1
|
Güntan İ, Ghestem A, Nazaruk K, Nizińska K, Olszewski M, Nowicka D, Bernard C, Łukasiuk K. Diurnal dynamics of the Zbtb14 protein in the ventral hippocampus are disrupted in epileptic mice. Neuroscience 2025:S0306-4522(25)00049-1. [PMID: 39870297 DOI: 10.1016/j.neuroscience.2025.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/17/2025] [Indexed: 01/29/2025]
Abstract
Our previous in silico data indicated an overrepresentation of the ZF5 motif in the promoters of genes in which circadian oscillations are altered in the ventral hippocampus in the pilocarpine model of temporal lobe epilepsy in mice. In this study, we test the hypothesis that the Zbtb14 protein oscillates in the hippocampus in a diurnal manner and that this oscillation is disrupted by epilepsy. We found that Zbtb14 immunostaining is present in the cytoplasm and cell nuclei. Western blot data indicate that the cytoplasmic and nuclear levels of Zbtb14 protein oscillate, but the phase is shifted. The densities of the Zbtb14-immunopositive cells express diurnal dynamics in the ventral hilus and CA3 but not in the dorsal hilus, CA3, or the somatosensory cortex. In the pilocarpine model of epilepsy, an increase in the level of Zbtb14 protein was found at 11 PM but not at 3 PM compared to controls. Finally, in silico analysis revealed the presence of the ZF5 motif in the promoters of 21 out of 24 genes down-regulated by epileptiform discharges in vitro, many of which are involved in neuronal plasticity. Our data suggest that Zbtb14 may be involved in the diurnal dynamic of seizure regulation or brain response to seizure rhythmicity.
Collapse
Affiliation(s)
- İlke Güntan
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland
| | - Antoine Ghestem
- Inserm, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, France
| | - Kinga Nazaruk
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland
| | - Karolina Nizińska
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland
| | - Maciej Olszewski
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland
| | - Dorota Nowicka
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland
| | - Christophe Bernard
- Inserm, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, France
| | - Katarzyna Łukasiuk
- Laboratory of Epileptogenesis, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur St, 02-093 Warsaw, Poland.
| |
Collapse
|
2
|
Liang X, Liang X, Zhao Y, Ding Y, Zhu X, Zhou J, Qiu J, Shen X, Xie W. Dysregulation of the Suprachiasmatic Nucleus Disturbs the Circadian Rhythm and Aggravates Epileptic Seizures by Inducing Hippocampal GABAergic Dysfunction in C57BL/6 Mice. J Pineal Res 2024; 76:e12993. [PMID: 39054842 DOI: 10.1111/jpi.12993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
The interplay between circadian rhythms and epilepsy has gained increasing attention. The suprachiasmatic nucleus (SCN), which acts as the master circadian pacemaker, regulates physiological and behavioral rhythms through its complex neural networks. However, the exact role of the SCN and its Bmal1 gene in the development of epilepsy remains unclear. In this study, we utilized a lithium-pilocarpine model to induce epilepsy in mice and simulated circadian disturbances by creating lesions in the SCN and specifically knocking out the Bmal1 gene in the SCN neurons. We observed that the pilocarpine-induced epileptic mice experienced increased daytime seizure frequency, irregular oscillations in core body temperature, and circadian gene alterations in both the SCN and the hippocampus. Additionally, there was enhanced activation of GABAergic projections from the SCN to the hippocampus. Notably, SCN lesions intensified seizure activity, concomitant with hippocampal neuronal damage and GABAergic signaling impairment. Further analyses using the Gene Expression Omnibus database and gene set enrichment analysis indicated reduced Bmal1 expression in patients with medial temporal lobe epilepsy, potentially affecting GABA receptor pathways. Targeted deletion of Bmal1 in SCN neurons exacerbated seizures and pathology in epilepsy, as well as diminished hippocampal GABAergic efficacy. These results underscore the crucial role of the SCN in modulating circadian rhythms and GABAergic function in the hippocampus, aggravating the severity of seizures. This study provides significant insights into how circadian rhythm disturbances can influence neuronal dysfunction and epilepsy, highlighting the therapeutic potential of targeting SCN and the Bmal1 gene within it in epilepsy management.
Collapse
Affiliation(s)
- Xiaoshan Liang
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaotao Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yunyan Zhao
- Department of Critical Care Medicine, The Afflliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuewen Ding
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoyu Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jieli Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jing Qiu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoqin Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wei Xie
- Department of Traditional Chinese Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Wormuth C, Papazoglou A, Henseler C, Ehninger D, Broich K, Haenisch B, Hescheler J, Köhling R, Weiergräber M. A Novel Rat Infant Model of Medial Temporal Lobe Epilepsy Reveals New Insight into the Molecular Biology and Epileptogenesis in the Developing Brain. Neural Plast 2024; 2024:9946769. [PMID: 39104708 PMCID: PMC11300100 DOI: 10.1155/2024/9946769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/12/2024] [Accepted: 06/03/2024] [Indexed: 08/07/2024] Open
Abstract
Although several adult rat models of medial temporal lobe epilepsy (mTLE) have been described in detail, our knowledge of mTLE epileptogenesis in infant rats is limited. Here, we present a novel infant rat model of mTLE (InfRPil-mTLE) based on a repetitive, triphasic injection regimen consisting of low-dose pilocarpine administrations (180 mg/kg. i.p.) on days 9, 11, and 15 post partum (pp). The model had a survival rate of >80% and exhibited characteristic spontaneous recurrent electrographic seizures (SRES) in both the hippocampus and cortex that persisted into adulthood. Using implantable video-EEG radiotelemetry, we quantified a complex set of seizure parameters that demonstrated the induction of chronic electroencephalographic seizure activity in our InfRPil-mTLE model, which predominated during the dark cycle. We further analyzed selected candidate genes potentially relevant to epileptogenesis using a RT-qPCR approach. Several candidates, such as the low-voltage-activated Ca2+ channel Cav3.2 and the auxiliary subunits β 1 and β 2, which were previously reported to be upregulated in the hippocampus of the adult pilocarpine mTLE model, were found to be downregulated (together with Cav2.1, Cav2.3, M1, and M3) in the hippocampus and cortex of our InfRPil-mTLE model. From a translational point of view, our model could serve as a blueprint for childhood epileptic disorders and further contribute to antiepileptic drug research and development in the future.
Collapse
Affiliation(s)
- Carola Wormuth
- Experimental NeuropsychopharmacologyFederal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Anna Papazoglou
- Experimental NeuropsychopharmacologyFederal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Christina Henseler
- Experimental NeuropsychopharmacologyFederal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Dan Ehninger
- Translational BiogerontologyGerman Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Sigmund-Freud-Str. 27, 53127, Bonn, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Britta Haenisch
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
- German Center for Neurodegenerative Diseases (Deutsches Zentrum für Neurodegenerative Erkrankungen, DZNE), Venusberg-Campus 1/99, 53127, Bonn, Germany
- Center for Translational MedicineMedical FacultyUniversity of Bonn, Bonn, Germany
| | - Jürgen Hescheler
- Institute of NeurophysiologyUniversity of Cologne, Faculty of Medicine, Robert-Koch-Str. 39, 50931, Cologne, Germany
- Center of Physiology and PathophysiologyUniversity of Cologne, Faculty of Medicine, Robert-Koch-Str. 39, 50931, Cologne, Germany
| | - Rüdiger Köhling
- Oscar Langendorff Institute of PhysiologyUniversity of Rostock, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Marco Weiergräber
- Experimental NeuropsychopharmacologyFederal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
- Institute of NeurophysiologyUniversity of Cologne, Faculty of Medicine, Robert-Koch-Str. 39, 50931, Cologne, Germany
- Center of Physiology and PathophysiologyUniversity of Cologne, Faculty of Medicine, Robert-Koch-Str. 39, 50931, Cologne, Germany
| |
Collapse
|
4
|
Popova EY, Kawasawa YI, Leung M, Barnstable CJ. Temporal changes in mouse hippocampus transcriptome after pilocarpine-induced seizures. Front Neurosci 2024; 18:1384805. [PMID: 39040630 PMCID: PMC11260795 DOI: 10.3389/fnins.2024.1384805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Status epilepticus (SE) is a seizure lasting more than 5 min that can have lethal consequences or lead to various neurological disorders, including epilepsy. Using a pilocarpine-induced SE model in mice we investigated temporal changes in the hippocampal transcriptome. Methods We performed mRNA-seq and microRNA-seq analyses at various times after drug treatment. Results At 1 h after the start of seizures, hippocampal cells upregulated transcription of immediate early genes and genes involved in the IGF-1, ERK/MAPK and RNA-PolII/transcription pathways. At 8 h, we observed changes in the expression of genes associated with oxidative stress, overall transcription downregulation, particularly for genes related to mitochondrial structure and function, initiation of a stress response through regulation of ribosome and translation/EIF2 signaling, and upregulation of an inflammatory response. During the middle of the latent period, 36 h, we identified upregulation of membrane components, cholesterol synthesis enzymes, channels, and extracellular matrix (ECM), as well as an increased inflammatory response. At the end of the latent period, 120 h, most changes in expression were in genes involved in ion transport, membrane channels, and synapses. Notably, we also elucidated the involvement of novel pathways, such as cholesterol biosynthesis pathways, iron/BMP/ferroptosis pathways, and circadian rhythms signaling in SE and epileptogenesis. Discussion These temporal changes in metabolic reactions indicate an immediate response to injury followed by recovery and regeneration. CREB was identified as the main upstream regulator. Overall, our data provide new insights into molecular functions and cellular processes involved at different stages of seizures and offer potential avenues for effective therapeutic strategies.
Collapse
Affiliation(s)
- Evgenya Y. Popova
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, United States
- Penn State Hershey Eye Center, Hershey, PA, United States
| | - Yuka Imamura Kawasawa
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, United States
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC, United States
| | - Ming Leung
- Center for Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC, United States
| | - Colin J. Barnstable
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA, United States
- Penn State Hershey Eye Center, Hershey, PA, United States
| |
Collapse
|
5
|
Yamakawa GR, Patel M, Lin R, O'Brien TJ, Mychasiuk R, Casillas‐Espinosa PM. Diurnal circadian clock gene expression is altered in models of genetic and acquired epilepsy. Epilepsia Open 2023; 8:1523-1531. [PMID: 37805809 PMCID: PMC10690682 DOI: 10.1002/epi4.12841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/09/2023] Open
Abstract
OBJECTIVES Growing evidence demonstrates a relationship between epilepsy and the circadian system. However, relatively little is known about circadian function in disease states, such as epilepsy. This study aimed to characterize brain and peripheral core circadian clock gene expression in rat models of genetic and acquired epilepsy. METHODS For the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) study, we used 40 GAERS and 40 non-epileptic control (NEC) rats. For the kainic acid status epilepticus (KASE) study, we used 40 KASE and 40 sham rats. Rats were housed in a 7 am:7 pm light-dark cycle. Hypothalamus, hippocampus, liver, and small intestine samples were collected every 3 h throughout the light period. We then assessed core diurnal clock gene expression of per1, cry1, clock, and bmal1. RESULTS In the GAERS rats, all tissues exhibited significant changes in clock gene expression (P < 0.05) when compared to NEC. In the KASE rats, there were fewer effects of the epileptic condition in the hypothalamus, hippocampus, or small intestine (P > 0.05) compared with shams. SIGNIFICANCE These results indicate marked diurnal disruption to core circadian clock gene expression in rats with both generalized and focal chronic epilepsy. This could contribute to epileptic symptomology and implicate the circadian system as a viable target for future treatments.
Collapse
Affiliation(s)
- Glenn R. Yamakawa
- Department of Neuroscience, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Meshwa Patel
- Department of Neuroscience, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Runxuan Lin
- Department of Neuroscience, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Terence J. O'Brien
- Department of Neuroscience, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
- Department of NeurologyThe Alfred HospitalMelbourneVictoriaAustralia
| | - Richelle Mychasiuk
- Department of Neuroscience, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
| | - Pablo M. Casillas‐Espinosa
- Department of Neuroscience, Central Clinical SchoolMonash UniversityMelbourneVictoriaAustralia
- Department of NeurologyThe Alfred HospitalMelbourneVictoriaAustralia
| |
Collapse
|
6
|
de Diego-Garcia L, Brennan GP, Auer T, Menendez-Mendez A, Parras A, Martin-Gil A, Mitra M, Ollà I, Villalba-Benito L, Gil B, Alves M, Lau K, Delanty N, Beausang A, Cryan J, Brett FM, Farrell MA, O'Brien DF, Mendez R, Carracedo-Rodríguez G, Henshall DC, Lucas JJ, Engel T. CPEB4-CLOCK crosstalk during temporal lobe epilepsy. Epilepsia 2023; 64:2827-2840. [PMID: 37543852 DOI: 10.1111/epi.17736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
OBJECTIVE Posttranscriptional mechanisms are increasingly recognized as important contributors to the formation of hyperexcitable networks in epilepsy. Messenger RNA (mRNA) polyadenylation is a key regulatory mechanism governing protein expression by enhancing mRNA stability and translation. Previous studies have shown large-scale changes in mRNA polyadenylation in the hippocampus of mice during epilepsy development. The cytoplasmic polyadenylation element-binding protein CPEB4 was found to drive epilepsy-induced poly(A) tail changes, and mice lacking CPEB4 develop a more severe seizure and epilepsy phenotype. The mechanisms controlling CPEB4 function and the downstream pathways that influence the recurrence of spontaneous seizures in epilepsy remain poorly understood. METHODS Status epilepticus was induced in wild-type and CPEB4-deficient male mice via an intra-amygdala microinjection of kainic acid. CLOCK binding to the CPEB4 promoter was analyzed via chromatin immunoprecipitation assay and melatonin levels via high-performance liquid chromatography in plasma. RESULTS Here, we show increased binding of CLOCK to recognition sites in the CPEB4 promoter region during status epilepticus in mice and increased Cpeb4 mRNA levels in N2A cells overexpressing CLOCK. Bioinformatic analysis of CPEB4-dependent genes undergoing changes in their poly(A) tail during epilepsy found that genes involved in the regulation of circadian rhythms are particularly enriched. Clock transcripts displayed a longer poly(A) tail length in the hippocampus of mice post-status epilepticus and during epilepsy. Moreover, CLOCK expression was increased in the hippocampus in mice post-status epilepticus and during epilepsy, and in resected hippocampus and cortex of patients with drug-resistant temporal lobe epilepsy. Furthermore, CPEB4 is required for CLOCK expression after status epilepticus, with lower levels in CPEB4-deficient compared to wild-type mice. Last, CPEB4-deficient mice showed altered circadian function, including altered melatonin blood levels and altered clustering of spontaneous seizures during the day. SIGNIFICANCE Our results reveal a new positive transcriptional-translational feedback loop involving CPEB4 and CLOCK, which may contribute to the regulation of the sleep-wake cycle during epilepsy.
Collapse
Affiliation(s)
- Laura de Diego-Garcia
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Ocupharm Group Research, Faculty of Optics and Optometry, University Complutense of Madrid, Madrid, Spain
| | - Gary P Brennan
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Theresa Auer
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Aida Menendez-Mendez
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Alberto Parras
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Center for Molecular Biology "Severo Ochoa," Spanish National Research Council/Autonomous University of Madrid, Madrid, Spain, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
| | - Alba Martin-Gil
- Ocupharm Group Research, Faculty of Optics and Optometry, University Complutense of Madrid, Madrid, Spain
| | - Meghma Mitra
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Ivana Ollà
- Center for Molecular Biology "Severo Ochoa," Spanish National Research Council/Autonomous University of Madrid, Madrid, Spain, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Leticia Villalba-Benito
- School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin, Ireland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Beatriz Gil
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Kelvin Lau
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Norman Delanty
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
- Beaumont Hospital, Dublin, Ireland
| | | | | | | | | | | | - Raúl Mendez
- Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | | | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - José J Lucas
- Center for Molecular Biology "Severo Ochoa," Spanish National Research Council/Autonomous University of Madrid, Madrid, Spain, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
- Networking Research Center on Neurodegenerative Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| |
Collapse
|
7
|
Wang Y, Zhuo Z, Wang H. Epilepsy, gut microbiota, and circadian rhythm. Front Neurol 2023; 14:1157358. [PMID: 37273718 PMCID: PMC10232836 DOI: 10.3389/fneur.2023.1157358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/24/2023] [Indexed: 06/06/2023] Open
Abstract
In recent years, relevant studies have found changes in gut microbiota (GM) in patients with epilepsy. In addition, impaired sleep and circadian patterns are common symptoms of epilepsy. Moreover, the types of seizures have a circadian rhythm. Numerous reports have indicated that the GM and its metabolites have circadian rhythms. This review will describe changes in the GM in clinical and animal studies under epilepsy and circadian rhythm disorder, respectively. The aim is to determine the commonalities and specificities of alterations in GM and their impact on disease occurrence in the context of epilepsy and circadian disruption. Although clinical studies are influenced by many factors, the results suggest that there are some commonalities in the changes of GM. Finally, we discuss the links among epilepsy, gut microbiome, and circadian rhythms, as well as future research that needs to be conducted.
Collapse
Affiliation(s)
- Yao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihong Zhuo
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Childhood Epilepsy and Immunology, Zhengzhou, China
- Henan Provincial Children's Neurological Disease Clinical Diagnosis and Treatment Center, Zhengzhou, China
| | - Huaili Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Provincial Key Laboratory of Childhood Epilepsy and Immunology, Zhengzhou, China
- Henan Provincial Children's Neurological Disease Clinical Diagnosis and Treatment Center, Zhengzhou, China
| |
Collapse
|
8
|
Schurhoff N, Toborek M. Circadian rhythms in the blood-brain barrier: impact on neurological disorders and stress responses. Mol Brain 2023; 16:5. [PMID: 36635730 PMCID: PMC9835375 DOI: 10.1186/s13041-023-00997-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Circadian disruption has become more prevalent in society due to the increase in shift work, sleep disruption, blue light exposure, and travel via different time zones. The circadian rhythm is a timed transcription-translation feedback loop with positive regulators, BMAL1 and CLOCK, that interact with negative regulators, CRY and PER, to regulate both the central and peripheral clocks. This review highlights the functions of the circadian rhythm, specifically in the blood-brain barrier (BBB), during both healthy and pathological states. The BBB is a highly selective dynamic interface composed of CNS endothelial cells, astrocytes, pericytes, neurons, and microglia that form the neurovascular unit (NVU). Circadian rhythms modulate BBB integrity through regulating oscillations of tight junction proteins, assisting in functions of the NVU, and modulating transporter functions. Circadian disruptions within the BBB have been observed in stress responses and several neurological disorders, including brain metastasis, epilepsy, Alzheimer's disease, and Parkinson's disease. Further understanding of these interactions may facilitate the development of improved treatment options and preventative measures.
Collapse
Affiliation(s)
- Nicolette Schurhoff
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33155, USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Suite 528, 1011 NW 15th Street, Miami, FL, 33155, USA.
- Institute of Physiotherapy and Health Sciences, The Jerzy Kukuczka Academy of Physical Education, 40-065, Katowice, Poland.
| |
Collapse
|
9
|
Kreitlow BL, Li W, Buchanan GF. Chronobiology of epilepsy and sudden unexpected death in epilepsy. Front Neurosci 2022; 16:936104. [PMID: 36161152 PMCID: PMC9490261 DOI: 10.3389/fnins.2022.936104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Epilepsy is a neurological disease characterized by spontaneous, unprovoked seizures. Various insults render the brain hyperexcitable and susceptible to seizure. Despite there being dozens of preventative anti-seizure medications available, these drugs fail to control seizures in nearly 1 in 3 patients with epilepsy. Over the last century, a large body of evidence has demonstrated that internal and external rhythms can modify seizure phenotypes. Physiologically relevant rhythms with shorter periodic rhythms, such as endogenous circadian rhythms and sleep-state, as well as rhythms with longer periodicity, including multidien rhythms and menses, influence the timing of seizures through poorly understood mechanisms. The purpose of this review is to discuss the findings from both human and animal studies that consider the effect of such biologically relevant rhythms on epilepsy and seizure-associated death. Patients with medically refractory epilepsy are at increased risk of sudden unexpected death in epilepsy (SUDEP). The role that some of these rhythms play in the nocturnal susceptibility to SUDEP will also be discussed. While the involvement of some of these rhythms in epilepsy has been known for over a century, applying the rhythmic nature of such phenomenon to epilepsy management, particularly in mitigating the risk of SUDEP, has been underutilized. As our understanding of the physiological influence on such rhythmic phenomenon improves, and as technology for chronic intracranial epileptiform monitoring becomes more widespread, smaller and less invasive, novel seizure-prediction technologies and time-dependent chronotherapeutic seizure management strategies can be realized.
Collapse
Affiliation(s)
- Benjamin L. Kreitlow
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Department of Neurology, University of Iowa, Iowa City, IA, United States
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - William Li
- Department of Neurology, University of Iowa, Iowa City, IA, United States
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Gordon F. Buchanan
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Department of Neurology, University of Iowa, Iowa City, IA, United States
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- *Correspondence: Gordon F. Buchanan, ; orcid.org/0000-0003-2371-4455
| |
Collapse
|
10
|
Liu M, Ding J, Wang X. The interaction between circadian rhythm and epilepsy. ACTA EPILEPTOLOGICA 2022. [DOI: 10.1186/s42494-022-00094-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractEvidence about the interaction between circadian rhythms (CR) and epilepsy has been expanded with the application of advanced detection technology. An adequate understanding of how circadian system and epilepsy interact with each other could contribute to more accurate seizure prediction as well as rapid development of potential treatment timed to specific phases of CR. In this review, we present the reciprocal relationship between CR and epileptic activities from aspects of sleep effect, genetic modulation and brain biochemistry. It has been found that sleep-wake patterns, circadian timing systems and multidien rhythms have essential roles in seizure activities and interictal epileptiform discharge (IED). For instance, specific distribution patterns of seizures and IED have been reported, i.e., lighter non-rapid eye movement (NREM) sleep stage (stage 2) induces seizures while deeper NREM sleep stage (stage 3) activates IEDs. Furthermore, the epilepsy type, seizure type and seizure onset zone can significantly affect the rhythms of seizure occurrence. Apart from the common seizure types, several specific epilepsy syndromes also have a close correlation with sleep-wakefulness patterns. Sleep influences the epilepsy rhythm, and conversely, epilepsy alters the sleep rhythm through multiple pathways. Clock genes accompanied by two feedback loops of regulation have an important role in cortical excitability and seizure occurrence, which may be involved in the mTORopathy. The suprachiasmatic nuclei (SCN) has a rhythm of melatonin and cortisol secretion under the circadian pattern, and then these hormones can feed back into a central oscillator to affect the SCN-dependent rhythms, leading to variable but prominent influence on epilepsy. Furthermore, we discuss the precise predictive algorithms and chronotherapy strategies based on different temporal patterns of seizure occurrence for patients with epilepsy, which may offer a valuable indication for non-invasive closed-loop treatment system. Optimization of the time and dose of antiseizure medications, and resynchronization of disturbed CR (by hormone therapy, light exposure, ketogenic diet, novel small molecules) would be beneficial for epileptic patients in the future. Before formal clinical practice, future large-scale studies are urgently needed to assist prediction and treatment of circadian seizure activities and address unsolved restrictions.
Collapse
|
11
|
Joyal KG, Kreitlow BL, Buchanan GF. The role of sleep state and time of day in modulating breathing in epilepsy: implications for sudden unexpected death in epilepsy. Front Neural Circuits 2022; 16:983211. [PMID: 36082111 PMCID: PMC9445500 DOI: 10.3389/fncir.2022.983211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death among patients with refractory epilepsy. While the exact etiology of SUDEP is unknown, mounting evidence implicates respiratory dysfunction as a precipitating factor in cases of seizure-induced death. Dysregulation of breathing can occur in epilepsy patients during and after seizures as well as interictally, with many epilepsy patients exhibiting sleep-disordered breathing (SDB), such as obstructive sleep apnea (OSA). The majority of SUDEP cases occur during the night, with the victim found prone in or near a bed. As breathing is modulated in both a time-of-day and sleep state-dependent manner, it is relevant to examine the added burden of nocturnal seizures on respiratory function. This review explores the current state of understanding of the relationship between respiratory function, sleep state and time of day, and epilepsy. We highlight sleep as a particularly vulnerable period for individuals with epilepsy and press that this topic warrants further investigation in order to develop therapeutic interventions to mitigate the risk of SUDEP.
Collapse
Affiliation(s)
- Katelyn G. Joyal
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Benjamin L. Kreitlow
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Gordon F. Buchanan
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- *Correspondence: Gordon F. Buchanan
| |
Collapse
|
12
|
Oliveira MET, Paulino GVB, Dos Santos Júnior ED, da Silva Oliveira FA, Melo VMM, Ursulino JS, de Aquino TM, Shetty AK, Landell MF, Gitaí DLG. Multi-omic Analysis of the Gut Microbiome in Rats with Lithium-Pilocarpine-Induced Temporal Lobe Epilepsy. Mol Neurobiol 2022; 59:6429-6446. [PMID: 35962889 DOI: 10.1007/s12035-022-02984-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 07/29/2022] [Indexed: 11/25/2022]
Abstract
Evidence supports that the gut microbiota and bacteria-dependent metabolites influence the maintenance of epileptic brain activity. However, the alterations in the gut microbiota between epileptic versus healthy individuals are poorly understood. We used a multi-omic approach to evaluate the changes in the composition of gut metagenome as well in the fecal metabolomic profile in rats before and after being submitted to status epilepticus (SE)-induced temporal lobe epilepsy (TLE). The 16S ribosomal RNA (rRNA) sequencing of fecal samples coupled to bioinformatic analysis revealed taxonomic, compositional, and functional shifts in epileptic rats. The species richness (Chao1 index) was significantly lower in the post-TLE group, and the β-diversity analysis revealed clustering separated from the pre-TLE group. The taxonomic abundance analysis showed a significant increase of phylum Desulfobacterota and a decrease of Patescibacteria in the post-TLE group. The DESEq2 and LEfSe analysis resulted in 18 genera significantly enriched between post-TLE and pre-TLE groups at the genus level. We observed that epileptic rats present a peculiar metabolic phenotype, including a lower concentration of D-glucose and L-lactic acid and a higher concentration of L-glutamic acid and glycine. The microbiota-host metabolic correlation analysis showed that the genera differentially abundant in post-TLE rats are associated with the altered metabolites, especially the proinflammatory Desulfovibrio and Marvinbryantia, which were enriched in epileptic animals and positively correlated with these excitatory neurotransmitters and carbohydrate metabolites. Therefore, our data revealed a correlation between dysbacteriosis in epileptic animals and fecal metabolites that are known to be relevant for maintaining epileptic brain activity by enhancing chronic inflammation, an excitatory-inhibitory imbalance, and/or a metabolic disturbance. These data are promising and suggest that targeting the gut microbiota could provide a novel avenue for preventing and treating acquired epilepsy. However, the causal relationship between these microbial/metabolite components and the SRS occurrence still needs further exploration.
Collapse
Affiliation(s)
- Maria Eduarda T Oliveira
- Laboratory of Cellular and Molecular Biology (LBCM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Gustavo V B Paulino
- Laboratory of Molecular Diversity (LDM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Erivaldo D Dos Santos Júnior
- Laboratory of Cellular and Molecular Biology (LBCM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Francisca A da Silva Oliveira
- Laboratory of Microbial Ecology and Biotechnology (Lembiotech), Department of Biology, Universidade Federal Do Ceará, Campus do Pici, Bloco 909, Fortaleza, CE, 60455-760, Brazil
| | - Vânia M M Melo
- Laboratory of Microbial Ecology and Biotechnology (Lembiotech), Department of Biology, Universidade Federal Do Ceará, Campus do Pici, Bloco 909, Fortaleza, CE, 60455-760, Brazil
| | - Jeferson S Ursulino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Thiago M de Aquino
- Nucleus of Analysis and Research in Nuclear Magnetic Resonance - NAPRMN, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA
| | - Melissa Fontes Landell
- Laboratory of Molecular Diversity (LDM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil.
| | - Daniel Leite Góes Gitaí
- Laboratory of Cellular and Molecular Biology (LBCM), Institute of Biological and Health Sciences, Federal University of Alagoas, Maceió, AL, 57072-900, Brazil.
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW To review the mutual interactions between sleep and epilepsy, including mechanisms of epileptogenesis, the relationship between sleep apnea and epilepsy, and potential strategies to treat seizures. RECENT FINDINGS Recent studies have highlighted the role of functional network systems underlying epileptiform activation in sleep in several epilepsy syndromes, including absence epilepsy, benign focal childhood epilepsy, and epileptic encephalopathy with spike-wave activation in sleep. Sleep disorders are common in epilepsy, and early recognition and treatment can improve seizure frequency and potentially reduce SUDEP risk. Additionally, epilepsy is associated with cyclical patterns, which has led to new treatment approaches including chronotherapy, seizure monitoring devices, and seizure forecasting. Adenosine kinase and orexin receptor antagonists are also promising new potential drug targets that could be used to treat seizures. Sleep and epilepsy have a bidirectional relationship that intersects with many aspects of clinical management. In this article, we identify new areas of research involving future therapeutic opportunities in the field of epilepsy.
Collapse
|
14
|
Lévesque M, Biagini G, de Curtis M, Gnatkovsky V, Pitsch J, Wang S, Avoli M. The pilocarpine model of mesial temporal lobe epilepsy: Over one decade later, with more rodent species and new investigative approaches. Neurosci Biobehav Rev 2021; 130:274-291. [PMID: 34437936 DOI: 10.1016/j.neubiorev.2021.08.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 01/19/2023]
Abstract
Fundamental work on the mechanisms leading to focal epileptic discharges in mesial temporal lobe epilepsy (MTLE) often rests on the use of rodent models in which an initial status epilepticus (SE) is induced by kainic acid or pilocarpine. In 2008 we reviewed how, following systemic injection of pilocarpine, the main subsequent events are the initial SE, the latent period, and the chronic epileptic state. Up to a decade ago, rats were most often employed and they were frequently analysed only behaviorally. However, the use of transgenic mice has revealed novel information regarding this animal model. Here, we review recent findings showing the existence of specific neuronal events during both latent and chronic states, and how optogenetic activation of specific cell populations modulate spontaneous seizures. We also address neuronal damage induced by pilocarpine treatment, the role of neuroinflammation, and the influence of circadian and estrous cycles. Updating these findings leads us to propose that the rodent pilocarpine model continues to represent a valuable tool for identifying the basic pathophysiology of MTLE.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena & Reggio Emilia, 41100 Modena, Italy
| | - Marco de Curtis
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy
| | - Vadym Gnatkovsky
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy; Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - Siyan Wang
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada; Departments of Physiology, McGill University, Montreal, QC, H3A 2B4, Canada; Department of Experimental Medicine, Sapienza University of Rome, 00185 Roma, Italy.
| |
Collapse
|
15
|
Mizuno S, Koneval Z, Zierath DK, Knox KM, White HS, Barker‐Haliski M. Diurnal burden of spontaneous seizures in early epileptogenesis in the post-kainic acid rat model of epilepsy. Epilepsia Open 2021; 6:431-436. [PMID: 34033257 PMCID: PMC8166790 DOI: 10.1002/epi4.12485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/26/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023] Open
Abstract
Patients with epilepsy can experience diurnal seizure patterns. However, few studies in rodent models of temporal lobe epilepsy (TLE) routinely quantify the diurnal pattern of spontaneous recurrent seizures (SRS), and those that have conducted such assessments used small groups. This study thus aimed to define whether there was a diurnal pattern of SRS in the early phases of epileptogenesis in a large cohort (n = 40) of post-kainic acid (KA)-induced status epilepticus (SE) male Sprague Dawley rats. Rats were monitored by continuous 24/7 video-EEG in two-week epochs up to 6 weeks post-KA-induced SE. The total number of SRS by 6 weeks post-SE correlated to body weight at the time of SE insult (R2 = .1465, P = .0143). The total number of spontaneous behavioral and electrographic seizures, seizure severity, and seizure burden was recorded during lights ON (light) or lights OFF (dark) phases. All measures significantly increased with time post-SE; we detected significantly more seizures during the lights OFF phase of the post-SE monitoring periods. Moreover, a subset of rats demonstrated marked seizure preference in the lights OFF phase. Our study confirms that a diurnal pattern of SRS is variably detectable in early epileptogenesis in this model of TLE.
Collapse
Affiliation(s)
- Stephanie Mizuno
- Department of PharmacySchool of PharmacyUniversity of WashingtonSeatleWAUSA
| | - Zachery Koneval
- Department of PharmacySchool of PharmacyUniversity of WashingtonSeatleWAUSA
| | | | - Kevin M. Knox
- Department of PharmacySchool of PharmacyUniversity of WashingtonSeatleWAUSA
| | - H. Steve White
- Department of PharmacySchool of PharmacyUniversity of WashingtonSeatleWAUSA
| | | |
Collapse
|
16
|
Akyuz E, Kullu I, Arulsamy A, Shaikh MF. Melatonin as an Antiepileptic Molecule: Therapeutic Implications via Neuroprotective and Inflammatory Mechanisms. ACS Chem Neurosci 2021; 12:1281-1292. [PMID: 33813829 DOI: 10.1021/acschemneuro.1c00083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epilepsy is a result of unprovoked, uncontrollable, and repetitive outburst of abnormal and excessive electrical discharges, known as seizures, in the neurons. Epilepsy is a devastating neurological condition that affects 70 million people globally. Unfortunately, only two-thirds of epilepsy patients respond to antiepileptic drugs while others become drug resistant and may be more prone to epilepsy comorbidities such as SUDEP. Oxidative stress, mitochondrial dysfunction, imbalance in the excitatory and inhibitory neurotransmitters, and neuroinflammation are some of the common pathologies of neurological disorders and epilepsy. Studies suggests that melatonin, a pineal hormone that governs sleep-wake cycles, may be neuroprotective against neurological disorders and thus may be translated as an antiepileptic as well. Melatonin has been shown to be an antioxidant, antiexcitotoxic, and anti-inflammatory hormone/molecule in neurodegenerative diseases, which may contribute to its antiepileptic and neuroprotective properties in epilepsy as well. In addition, melatonin has evidently been shown to play a regulatory role in the cardiorespiratory system and sleep-wake cycles, which may have positive implications toward epilepsy associated comorbidities, such as SUDEP. However, studies investigating the changes in melatonin release due to epilepsy and melatonin's antiepileptic role have been inconclusive and scarce, respectively. Thus, this comprehensive review aims to summarize and elucidate the potential role of melatonin in the pathogenesis of epilepsy and its comorbidities, in hopes to develop new diagnostic and therapeutic approaches that will improve the lives of epileptic patients, particularly those who are drug resistant.
Collapse
Affiliation(s)
- Enes Akyuz
- University of Health Sciences, International Medicine Faculty, Department of Biophysics, Istanbul, Turkey
| | - Irem Kullu
- Medical School, Yozgat Bozok University, 66100 Yozgat, Turkey
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Selangor, Malaysia
| |
Collapse
|
17
|
Buchanan GF, Gluckman BJ, Kalume FK, Lhatoo S, Maganti RK, Noebels JL, Simeone KA, Quigg MS, Pavlova MK. Proceedings of the Sleep and Epilepsy Workshop: Section 3 Mortality: Sleep, Night, and SUDEP. Epilepsy Curr 2021; 21:15357597211004556. [PMID: 33787378 PMCID: PMC8609595 DOI: 10.1177/15357597211004556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in patients with refractory epilepsy. Likely pathophysiological mechanisms include seizure-induced cardiac and respiratory dysregulation. A frequently identified feature in SUDEP cases is that they occur at night. This raises the question of a role for sleep state in regulating of SUDEP. An association with sleep has been identified in a number of studies with patients and in animal models. The focus of this section of the Sleep and Epilepsy Workshop was on identifying and understanding the role for sleep and time of day in the pathophysiology of SUDEP.
Collapse
Affiliation(s)
- Gordon F. Buchanan
- Department of Neurology and Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Bruce J. Gluckman
- Department of Engineering Science & Mechanics, Penn State University, University Park, PA, USA
- Department of Neurosurgery, Penn State University, University Park, PA, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA, USA
| | - Franck K. Kalume
- Department of Neurological Surgery, University of Washington and Seattle Children’s Research Institute, Seattle, WA, USA
| | - Samden Lhatoo
- Department of Neurology, University of Texas McGovern Medical School, Houston, TX, USA
| | - Rama K. Maganti
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jeffrey L. Noebels
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kristina A. Simeone
- Department of Pharmacology & Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Mark S. Quigg
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Milena K. Pavlova
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Zhang H, Deng Q, Fan W, Zheng M, Chen H, Chen S, He H, Huang F. Changes in Per1 and Per2 expression during early postnatal stage in rat masseters. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2019.1592349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Huini Zhang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qianyi Deng
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Miaomiao Zheng
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Haoling Chen
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Shijing Chen
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
19
|
Sion B, Bégou M. Can chronopharmacology improve the therapeutic management of neurological diseases? Fundam Clin Pharmacol 2021; 35:564-581. [PMID: 33539566 DOI: 10.1111/fcp.12659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/04/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022]
Abstract
The importance of circadian rhythm dysfunctions in the pathophysiology of neurological diseases has been highlighted recently. Chronopharmacology principles imply that tailoring the timing of treatments to the circadian rhythm of individual patients could optimize therapeutic management. According to these principles, chronopharmacology takes into account the individual differences in patients' clocks, the rhythmic changes in the organism sensitivity to therapeutic and side effects of drugs, and the predictable time variations of disease. This review examines the current literature on chronopharmacology of neurological diseases focusing its scope on epilepsy, Alzheimer and Parkinson diseases, and neuropathic pain, even if other neurological diseases could have been analyzed. While the results of the studies discussed in this review point to a potential therapeutic benefit of chronopharmacology in neurological diseases, the field is still in its infancy. Studies including a sufficiently large number of patients and measuring gold standard markers of the circadian rhythmicity are still needed to evaluate the beneficial effect of administration times over the 24-hour day but also of clock modulating drugs.
Collapse
Affiliation(s)
- Benoit Sion
- Université Clermont Auvergne, INSERM U1107, NEURO-DOL, Clermont-Ferrand, France
| | - Mélina Bégou
- Université Clermont Auvergne, INSERM U1107, NEURO-DOL, Clermont-Ferrand, France
| |
Collapse
|
20
|
Chan F, Liu J. Molecular regulation of brain metabolism underlying circadian epilepsy. Epilepsia 2021; 62 Suppl 1:S32-S48. [PMID: 33395505 DOI: 10.1111/epi.16796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022]
Abstract
Extensive study has demonstrated that epilepsy occurs with greater frequency at certain times in the 24-h cycle. Although these findings implicate an overlap between the circadian rhythm and epilepsy, the molecular and cellular mechanisms underlying this circadian regulation are poorly understood. Because the 24-h rhythm is generated by the circadian molecular system, it is not surprising that this system comprised of many circadian genes is implicated in epilepsy. We summarized evidence in the literature implicating various circadian genes such as Clock, Bmal1, Per1, Rev-erb⍺, and Ror⍺ in epilepsy. In various animal models of epilepsy, the circadian oscillation and the steady-state level of these genes are disrupted. The downstream pathway of these genes involves a large number of metabolic pathways associated with epilepsy. These pathways include pyridoxal metabolism, the mammalian target of rapamycin pathway, and the regulation of redox state. We propose that disruption of these metabolic pathways could mediate the circadian regulation of epilepsy. A greater understanding of the cellular and molecular mechanism of circadian regulation of epilepsy would enable us to precisely target the circadian disruption in epilepsy for a novel therapeutic approach.
Collapse
Affiliation(s)
- Felix Chan
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Judy Liu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA.,Department of Neurology, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
21
|
Zhong D, Luo S, Zheng L, Zhang Y, Jin R. Epilepsy Occurrence and Circadian Rhythm: A Bibliometrics Study and Visualization Analysis via CiteSpace. Front Neurol 2020; 11:984. [PMID: 33250835 PMCID: PMC7674827 DOI: 10.3389/fneur.2020.00984] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 07/28/2020] [Indexed: 02/05/2023] Open
Abstract
Objective: This study aimed to review the research status and to demonstrate the hot spots and frontiers of epilepsy and circadian rhythm via CiteSpace. Method: We searched Web of Science (WoS) for studies related to epilepsy and circadian rhythm from inception to 2020. CiteSpace was used to generate network maps about the collaborations between authors, countries, and institutions and reveal hot spots and frontiers of epilepsy and circadian rhythm. Results: A total of 704 studies related to epilepsy and circadian rhythm from the WoS were retrieved. Sanchez-Vazquez FJ was the most prolific author (17 articles). The USA and University of Murcia were the leading country and institution in this field with 219 and 22 publications, respectively. There were active collaborations among the authors, countries, and institutions. Hot topics focused on the interaction between epilepsy and circadian rhythm, as well as possible novel treatments. Conclusions: Based on the results of CiteSpace, the current study suggested active cooperation between authors, countries, and institutions. Major ongoing research trends include the circadian rhythm of epilepsy based on different epileptic focus and the interaction between epilepsy and circadian rhythm, especially through melatonin, sleep–wake cycles, and clock genes, which may implicate possible treatments (such as chronotherapy, neural stem cells transplantation) for epilepsy in the future.
Collapse
Affiliation(s)
- Dongling Zhong
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shanxia Luo
- Mental Health Center, West China University Hospital, Sichuan University, Chengdu, China
| | - Linli Zheng
- Mental Health Center, West China University Hospital, Sichuan University, Chengdu, China
| | - Yonggang Zhang
- Department of Periodical Press and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Rongjiang Jin
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
22
|
Wan L, Shi XY, Ge WR, Sun YL, Zhang S, Wang J, Hu LY, Zou LP, Yang G. The Instigation of the Associations Between Melatonin, Circadian Genes, and Epileptic Spasms in Infant Rats. Front Neurol 2020; 11:497225. [PMID: 33192961 PMCID: PMC7649768 DOI: 10.3389/fneur.2020.497225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Infantile spasm (IS) is one of the most common catastrophic epilepsy syndromes in infancy characterized by epileptic spasm. While adrenocorticotropic hormone (ACTH) is the first-line treatment for IS, it is evident that the seizures associated with IS exhibit a clear circadian rhythm; however, the precise mechanisms underlying such seizures remain unclear. Melatonin is an important amine hormone and is regulated by circadian rhythm. Circadian proteins, especially Aryl Hydrocarbon Receptor Nuclear Trasnslocator-like Protein (ARNTL or BMAL1) and Circadian Locomotor Output Cycles Kaput (CLOCK), and their target proteins Period Circadian Regulator 1 (PER1), Period Circadian Regulator 2 (PER2), Cryptochrome 1 (CRY1), and Cryptochrome 2 (CRY2), play key roles in circadian rhythm. This study explored the relationships between melatonin, genes associated with circadian rhythm, and epileptic spasm. Materials and Methods: Eighteen female rats were mated with nine male rats and 16 became pregnant. Twelve pregnant rats were subjected to prenatal stress by forced swimming in cold water from the day of conception. Rat pups produced by stressed mothers received an intraperitoneal injection of N-methyl-D-aspartate (NMDA) on the 13th day after birth and were divided into four groups: NMDA (15 mg/kg), NMDA+ACTH (20 IU/kg), NMDA+melatonin (55 mg/kg), and NMDA+ACTH+melatonin (n = 36/group). Offspring from four dams that were not subjected to prenatal stress were used as controls. We then recorded latency and the frequency of flexion seizures. All offspring were sacrificed on the 14th day after birth and CLOCK, BMAL1, PER1, PER2, CRY1, and CRY2 expression was analyzed by western blotting, immunohistochemistry, and immunofluorescence. Results: NMDA induced spasm-like symptoms in rats. ACTH and melatonin significantly increased seizure latency and significantly reduced the frequency of seizures (P < 0.05). CLOCK, BMAL1, PER1, PER2, CRY1, and CRY2 expression was significantly lower in the NMDA group than the controls (P < 0.05). ACTH significantly increased the expression of CLOCK, BAML1, PER1, and CRY1 (P < 0.05) and melatonin significantly increased the expression of CLOCK, BMAL1, PER1, PER2, CRY1, and CRY2 (P < 0.05) compared with those of the NMDA group. There were no significant differences in the expression of BMAL1, CRY2, PER1, and PER2 when compared between the NMDA+ACTH+melatonin and control groups (P > 0.05). Conclusion: ACTH and melatonin significantly increased the expression of circadian genes and improved NMDA-induced seizures. The anticonvulsant effects of ACTH and melatonin are likely to involve regulation of the expression of these genes.
Collapse
Affiliation(s)
- Lin Wan
- The First Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiu-Yu Shi
- The First Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, China
| | - Wen-Rong Ge
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yu-Lin Sun
- The First Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, China
| | - Shan Zhang
- The First Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, China
| | - Jing Wang
- The First Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, China
| | - Lin-Yan Hu
- The First Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, China
| | - Li-Ping Zou
- The First Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, China
| | - Guang Yang
- The First Medical Center of the Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
23
|
Bernard C. Circadian/multidien Molecular Oscillations and Rhythmicity of Epilepsy (MORE). Epilepsia 2020; 62 Suppl 1:S49-S68. [PMID: 33063860 DOI: 10.1111/epi.16716] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/15/2020] [Accepted: 09/15/2020] [Indexed: 12/26/2022]
Abstract
The occurrence of seizures at specific times of the day has been consistently observed for centuries in individuals with epilepsy. Electrophysiological recordings provide evidence that seizures have a higher probability of occurring at a given time during the night and day cycle in individuals with epilepsy here referred to as the seizure rush hour. Which mechanisms underlie such circadian rhythmicity of seizures? Why don't they occur every day at the same time? Which mechanisms may underlie their occurrence outside the rush hour? In this commentary, I present a hypothesis: MORE - Molecular Oscillations and Rhythmicity of Epilepsy, a conceptual framework to study and understand the mechanisms underlying the circadian rhythmicity of seizures and their probabilistic nature. The core of the hypothesis is the existence of ~24-hour oscillations of gene and protein expression throughout the body in different cells and organs. The orchestrated molecular oscillations control the rhythmicity of numerous body events, such as feeding and sleep. The concept developed here is that molecular oscillations may favor seizure genesis at preferred times, generating the condition for a seizure rush hour. However, the condition is not sufficient, as other factors are necessary for a seizure to occur. Studying these molecular oscillations may help us understand seizure genesis mechanisms and find new therapeutic targets and predictive biomarkers. The MORE hypothesis can be generalized to comorbidities and the slower multidien (week/month period) rhythmicity of seizures, a phenomenon addressed in another article in this issue of Epilepsia.
Collapse
Affiliation(s)
- Christophe Bernard
- Inserm, INS, Institut de Neurosciences des Systèmes, Aix Marseille Univ, Marseille, France
| |
Collapse
|
24
|
Debski KJ, Ceglia N, Ghestem A, Ivanov AI, Brancati GE, Bröer S, Bot AM, Müller JA, Schoch S, Becker A, Löscher W, Guye M, Sassone-Corsi P, Lukasiuk K, Baldi P, Bernard C. The circadian dynamics of the hippocampal transcriptome and proteome is altered in experimental temporal lobe epilepsy. SCIENCE ADVANCES 2020; 6:eaat5979. [PMID: 33036982 PMCID: PMC10764101 DOI: 10.1126/sciadv.aat5979] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Gene and protein expressions display circadian oscillations, which can be disrupted in diseases in most body organs. Whether these oscillations occur in the healthy hippocampus and whether they are altered in epilepsy are not known. We identified more than 1200 daily oscillating transcripts in the hippocampus of control mice and 1600 in experimental epilepsy, with only one-fourth oscillating in both conditions. Comparison of gene oscillations in control and epilepsy predicted time-dependent alterations in energy metabolism, which were verified experimentally. Although aerobic glycolysis remained constant from morning to afternoon in controls, it increased in epilepsy. In contrast, oxidative phosphorylation increased in control and decreased in epilepsy. Thus, the control hippocampus shows circadian molecular remapping, which is altered in epilepsy. We suggest that the hippocampus operates in a different functioning mode in epilepsy. These alterations need to be considered when studying epilepsy mechanisms, designing drug treatments, and timing their delivery.
Collapse
Affiliation(s)
- K J Debski
- Epileptogenesis Laboratory, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
- Bioinformatics Laboratory, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - N Ceglia
- Department of Computer Science and Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697-3435, USA
| | - A Ghestem
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - A I Ivanov
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - G E Brancati
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - S Bröer
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - A M Bot
- Epileptogenesis Laboratory, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - J A Müller
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - S Schoch
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - A Becker
- Department of Neuropathology, University of Bonn Medical Center, Bonn, Germany
| | - W Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Hannover, Germany
| | - M Guye
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - P Sassone-Corsi
- Department of Biological Chemistry, University of California-Irvine, Irvine, CA 92697, USA
| | - K Lukasiuk
- Epileptogenesis Laboratory, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - P Baldi
- Department of Computer Science and Institute for Genomics and Bioinformatics, University of California, Irvine, Irvine, CA 92697-3435, USA
| | - C Bernard
- Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.
| |
Collapse
|
25
|
The role of chronobiology in drug-resistance epilepsy: The potential use of a variability and chronotherapy-based individualized platform for improving the response to anti-seizure drugs. Seizure 2020; 80:201-211. [DOI: 10.1016/j.seizure.2020.06.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 12/16/2022] Open
|
26
|
Re CJ, Batterman AI, Gerstner JR, Buono RJ, Ferraro TN. The Molecular Genetic Interaction Between Circadian Rhythms and Susceptibility to Seizures and Epilepsy. Front Neurol 2020; 11:520. [PMID: 32714261 PMCID: PMC7344275 DOI: 10.3389/fneur.2020.00520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
Seizure patterns observed in patients with epilepsy suggest that circadian rhythms and sleep/wake mechanisms play some role in the disease. This review addresses key topics in the relationship between circadian rhythms and seizures in epilepsy. We present basic information on circadian biology, but focus on research studying the influence of both the time of day and the sleep/wake cycle as independent but related factors on the expression of seizures in epilepsy. We review studies investigating how seizures and epilepsy disrupt expression of core clock genes, and how disruption of clock mechanisms impacts seizures and the development of epilepsy. We focus on the overlap between mechanisms of circadian-associated changes in SCN neuronal excitability and mechanisms of epileptogenesis as a means of identifying key pathways and molecules that could represent new targets or strategies for epilepsy therapy. Finally, we review the concept of chronotherapy and provide a perspective regarding its application to patients with epilepsy based on their individual characteristics (i.e., being a “morning person” or a “night owl”). We conclude that better understanding of the relationship between circadian rhythms, neuronal excitability, and seizures will allow both the identification of new therapeutic targets for treating epilepsy as well as more effective treatment regimens using currently available pharmacological and non-pharmacological strategies.
Collapse
Affiliation(s)
- Christopher J Re
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Alexander I Batterman
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Jason R Gerstner
- Department of Biomedical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Russell J Buono
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| | - Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, United States
| |
Collapse
|
27
|
Jaworski T. Control of neuronal excitability by GSK-3beta: Epilepsy and beyond. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118745. [PMID: 32450268 DOI: 10.1016/j.bbamcr.2020.118745] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 12/22/2022]
Abstract
Glycogen synthase kinase 3beta (GSK-3β) is an enzyme with a variety of cellular functions in addition to the regulation of glycogen metabolism. In the central nervous system, different intracellular signaling pathways converge on GSK-3β through a cascade of phosphorylation events that ultimately control a broad range of neuronal functions in the development and adulthood. In mice, genetically removing or increasing GSK-3β cause distinct functional and structural neuronal phenotypes and consequently affect cognition. Precise control of GSK-3β activity is important for such processes as neuronal migration, development of neuronal morphology, synaptic plasticity, excitability, and gene expression. Altered GSK-3β activity contributes to aberrant plasticity within neuronal circuits leading to neurological, psychiatric disorders, and neurodegenerative diseases. Therapeutically targeting GSK-3β can restore the aberrant plasticity of neuronal networks at least in animal models of these diseases. Although the complete repertoire of GSK-3β neuronal substrates has not been defined, emerging evidence shows that different ion channels and their accessory proteins controlling excitability, neurotransmitter release, and synaptic transmission are regulated by GSK-3β, thereby supporting mechanisms of synaptic plasticity in cognition. Dysregulation of ion channel function by defective GSK-3β activity sustains abnormal excitability in the development of epilepsy and other GSK-3β-linked human diseases.
Collapse
Affiliation(s)
- Tomasz Jaworski
- Laboratory of Animal Models, Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
28
|
Jin B, Aung T, Geng Y, Wang S. Epilepsy and Its Interaction With Sleep and Circadian Rhythm. Front Neurol 2020; 11:327. [PMID: 32457690 PMCID: PMC7225332 DOI: 10.3389/fneur.2020.00327] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Growing evidence shows the bidirectional interactions between sleep, circadian rhythm, and epilepsy. Comprehending how these interact with each other may help to advance our understanding of the pathophysiology of epilepsy and develop new treatment strategies to improve seizure control by reducing the medication side effects and the risks associated with seizures. In this review, we present the overview of different temporal patterns of interictal epileptiform discharges and epileptic seizures over a period of 24 consecutive hours. Furthermore, we discuss the underlying mechanism of the core-clock gene in periodic seizure occurrences. Finally, we outline the role of circadian patterns of seizures on seizure forecasting models and its implication for chronotherapy in epilepsy.
Collapse
Affiliation(s)
- Bo Jin
- Department of Neurology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Thandar Aung
- Barrow Neurological Institute, Epilepsy Center, Phoenix, AZ, United States
| | - Yu Geng
- Department of Neurology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shuang Wang
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Leite Góes Gitai D, de Andrade TG, Dos Santos YDR, Attaluri S, Shetty AK. Chronobiology of limbic seizures: Potential mechanisms and prospects of chronotherapy for mesial temporal lobe epilepsy. Neurosci Biobehav Rev 2019; 98:122-134. [PMID: 30629979 PMCID: PMC7023906 DOI: 10.1016/j.neubiorev.2019.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
Abstract
Mesial Temporal Lobe Epilepsy (mTLE) characterized by progressive development of complex partial seizures originating from the hippocampus is the most prevalent and refractory type of epilepsy. One of the remarkable features of mTLE is the rhythmic pattern of occurrence of spontaneous seizures, implying a dependence on the endogenous clock system for seizure threshold. Conversely, circadian rhythms are affected by epilepsy too. Comprehending how the circadian system and seizures interact with each other is essential for understanding the pathophysiology of epilepsy as well as for developing innovative therapies that are efficacious for better seizure control. In this review, we confer how the temporal dysregulation of the circadian clock in the hippocampus combined with multiple uncoupled oscillators could lead to periodic seizure occurrences and comorbidities. Unraveling these associations with additional research would help in developing chronotherapy for mTLE, based on the chronobiology of spontaneous seizures. Notably, differential dosing of antiepileptic drugs over the circadian period and/or strategies that resynchronize biological rhythms may substantially improve the management of seizures in mTLE patients.
Collapse
Affiliation(s)
- Daniel Leite Góes Gitai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA; Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | | | | | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA; Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA.
| |
Collapse
|