1
|
Liu D, Liu C, Deng F, Ouyang F, Qin R, Zhai Z, Wang Y, Zhang Y, Liao M, Pan X, Huang Y, Cen Y, Li X, Zhou H. Artesunate protects against a mouse model of cerulein and lipopolysaccharide‑induced acute pancreatitis by inhibiting TLR4‑dependent autophagy. Int J Mol Med 2025; 55:25. [PMID: 39635846 PMCID: PMC11637502 DOI: 10.3892/ijmm.2024.5466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
Severe acute pancreatitis (SAP) is a severe clinical condition associated with high rates of morbidity and mortality. Multiple organ dysfunction syndrome that follows systemic inflammatory response syndrome is the leading cause of SAP‑related death. Since the inflammatory mechanism of SAP remains unclear, there is currently a lack of effective drugs available for its treatment. Therefore, it is important to study effective therapeutic drugs and their molecular mechanisms based on studying the inflammatory mechanism of SAP. In the present study, in vivo, a mouse model of AP induced by cerulein (CR) combined with lipopolysaccharide (LPS) was established to clarify the therapeutic effect of artesunate (AS) in AP mice by observing the gross morphological changes of the pancreas and surrounding tissues, calculating the pancreatic coefficient, and observing the histopathology of the pancreas. The serum amylase activity in AP mice was detected by iodine colorimetry and the superoxide dismutase activity in the pancreas was detected by WST‑1 assay. The levels of proinflammatory cytokines in the serum, the supernatant of pancreatic tissue homogenates and the peritoneal lavage fluid were detected by ELISA assay. The total number of peritoneal macrophages was assessed using the cellular automatic counter, and the expression of proteins related to autophagy, and the TLR4 pathway was detected by immunohistochemistry and western blotting. In vitro, the effect of trypsin (TP) combined with LPS was observed by detecting the release of proinflammatory cytokine levels from macrophages by ELISA assay, and detecting the expression of proteins related to autophagy and the TLR4 pathway by immunofluorescence and western blotting. The present study revealed that AS reduced pancreatic histopathological damage, decreased pancreatic TP and serum amylase activities, increased superoxide dismutase activity, and inhibited pro‑inflammatory cytokine levels in a mouse model of AP induced by cerulein combined with lipopolysaccharide. In vitro, TP combined with LPS was found to synergistically induce pro‑inflammatory cytokine release from mouse macrophages and RAW264.7 cells, while AS could inhibit cytokine release. Furthermore, CR combined with LPS synergistically increased amylase activity in acinar cells, whereas AS decreased amylase activity. Autophagy serves an important role in the release of pro‑inflammatory cytokines. In the present study, it was revealed that the autophagy inhibitor LY294002 suppressed the release of pro‑inflammatory cytokines from macrophages treated with TP combined with LPS, and pro‑inflammatory cytokine release was not further reduced by AS combined with LY294002. Furthermore, AS not only inhibited the expression of important molecules in the Toll‑like receptor 4 (TLR4) signaling pathway, but also inhibited autophagy proteins and reduced the number of autolysosomes in mice with AP and in macrophages. In conclusion, these results suggested that AS may protect against AP in mice via inhibition of TLR4‑dependent autophagy; therefore, AS may be considered a potential therapeutic agent against SAP.
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Chao Liu
- Department of Pharmaceutical Chemistry, College of Pharmacy, Army Medical University (The Third Military Medical University), Chongqing 400016, P.R. China
| | - Fei Deng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Fumin Ouyang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Rongxin Qin
- Department of Pharmaceutical Chemistry, College of Pharmacy, Army Medical University (The Third Military Medical University), Chongqing 400016, P.R. China
| | - Zhaoxia Zhai
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yu Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Mengling Liao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xichun Pan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Army Medical University (The Third Military Medical University), Chongqing 400016, P.R. China
| | - Yasi Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Yanyan Cen
- Department of Pharmaceutical Chemistry, College of Pharmacy, Army Medical University (The Third Military Medical University), Chongqing 400016, P.R. China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing 400016, P.R. China
| | - Hong Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
2
|
Javalgekar M, Jupp B, Vivash L, O'Brien TJ, Wright DK, Jones NC, Ali I. Inflammasomes at the crossroads of traumatic brain injury and post-traumatic epilepsy. J Neuroinflammation 2024; 21:172. [PMID: 39014496 PMCID: PMC11250980 DOI: 10.1186/s12974-024-03167-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
Post-traumatic epilepsy (PTE) is one of the most debilitating consequences of traumatic brain injury (TBI) and is one of the most drug-resistant forms of epilepsy. Novel therapeutic treatment options are an urgent unmet clinical need. The current focus in healthcare has been shifting to disease prevention, rather than treatment, though, not much progress has been made due to a limited understanding of the disease pathogenesis. Neuroinflammation has been implicated in the pathophysiology of traumatic brain injury and may impact neurological sequelae following TBI including functional behavior and post-traumatic epilepsy development. Inflammasome signaling is one of the major components of the neuroinflammatory response, which is increasingly being explored for its contribution to the epileptogenic mechanisms and a novel therapeutic target against epilepsy. This review discusses the role of inflammasomes as a possible connecting link between TBI and PTE with a particular focus on clinical and preclinical evidence of therapeutic inflammasome targeting and its downstream effector molecules for their contribution to epileptogenesis. Finally, we also discuss emerging evidence indicating the potential of evaluating inflammasome proteins in biofluids and the brain by non-invasive neuroimaging, as potential biomarkers for predicting PTE development.
Collapse
Affiliation(s)
- Mohit Javalgekar
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia
| | - Bianca Jupp
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia
| | - Lucy Vivash
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia
- The University of Melbourne, Parkville, Australia
| | - Terence J O'Brien
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia
- The University of Melbourne, Parkville, Australia
| | - David K Wright
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia
| | - Nigel C Jones
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia.
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia.
- The University of Melbourne, Parkville, Australia.
| | - Idrish Ali
- The Department of Neuroscience, School of Translational Medicine, Monash University, 99, Commercial Road, Melbourne, Australia.
- Department of Neurology, The Alfred Hospital, 99 commercial road, Melbourne, Australia.
- The University of Melbourne, Parkville, Australia.
| |
Collapse
|
3
|
Zhu M, Wang Y, Han J, Sun Y, Wang S, Yang B, Wang Q, Kuang H. Artesunate Exerts Organ- and Tissue-Protective Effects by Regulating Oxidative Stress, Inflammation, Autophagy, Apoptosis, and Fibrosis: A Review of Evidence and Mechanisms. Antioxidants (Basel) 2024; 13:686. [PMID: 38929125 PMCID: PMC11200509 DOI: 10.3390/antiox13060686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
The human body comprises numerous organs and tissues operating in synchrony, it facilitates metabolism, circulation, and overall organismal function. Consequently, the well-being of our organs and tissues significantly influences our overall health. In recent years, research on the protective effects of artesunate (AS) on various organ functions, including the heart, liver, brain, lungs, kidneys, gastrointestinal tract, bones, and others has witnessed significant advancements. Findings from in vivo and in vitro studies suggest that AS may emerge as a newfound guardian against organ damage. Its protective mechanisms primarily entail the inhibition of inflammatory factors and affect anti-fibrotic, anti-aging, immune-enhancing, modulation of stem cells, apoptosis, metabolic homeostasis, and autophagy properties. Moreover, AS is attracting a high level of interest because of its obvious antioxidant activities, including the activation of Nrf2 and HO-1 signaling pathways, inhibiting the release of reactive oxygen species, and interfering with the expression of genes and proteins associated with oxidative stress. This review comprehensively outlines the recent strides made by AS in alleviating organismal injuries stemming from various causes and protecting organs, aiming to serve as a reference for further in-depth research and utilization of AS.
Collapse
Affiliation(s)
- Mingtao Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; (M.Z.); (Y.W.); (J.H.); (Y.S.); (S.W.); (B.Y.)
| | - Yu Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; (M.Z.); (Y.W.); (J.H.); (Y.S.); (S.W.); (B.Y.)
| | - Jianwei Han
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; (M.Z.); (Y.W.); (J.H.); (Y.S.); (S.W.); (B.Y.)
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; (M.Z.); (Y.W.); (J.H.); (Y.S.); (S.W.); (B.Y.)
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; (M.Z.); (Y.W.); (J.H.); (Y.S.); (S.W.); (B.Y.)
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; (M.Z.); (Y.W.); (J.H.); (Y.S.); (S.W.); (B.Y.)
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510024, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; (M.Z.); (Y.W.); (J.H.); (Y.S.); (S.W.); (B.Y.)
| |
Collapse
|
4
|
Delgado-Sequera A, Garcia-Mompo C, Gonzalez-Pinto A, Hidalgo-Figueroa M, Berrocoso E. A Systematic Review of the Molecular and Cellular Alterations Induced by Cannabis That May Serve as Risk Factors for Bipolar Disorder. Int J Neuropsychopharmacol 2024; 27:pyae002. [PMID: 38175142 PMCID: PMC10863486 DOI: 10.1093/ijnp/pyae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Cannabis use is a risk factor of psychiatric illness, such as bipolar disorder type-I (BDI). Indeed, cannabis use strongly influences the onset and clinical course of BDI, although the biological mechanisms underlying this interaction remain unknown. Therefore, we have reviewed the biological mechanisms affected by cannabis use that may trigger BD. METHODS A systematic review was carried out of articles in which gene expression was studied in cannabis users or human-derived cells exposed to tetrahydrocannabinol (THC) or cannabidiol (CBD). A second systematic review was then performed to identify articles in which gene expression was studied in BDI samples, highlighting those that described alterations to the same molecular and cellular mechanisms affected by cannabis/THC/CBD. RESULTS The initial search identified 82 studies on cannabis and 962 on BDI. After removing duplicates and applying the inclusion/exclusion criteria, 9 studies into cannabis and 228 on BDI were retained. The molecular and cellular mechanisms altered by cannabis use or THC/CBD exposure were then identified, including neural development and function, cytoskeletal function, cell adhesion, mitochondrial biology, inflammatory related pathways, lipid metabolism, the endocannabinoid system, the hypocretin/orexin system, and apoptosis. Alterations to those activities were also described in 19 of 228 focused on BDI. CONCLUSIONS The biological mechanisms described in this study may be good candidates to the search for diagnostic biomarkers and therapeutic targets for BDI. Because cannabis use can trigger the onset of BD, further studies would be of interest to determine whether they are involved in the early development of the disorder, prompting early treatment.
Collapse
Affiliation(s)
- Alejandra Delgado-Sequera
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Universidad de Cádiz, Cádiz, Spain
| | - Clara Garcia-Mompo
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Ana Gonzalez-Pinto
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
- Department of Psychiatry, Hospital Universitario de Alava, BIOARABA, UPV/EHU, CIBERSAM, Vitoria-Gasteiz, Spain
| | - Maria Hidalgo-Figueroa
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Universidad de Cádiz, Cádiz, Spain
- Department of Psychology, Universidad de Cádiz, Puerto Real (Cádiz), Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| | - Esther Berrocoso
- Biomedical Research and Innovation Institute of Cadiz (INiBICA), Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
- Neuropsychopharmacology and Psychobiology Research Group, Universidad de Cádiz, Cádiz, Spain
- Department of Neuroscience, Universidad de Cádiz, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain
| |
Collapse
|
5
|
Interdonato L, Marino Y, Impellizzeri D, D’Amico R, Siracusa R, Fusco R, Cammilleri G, Pantano L, Modafferi S, Abdelhameed AS, Fritsch T, Rashan LJ, Cuzzocrea S, Calabrese V, Cordaro M, Di Paola R. Autophagy machinery plays an essential role in traumatic brain injury-induced apoptosis and its related behavioral abnormalities in mice: focus on Boswellia Sacra gum resin. Front Physiol 2024; 14:1320960. [PMID: 38250661 PMCID: PMC10797063 DOI: 10.3389/fphys.2023.1320960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Traumatic brain injury (TBI) is described as a structural damage or physiological disturbance of brain function that occurs after trauma and causes disability or death in people of all ages. New treatment targets for TBI are being explored because current medicines are frequently ineffectual and poorly tolerated. There is increasing evidence that following TBI, there are widespread changes in autophagy-related proteins in both experimental and clinical settings. The current study investigated if Boswellia Sacra Gum Resin (BSR) treatment (500 mg/kg) could modulate post-TBI neuronal autophagy and protein expression, as well as whether BSR could markedly improve functional recovery in a mouse model of TBI. Taken together our results shows for the first time that BSR limits histological alteration, lipid peroxidation, antioxidant, cytokines release and autophagic flux alteration induced by TBI.
Collapse
Affiliation(s)
- Livia Interdonato
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ylenia Marino
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ramona D’Amico
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Gaetano Cammilleri
- Chemistry Department, Istituto Zooprofilattico Sperimentale Della Sicilia, Palermo, Italy
| | - Licia Pantano
- Chemistry Department, Istituto Zooprofilattico Sperimentale Della Sicilia, Palermo, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Ali S. Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Luay J. Rashan
- Medicinal Plants Division, Research Center, Dhofar University, Salalah, Oman
| | - Salvatore Cuzzocrea
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging University of Messina, Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
7
|
Shaik MG, Joshi SV, Akunuri R, Rana P, Rahman Z, Polomoni A, Yaddanapudi VM, Dandekar MP, Srinivas N. Small molecule inhibitors of NLRP3 inflammasome and GSK-3β in the management of traumatic brain injury: A review. Eur J Med Chem 2023; 259:115718. [PMID: 37573828 DOI: 10.1016/j.ejmech.2023.115718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Traumatic brain injury (TBI) is a debilitating mental condition which causes physical disability and morbidity worldwide. TBI may damage the brain by direct injury that subsequently triggers a series of neuroinflammatory events. The activation of NLRP3 inflammasome and dysregulated host immune system has been documented in various neurological disorders such as TBI, ischemic stroke and multiple sclerosis. The activation of NLRP3 post-TBI increases the production of pro-inflammatory cytokines and caspase-1, which are major drivers of neuroinflammation and apoptosis. Similarly, GSK-3β regulates apoptosis through tyrosine kinase and canonical Wnt signalling pathways. Thus, therapeutic targeting of NLRP3 inflammasome and GSK-3β has emerged as promising strategies for regulating the post-TBI neuroinflammation and neurobehavioral disturbances. In this review, we discuss the identification & development of several structurally diverse and pharmacologically interesting small molecule inhibitors for targeting the NLRP3 inflammasome and GSK-3β in the management of TBI.
Collapse
Affiliation(s)
- Mahammad Ghouse Shaik
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Swanand Vinayak Joshi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Ravikumar Akunuri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India; Ellen and Ronald Caplan Cancer Center, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Preeti Rana
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Ziaur Rahman
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500 037, India
| | - Anusha Polomoni
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Manoj P Dandekar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana, 500 037, India.
| | - Nanduri Srinivas
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India.
| |
Collapse
|
8
|
Zheng T, Jiang T, Huang Z, Ma H, Wang M. Role of traditional Chinese medicine monomers in cerebral ischemia/reperfusion injury:a review of the mechanism. Front Pharmacol 2023; 14:1220862. [PMID: 37654609 PMCID: PMC10467294 DOI: 10.3389/fphar.2023.1220862] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a pathological process wherein reperfusion of an ischemic organ or tissue exacerbates the injury, posing a significant health threat and economic burden to patients and their families. I/R triggers a multitude of physiological and pathological events, such as inflammatory responses, oxidative stress, neuronal cell death, and disruption of the blood-brain barrier (BBB). Hence, the development of effective therapeutic strategies targeting the pathological processes resulting from I/R is crucial for the rehabilitation and long-term enhancement of the quality of life in patients with cerebral ischemia/reperfusion injury (CIRI). Traditional Chinese medicine (TCM) monomers refer to bioactive compounds extracted from Chinese herbal medicine, possessing anti-inflammatory and antioxidative effects, and the ability to modulate programmed cell death (PCD). TCM monomers have emerged as promising candidates for the treatment of CIRI and its subsequent complications. Preclinical studies have demonstrated that TCM monomers can enhance the recovery of neurological function following CIRI by mitigating oxidative stress, suppressing inflammatory responses, reducing neuronal cell death and functional impairment, as well as minimizing cerebral infarction volume. The neuroprotective effects of TCM monomers on CIRI have been extensively investigated, and a comprehensive understanding of their mechanisms can pave the way for novel approaches to I/R treatment. This review aims to update and summarize evidence of the protective effects of TCMs in CIRI, with a focus on their role in modulating oxidative stress, inflammation, PCD, glutamate excitotoxicity, Ca2+ overload, as well as promoting blood-brain barrier repairment and angiogenesis. The main objective is to underscore the significant contribution of TCM monomers in alleviating CIRI.
Collapse
Affiliation(s)
| | | | | | | | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
9
|
Jia HJ, Rui Bai S, Xia J, Yue He S, Dai QL, Zhou M, Wang XB. Artesunate ameliorates irinotecan-induced intestinal injury by suppressing cellular senescence and significantly enhances anti-tumor activity. Int Immunopharmacol 2023; 119:110205. [PMID: 37104917 DOI: 10.1016/j.intimp.2023.110205] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
Irinotecan (CPT-11) is a topoisomerase I inhibitor that was approved for cancer treatment in 1994. To date, this natural product derivative remains the world's leading antitumor drug. However, the clinical application of irinotecan is limited due to its side effects, the most troubling of which is intestinal toxicity. In addition, irinotecan has certain toxicity to cells and even causes cellular senescence. Committed to developing alternatives to prevent these adverse reactions, we evaluated the activity of artesunate, which has never been tested in this regard despite its biological potential. Irinotecan accelerated the process of aging in vivo and in vitro, and we found that this was mainly caused by activating mTOR signaling targets. Artesunate inhibited the activity of mTOR, thereby alleviating the aging process. Our study found that artesunate treatment improved irinotecan-induced intestinal inflammation by reducing the levels of TNF-α, IL1, and IL6; reducing inflammatory infiltration of the colonic ileum in mice; and preventing irinotecan-induced intestinal damage by reducing weight loss and improving intestinal length. In addition, in mouse xenograft tumor models, artesunate and irinotecan significantly inhibited tumor growth in mice.
Collapse
Affiliation(s)
- Hui Jie Jia
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan 671000 China
| | - Shi Rui Bai
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan 671000 China
| | - Jing Xia
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan 671000 China
| | - Si Yue He
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan 671000 China
| | - Qian-Long Dai
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan 671000 China
| | - Min Zhou
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China.
| | - Xiao Bo Wang
- School of Basic Medicine, Dali University, Dali, Yunnan 671000, China; Key Laboratory of University Cell Biology Yunnan Province, Dali, Yunnan 671000 China.
| |
Collapse
|
10
|
Impellizzeri D, Cordaro M, Siracusa R, Fusco R, Peritore AF, Gugliandolo E, Genovese T, Crupi R, Interdonato L, Evangelista M, Di Paola R, Cuzzocrea S, D'Amico R. Molecular targets for anti-oxidative protection of açaí berry against diabetes myocardial ischemia/reperfusion injury. Free Radic Res 2023; 57:339-352. [PMID: 37609799 DOI: 10.1080/10715762.2023.2243032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/24/2023]
Abstract
Myocardial ischemia/reperfusion injury (MIRI) is the principal cause of death and occurs after prolonged blockage of the coronary arteries. Diabetes represents one of the main factors aggravating myocardial injury. Restoring blood flow is the first intervention against a heart attack, although reperfusion process could cause additional damage, such as the overproduction of reacting oxygen species (ROS). In recent years, açaí berry has gained international attention as a functional food due to its antioxidant and anti-inflammatory properties; not only that but this fruit has shown glucose-lowering effects. Therefore, this study was designed to evaluate the cardioprotective effects of açaí berry on the inflammatory and oxidative responses associated with diabetic MIRI. Diabetes was induced in rats by a single intravenous inoculation of streptozotocin (60 mg/kg) and allowed to develop for 60 days. MIRI was induced by occlusion of the left anterior descending coronary artery for 30 min followed by 2 h of reperfusion. Açaí (200 mg/kg) was administered 5 min before the end of ischemia and 1 h after reperfusion. In this study, we clearly demonstrated that açaí treatment was able to reduce biomarkers of myocardial damage, infarct size, and apoptotic process. Moreover, açaí administrations reduced inflammatory and oxidative response, modulating Nf-kB and Nrf2 pathways. These results suggest that açai berry supplementation could represent a useful strategy for pathological events associated to MIRI.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | | | | | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maurizio Evangelista
- Institute of Anaesthesiology and Reanimation, Catholic University of the Sacred Heart, Rome, Italy
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
11
|
Lu BW, Liang YX, Liu JF, Sun ZQ, So KF, Chiu K. Retinal safety and toxicity study of artesunate in vitro and in vivo. ADVANCES IN OPHTHALMOLOGY PRACTICE AND RESEARCH 2023; 3:47-54. [PMID: 37846375 PMCID: PMC10577838 DOI: 10.1016/j.aopr.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 10/18/2023]
Abstract
Background Artesunate (ART), a member of the artemisinin family, possesses multi-properties, including anti-inflammation, anti-oxidation, and anti-tumor. ART was recently reported to show anti-neovascularization effect on the cornea, iris, and retina. Compared to the expensive anti-VEGF treatment, this versatile, economical treatment option is attractive in the ophthalmic field. The safety and toxicity profile of ART intravitreal application are in utmost need. Methods In this study, immortalized microglial (IMG) cells were treated with ART to determine the safe concentrations without inducing overt inflammatory reactions. Reverse transcription-polymerase chain reaction analysis was used to detect the cytokine expressions in IMG cells in response to ART stimulation. Various doses of ART were intravitreally injected into the right eyes of C57BL/6 mice. Retinal function was tested by electroretinogram, and retinal ganglion cell (RGC) survival was evaluated by counting Brn3a stained cells in flat-mounted retinas at 7 days after ART injection. Results ART below 5μM was safe for IMG cells in vitro. Both 2.5 and 5 μM ART treatment increased IL-10 gene expression in IMG cells while not changing IL-1β, IL-6, TNF-α, and Arg-1. In the in vivo study, intravitreal injection of ART below 100 μM did not cause deterioration in the retinal function and RGC survival of the mouse eyes, while 1 mM ART treatment significantly attenuated both the scotopic and photopic b-wave amplitudes and impaired RGC survival. In addition, treatment with ART of 25, 50, and 100 μM significantly decreased TNF-α gene expression while ART of 100 μM significantly increased IL-10 in the mouse retina. Conclusions Intravitreal injection of 100 μM ART could downregulate TNF-α while upregulate IL-10 in the mouse retina without causing retinal functional deterioration and RGC loss. ART might be used as anti-inflammatory agent for retinal disorders.
Collapse
Affiliation(s)
- Bing-Wen Lu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu-Xiang Liang
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Department of Psychology, Faculty of Social Sciences, The University of Hong Kong, Hong Kong, China
| | - Jin-Feng Liu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhong-Qing Sun
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kwok-Fai So
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Department of Psychology, Faculty of Social Sciences, The University of Hong Kong, Hong Kong, China
- Guangdong-Hongkong-Macau (GHM) Institute of CNS Regeneration, Ministry of Education, CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Kin Chiu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Department of Psychology, Faculty of Social Sciences, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Chiarini A, Gui L, Viviani C, Armato U, Dal Prà I. NLRP3 Inflammasome’s Activation in Acute and Chronic Brain Diseases—An Update on Pathogenetic Mechanisms and Therapeutic Perspectives with Respect to Other Inflammasomes. Biomedicines 2023; 11:biomedicines11040999. [PMID: 37189617 DOI: 10.3390/biomedicines11040999] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Increasingly prevalent acute and chronic human brain diseases are scourges for the elderly. Besides the lack of therapies, these ailments share a neuroinflammation that is triggered/sustained by different innate immunity-related protein oligomers called inflammasomes. Relevant neuroinflammation players such as microglia/monocytes typically exhibit a strong NLRP3 inflammasome activation. Hence the idea that NLRP3 suppression might solve neurodegenerative ailments. Here we review the recent Literature about this topic. First, we update conditions and mechanisms, including RNAs, extracellular vesicles/exosomes, endogenous compounds, and ethnic/pharmacological agents/extracts regulating NLRP3 function. Second, we pinpoint NLRP3-activating mechanisms and known NLRP3 inhibition effects in acute (ischemia, stroke, hemorrhage), chronic (Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, MS, ALS), and virus-induced (Zika, SARS-CoV-2, and others) human brain diseases. The available data show that (i) disease-specific divergent mechanisms activate the (mainly animal) brains NLRP3; (ii) no evidence proves that NLRP3 inhibition modifies human brain diseases (yet ad hoc trials are ongoing); and (iii) no findings exclude that concurrently activated other-than-NLRP3 inflammasomes might functionally replace the inhibited NLRP3. Finally, we highlight that among the causes of the persistent lack of therapies are the species difference problem in disease models and a preference for symptomatic over etiologic therapeutic approaches. Therefore, we posit that human neural cell-based disease models could drive etiological, pathogenetic, and therapeutic advances, including NLRP3’s and other inflammasomes’ regulation, while minimizing failure risks in candidate drug trials.
Collapse
|
13
|
Wei C, Wang J, Yu J, Tang Q, Liu X, Zhang Y, Cui D, Zhu Y, Mei Y, Wang Y, Wang W. Therapy of traumatic brain injury by modern agents and traditional Chinese medicine. Chin Med 2023; 18:25. [PMID: 36906602 PMCID: PMC10008617 DOI: 10.1186/s13020-023-00731-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of disability and death, and the social burden of mortality and morbidity caused by TBI is significant. Under the influence of comprehensive factors, such as social environment, lifestyle, and employment type, the incidence of TBI continues to increase annually. Current pharmacotherapy of TBI mainly focuses on symptomatic supportive treatment, aiming to reduce intracranial pressure, ease pain, alleviate irritability, and fight infection. In this study, we summarized numerous studies covering the use of neuroprotective agents in different animal models and clinical trials after TBI. However, we found that no drug has been approved as specifically effective for the treatment of TBI. Effective therapeutic strategies for TBI remain an urgent need, and attention is turning toward traditional Chinese medicine. We analyzed the reasons why existing high-profile drugs had failed to show clinical benefits and offered our views on the research of traditional herbal medicine for treating TBI.
Collapse
Affiliation(s)
- Chunzhu Wei
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingbo Wang
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jintao Yu
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tang
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinjie Liu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanlong Zhang
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dandan Cui
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqiong Zhu
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanli Mei
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjun Wang
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenzhu Wang
- Department of Integrated Traditional and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Iron as a therapeutic target in chronic liver disease. World J Gastroenterol 2023; 29:616-655. [PMID: 36742167 PMCID: PMC9896614 DOI: 10.3748/wjg.v29.i4.616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/03/2022] [Accepted: 12/31/2022] [Indexed: 01/20/2023] Open
Abstract
It was clearly realized more than 50 years ago that iron deposition in the liver may be a critical factor in the development and progression of liver disease. The recent clarification of ferroptosis as a specific form of regulated hepatocyte death different from apoptosis and the description of ferritinophagy as a specific variation of autophagy prompted detailed investigations on the association of iron and the liver. In this review, we will present a brief discussion of iron absorption and handling by the liver with emphasis on the role of liver macrophages and the significance of the iron regulators hepcidin, transferrin, and ferritin in iron homeostasis. The regulation of ferroptosis by endogenous and exogenous mod-ulators will be examined. Furthermore, the involvement of iron and ferroptosis in various liver diseases including alcoholic and non-alcoholic liver disease, chronic hepatitis B and C, liver fibrosis, and hepatocellular carcinoma (HCC) will be analyzed. Finally, experimental and clinical results following interventions to reduce iron deposition and the promising manipulation of ferroptosis will be presented. Most liver diseases will be benefited by ferroptosis inhibition using exogenous inhibitors with the notable exception of HCC, where induction of ferroptosis is the desired effect. Current evidence mostly stems from in vitro and in vivo experimental studies and the need for well-designed future clinical trials is warranted.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71003, Greece
| | - Ioannis Tsomidis
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| | - Argyro Voumvouraki
- First Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54621, Greece
| |
Collapse
|
15
|
Kattan D, Barsa C, Mekhijian S, Shakkour Z, Jammoul M, Doumit M, Zabala MCP, Darwiche N, Eid AH, Mechref Y, Wang KK, de Rivero Vaccari JP, Munoz Pareja JC, Kobeissy F. Inflammasomes as biomarkers and therapeutic targets in traumatic brain injury and related-neurodegenerative diseases: A comprehensive overview. Neurosci Biobehav Rev 2023; 144:104969. [PMID: 36423707 PMCID: PMC9805531 DOI: 10.1016/j.neubiorev.2022.104969] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
Given the ambiguity surrounding traumatic brain injury (TBI) pathophysiology and the lack of any Food and Drug Administration (FDA)-approved neurotherapeutic drugs, there is an increasing need to better understand the mechanisms of TBI. Recently, the roles of inflammasomes have been highlighted as both potential therapeutic targets and diagnostic markers in different neurodegenerative disorders. Indeed, inflammasome activation plays a pivotal function in the central nervous system (CNS) response to many neurological conditions, as well as to several neurodegenerative disorders, specifically, TBI. This comprehensive review summarizes and critically discusses the mechanisms that govern the activation and assembly of inflammasome complexes and the major methods used to study inflammasome activation in TBI and its implication for other neurodegenerative disorders. Also, we will review how inflammasome activation is critical in CNS homeostasis and pathogenesis, and how it can impact chronic TBI sequalae and increase the risk of developing neurodegenerative diseases. Additionally, we discuss the recent updates on inflammasome-related biomarkers and the potential to utilize inflammasomes as putative therapeutic targets that hold the potential to better diagnose and treat subjects with TBI.
Collapse
Affiliation(s)
- Dania Kattan
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Chloe Barsa
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Sarin Mekhijian
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Zaynab Shakkour
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon; Program for Interdisciplinary Neuroscience, Department of Child Health, School of Medicine, University of Missouri, USA
| | - Maya Jammoul
- Department of Anatomy, Cell Biology, and Physiology, American University of Beirut, Beirut, Lebanon
| | - Mark Doumit
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Maria Camila Pareja Zabala
- Division of Pediatric Critical Care, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Kevin K Wang
- Morehouse School of Medicine, Department of Neurobiology, Atlanta, GA, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Jennifer C Munoz Pareja
- Division of Pediatric Critical Care, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon; Morehouse School of Medicine, Department of Neurobiology, Atlanta, GA, USA.
| |
Collapse
|
16
|
Arora K, Vats V, Kaushik N, Sindhawani D, Saini V, Arora DM, Kumar Y, Vashisht E, Singh G, Verma PK. A Systematic Review on Traumatic Brain Injury Pathophysiology and Role of Herbal Medicines in its Management. Curr Neuropharmacol 2023; 21:2487-2504. [PMID: 36703580 PMCID: PMC10616914 DOI: 10.2174/1570159x21666230126151208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a worldwide problem. Almost about sixtynine million people sustain TBI each year all over the world. Repetitive TBI linked with increased risk of neurodegenerative disorder such as Parkinson, Alzheimer, traumatic encephalopathy. TBI is characterized by primary and secondary injury and exerts a severe impact on cognitive, behavioral, psychological and other health problem. There were various proposed mechanism to understand complex pathophysiology of TBI but still there is a need to explore more about TBI pathophysiology. There are drugs present for the treatment of TBI in the market but there is still need of more drugs to develop for better and effective treatment of TBI, because no single drug is available which reduces the further progression of this injury. OBJECTIVE The main aim and objective of structuring this manuscript is to design, develop and gather detailed data regarding about the pathophysiology of TBI and role of medicinal plants in its treatment. METHOD This study is a systematic review conducted between January 1995 to June 2021 in which a consultation of scientific articles from indexed periodicals was carried out in Science Direct, United States National Library of Medicine (Pubmed), Google Scholar, Elsvier, Springer and Bentham. RESULTS A total of 54 studies were analyzed, on the basis of literature survey in the research area of TBI. CONCLUSION Recent studies have shown the potential of medicinal plants and their chemical constituents against TBI therefore, this review targets the detailed information about the pathophysiology of TBI and role of medicinal plants in its treatment.
Collapse
Affiliation(s)
- Kaushal Arora
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vishal Vats
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Nalin Kaushik
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani, Haryana, 127031, India
| | - Deepanshu Sindhawani
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Vaishali Saini
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Divy Mohan Arora
- Department of Pharmaceutical Sciences Guru Jambheshwar University of Science & Technology, Hisar, Haryana, 125001, India
| | - Yogesh Kumar
- Sat Priya College of Pharmacy, Rohtak, Haryana, 124001, India
| | - Etash Vashisht
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Govind Singh
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Prabhakar Kumar Verma
- Department of Pharmaceutical Sciences Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
17
|
Nie Z, Tan L, Niu J, Wang B. The role of regulatory necrosis in traumatic brain injury. Front Mol Neurosci 2022; 15:1005422. [PMID: 36329694 PMCID: PMC9622788 DOI: 10.3389/fnmol.2022.1005422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Traumatic brain injury (TBI) is a major cause of death and disability in the population worldwide, of which key injury mechanism involving the death of nerve cells. Many recent studies have shown that regulatory necrosis is involved in the pathological process of TBI which includes necroptosis, pyroptosis, ferroptosis, parthanatos, and Cyclophilin D (CypD) mediated necrosis. Therefore, targeting the signaling pathways involved in regulatory necrosis may be an effective strategy to reduce the secondary injury after TBI. Meanwhile, drugs or genes are used as interference factors in various types of regulatory necrosis, so as to explore the potential treatment methods for the secondary injury after TBI. This review summarizes the current progress on regulatory necrosis in TBI.
Collapse
|
18
|
D'Amico R, Impellizzeri D, Genovese T, Fusco R, Peritore AF, Crupi R, Interdonato L, Franco G, Marino Y, Arangia A, Gugliandolo E, Cuzzocrea S, Di Paola R, Siracusa R, Cordaro M. Açai Berry Mitigates Parkinson's Disease Progression Showing Dopaminergic Neuroprotection via Nrf2-HO1 Pathways. Mol Neurobiol 2022; 59:6519-6533. [PMID: 35970975 PMCID: PMC9463222 DOI: 10.1007/s12035-022-02982-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/27/2022] [Indexed: 02/08/2023]
Abstract
The current pharmacological treatment for Parkinson's disease (PD) is focused on symptom alleviation rather than disease prevention. In this study, we look at a new strategy to neuroprotection that focuses on nutrition, by a supplementation with Açai berry in an experimental models of PD. Daily orally supplementation with Açai berry dissolved in saline at the dose of 500 mg/kg considerably reduced motor and non-motor symptom and neuronal cell death of the dopaminergic tract induced by 4 injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Furthermore, Açai berry administration reduced α-synuclein aggregation in neurons, enhanced tyrosine hydroxylase and dopamine transporter activities, and avoided dopamine depletion. Moreover, Açai berry administration was able to reduce astrogliosis and microgliosis as well as neuronal death. Its beneficial effects could be due to its bioactive phytochemical components that are able to stimulate nuclear factor erythroid 2-related factor 2 (Nrf2) by counteracting the oxidative stress and neuroinflammation that are the basis of this neurodegenerative disease.
Collapse
Affiliation(s)
- Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Roberta Fusco
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125, Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, Polo Universitario Dell'Annunziata, 98168, Messina, Italy
| | - Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Gianluca Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Alessia Arangia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, Polo Universitario Dell'Annunziata, 98168, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy.
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Polo Universitario Dell'Annunziata, 98168, Messina, Italy.
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166, Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125, Messina, Italy
| |
Collapse
|
19
|
Li C, Cui Z, Deng S, Chen P, Li X, Yang H. The potential of plant extracts in cell therapy. STEM CELL RESEARCH & THERAPY 2022; 13:472. [PMID: 36104798 PMCID: PMC9476258 DOI: 10.1186/s13287-022-03152-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 05/23/2022] [Indexed: 11/10/2022]
Abstract
Cell therapy is the frontier technology of biotechnology innovation and the most promising method for the treatment of refractory diseases such as tumours. However, cell therapy has disadvantages, such as toxicity and poor therapeutic effects. Plant extracts are natural, widely available, and contain active small molecule ingredients that are widely used in the treatment of various diseases. By studying the effect of plant extracts on cell therapy, active plant extracts that have positive significance in cell therapy can be discovered, and certain contributions to solving the current problems of attenuation and adjuvant therapy in cell therapy can be made. Therefore, this article reviews the currently reported effects of plant extracts in stem cell therapy and immune cell therapy, especially the effects of plant extracts on the proliferation and differentiation of mesenchymal stem cells and nerve stem cells and the potential role of plant extracts in chimeric antigen receptor T-cell immunotherapy (CAR-T) and T-cell receptor modified T-cell immunotherapy (TCR-T), in the hope of encouraging further research and clinical application of plant extracts in cell therapy.
Collapse
|
20
|
Kalra S, Malik R, Singh G, Bhatia S, Al-Harrasi A, Mohan S, Albratty M, Albarrati A, Tambuwala MM. Pathogenesis and management of traumatic brain injury (TBI): role of neuroinflammation and anti-inflammatory drugs. Inflammopharmacology 2022; 30:1153-1166. [PMID: 35802283 PMCID: PMC9293826 DOI: 10.1007/s10787-022-01017-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/06/2022] [Indexed: 02/08/2023]
Abstract
Traumatic brain injury (TBI) is an important global health concern that represents a leading cause of death and disability. It occurs due to direct impact or hit on the head caused by factors such as motor vehicles, crushes, and assaults. During the past decade, an abundance of new evidence highlighted the importance of inflammation in the secondary damage response that contributes to neurodegenerative and neurological deficits after TBI. It results in disruption of the blood-brain barrier (BBB) and initiates the release of macrophages, neutrophils, and lymphocytes at the injury site. A growing number of researchers have discovered various signalling pathways associated with the initiation and progression of inflammation. Targeting different signalling pathways (NF-κB, JAK/STAT, MAPKs, PI3K/Akt/mTOR, GSK-3, Nrf2, RhoGTPase, TGF-β1, and NLRP3) helps in the development of novel anti-inflammatory drugs in the management of TBI. Several synthetic and herbal drugs with both anti-inflammatory and neuroprotective potential showed effective results. This review summarizes different signalling pathways, associated pathologies, inflammatory mediators, pharmacological potential, current status, and challenges with anti-inflammatory drugs.
Collapse
Affiliation(s)
- Sunishtha Kalra
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Rohit Malik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Saurabh Bhatia
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India. .,Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Syam Mohan
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.,Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ali Albarrati
- Rehabilitation Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Northern Ireland, UK.
| |
Collapse
|
21
|
Discovering the Effects of Fisetin on NF-κB/NLRP-3/NRF-2 Molecular Pathways in a Mouse Model of Vascular Dementia Induced by Repeated Bilateral Carotid Occlusion. Biomedicines 2022; 10:biomedicines10061448. [PMID: 35740470 PMCID: PMC9221103 DOI: 10.3390/biomedicines10061448] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 12/26/2022] Open
Abstract
Vascular dementia (VaD) is the second leading cause of dementia. The majority of VaD patients have cognitive abnormalities, which are caused by cerebral hypoperfusion-induced ischemia, endothelial dysfunction, oxidative stress, and neuroinflammation. Natural products are receiving increasing attention for the treatment of neuroinflammatory diseases. The aim of this study was to investigate the molecular pathways underlying the protective effects of fisetin, a flavonoid present in many fruits and vegetables, in a mouse model of VaD induced by repeated ischemia-reperfusion (IR) of the total bilateral carotid artery. Here, we found that VaD caused brain injury, lipid peroxidation, and neuronal death in the hippocampus, as well as astrocyte and microglial activation, and reduced BDNF neurotrophic factor expression together with behavioral alterations. In addition, VaD induced the activation of inflammasome components (NLRP-3, ASC, and caspase 1), and their downstream products (IL-1β and IL-18) release and promote activation of apoptotic cell death. Fisetin attenuated histological injury, malondialdehyde levels, inflammasome pathway activation, apoptosis, as well as increased BDNF expression, reduced astrocyte, microglial activation, and cognitive deficits. In conclusion, the protective effects of fisetin could be due to the inhibition of the ROS-induced activation of NF-κB/NLRP3 inflammasome together with the activation of antioxidant Nrf2/HO-1, suggesting a possible crosstalk between these molecular pathways.
Collapse
|
22
|
Cordaro M, Siracusa R, D’Amico R, Genovese T, Franco G, Marino Y, Di Paola D, Cuzzocrea S, Impellizzeri D, Di Paola R, Fusco R. Role of Etanercept and Infliximab on Nociceptive Changes Induced by the Experimental Model of Fibromyalgia. Int J Mol Sci 2022; 23:ijms23116139. [PMID: 35682817 PMCID: PMC9181785 DOI: 10.3390/ijms23116139] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/22/2022] Open
Abstract
Background: Fibromyalgia is a clinical condition that affects 1% to 5% of the population. No proper therapy has been currently found. It has been described that inflammation plays a central role in the nerve sensitizations that characterize the pathology. Methods: This paper aimed to evaluate the efficacy of etanercept and infliximab in the management of pain sensitization. Fibromyalgia was induced by three injections once a day of reserpine at the dose of 1 mg/kg. Etanercept (3 mg/kg) and infliximab (10 mg/kg) were administered the day after the last reserpine injection and then 5 days after that. Behavioral analyses were conducted once a week, and molecular investigations were performed at the end of the experiment. Results: Our data confirmed the major effect of infliximab administration as compared to etanercept: infliximab administration strongly reduced pain sensitization in thermal hyperalgesia and mechanical allodynia. From the molecular point of view, infliximab reduced the activation of microglia and astrocytes and the expression of the purinergic P2X7 receptor ubiquitously expressed on glia and neurons. Downstream of the P2X7 receptor, infliximab also reduced p38-MAPK overexpression induced by the reserpine administration. Conclusion: Etanercept and infliximab treatment caused a significant reduction in pain. In particular, rats that received infliximab showed less pain sensitization. Moreover, infliximab reduced the activation of microglia and astrocytes, reducing the expression of the purinergic receptor P2X7 and p38-MAPK pathway.
Collapse
Affiliation(s)
- Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Gianluca Franco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Davide Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
- Correspondence: (S.C.); (D.I.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.S.); (R.D.); (T.G.); (G.F.); (Y.M.); (D.D.P.)
- Correspondence: (S.C.); (D.I.)
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Roberta Fusco
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
23
|
Role of Bevacizumab on Vascular Endothelial Growth Factor in Apolipoprotein E Deficient Mice after Traumatic Brain Injury. Int J Mol Sci 2022; 23:ijms23084162. [PMID: 35456980 PMCID: PMC9024601 DOI: 10.3390/ijms23084162] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI) disrupts the blood–brain barrier (BBB). Vascular endothelial growth factor (VEGF) is believed to play a key role in TBI and to be overexpressed in the absence of apolipoprotein E (ApoE). Bevacizumab, a VEGF inhibitor, demonstrated neuroprotective activity in several models of TBI. However, the effects of bevacizumab on Apo-E deficient mice are not well studied. The present study aimed to evaluate VEGF expression and the effects of bevacizumab on BBB and neuroinflammation in ApoE−/− mice undergoing TBI. Furthermore, for the first time, this study evaluates the effects of bevacizumab on the long-term consequences of TBI, such as atherosclerosis. The results showed that motor deficits induced by controlled cortical impact (CCI) were accompanied by increased brain edema and VEGF expression. Treatment with bevacizumab significantly improved motor deficits and significantly decreased VEGF levels, as well as brain edema compared to the control group. Furthermore, the results showed that bevacizumab preserves the integrity of the BBB and reduces the neuroinflammation induced by TBI. Regarding the effects of bevacizumab on atherosclerosis, it was observed for the first time that its ability to modulate VEGF in the acute phase of head injury prevents the acceleration of atherosclerosis. Therefore, the present study demonstrates not only the neuroprotective activity of bevacizumab but also its action on the vascular consequences related to TBI.
Collapse
|
24
|
Kalra S, Banderwal R, Arora K, Kumar S, Singh G, Chawla PA, Behl T, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Aleya L, Dhiman A. An update on pathophysiology and treatment of sports-mediated brain injury. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16786-16798. [PMID: 34994929 DOI: 10.1007/s11356-021-18391-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Traumatic brain injury (TBI) is a neurological disorder which represents a major health issue worldwide. It causes mortality and disability among all group ages, caused by external force, sports-related events or violence and road traffic accidents. In the USA, approximately one-third people die annually due to injury and 1.7 million people suffer from traumatic brain injury. Every year in India around 1.6 million individuals suffer from sustain brain injury with 200,000 deaths and approximately one million person needed recovery treatment at any stage of time. Sports-related head impact and trauma has become an extremely controversial public health and medico-legal problem that accounts for 20% of all brain injury (including concussion). It is difficult to reverse the primary injury but the secondary injury can be minimized by using proper pharmacological intervention during the initial hours of injury. This article highlights the pathophysiology and types of TBI along with treatment therapies. Till date, there is no single medication that can decrease the progression of the disease so that symptomatic treatment is given to the patient by determining proper pathology. Recently various herbal medicine therapies and traditional supplements have been developed for TBI. Nutritional supplementation and nutraceuticals have exposed potential in the treatment of TBI when used before and after TBI. The compiled data will enable the readers to know the pathophysiology as well as the allopathic and natural remedies to treat the TBI.
Collapse
Affiliation(s)
- Sunishtha Kalra
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Rittu Banderwal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Kaushal Arora
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sandeep Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Anju Dhiman
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
25
|
Huang B, Zhang Y. Teaching an old dog new tricks: drug discovery by repositioning natural products and their derivatives. Drug Discov Today 2022; 27:1936-1944. [PMID: 35182736 PMCID: PMC9232944 DOI: 10.1016/j.drudis.2022.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/08/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
Given the substantial cost and low success rate of drug discovery and development, repositioning existing drugs to treat new diseases has gained significant attention in recent years, with potentially lower development costs and shorter time frames. Natural products show great promise in drug repositioning because they have been used for various medical purposes for thousands of years. In this review, we discuss the drug repositioning of six prototypical natural products and their derivatives to reveal new drug-disease associations. We also highlight opportunities and challenges in natural product-based drug repositioning for future reference.
Collapse
Affiliation(s)
- Boshi Huang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA.
| |
Collapse
|
26
|
Key Mechanisms and Potential Implications of Hericium erinaceus in NLRP3 Inflammasome Activation by Reactive Oxygen Species during Alzheimer's Disease. Antioxidants (Basel) 2021; 10:antiox10111664. [PMID: 34829535 PMCID: PMC8615045 DOI: 10.3390/antiox10111664] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the principal cause of dementia, and its incidence increases with age. Altered antioxidant systems and inflammation have an important role in the etiology of neurodegenerative disorders. In this study, we evaluated the effects of Hericium erinaceus, a nutritional mushroom with important antioxidant effects, in a rat model of AD. Animals were injected with 70 mg/Kg of AlCl3 daily for 6 weeks, and Hericium erinaceus was administered daily by gavage. Before the experiment’s end date, behavioral test training was performed. At the end of the study, behavioral changes were assessed, and the animals were euthanized. Brain tissues were harvested for further analysis. AlCl3 mainly accumulates in the hippocampus, the principal region of the brain involved in memory functions and learning. Hericium erinaceus administration reduced behavioral changes and hippocampal neuronal degeneration. Additionally, it reduced phosphorylated Tau levels, aberrant APP overexpression, and β-amyloid accumulation. Moreover, Hericium erinaceus decreased the pro-oxidative and pro-inflammatory hippocampal alterations induced by AD. In particular, it reduced the activation of the NLRP3 inflammasome components, usually activated by increased oxidative stress during AD. Collectively, our results showed that Hericium erinaceus has protective effects on behavioral alteration and histological modification associated with AD due to the modulation of the oxidative and inflammatory pathways, as well as regulating cellular brain stress.
Collapse
|
27
|
Jia M, Zhang H, Qin Q, Hou Y, Zhang X, Chen D, Zhang H, Chen Y. Ferroptosis as a new therapeutic opportunity for nonviral liver disease. Eur J Pharmacol 2021; 908:174319. [PMID: 34252441 DOI: 10.1016/j.ejphar.2021.174319] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022]
Abstract
Nonviral liver disease is a global public health problem due to its high mortality and morbidity. However, its underlying mechanism is unclear. Ferroptosis is a novel form of cell death that is involved in a variety of disease processes. Both abnormal iron metabolism (e.g., iron overload) and lipid peroxidation, which is induced by deletion of glutathione (GSH) or glutathione peroxidase 4 (GPX4), and the accumulation of polyunsaturated fatty acid-containing phospholipids (PUFA-PLs) trigger ferroptosis. Recently, ferroptosis has been involved in the pathological process of nonviral liver diseases [including alcohol-related liver disease (ALD); nonalcoholic fatty liver disease (NAFLD); hereditary hemochromatosis (HH); drug-, ischemia/reperfusion- or immune-induced liver injury; liver fibrosis; and liver cancer]. Hepatocyte ferroptosis is activated in ALD; NAFLD; HH; drug-, ischemia/reperfusion- or immune-induced liver injury; and liver fibrosis, whereas hepatic stellate cell and liver cancer cell ferroptosis are inhibited in liver fibrosis and liver cancer, respectively. Thus, ferroptosis is an ideal target for nonviral liver diseases. In the present review, we discuss the latest findings on ferroptosis and potential drugs targeting ferroptosis for nonviral liver diseases. This review will highlight further directions for the treatment and prevention of nonviral liver diseases.
Collapse
Affiliation(s)
- Min Jia
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Hongmei Zhang
- The First Affiliated Hospital of Xi'an Medical University, Xi'an Medical University, Xi'an, Shaanxi, 710077, China
| | - Qiaohong Qin
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Ying Hou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Xin Zhang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Di Chen
- School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Hong Zhang
- Department of Infectious Diseases, Shaanxi Provincial People's Hospital (the Affiliated Hospital of Xi'an Medical University), Xi'an Medical University, Xi'an, Shaanxi, 710068, China.
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, 710021, China.
| |
Collapse
|
28
|
Analysis of electric cigarette liquid effect on mouse brain tumor growth through EGFR and ERK activation. PLoS One 2021; 16:e0256730. [PMID: 34495991 PMCID: PMC8425573 DOI: 10.1371/journal.pone.0256730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 06/29/2021] [Indexed: 11/21/2022] Open
Abstract
Introduction Recently, electric cigarettes with liquid (e-liquid) were introduced as an alternative to tobacco smoking. They were promoted as possible cessation aids and were considered to be potentially less harmful than traditional tobacco-based cigarettes. However, there is little information on the toxicants present in e-liquids and their possible carcinogenic effects. Methods Western blot analysis was performed to identify the protein levels of cancer progression related signal transducers. Patient-derived brain tumor cells (CSC2) were injected into mouse brains and tumor growth was then observed by performing magnetic resonance imaging (MRI) and hematoxylin and eosin (H&E) staining of the whole brain. Immunohistochemistry (IHC) staining and Immunofluorescence staining were performed to study the expression of pEGFR and pERK. Results Western blotting revealed that e-liquids increased pEGFR and pERK expression in a dose dependent manner. Animal experiments revealed that the e-liquid treated group had accelerated tumor growth and poor prognosis compared to the vehicle group. Histological staining showed activation of pEGFR and pERK in the e-liquid treated group. Conclusion Our study revealed that e-liquid activates pEGFR and pERK, leading to accelerated brain tumor growth and poor prognosis.
Collapse
|
29
|
Campolo M, Crupi R, Cordaro M, Cardali SM, Ardizzone A, Casili G, Scuderi SA, Siracusa R, Esposito E, Conti A, Cuzzocrea S. Co-Ultra PEALut Enhances Endogenous Repair Response Following Moderate Traumatic Brain Injury. Int J Mol Sci 2021; 22:ijms22168717. [PMID: 34445417 PMCID: PMC8395716 DOI: 10.3390/ijms22168717] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/15/2022] Open
Abstract
This study aimed to assess the neuro-regenerative properties of co-ultramicronized PEALut (Glialia®), composed of palmitoylethanolamide (PEA) and the flavonoid luteolin (Lut), in an in vivo model of traumatic brain injury (TBI) and patients affected by moderate TBI. An increase in neurogenesis was seen in the mice at 72 h and 7 d after TBI. The co-ultra PEALut treatment helped the neuronal reconstitution process to restore the basal level of both novel and mature neurons; moreover, it induced a significant upregulation of the neurotrophic factors, which ultimately led to progress in terms of memory recall during behavioral testing. Moreover, our preliminary findings in a clinical trial suggested that Glialia® treatment facilitated neural recovery on working memory. Thus, co-ultra PEALut (Glialia®) could represent a valuable therapeutic agent for intensifying the endogenous repair response in order to better treat TBI.
Collapse
Affiliation(s)
- Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | | | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Alfredo Conti
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
- Department of Pharmacological and Physiological Science, Saint Louis University, Saint Louis, MO 63104, USA
- Correspondence: ; Tel.: +39-090-6765208
| |
Collapse
|
30
|
Mutoji KN, Sun M, Nash A, Puri S, Hascall V, Coulson-Thomas VJ. Anti-inflammatory protein TNFα-stimulated gene-6 (TSG-6) reduces inflammatory response after brain injury in mice. BMC Immunol 2021; 22:52. [PMID: 34348643 PMCID: PMC8336266 DOI: 10.1186/s12865-021-00443-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Current research suggests that the glial scar surrounding penetrating brain injuries is instrumental in preserving the surrounding uninjured tissue by limiting the inflammatory response to the injury site. We recently showed that tumor necrosis factor (TNF)-stimulated gene-6 (TSG-6), a well-established anti-inflammatory molecule, is present within the glial scar. In the present study we investigated the role of TSG-6 within the glial scar using TSG-6 null and littermate control mice subjected to penetrating brain injuries. RESULTS Our findings show that mice lacking TSG-6 present a more severe inflammatory response after injury, which was correlated with an enlarged area of astrogliosis beyond the injury site. CONCLUSION Our data provides evidence that TSG-6 has an anti-inflammatory role within the glial scar.
Collapse
Affiliation(s)
- Kazadi Nadine Mutoji
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX, 77204-2020, USA
| | - Mingxia Sun
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX, 77204-2020, USA
| | - Amanda Nash
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX, 77204-2020, USA
- Department of Bioengineering, Rice University, Houston, TX, 77030, USA
| | - Sudan Puri
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX, 77204-2020, USA
| | | | - Vivien J Coulson-Thomas
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX, 77204-2020, USA.
| |
Collapse
|
31
|
Conroy AL, Opoka RO, Bangirana P, Namazzi R, Okullo AE, Georgieff MK, Cusick S, Idro R, Ssenkusu JM, John CC. Parenteral artemisinins are associated with reduced mortality and neurologic deficits and improved long-term behavioral outcomes in children with severe malaria. BMC Med 2021; 19:168. [PMID: 34315456 PMCID: PMC8317420 DOI: 10.1186/s12916-021-02033-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND In 2011, the World Health Organization recommended injectable artesunate as the first-line therapy for severe malaria (SM) due to its superiority in reducing mortality compared to quinine. There are limited data on long-term clinical and neurobehavioral outcomes after artemisinin use for treatment of SM. METHODS From 2008 to 2013, 502 Ugandan children with two common forms of SM, cerebral malaria and severe malarial anemia, were enrolled in a prospective observational study assessing long-term neurobehavioral and cognitive outcomes following SM. Children were evaluated a week after hospital discharge, and 6, 12, and 24 months of follow-up, and returned to hospital for any illness. In this study, we evaluated the impact of artemisinin derivatives on survival, post-discharge hospital readmission or death, and neurocognitive and behavioral outcomes over 2 years of follow-up. RESULTS 346 children received quinine and 156 received parenteral artemisinin therapy (artemether or artesunate). After adjustment for disease severity, artemisinin derivatives were associated with a 78% reduction in in-hospital mortality (adjusted odds ratio, 0.22; 95% CI, 0.07-0.67). Among cerebral malaria survivors, children treated with artemisinin derivatives also had reduced neurologic deficits at discharge (quinine, 41.7%; artemisinin derivatives, 23.7%, p=0.007). Over a 2-year follow-up, artemisinin derivatives as compared to quinine were associated with better adjusted scores (negative scores better) in internalizing behavior and executive function in children irrespective of the age at severe malaria episode. After adjusting for multiple comparisons, artemisinin derivatives were associated with better adjusted scores in behavior and executive function in children <6 years of age at severe malaria exposure following adjustment for child age, sex, socioeconomic status, enrichment in the home environment, and the incidence of hospitalizations over follow-up. Children receiving artesunate had the greatest reduction in mortality and benefit in behavioral outcomes and had reduced inflammation at 1-month follow-up compared to children treated with quinine. CONCLUSIONS Treatment of severe malaria with artemisinin derivatives, particularly artesunate, results in reduced in-hospital mortality and neurologic deficits in children of all ages, reduced inflammation following recovery, and better long-term behavioral outcomes. These findings suggest artesunate has long-term beneficial effects in children surviving severe malaria.
Collapse
Affiliation(s)
- Andrea L Conroy
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, R4 402C 1044 West Walnut St, Indianapolis, IN, 46202, USA.
| | - Robert O Opoka
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Paul Bangirana
- Department of Psychiatry, Makerere University College of Health Sciences, Kampala, Uganda
| | - Ruth Namazzi
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Allen E Okullo
- Clinical Epidemiology Unit, Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Sarah Cusick
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Richard Idro
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - John M Ssenkusu
- Department of Epidemiology and Biostatistics, Makerere University School of Public Health, Kampala, Uganda
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, R4 402C 1044 West Walnut St, Indianapolis, IN, 46202, USA.,Division of Global Pediatrics, University of Minnesota Medical School, Minneapolis, USA
| |
Collapse
|
32
|
Efferth T, Oesch F. The immunosuppressive activity of artemisinin-type drugs towards inflammatory and autoimmune diseases. Med Res Rev 2021; 41:3023-3061. [PMID: 34288018 DOI: 10.1002/med.21842] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 04/09/2021] [Accepted: 06/15/2021] [Indexed: 12/26/2022]
Abstract
The sesquiterpene lactone artemisinin from Artemisia annua L. is well established for malaria therapy, but its bioactivity spectrum is much broader. In this review, we give a comprehensive and timely overview of the literature regarding the immunosuppressive activity of artemisinin-type compounds toward inflammatory and autoimmune diseases. Numerous receptor-coupled signaling pathways are inhibited by artemisinins, including the receptors for interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), β3-integrin, or RANKL, toll-like receptors and growth factor receptors. Among the receptor-coupled signal transducers are extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), AKT serine/threonine kinase (AKT), mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK) kinase (MEK), phospholipase C γ1 (PLCγ), and others. All these receptors and signal transduction molecules are known to contribute to the inhibition of the transcription factor nuclear factor κ B (NF-κB). Artemisinins may inhibit NF-κB by silencing these upstream pathways and/or by direct binding to NF-κB. Numerous NF-κB-regulated downstream genes are downregulated by artemisinin and its derivatives, for example, cytokines, chemokines, and immune receptors, which regulate immune cell differentiation, apoptosis genes, proliferation-regulating genes, signal transducers, and genes involved in antioxidant stress response. In addition to the prominent role of NF-κB, other transcription factors are also inhibited by artemisinins (mammalian target of rapamycin [mTOR], activating protein 1 [AP1]/FBJ murine osteosarcoma viral oncogene homologue [FOS]/JUN oncogenic transcription factor [JUN]), hypoxia-induced factor 1α (HIF-1α), nuclear factor of activated T cells c1 (NF-ATC1), Signal transducers and activators of transcription (STAT), NF E2-related factor-2 (NRF-2), retinoic-acid-receptor-related orphan nuclear receptor γ (ROR-γt), and forkhead box P-3 (FOXP-3). Many in vivo experiments in disease-relevant animal models demonstrate therapeutic efficacy of artemisinin-type drugs against rheumatic diseases (rheumatoid arthritis, osteoarthritis, lupus erythematosus, arthrosis, and gout), lung diseases (asthma, acute lung injury, and pulmonary fibrosis), neurological diseases (autoimmune encephalitis, Alzheimer's disease, and myasthenia gravis), skin diseases (dermatitis, rosacea, and psoriasis), inflammatory bowel disease, and other inflammatory and autoimmune diseases. Randomized clinical trials should be conducted in the future to translate the plethora of preclinical results into clinical practice.
Collapse
Affiliation(s)
- Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Franz Oesch
- Oesch-Tox Toxicological Consulting and Expert Opinions, Ingelheim, Germany and Institute of Toxicology, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
33
|
Liu Z, Li H, Ma W, Pan S. Network pharmacology to investigate the pharmacological mechanisms of muscone in Xingnaojing injections for the treatment of severe traumatic brain injury. PeerJ 2021; 9:e11696. [PMID: 34322321 PMCID: PMC8300495 DOI: 10.7717/peerj.11696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 06/08/2021] [Indexed: 11/20/2022] Open
Abstract
Background Xingnaojing injections (XNJI) are widely used in Chinese medicine to mitigate brain injuries. An increasing number of studies have shown that XNJI may improve neurological function. However, XNJI's active ingredients and molecular mechanisms when treating traumatic brain injury (TBI) are unknown. Methods XNJI's chemical composition was acquisited from literature and the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. We used the "absorption, distribution, metabolism, and excretion" (ADME) parameter-based virtual algorithm to further identify the bioactive components. We then screened data and obtained target information regarding TBI and treatment compounds from public databases. Using a Venn diagram, we intersected the information to determine the hub targets. Cytoscape was used to construct and visualize the network. In accordance with the hub proteins, we then created a protein-protein interaction (PPI) network using STRING 11.0. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed according to the DAVID bioinformatics resource database (ver. 6.8). We validated the predicted compound's efficacy using the experimental rat chronic constriction injury (CCI) model. The neuronal apoptosis was located using the TUNEL assay and the related pathways' hub proteins were determined by PCR, Western blot, and immunohistochemical staining. Results We identified 173 targets and 35 potential compounds belonging to XNJI. STRING analysis was used to illustrate the protein-protein interactions and show that muscone played a fundamental role in XNJI's efficacy. Enrichment analysis revealed critical signaling pathways in these components' potential protein targets, including PI3K/AKT1, NF-kB, and p53. Moreover, the hub proteins CASP3, BCL2L1, and CASP8 were also involved in apoptosis and were associated with PI3K/AKT, NF-kB, and p53 signaling pathways. We showed that muscone and XNJI were similarly effective 168 h after CCI, demonstrating that the muscone in XNJI significantly attenuated neuronal apoptosis through the PI3K/Akt1/NF-kB/P53 pathway. Conclusion We verified the neuroprotective mechanism in muscone for the first time in TBI. Network pharmacology offers a new approach for identifying the potential active ingredients in XNJI.
Collapse
Affiliation(s)
- Zhuohang Liu
- The Fifth Clinical Medical College of Anhui Medical University, Beijing, China.,Department of Hyperbaric Oxygen, Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hang Li
- Department of Hyperbaric Oxygen, Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wenchao Ma
- The Fifth Clinical Medical College of Anhui Medical University, Beijing, China.,Department of Neurology, Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shuyi Pan
- The Fifth Clinical Medical College of Anhui Medical University, Beijing, China.,Department of Hyperbaric Oxygen, Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
34
|
Liu Z, Li H, Ma W, Pan S. Network pharmacology to investigate the pharmacological mechanisms of muscone in Xingnaojing injections for the treatment of severe traumatic brain injury. PeerJ 2021. [DOI: 10.7717/peerj.11696
expr 815766523 + 815110698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Background
Xingnaojing injections (XNJI) are widely used in Chinese medicine to mitigate brain injuries. An increasing number of studies have shown that XNJI may improve neurological function. However, XNJI’s active ingredients and molecular mechanisms when treating traumatic brain injury (TBI) are unknown.
Methods
XNJI’s chemical composition was acquisited from literature and the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. We used the “absorption, distribution, metabolism, and excretion” (ADME) parameter-based virtual algorithm to further identify the bioactive components. We then screened data and obtained target information regarding TBI and treatment compounds from public databases. Using a Venn diagram, we intersected the information to determine the hub targets. Cytoscape was used to construct and visualize the network. In accordance with the hub proteins, we then created a protein–protein interaction (PPI) network using STRING 11.0. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed according to the DAVID bioinformatics resource database (ver. 6.8). We validated the predicted compound’s efficacy using the experimental rat chronic constriction injury (CCI) model. The neuronal apoptosis was located using the TUNEL assay and the related pathways’ hub proteins were determined by PCR, Western blot, and immunohistochemical staining.
Results
We identified 173 targets and 35 potential compounds belonging to XNJI. STRING analysis was used to illustrate the protein–protein interactions and show that muscone played a fundamental role in XNJI’s efficacy. Enrichment analysis revealed critical signaling pathways in these components’ potential protein targets, including PI3K/AKT1, NF-kB, and p53. Moreover, the hub proteins CASP3, BCL2L1, and CASP8 were also involved in apoptosis and were associated with PI3K/AKT, NF-kB, and p53 signaling pathways. We showed that muscone and XNJI were similarly effective 168 h after CCI, demonstrating that the muscone in XNJI significantly attenuated neuronal apoptosis through the PI3K/Akt1/NF-kB/P53 pathway.
Conclusion
We verified the neuroprotective mechanism in muscone for the first time in TBI. Network pharmacology offers a new approach for identifying the potential active ingredients in XNJI.
Collapse
Affiliation(s)
- Zhuohang Liu
- The Fifth Clinical Medical College of Anhui Medical University, Beijing, China
- Department of Hyperbaric Oxygen, Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hang Li
- Department of Hyperbaric Oxygen, Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wenchao Ma
- The Fifth Clinical Medical College of Anhui Medical University, Beijing, China
- Department of Neurology, Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shuyi Pan
- The Fifth Clinical Medical College of Anhui Medical University, Beijing, China
- Department of Hyperbaric Oxygen, Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
35
|
D’Amico R, Trovato Salinaro A, Fusco R, Cordaro M, Impellizzeri D, Scuto M, Ontario ML, Lo Dico G, Cuzzocrea S, Di Paola R, Siracusa R, Calabrese V. Hericium erinaceus and Coriolus versicolor Modulate Molecular and Biochemical Changes after Traumatic Brain Injury. Antioxidants (Basel) 2021; 10:898. [PMID: 34199629 PMCID: PMC8228340 DOI: 10.3390/antiox10060898] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/29/2021] [Indexed: 01/30/2023] Open
Abstract
Traumatic brain injury (TBI) is a major health and socioeconomic problem affecting the world. This condition results from the application of external physical force to the brain which leads to transient or permanent structural and functional impairments. TBI has been shown to be a risk factor for neurodegeneration which can lead to Parkinson's disease (PD) for example. In this study, we wanted to explore the development of PD-related pathology in the context of an experimental model of TBI and the potential ability of Coriolus versicolor and Hericium erinaceus to prevent neurodegenerative processes. Traumatic brain injury was induced in mice by controlled cortical impact. Behavioral tests were performed at various times: the animals were sacrificed 30 days after the impact and the brain was processed for Western blot and immunohistochemical analyzes. After the head injury, a significant decrease in the expression of tyrosine hydroxylase and the dopamine transporter in the substantia nigra was observed, as well as significant behavioral alterations that were instead restored following daily oral treatment with Hericium erinaceus and Coriolus versicolor. Furthermore, a strong increase in neuroinflammation and oxidative stress emerged in the vehicle groups. Treatment with Hericium erinaceus and Coriolus versicolor was able to prevent both the neuroinflammatory and oxidative processes typical of PD. This study suggests that PD-related molecular events may be triggered on TBI and that nutritional fungi such as Hericium erinaceus and Coriolus versicolor may be important in redox stress response mechanisms and neuroprotection, preventing the progression of neurodegenerative diseases such as PD.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (D.I.); (R.S.)
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (A.T.S.); (M.S.); (M.L.O.); (G.L.D.); (V.C.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (D.I.); (R.S.)
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (D.I.); (R.S.)
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (A.T.S.); (M.S.); (M.L.O.); (G.L.D.); (V.C.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (A.T.S.); (M.S.); (M.L.O.); (G.L.D.); (V.C.)
| | - Gianluigi Lo Dico
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (A.T.S.); (M.S.); (M.L.O.); (G.L.D.); (V.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (D.I.); (R.S.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (D.I.); (R.S.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (D.I.); (R.S.)
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (A.T.S.); (M.S.); (M.L.O.); (G.L.D.); (V.C.)
| |
Collapse
|
36
|
Genovese T, Siracusa R, D’Amico R, Cordaro M, Peritore AF, Gugliandolo E, Crupi R, Trovato Salinaro A, Raffone E, Impellizzeri D, Cuzzocrea S, Fusco R, Di Paola R. Regulation of Inflammatory and Proliferative Pathways by Fotemustine and Dexamethasone in Endometriosis. Int J Mol Sci 2021; 22:ijms22115998. [PMID: 34206129 PMCID: PMC8199515 DOI: 10.3390/ijms22115998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 05/30/2021] [Indexed: 12/16/2022] Open
Abstract
Endometriosis is a common disease. Its pathogenesis still remains uncertain, but it is clear that cell proliferation, apoptosis and chronic inflammation play an important role in its development. This paper aimed to investigate the anti-proliferative and anti-inflammatory effects of a combined therapy with fotemustine and dexamethasone. Endometriosis was induced by intraperitoneal injections of uterine fragments from donor animals to recipient animals. Next, the pathology was allowed to develop for 7 days. On the seventh day, fotemustine was administered once and dexamethasone was administered daily for the next 7 days. On Day 14, the animals were sacrificed, and peritoneal fluids and lesions were explanted. In order to evaluate the gastrointestinal side effects of the drugs, stomachs were harvested as well. The combined therapy of fotemustine and dexamethasone reduced the proinflammatory mediator levels in the peritoneal fluid and reduced the lesions’ area and diameter. In particular, fotemustine and dexamethasone administration reduced the heterogeneous development of endometrial stroma and glands (histological analysis of lesions) and hyperproliferation of endometriotic cells (immunohistochemical analysis of Ki67 and Western blot analysis of PCNA) through the mitogen-activated protein kinase (MAPK) signaling pathway. Combined fotemustine and dexamethasone therapy showed anti-inflammatory effects by inducing the synthesis of anti-inflammatory mediators at the transcriptional and post-transcriptional levels (Western blot analysis of NFκB, COX-2 and PGE2 expression). Fotemustine and dexamethasone administration had anti-apoptotic activity, restoring the impaired mechanism (TUNEL assay and Western blot analysis of Bax and Bcl-2). Moreover, no gastric disfunction was detected (histological analysis of stomachs). Thus, our data showed that the combined therapy of fotemustine and dexamethasone reduced endometriosis-induced inflammation, hyperproliferation and apoptosis resistance.
Collapse
Affiliation(s)
- Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (T.G.); (R.S.); (R.D.); (A.F.P.); (R.F.); (R.D.P.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (T.G.); (R.S.); (R.D.); (A.F.P.); (R.F.); (R.D.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (T.G.); (R.S.); (R.D.); (A.F.P.); (R.F.); (R.D.P.)
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy;
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (T.G.); (R.S.); (R.D.); (A.F.P.); (R.F.); (R.D.P.)
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (E.G.); (R.C.)
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (E.G.); (R.C.)
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy;
| | - Emanuela Raffone
- Multi-Specialist Institute Rizzo, Torregrotta, 98043 Messina, Italy;
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (T.G.); (R.S.); (R.D.); (A.F.P.); (R.F.); (R.D.P.)
- Correspondence: (D.I.); (S.C.); Tel.: +39-090-676-5208 (D.I. & S.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (T.G.); (R.S.); (R.D.); (A.F.P.); (R.F.); (R.D.P.)
- Correspondence: (D.I.); (S.C.); Tel.: +39-090-676-5208 (D.I. & S.C.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (T.G.); (R.S.); (R.D.); (A.F.P.); (R.F.); (R.D.P.)
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; (T.G.); (R.S.); (R.D.); (A.F.P.); (R.F.); (R.D.P.)
| |
Collapse
|
37
|
Hidrox ® Roles in Neuroprotection: Biochemical Links between Traumatic Brain Injury and Alzheimer's Disease. Antioxidants (Basel) 2021; 10:antiox10050818. [PMID: 34065584 PMCID: PMC8161307 DOI: 10.3390/antiox10050818] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injuries (TBI) are a serious public-health problem. Furthermore, subsequent TBI events can compromise TBI patients’ quality of life. TBI is linked to a number of long- and short-term complications such as cerebral atrophy and risk of developing dementia and Alzheimer’s Disease (AD). Following direct TBI damage, oxidative stress and the inflammatory response lead to tissue injury-associated neurodegenerative processes that are characteristic of TBI-induced secondary damage. Hidrox® showed positive effects in preclinical models of toxic oxidative stress and neuroinflammation; thus, the aim of this study was to evaluate the effect of Hidrox® administration on TBI-induced secondary injury and on the propagation of the AD-like neuropathology. Hidrox® treatment reduced histological damage after controlled cortical impact. Form a molecular point of view, hydroxytyrosol is able to preserve the cellular redox balance and protein homeostasis by activating the Nrf2 pathway and increasing the expression of phase II detoxifying enzymes such as HO-1, SOD, Catalase, and GSH, thus counteracting the neurodegenerative damage. Additionally, Hidrox® showed anti-inflammatory effects by reducing the activation of the NFkB pathway and related cytokines overexpression. From a behavioral point of view, Hidrox® treatment ameliorated the cognitive dysfunction and memory impairment induced by TBI. Additionally, Hidrox® was associated with a significant increased number of hippocampal neurons in the CA3 region, which were reduced post-TBI. In particular, Hidrox® decreased AD-like phenotypic markers such as ß-amyloid accumulation and APP and p-Tau overexpression. These findings indicate that Hidrox® could be a valuable treatment for TBI-induced secondary injury and AD-like pathological features.
Collapse
|
38
|
Artesunate restores the levels of inhibitory synapse proteins and reduces amyloid-β and C-terminal fragments (CTFs) of the amyloid precursor protein in an AD-mouse model. Mol Cell Neurosci 2021; 113:103624. [PMID: 33933588 DOI: 10.1016/j.mcn.2021.103624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is the most frequent form of dementia, characterized histopathologically by the formation of amyloid plaques and neurofibrillary tangles in the brain. Amyloid β-peptide (Aβ) is a major component of amyloid plaques and is released together with carboxy-terminal fragments (CTFs) from the amyloid precursor protein (APP) through proteolytic cleavage, thought to contribute to synapse dysfunction and loss along the progression of AD. Artemisinins, primarily antimalarial drugs, reduce neuroinflammation and improve cognitive capabilities in mouse models of AD. Furthermore, artemisinins were demonstrated to target gephyrin, the main scaffold protein of inhibitory synapses and modulate GABAergic neurotransmission in vitro. Previously, we reported a robust decrease of inhibitory synapse proteins in the hippocampus of 12-month-old double transgenic APP-PS1 mice which overexpress in addition to the Swedish mutated form of the human APP a mutated presenilin 1 (PS1) gene and are characterized by a high plaque load at this age. Here, we provide in vivo evidence that treating these mice with artemisinin or its semisynthetic derivative artesunate in two different doses (10 mg/kg and 100 mg/kg), these compounds affect differently inhibitory synapse components, amyloid plaque load and APP-processing. Immunofluorescence microscopy demonstrated the rescue of gephyrin and γ2-GABAA-receptor protein levels in the brain of treated mice with both, artemisinin and artesunate, most efficiently with a low dose of artesunate. Remarkably, artemisinin reduced only in low dose the amyloid plaque load correlating with lower levels of mutated human APP (hAPPswe) whereas artesunate treatment in both doses resulted in significantly lower plaque numbers. Correspondingly, the level of APP-cleavage products, specifically the amount of CTFs in hippocampus homogenates was reduced significantly only by artesunate, in line with the findings in hAPPswe expressing cultured hippocampal neurons evidencing a concentration-dependent inhibition of CTF-release by artesunate already in the nanomolar range. Thus, our data support artemisinins as neuroprotective multi-target drugs, exhibiting a potent anti-amyloidogenic activity and reinforcing key proteins of inhibitory synapses.
Collapse
|
39
|
The Role of BDNF in Experimental and Clinical Traumatic Brain Injury. Int J Mol Sci 2021; 22:ijms22073582. [PMID: 33808272 PMCID: PMC8037220 DOI: 10.3390/ijms22073582] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury is one of the leading causes of mortality and morbidity in the world with no current pharmacological treatment. The role of BDNF in neural repair and regeneration is well established and has also been the focus of TBI research. Here, we review experimental animal models assessing BDNF expression following injury as well as clinical studies in humans including the role of BDNF polymorphism in TBI. There is a large heterogeneity in experimental setups and hence the results with different regional and temporal changes in BDNF expression. Several studies have also assessed different interventions to affect the BDNF expression following injury. Clinical studies highlight the importance of BDNF polymorphism in the outcome and indicate a protective role of BDNF polymorphism following injury. Considering the possibility of affecting the BDNF pathway with available substances, we discuss future studies using transgenic mice as well as iPSC in order to understand the underlying mechanism of BDNF polymorphism in TBI and develop a possible pharmacological treatment.
Collapse
|
40
|
Peritore AF, D’Amico R, Cordaro M, Siracusa R, Fusco R, Gugliandolo E, Genovese T, Crupi R, Di Paola R, Cuzzocrea S, Impellizzeri D. PEA/Polydatin: Anti-Inflammatory and Antioxidant Approach to Counteract DNBS-Induced Colitis. Antioxidants (Basel) 2021; 10:464. [PMID: 33809584 PMCID: PMC8000209 DOI: 10.3390/antiox10030464] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Palmitoylethanolamide (PEA) has well-known anti-inflammatory effects. However, PEA does not possess an antioxidant ability. A comicronized formulation of ultramicronized PEA (um-PEA) and polydatin (Pol) PEA/Pol, a biological precursor of resveratrol with antioxidant activity, could have protective effects on oxidative stress produced by inflammatory processes. We evaluated the effects of a comicronized PEA/Pol 10 mg/kg (9 mg of um-PEA+1 mg of polydatin) in a model of Dinitrobenzene sulfonic acid (DNBS)-induced colitis. Ulcerative colitis was induced in mice by intrarectally injection of DNBS (4 mg in 100 µL of 50% ethanol per mouse). Macroscopic and histologic colon alterations and marked clinical signs were observed four days after DNBS and elevated cytokine production. The myeloperoxidase (MPO) activity assessed for neutrophil infiltration was associated with ICAM-1 and P-selectin adhesion controls in colons. Oxidative stress was detected with increased poly ADP-ribose polymerase (PARP) and nitrotyrosine positive staining and malondialdehyde (MDA) levels in inflamed colons. Macroscopic and histologic alterations minimized by oral PEA/Pol, as well as neutrophil infiltration, inflammatory cytokine release, MDA, nitrotyrosine, PARP and ICAM-1, and P-selectin expressions. The mechanism of action of PEA/Pol could be related to the sirtuin 1/nuclear factor erythroid 2-related factor 2 (SIRT-1/Nrf2) pathway and nuclear factor (NF)-κB. PEA/Pol administration inhibited NF-κB and increased SIRT-1/Nrf2 expressions. Our results show that PEA/Pol is capable of decreasing inflammatory bowel disease (IBD) DNBS-induced in mice.
Collapse
Affiliation(s)
- Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (A.F.P.); (R.D.); (R.S.); (R.F.); (T.G.); (D.I.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (A.F.P.); (R.D.); (R.S.); (R.F.); (T.G.); (D.I.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy;
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (A.F.P.); (R.D.); (R.S.); (R.F.); (T.G.); (D.I.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (A.F.P.); (R.D.); (R.S.); (R.F.); (T.G.); (D.I.)
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (A.F.P.); (R.D.); (R.S.); (R.F.); (T.G.); (D.I.)
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98166 Messina, Italy; (E.G.); (R.C.)
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (A.F.P.); (R.D.); (R.S.); (R.F.); (T.G.); (D.I.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (A.F.P.); (R.D.); (R.S.); (R.F.); (T.G.); (D.I.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Science, University of Messina, 98166 Messina, Italy; (A.F.P.); (R.D.); (R.S.); (R.F.); (T.G.); (D.I.)
| |
Collapse
|
41
|
Chen Y, Wu J, Zhu J, Yang G, Tian J, Zhao Y, Wang Y. Artesunate Provides Neuroprotection against Cerebral Ischemia-Reperfusion Injury via the TLR-4/NF-κB Pathway in Rats. Biol Pharm Bull 2021; 44:350-356. [PMID: 33390425 DOI: 10.1248/bpb.b20-00604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inflammation has an important role in ischemia-reperfusion (I/R) injury. Artesunate (ART) has anti-microbial and anti-inflammatory pharmacological activities, and it is used for various types of serious malaria, including cerebral malaria. ART maintains a high concentration in the brain but little is known about the neuroprotective effect of ART against brain I/R injury. We studied the neuroprotection of ART against brain I/R injury and its underlying mechanism. In this study, rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h. After 24 h of reperfusion, neurological deficits, cerebrum water content, infarct volume, hematoxylin-eosin (H&E)-staining, myeloperoxidase (MPO) activity, and proinflammatory cytokine levels were measured. Administration of 20, 40, 80, and 160 mg/kg ART intraperitoneally (i.p.) 10 min after MCAO significantly decreased brain water content and improved neurological deficits in a dose-dependent manner. An 80 mg/kg dosage was optimal. ART significantly reduced infarct volume, suppressed MPO activity and diminished the expressions of toll-like receptor (TLR)-4, MyD88, nuclear factor-κB (NF-κB), tumor necrosis factor (TNF)-α, and interleukin (IL)-6 in the area of the ischemic cortex. The neuroprotective action of ART against focal cerebral I/R injury might be due to the attenuation of inflammation through the TLR-4/NF-κB pathway.
Collapse
Affiliation(s)
- Yanlin Chen
- Institute for Cancer Research, School of Basic Medical Science, Health Science Center of Xi'an Jiaotong University
- Department of Pathology, Jinshan Hospital, The First Affiliated Hospital of Chongqing Medical University
| | - Jingxian Wu
- Department of Pathology, Chongqing Medical University
| | - Jin Zhu
- Department of Pathology, Chongqing Medical University
| | - Guoan Yang
- Institute for Cancer Research, School of Basic Medical Science, Health Science Center of Xi'an Jiaotong University
| | - Junying Tian
- Department of Foreign Language, Chongqing Medical University
| | - Yong Zhao
- Department of Pathology, Chongqing Medical University
| | - Yili Wang
- Institute for Cancer Research, School of Basic Medical Science, Health Science Center of Xi'an Jiaotong University
| |
Collapse
|
42
|
Wang J, Hu J, Chen X, Lei X, Feng H, Wan F, Tan L. Traditional Chinese Medicine Monomers: Novel Strategy for Endogenous Neural Stem Cells Activation After Stroke. Front Cell Neurosci 2021; 15:628115. [PMID: 33716673 PMCID: PMC7952516 DOI: 10.3389/fncel.2021.628115] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/19/2021] [Indexed: 01/01/2023] Open
Abstract
Stem cell therapy, which has become a potential regenerative medical treatment and a promising approach for treating brain injuries induced by different types of cerebrovascular disease, has various application methods. Activation of endogenous neural stem cells (NSCs) can enable infarcted neuron replacement and promote neural networks’ regeneration without the technical and ethical issues associated with the transplantation of exogenous stem cells. Thus, NSC activation can be a feasible strategy to treat central nervous system (CNS) injury. The potential molecular mechanisms of drug therapy for the activation of endogenous NSCs have gradually been revealed by researchers. Traditional Chinese medicine monomers (TCMs) are active components extracted from Chinese herbs, and some of them have demonstrated the potential to activate proliferation and neurogenesis of NSCs in CNS diseases. Ginsenoside Rg1, astragaloside IV (AST), icariin (ICA), salvianolic acid B (Sal B), resveratrol (RES), curcumin, artesunate (ART), and ginkgolide B (GB) have positive effects on NSCs via different signaling pathways and molecules, such as the Wingless/integrated/β-catenin (Wnt/β-catenin) signaling pathway, the sonic hedgehog (Shh) signaling pathway, brain-derived neurotrophic factor (BDNF), nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase 1 (HO-1). This article may provide further motivation for researchers to take advantage of TCMs in studies on CNS injury and stem cell therapy.
Collapse
Affiliation(s)
- Ju Wang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Xuezhu Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Xuejiao Lei
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Feng Wan
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Liang Tan
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| |
Collapse
|
43
|
NLRP3 Inflammasome: A New Pharmacological Target for Reducing Testicular Damage Associated with Varicocele. Int J Mol Sci 2021; 22:ijms22031319. [PMID: 33525681 PMCID: PMC7865407 DOI: 10.3390/ijms22031319] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Many bioactive natural compounds are being increasingly used for therapeutics and nutraceutical applications to counteract male infertility, particularly varicocele. The roles of selenium and Polydeoxyribonucleotide (PDRN) were investigated in an experimental model of varicocele, with particular regard to the role of NLRP3 inflammasome. Male rats underwent sham operation and were daily administered with vehicle, seleno-L-methionine (Se), PDRN, and with the association Se-PDRN. Another group of rats were operated for varicocele. After twenty-eight days, sham and varicocele rats were sacrificed and both testes were weighted and analyzed. All the other rats were challenged for one month with the same compounds. In varicocele animals, lower testosterone levels, testes weight, NLRP3 inflammasome, IL-1β and caspase-1 increased gene expression were demonstrated. TUNEL assay showed an increased number of apoptotic cells. Structural and ultrastructural damage to testes was also shown. PDRN alone significantly improved all considered parameters more than Se. The Se-PDRN association significantly improved all morphological parameters, significantly increased testosterone levels, and reduced NLRP3 inflammasome, caspase-1 and IL-1β expression and TUNEL-positive cell numbers. Our results suggest that NLRP3 inflammasome can be considered an interesting target in varicocele and that Se-PDRN may be a new medical approach in support to surgery.
Collapse
|
44
|
Yin X, Liu Y, Qin J, Wu Y, Huang J, Zhao Q, Dang T, Tian Y, Yu P, Huang X. Artesunate Suppresses the Proliferation and Development of Estrogen Receptor-α-Positive Endometrial Cancer in HAND2-Dependent Pathway. Front Cell Dev Biol 2021; 8:606969. [PMID: 33511117 PMCID: PMC7835542 DOI: 10.3389/fcell.2020.606969] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
Endometrial cancer (EC) is a common leading cause of cancer-related death in women, which is associated with the increased level of estrogen in the body. Artesunate (ART), an active compound derived from Artemisia annua L., exerted antitumor properties in several cancer types. However, the role of artesunate and the molecular basis on EC remains unclear. Here, we aimed to explore the effects and mechanisms of artesunate. Our results identified that estrogen receptor-α (ER-α) was a key factor for the type I EC (ER-α-positive), which might suppress the downstream LKB1/AMPK/mTOR pathway. Besides, we found ART significantly inhibited tumor proliferation in a dose-dependent manner. Mechanistic studies identified that ART led to tumor cell apoptosis and cell cycle arrest by downregulating the ER-α expression and activating the LKB1/AMPK/mTOR pathway. In addition, we found ART could increase the expression of heart and neural crest derivatives expressed 2 (HAND2) in the ER-α-positive EC cells, which could interact with ER-α. Through the gain-and loss-function experiments, we showed that over expression of HAND2 repressed the proliferation and migration of ER-α-positive EC cells via inhibition of ER-α expression. HAND2 knockdown increased ER-α expression and alleviated the antitumor effect of ART in vitro and in vivo. Overall, our study first showed that ART could be an effective antitumor agent through modulating ER-α-mediated LKB1/AMPK/mTOR pathway in the HAND2 dependent manner. Our findings provide an effective therapeutic agent for ER-α-positive EC treatment.
Collapse
Affiliation(s)
- Xianghua Yin
- Department of Obstetrics and Gynecology, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Yan Liu
- Northern Jiangsu People's Hospital, Yangzhou, China
| | - Jiarui Qin
- Department of Urology, Medical College, Yangzhou University, Yangzhou, China
| | - Yixuan Wu
- Department of Obstetrics and Gynecology, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Jiayan Huang
- Department of Gynaecology and Obstetrics, Subei People's Hospital of Jiangsu Province, Yangzhou, China
| | - Qi Zhao
- Department of Gynaecology and Obstetrics, Subei People's Hospital of Jiangsu Province, Yangzhou, China
| | - Tingting Dang
- Department of Urology, Medical College, Yangzhou University, Yangzhou, China
| | - Yacui Tian
- Department of Gynaecology and Obstetrics, Subei People's Hospital of Jiangsu Province, Yangzhou, China
| | - Ping Yu
- Department of Gynaecology and Obstetrics, Subei People's Hospital of Jiangsu Province, Yangzhou, China
| | - Xiyue Huang
- Department of Gynaecology and Obstetrics, Subei People's Hospital of Jiangsu Province, Yangzhou, China
| |
Collapse
|
45
|
Ismael S, Ahmed HA, Adris T, Parveen K, Thakor P, Ishrat T. The NLRP3 inflammasome: a potential therapeutic target for traumatic brain injury. Neural Regen Res 2021; 16:49-57. [PMID: 32788447 PMCID: PMC7818859 DOI: 10.4103/1673-5374.286951] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although the precise mechanisms contributing to secondary brain injury following traumatic brain injury are complex and obscure, a number of studies have demonstrated that inflammatory responses are an obvious and early feature in the pathogenesis of traumatic brain injury. Inflammasomes are multiprotein complexes that prompt the stimulation of caspase-1 and subsequently induce the maturation and secretion of proinflammatory cytokines, such as interleukin-1β and interleukin-18. These cytokines play a pivotal role in facilitating innate immune responses and inflammation. Among various inflammasome complexes, the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is the best characterized, a crucial role for NLRP3 has been demonstrated in various brain diseases, including traumatic brain injury. Several recent studies have revealed the contribution of NLRP3 inflammasome in identifying cellular damage and stimulating inflammatory responses to aseptic tissue injury after traumatic brain injury. Even more important, blocking or inhibiting the activation of the NLRP3 inflammasome may have substantial potential to salvage tissue damage during traumatic brain injury. In this review, we summarize recently described mechanisms that are involved in the activation and regulation of the NLRP3 inflammasome. Moreover, we review the recent investigations on the contribution of the NLRP3 inflammasome in the pathophysiology of TBI, and current advances and challenges in potential NLRP3-targeted therapies. A significant contribution of NLRP3 inflammasome activation to traumatic brain injury implies that therapeutic approaches focused on targeting specific inflammasome components could significantly improve the traumatic brain injury outcomes.
Collapse
Affiliation(s)
- Saifudeen Ismael
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Heba A Ahmed
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tusita Adris
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Parth Thakor
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tauheed Ishrat
- Department of Anatomy and Neurobiology; Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
46
|
|
47
|
Zhou Z, Hou J, Li Q. Artesunate attenuates traumatic brain injury-induced impairments in rats. Transl Neurosci 2020; 11:309-318. [PMID: 33335770 PMCID: PMC7712024 DOI: 10.1515/tnsci-2020-0136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/26/2022] Open
Abstract
Background Blood–brain barrier (BBB) dysfunction and neuroinflammation induced by traumatic brain injuries (TBIs) cause a succession of secondary brain damage events and finally lead to a massive and progressive cerebral neuronal destruction. Artesunate, a semisynthetic artemisinin derivative, is a potential candidate for the management of cerebral damage induced by TBI due to its protective function to BBB and cerebral neurons. Methods To demonstrate the effect of artesunate to TBI-induced BBB dysfunction and neural damage, TBI rat model was constructed by cortical impact injury. Behavioral experiments were used to estimate the impact of the combined treatment on rats. Western blotting was performed to demonstrate the protein levels in the brain tissues of rats. Quantitative real-time PCRs were utilized to investigate the alteration in the expression of various RNA levels. The chemokine levels were estimated by ELISA. Results Artesunate treatment attenuated the impact caused by TBI on rat brain and improved the long-term neurological recover. Artesunate treatment protected the integrity of BBB and inhibited neuroinflammation. Artesunate treatment promoted the phosphorylation of Akt and inhibited the phosphorylation of glycogen synthase kinase (GSK)-3β in TBI rat model. Conclusion Artesunate protected rats from TBI-induced impairments of BBB and improved longer-term neurological outcomes.
Collapse
Affiliation(s)
- Zhike Zhou
- Department of Dermatology, Qingdao Municipal Hospital, No. 21 Anhui Road, Qingdao 266001, Shandong, China
| | - Jun Hou
- Department of Dermatology, Qingdao Municipal Hospital, No. 21 Anhui Road, Qingdao 266001, Shandong, China
| | - Qinghua Li
- Department of Dermatology, Qingdao Municipal Hospital, No. 21 Anhui Road, Qingdao 266001, Shandong, China
| |
Collapse
|
48
|
Uzun T, Toptaş O, Aydın Türkoğlu Ş. Could Artesunate Have a Positive Effect on the Neurological Complications Related to Infection When It Is Used in the Treatment of COVID-19? ACS Chem Neurosci 2020; 11:4001-4006. [PMID: 33269910 DOI: 10.1021/acschemneuro.0c00601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Artesunate is a safe noncytotoxic drug with low side effects which is used in the treatment of chloroquine-resistant malaria. In addition to being an antimalarial drug, artesunate also has immunomodulatory, anticarcinogenic, and antiviral activity. There are in vivo and in vitro studies reporting that artesunate may have a positive effect on the treatment of COVID-19. Artesunate may be effective based on its effect on the anti-inflammatory activity, chloroquine-like endocytosis inhibition mechanism, and nuclear factor kappa B (NF-κB) signal pathway. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may cause neurological complications in addition to targeting the respiratory system. In this study, we have discussed the possible neuroprotective action mechanisms of artesunate. We think that systemic and intranasal topical artesunate administration may have a positive effect on neurological complications resulting from COVID-19.
Collapse
Affiliation(s)
- Tuğçenur Uzun
- Department of Oral and Maxillofacial Surgery, Trabzon Oral and Dental Health Hospital, Trabzon 61000, Turkey
| | - Orçun Toptaş
- Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, Abant Izzet Baysal University, Bolu 14000, Turkey
| | | |
Collapse
|
49
|
Alqahtani F, Assiri MA, Mohany M, Imran I, Javaid S, Rasool MF, Shakeel W, Sivandzade F, Alanazi AZ, Al-Rejaie SS, Alshammari MA, Alasmari F, Alanazi MM, Alamri FF. Coadministration of Ketamine and Perampanel Improves Behavioral Function and Reduces Inflammation in Acute Traumatic Brain Injury Mouse Model. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3193725. [PMID: 33381547 PMCID: PMC7749776 DOI: 10.1155/2020/3193725] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) is among the most debilitating neurological disorders with inadequate therapeutic options. It affects all age groups globally leading to post-TBI behavioral challenges and life-long disabilities requiring interventions for these health issues. In the current study, C57BL/6J mice were induced with TBI through the weight-drop method, and outcomes of acutely administered ketamine alone and in combination with perampanel were observed. The impact of test drugs was evaluated for post-TBI behavioral changes by employing the open field test (OFT), Y-maze test, and novel object recognition test (NOR). After that, isolated plasma and brain homogenates were analyzed for inflammatory modulators, i.e., NF-κB and iNOS, through ELISA. Moreover, metabolomic studies were carried out to further authenticate the TBI rescuing potential of drugs. The animals treated with ketamine-perampanel combination demonstrated improved exploratory behavior in OFT (P < 0.05), while ketamine alone as well as in combination yielded anxiolytic effect (P < 0.05-0.001) in posttraumatic mice. Similarly, the % spontaneous alternation and % discrimination index were increased after the administration of ketamine alone (P < 0.05) and ketamine-perampanel combination (P < 0.01-0.001) in the Y-maze test and NOR test, respectively. ELISA demonstrated the reduced central and peripheral expression of NF-κB (P < 0.05) and iNOS (P < 0.01-0.0001) after ketamine-perampanel polypharmacy. The TBI-imparted alteration in plasma metabolites was restored by drug combination as evidenced by metabolomic studies. The outcomes were fruitful with ketamine, but the combination therapy proved more significant in improving all studied parameters. The benefits of this new investigated polypharmacy might be due to their antiglutamatergic, antioxidant, and neuroprotective capacity.
Collapse
Affiliation(s)
- Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed A. Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Imran Imran
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Sana Javaid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
- Department of Pharmacy, The Women University, Multan 60000, Pakistan
| | - Muhammad Fawad Rasool
- Department of Pharmacy Practice, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Waleed Shakeel
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Farzane Sivandzade
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Ahmed Z. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Musaad A. Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Mufadhe Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Faisal F. Alamri
- College of Sciences and Health Profession, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| |
Collapse
|
50
|
Jiang YY, Shui JC, Zhang BX, Chin JW, Yue RS. The Potential Roles of Artemisinin and Its Derivatives in the Treatment of Type 2 Diabetes Mellitus. Front Pharmacol 2020; 11:585487. [PMID: 33381036 PMCID: PMC7768903 DOI: 10.3389/fphar.2020.585487] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic disease that has become a global public health problem. Studies on T2DM prevention and treatment mostly focus on discovering therapeutic drugs. Artemisinin and its derivatives were originally used as antimalarial treatments. In recent years, the roles of artemisinins in T2DM have attracted much attention. Artemisinin treatments not only attenuate insulin resistance and restore islet ß-cell function in T2DM but also have potential therapeutic effects on diabetic complications, including diabetic kidney disease, cognitive impairment, diabetic retinopathy, and diabetic cardiovascular disease. Many in vitro and in vivo experiments have confirmed the therapeutic utility of artemisinin and its derivatives on T2DM, but no article has systematically demonstrated the specific role artemisinin plays in the treatment of T2DM. This review summarizes the potential therapeutic effects and mechanism of artemisinin and its derivatives in T2DM and associated complications, providing a reference for subsequent related research.
Collapse
Affiliation(s)
- Ya-Yi Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Cheng Shui
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo-Xun Zhang
- Department of Endocrinology, Guang'anmen Hospital of China, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia-Wei Chin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ren-Song Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|