from 18.18±7.32 cells/μL to 42.48±18.83 cells/μL) (effect size: W, 0.40; 95% CI, p = 0.001) (2) neurogenesis marker, ie, BDNF showed a significant change with time after 3 months of CYP intervention (effect size: W, 0.431, 95% CI; p = 0.002), (3) HDL showed an increasing trend (non-significant) after three months of CYP practice (53.017±1.28 mg/dl to 63.94±5.66 mg/dl) (effect size: W, 0.122; 95% CI; p = 0.126) (4) General Health score (10.64 ± 3.53 to 6.52 ± 3.12) (effect size: d, 0.98; 95% CI; p = 0.001) along with visual and executive function improved (69.94±26.21 to 61.88±28.55 (time taken in seconds)) (effect size: d, 0.582; 95% CI; p = 0.036), also stress and anxiety showed reduction (effect size: d, 0.91; 95% CI; p = 0.002) (5) a significant positive correlation was found between: HDL with VEGF (r = 0.547, p = 0.023) and BDNF (r = 0.538, p = 0.039) after 3 months of intervention; also, a significant positive correlation was found between VEGF with BDNF (r = 0.818, p ≤ 0.001) and Angiogenin (r = 0.946, p ≤ 0.001), also, BDNF was also positively correlated with Angiogenin (r = 0.725, p = 0.002) at both 1 month and 3 months after intervention. Also, VEGF and BDNF showed a significantly negative correlation with stress and anxiety questionnaire after the intervention. Conclusion The current study provides insights into the molecular response to CYP practice at systemic level. The results suggest that CYP practice indeed increased CD34+ cells in peripheral blood and BDNF also showed a significant change after the intervention. An overall improvement in general health and psychology of the participants was also observed.
Collapse
Affiliation(s)
- Kanupriya Sharma
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Kalyan Maity
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
- Division of Yoga and Life Sciences, Swami Vivekananda Yoga Anusandhana Samsthana (S-VYASA), Bengaluru, Karnataka, 560105, India
| | - Sonu Goel
- School of Public Health and Community Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Shimona Kanwar
- Mass Communication and Media Technology, SGT University, Gurugram, Haryana, 122006, India
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
- CCRYN – Collaborative Center for Mind-Body Intervention Through Yoga, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
5
|
Ivanova MV, Pappas I. Understanding recovery of language after stroke: insights from neurovascular MRI studies. FRONTIERS IN LANGUAGE SCIENCES 2023; 2:1163547. [PMID: 38162928 PMCID: PMC10757818 DOI: 10.3389/flang.2023.1163547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Stroke causes a disruption in blood flow to the brain that can lead to profound language impairments. Understanding the mechanisms of language recovery after stroke is crucial for the prognosis and effective rehabilitation of people with aphasia. While the role of injured brain structures and disruptions in functional connectivity have been extensively explored, the relationship between neurovascular measures and language recovery in both early and later stages has not received sufficient attention in the field. Fully functioning healthy brain tissue requires oxygen and nutrients to be delivered promptly via its blood supply. Persistent decreases in blood flow after a stroke to the remaining non-lesioned tissue have been shown to contribute to poor language recovery. The goal of the current paper is to critically examine stroke studies looking at the relationship between different neurovascular measures and language deficits and mechanisms of language recovery via changes in neurovascular metrics. Measures of perfusion or cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) provide complementary approaches to understanding neurovascular mechanisms post stroke by capturing both cerebral metabolic demands and mechanical vascular properties. While CBF measures indicate the amount of blood delivered to a certain region and serve as a proxy for metabolic demands of that area, CVR indices reflect the ability of the vasculature to recruit blood flow in response to a shortage of oxygen, such as when one is holding their breath. Increases in CBF during recovery beyond the site of the lesion have been shown to promote language gains. Similarly, CVR changes, when collateral vessels are recruited to help reorganize the flow of blood in hypoperfused regions, have been related to functional recovery post stroke. In the current review, we highlight the main findings in the literature investigating neurovascular changes in stroke recovery with a particular emphasis on how language abilities can be affected by changes in CBF and CVR. We conclude by summarizing existing methodological challenges and knowledge gaps that need to be addressed in future work in this area, outlining a promising avenue of research.
Collapse
Affiliation(s)
- Maria V. Ivanova
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Ioannis Pappas
- USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
6
|
Sultana MF, Abo H, Kawashima H. Human and mouse angiogenins: Emerging insights and potential opportunities. Front Microbiol 2022; 13:1022945. [PMID: 36466652 PMCID: PMC9714274 DOI: 10.3389/fmicb.2022.1022945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/01/2022] [Indexed: 12/27/2023] Open
Abstract
Angiogenin, a well-known angiogenic factor, is crucial to the angiogenesis in gastrointestinal tumors. Human angiogenin has only one gene, whereas the murine angiogenin family has extended to incorporate six genes. Evolutionary studies have suggested functional variations among murine angiogenin paralogs, even though the three-dimensional structures of angiogenin proteins are remarkably similar. In addition to angiogenesis, the ubiquitous pattern of angiogenin expression suggests a variety of functions, such as tumorigenesis, neuroprotective, antimicrobial activity, and innate immunity. Here, we comprehensively reviewed studies on the structures and functions of human and mouse angiogenins. Understanding the structure and function of angiogenins from a broader perspective could facilitate future research related to development of novel therapeutics on its biological processes, especially in gastrointestinal cancers.
Collapse
Affiliation(s)
- Mst. Farzana Sultana
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Hirohito Abo
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hiroto Kawashima
- Laboratory of Microbiology and Immunology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| |
Collapse
|
7
|
WANG L, LIU G, SHAO Z, ZHANG Q, YIN L, XU E, LI B, CUI X, TENG H. MicroR-146 protects against rat ischemia-reperfusion injury by targeting NF-κB-mediated PI3K/AKT/mTOR signaling pathway. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.36820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Leyuan WANG
- The People's Hospital of Changle County, China
| | - Guofang LIU
- The People's Hospital of Laoling City, China
| | - Zetao SHAO
- The People's Hospital of Changle County, China
| | | | - Lili YIN
- The People's Hospital of Changle County, China
| | - Enbo XU
- The People's Hospital of Changle County, China
| | - Biao LI
- The People's Hospital of Changle County, China
| | | | - Hongtao TENG
- The Fourth People's Hospital of Jinan City, China
| |
Collapse
|
8
|
Garcia-Rodriguez N, Rodriguez S, Tejada PI, Miranda-Artieda ZM, Ridao N, Buxó X, Pérez-Mesquida ME, Beseler MR, Salom JB, Pérez LM, Inzitari M, Otero-Villaverde S, Martin-Mourelle R, Molleda M, Quintana M, Olivé-Gadea M, Penalba A, Rosell A. Functional Recovery and Serum Angiogenin Changes According to Intensity of Rehabilitation Therapy After Stroke. Front Neurol 2021; 12:767484. [PMID: 34899582 PMCID: PMC8655101 DOI: 10.3389/fneur.2021.767484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/22/2021] [Indexed: 12/05/2022] Open
Abstract
Background: Rehabilitation is still the only treatment available to improve functional status after the acute phase of stroke. Most clinical guidelines highlight the need to design rehabilitation treatments considering starting time, intensity, and frequency, according to the tolerance of the patient. However, there are no homogeneous protocols and the biological effects are under investigation. Objective: To investigate the impact of rehabilitation intensity (hours) after stroke on functional improvement and serum angiogenin (ANG) in a 6-month follow-up study. Methods: A prospective, observational, longitudinal, and multicenter study with three cohorts: strokes in intensive rehabilitation therapy (IRT, minimum 15 h/week) vs. conventional therapy (NO-IRT, <15 h/week), and controls subjects (without known neurological, malignant, or inflammatory diseases). A total of seven centers participated, with functional evaluations and blood sampling during follow-up. The final cohort includes 62 strokes and 43 controls with demographic, clinical, blood samples, and exhaustive functional monitoring. Results: The median (IQR) number of weekly hours of therapy was different: IRT 15 (15–16) vs. NO-IRT 7.5 (5–9), p < 0.01, with progressive and significant improvements in both groups. However, IRT patients showed earlier improvements (within 1 month) on several scales (CAHAI, FMA, and FAC; p < 0.001) and the earliest community ambulation achievements (0.89 m/s at 3 months). There was a significant difference in ANG temporal profile between the IRT and NO-IRT groups (p < 0.01). Additionally, ANG was elevated at 1 month only in the IRT group (p < 0.05) whereas it decreased in the NO-IRT group (p < 0.05). Conclusions: Our results suggest an association of rehabilitation intensity with early functional improvements, and connect the rehabilitation process with blood biomarkers.
Collapse
Affiliation(s)
- Nicolás Garcia-Rodriguez
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Unidad de Rehabilitación Neurológica y Daño Cerebral, Hospital Vall d'Hebron, Barcelona, Spain
| | - Susana Rodriguez
- Unidad de Rehabilitación Neurológica y Daño Cerebral, Hospital Vall d'Hebron, Barcelona, Spain
| | | | | | - Natalia Ridao
- Servei de Medicina Física i Rehabilitació, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Sabadell, Spain
| | - Xavi Buxó
- Unidad de Rehabilitación Neurológica y Daño Cerebral, Hospital Vall d'Hebron, Barcelona, Spain
| | | | - Maria Rosario Beseler
- Servicio de Medicina Física y Rehabilitación, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Juan B Salom
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe-Universitat de Valencia, Valencia, Spain.,Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - Laura M Pérez
- RE-FiT Barcelona Research Group, Vall d'Hebron Institute of Research, Parc Sanitari Pere Virgili, Barcelona, Spain.,Parc Sanitari Pere Virgili, Area of Intermediate Care, Barcelona, Spain
| | - Marco Inzitari
- RE-FiT Barcelona Research Group, Vall d'Hebron Institute of Research, Parc Sanitari Pere Virgili, Barcelona, Spain.,Universitat Oberta de Catalunya, Barcelona, Spain
| | | | | | | | - Manuel Quintana
- Epilepsy Research Group and Epilepsy Unit, Vall d'Hebron Research Institute and Vall d'Hebron Hospital, Barcelona, Spain
| | | | - Anna Penalba
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Höbaus C, Pesau G, Zierfuss B, Koppensteiner R, Schernthaner GH. Angiogenin-A Proposed Biomarker for Cardiovascular Disease-Is Not Associated With Long-Term Survival in Patients With Peripheral Artery Disease. Angiology 2021; 72:855-860. [PMID: 33779308 PMCID: PMC8436295 DOI: 10.1177/00033197211004393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We evaluated angiogenin as a prospective biomarker in peripheral artery disease (PAD) patients with and without claudication symptoms. A pilot study suggested an elevation of angiogenin in critical limb ischemia. However, in PAD patients, the predictive value of angiogenin has not yet been evaluated. For this purpose, 342 patients with PAD (age: 69 ± 10 years, 34.5% women) were followed-up for 7 years in a cross-sectional study. Angiogenin was measured by enzyme-linked immunosorbent assay. All-cause and cardiovascular mortality were analyzed by Cox regression. Angiogenin levels were higher in men (P = .001) and were associated with patient waist-to-hip ratio (P < .001), fasting triglycerides (P = .011), and inversely with estimated glomerular filtration rate (P = .009). However, angiogenin showed no association with age, characteristics of diabetes, markers of lipid metabolism, or C-reactive protein. Angiogenin did not correlate with markers of angiogenesis such as vascular endothelial growth factor, angiopoietin-2, or tie-2. Furthermore, angiogenin was not associated with PAD Fontaine stages or with patient ankle-brachial index in addition to all-cause mortality (hazard ratio [HR] = 1.09 [95% CI: 0.89-1.34]) or cardiovascular morality (HR = 1.05 [0.82-1.35]). These results suggest that angiogenin does not provide further information regarding outcome prediction in patients with PAD.
Collapse
Affiliation(s)
- Clemens Höbaus
- Division of Angiology, Department of Internal Medicine II, Medical University Vienna, Vienna, Austria
| | - Gerfried Pesau
- Division of Angiology, Department of Internal Medicine II, Medical University Vienna, Vienna, Austria
| | - Bernhard Zierfuss
- Division of Angiology, Department of Internal Medicine II, Medical University Vienna, Vienna, Austria
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University Vienna, Vienna, Austria
| | - Gerit-Holger Schernthaner
- Division of Angiology, Department of Internal Medicine II, Medical University Vienna, Vienna, Austria
| |
Collapse
|
10
|
Neovascularization and tissue regeneration by endothelial progenitor cells in ischemic stroke. Neurol Sci 2021; 42:3585-3593. [PMID: 34216308 DOI: 10.1007/s10072-021-05428-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/19/2021] [Indexed: 12/26/2022]
Abstract
Endothelial progenitor cells (EPCs) are immature endothelial cells (ECs) capable of proliferating and differentiating into mature ECs. These progenitor cells migrate from bone marrow (BM) after vascular injury to ischemic areas, where they participate in the repair of injured endothelium and new blood vessel formation. EPCs also secrete a series of protective cytokines and growth factors that support cell survival and tissue regeneration. Thus, EPCs provide novel and promising potential therapies to treat vascular disease, including ischemic stroke. However, EPCs are tightly regulated during the process of vascular repair and regeneration by numerous endogenous cytokines that are associated closely with the therapeutic efficacy of the progenitor cells. The regenerative capacity of EPCs also is affected by a range of exogenous factors and drugs as well as vascular risk factors. Understanding the functional properties of EPCs and the factors related to their regenerative capacity will facilitate better use of these progenitor cells in treating vascular disease. Here, we review the current knowledge of EPCs in cerebral neovascularization and tissue regeneration after cerebral ischemia and the factors associated with their regenerative function to better understand the underlying mechanisms and provide more effective strategies for the use of EPCs in treating ischemic stroke.
Collapse
|
11
|
Gabriel-Salazar M, Lei T, Grayston A, Costa C, Medina-Gutiérrez E, Comabella M, Montaner J, Rosell A. Angiogenin in the Neurogenic Subventricular Zone After Stroke. Front Neurol 2021; 12:662235. [PMID: 34234733 PMCID: PMC8256153 DOI: 10.3389/fneur.2021.662235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/17/2021] [Indexed: 11/27/2022] Open
Abstract
Ischemic stroke is a leading cause of death and disability worldwide with effective acute thrombolytic treatments. However, brain repair mechanisms related to spontaneous or rehabilitation-induced recovery are still under investigation, and little is known about the molecules involved. The present study examines the potential role of angiogenin (ANG), a known regulator of cell function and metabolism linked to neurological disorders, focusing in the neurogenic subventricular zone (SVZ). Angiogenin expression was examined in the mouse SVZ and in SVZ-derived neural stem cells (NSCs), which were exposed to exogenous ANG treatment during neurosphere formation as well as in other neuron-like cells (SH-SY5Y). Additionally, male C57Bl/6 mice underwent a distal permanent occlusion of the middle cerebral artery to study endogenous and exercise-induced expression of SVZ-ANG and neuroblast migration. Our results show that SVZ areas are rich in ANG, primarily expressed in DCX+ neuroblasts but not in nestin+NSCs. In vitro, treatment with ANG increased the number of SVZ-derived NSCs forming neurospheres but could not modify SH-SY5Y neurite differentiation. Finally, physical exercise rapidly increased the amount of endogenous ANG in the ipsilateral SVZ niche after ischemia, where DCX-migrating cells increased as part of the post-stroke neurogenesis process. Our findings position for the first time ANG in the SVZ during post-stroke recovery, which could be linked to neurogenesis.
Collapse
Affiliation(s)
- Marina Gabriel-Salazar
- Neurovascular Research Laboratory and Neurology Service, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ting Lei
- Neurovascular Research Laboratory and Neurology Service, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alba Grayston
- Neurovascular Research Laboratory and Neurology Service, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carme Costa
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat) and Vall d'Hebron Research Institute, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esperanza Medina-Gutiérrez
- Neurovascular Research Laboratory and Neurology Service, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manuel Comabella
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat) and Vall d'Hebron Research Institute, Hospital Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory and Neurology Service, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory and Neurology Service, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
12
|
Sun Y, Chen H, Lin Y. Rehabilitation training inhibits neuronal apoptosis by down-regulation of TLR4/MyD88 signaling pathway in mice with cerebral ischemic stroke. Am J Transl Res 2021; 13:2213-2223. [PMID: 34017384 PMCID: PMC8129365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To investigate the role of rehabilitation training and TLR4/MyD88 signaling pathway on neuronal apoptosis in mice with cerebral ischemic stroke. METHODS Mice were randomized into six groups, which were normal group (healthy mice, n=20), control group (sham surgery, n=20), model group (middle cerebral artery occlusion (MCAO) model, n=20), training (MCAO model, continuous rehabilitation training for 4 weeks, n=20), TAK-242 group (MCAO model, TL R4 inhibitor TAK-242, n=20), and TAK-242 + Training group (MCAO model, TLR4 inhibitor TAK-242 + rehabilitation training, n=20). RESULTS Neurobehavioral assessment was performed, and cerebral infarction area of mice was detected by triphenyl tetrazolium chloride staining. Compared with the normal group, no significant differences in all indicators were found in the control group (all P>0.05), while the other groups had higher neurological function scores, cerebral infarction area, neuronal apoptosis rate, increased expressions of TLR4, MyD88, Bax, NF-κB, TNF-α, Caspase-3, IL-1βA and decreased mRNA and protein expressions of Bcl-2 (all P<0.05). CONCLUSION Rehabilitation training can effectively reduce the apoptosis of hippocampal neurons in mice with ischemic stroke by inhibiting the TLR4/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Yan Sun
- School of Rehabilitation Medicine, He’nan University of Chinese MedicineZhengzhou, He’nan Province, China
| | - Hai Chen
- Department of Children’s Rehabilitation, The Third Affiliated Hospital of Zhengzhou UniversityZhengzhou, He’nan Province, China
| | - Yibing Lin
- Shaoxing Institute of Traditional Chinese Medicine Culture, Shaoxing Hospital of Traditional Chinese MedicineShaoxing, Zhejiang Province, China
| |
Collapse
|
13
|
Krishnamurthy V, Sprick JD, Krishnamurthy LC, Barter JD, Turabi A, Hajjar IM, Nocera JR. The Utility of Cerebrovascular Reactivity MRI in Brain Rehabilitation: A Mechanistic Perspective. Front Physiol 2021; 12:642850. [PMID: 33815146 PMCID: PMC8009989 DOI: 10.3389/fphys.2021.642850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/22/2021] [Indexed: 01/06/2023] Open
Abstract
Cerebrovascular control and its integration with other physiological systems play a key role in the effective maintenance of homeostasis in brain functioning. Maintenance, restoration, and promotion of such a balance are one of the paramount goals of brain rehabilitation and intervention programs. Cerebrovascular reactivity (CVR), an index of cerebrovascular reserve, plays an important role in chemo-regulation of cerebral blood flow. Improved vascular reactivity and cerebral blood flow are important factors in brain rehabilitation to facilitate desired cognitive and functional outcomes. It is widely accepted that CVR is impaired in aging, hypertension, and cerebrovascular diseases and possibly in neurodegenerative syndromes. However, a multitude of physiological factors influence CVR, and thus a comprehensive understanding of underlying mechanisms are needed. We are currently underinformed on which rehabilitation method will improve CVR, and how this information can inform on a patient's prognosis and diagnosis. Implementation of targeted rehabilitation regimes would be the first step to elucidate whether such regimes can modulate CVR and in the process may assist in improving our understanding for the underlying vascular pathophysiology. As such, the high spatial resolution along with whole brain coverage offered by MRI has opened the door to exciting recent developments in CVR MRI. Yet, several challenges currently preclude its potential as an effective diagnostic and prognostic tool in treatment planning and guidance. Understanding these knowledge gaps will ultimately facilitate a deeper understanding for cerebrovascular physiology and its role in brain function and rehabilitation. Based on the lessons learned from our group's past and ongoing neurorehabilitation studies, we present a systematic review of physiological mechanisms that lead to impaired CVR in aging and disease, and how CVR imaging and its further development in the context of brain rehabilitation can add value to the clinical settings.
Collapse
Affiliation(s)
- Venkatagiri Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, United States
- Division of Geriatrics and Gerontology, Department of Medicine, Emory University, Atlanta, GA, United States
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Justin D. Sprick
- Division of Renal Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Lisa C. Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, United States
- Department of Physics & Astronomy, Georgia State University, Atlanta, GA, United States
| | - Jolie D. Barter
- Division of Geriatrics and Gerontology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Aaminah Turabi
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, United States
- Department of Biology, Georgia State University, Atlanta, GA, United States
| | - Ihab M. Hajjar
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Joe R. Nocera
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VAMC, Decatur, GA, United States
- Department of Neurology, Emory University, Atlanta, GA, United States
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| |
Collapse
|
14
|
Nawata K. Risk Factors Affecting Ischemic Stroke: A Potential Side Effect of Antihypertensive Drugs. Health (London) 2020. [DOI: 10.4236/health.2020.125035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
A Tunable Nanoplatform of Nanogold Functionalised with Angiogenin Peptides for Anti-Angiogenic Therapy of Brain Tumours. Cancers (Basel) 2019; 11:cancers11091322. [PMID: 31500197 PMCID: PMC6770958 DOI: 10.3390/cancers11091322] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 01/20/2023] Open
Abstract
Angiogenin (ANG), an endogenous protein that plays a key role in cell growth and survival, has been scrutinised here as promising nanomedicine tool for the modulation of pro-/anti-angiogenic processes in brain cancer therapy. Specifically, peptide fragments from the putative cell membrane binding domain (residues 60–68) of the protein were used in this study to obtain peptide-functionalised spherical gold nanoparticles (AuNPs) of about 10 nm and 30 nm in optical and hydrodynamic size, respectively. Different hybrid biointerfaces were fabricated by peptide physical adsorption (Ang60–68) or chemisorption (the cysteine analogous Ang60–68Cys) at the metal nanoparticle surface, and cellular assays were performed in the comparison with ANG-functionalised AuNPs. Cellular treatments were performed both in basal and in copper-supplemented cell culture medium, to scrutinise the synergic effect of the metal, which is another known angiogenic factor. Two brain cell lines were investigated in parallel, namely tumour glioblastoma (A172) and neuron-like differentiated neuroblastoma (d-SH-SY5Y). Results on cell viability/proliferation, cytoskeleton actin, angiogenin translocation and vascular endothelial growth factor (VEGF) release pointed to the promising potentialities of the developed systems as anti-angiogenic tunable nanoplaftforms in cancer cells treatment.
Collapse
|
16
|
Mu J, Bakreen A, Juntunen M, Korhonen P, Oinonen E, Cui L, Myllyniemi M, Zhao S, Miettinen S, Jolkkonen J. Combined Adipose Tissue-Derived Mesenchymal Stem Cell Therapy and Rehabilitation in Experimental Stroke. Front Neurol 2019; 10:235. [PMID: 30972000 PMCID: PMC6443824 DOI: 10.3389/fneur.2019.00235] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/22/2019] [Indexed: 01/12/2023] Open
Abstract
Background/Objective: Stroke is a leading global cause of adult disability. As the population ages as well as suffers co-morbidities, it is expected that the stroke burden will increase further. There are no established safe and effective restorative treatments to facilitate a good functional outcome in stroke patients. Cell-based therapies, which have a wide therapeutic window, might benefit a large percentage of patients, especially if combined with different restorative strategies. In this study, we tested whether the therapeutic effect of human adipose tissue-derived mesenchymal stem cells (ADMSCs) could be further enhanced by rehabilitation in an experimental model of stroke. Methods: Focal cerebral ischemia was induced in adult male Sprague Dawley rats by permanently occluding the distal middle cerebral artery (MCAO). After the intravenous infusion of vehicle (n = 46) or ADMSCs (2 × 106) either at 2 (n = 37) or 7 (n = 7) days after the operation, half of the animals were housed in an enriched environment mimicking rehabilitation. Subsequently, their behavioral recovery was assessed by a neurological score, and performance in the cylinder and sticky label tests during a 42-day behavioral follow-up. At the end of the follow-up, rats were perfused for histology to assess the extent of angiogenesis (RECA-1), gliosis (GFAP), and glial scar formation. Results: No adverse effects were observed during the follow-up. Combined ADMSC therapy and rehabilitation improved forelimb use in the cylinder test in comparison to MCAO controls on post-operative days 21 and 42 (P < 0.01). In the sticky label test, ADMSCs and rehabilitation alone or together, significantly decreased the removal time as compared to MCAO controls on post-operative days 21 and 42. An early initiation of combined therapy seemed to be more effective. Infarct size, measured by MRI on post-operative days 1 and 43, did not differ between the experimental groups. Stereological counting revealed an ischemia-induced increase both in the density of blood vessels and the numbers of glial cells in the perilesional cortex, but there were no differences among MCAO groups. Glial scar volume was also similar in MCAO groups. Conclusion: Early delivery of ADMSCs and combined rehabilitation enhanced behavioral recovery in an experimental stroke model. The mechanisms underlying these treatment effects remain unknown.
Collapse
Affiliation(s)
- Jingwei Mu
- Department of Neurology, The People's Hospital of China Medical University, Shenyang, China.,Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | | | - Miia Juntunen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Paula Korhonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ella Oinonen
- Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - Lili Cui
- Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - Mikko Myllyniemi
- Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - Shanshan Zhao
- Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - Susanna Miettinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Jukka Jolkkonen
- Department of Neurology, University of Eastern Finland, Kuopio, Finland.,A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
17
|
Li HY, Hong X, Huang M, So KF. Voluntary running delays primary degeneration in rat retinas after partial optic nerve transection. Neural Regen Res 2019; 14:728-734. [PMID: 30632515 PMCID: PMC6352605 DOI: 10.4103/1673-5374.247481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Running is believed to be beneficial for human health. Many studies have focused on the neuroprotective effects of voluntary running on animal models. There were both primary and secondary degeneration in neurodegenerative diseases, including glaucoma. However, whether running can delay primary or secondary degeneration or both of them was not clear. Partial optic nerve transection model is a valuable glaucoma model for studying both primary and secondary degeneration because it can separate primary (mainly in the superior retina) from secondary (mainly in the inferior retina) degeneration. Therefore, we compared the survival of retinal ganglion cells between Sprague-Dawley rat runners and non-runners both in the superior and inferior retinas. Excitotoxicity, oxidative stress, and apoptosis are involved in the degeneration of retinal ganglion cells in glaucoma. So we also used western immunoblotting to compare the expression of some proteins involved in apoptosis (phospho-c-Jun N-terminal kinases, p-JNKs), oxidative stress (manganese superoxide dismutase, MnSOD) and excitotoxicity (glutamine synthetase) between runners and non-runners after partial optic nerve transection. Results showed that voluntary running delayed the death of retinal ganglion cells vulnerable to primary degeneration but not those to secondary degeneration. In addition, voluntary running decreased the expression of glutamine synthetase, but not the expression of p-JNKs and MnSOD in the superior retina after partial optic nerve transection. These results illustrated that primary degeneration of retinal ganglion cells might be mainly related with excitotoxicity rather than oxidative stress; and the voluntary running could down-regulate excitotoxicity to delay the primary degeneration of retinal ganglion cells after partial optic nerve transection.
Collapse
Affiliation(s)
- Hong-Ying Li
- Department of Anatomy, School of Medicine; Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Xi Hong
- Department of Anatomy, School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Mi Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory; Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory; Guangdong Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, Guangdong Province; Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
18
|
Esquiva G, Grayston A, Rosell A. Revascularization and endothelial progenitor cells in stroke. Am J Physiol Cell Physiol 2018; 315:C664-C674. [PMID: 30133323 DOI: 10.1152/ajpcell.00200.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stroke is one of the leading causes of death and disability worldwide. Tremendous improvements have been achieved in the acute care of stroke patients with the implementation of stroke units, thrombolytic drugs, and endovascular trombectomies. However, stroke survivors with neurological deficits require long periods of neurorehabilitation, which is the only approved therapy for poststroke recovery. With this scenario, more treatments are urgently needed, and only the understanding of the mechanisms of brain recovery might contribute to identify new therapeutic agents. Fortunately, brain injury after stroke is counteracted by the birth and migration of several populations of progenitor cells towards the injured areas, where angiogenesis and vascular remodeling play a key role providing trophic support and guidance during neurorepair. Endothelial progenitor cells (EPCs) constitute a pool of circulating bone-marrow derived cells that mobilize after an ischemic injury with the potential to incorporate into the damaged endothelium, to form new vessels, or to secrete trophic factors stimulating vessel remodeling. The circulating levels of EPCs are altered after stroke, and several subpopulations have proved to boost brain neurorepair in preclinical models of cerebral ischemia. The goal of this review is to discuss the current state of the neuroreparative actions of EPCs, focusing on their paracrine signaling mechanisms thorough their secretome and released extracellular vesicles.
Collapse
Affiliation(s)
- Gema Esquiva
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Alba Grayston
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona , Spain
| | - Anna Rosell
- Neurovascular Research Laboratory and Neurology Department, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona , Barcelona , Spain
| |
Collapse
|