1
|
da Silva AL, Bessa CM, Rocha NN, Carvalho EB, Magalhaes RF, Capelozzi VL, Robba C, Pelosi P, Samary CS, Rocco PRM, Silva PL. Pressure-support compared with pressure-controlled ventilation mitigates lung and brain injury in experimental acute ischemic stroke in rats. Intensive Care Med Exp 2023; 11:93. [PMID: 38102452 PMCID: PMC10724101 DOI: 10.1186/s40635-023-00580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND We aimed to evaluate the pulmonary and cerebral effects of low-tidal volume ventilation in pressure-support (PSV) and pressure-controlled (PCV) modes at two PEEP levels in acute ischemic stroke (AIS). METHODS In this randomized experimental study, AIS was induced by thermocoagulation in 30 healthy male Wistar rats. After 24 h, AIS animals were randomly assigned to PSV or PCV with VT = 6 mL/kg and PEEP = 2 cmH2O (PSV-PEEP2 and PCV-PEEP2) or PEEP = 5 cmH2O (PSV-PEEP5 and PCV-PEEP5) for 2 h. Lung mechanics, arterial blood gases, and echocardiography were evaluated before and after the experiment. Lungs and brain tissue were removed for histologic and molecular biology analysis. The primary endpoint was diffuse alveolar damage (DAD) score; secondary endpoints included brain histology and brain and lung molecular biology markers. RESULTS In lungs, DAD was lower with PSV-PEEP5 than PCV-PEEP5 (p < 0.001); interleukin (IL)-1β was lower with PSV-PEEP2 than PCV-PEEP2 (p = 0.016) and PSV-PEEP5 than PCV-PEEP5 (p = 0.046); zonula occludens-1 (ZO-1) was lower in PCV-PEEP5 than PCV-PEEP2 (p = 0.042). In brain, necrosis, hemorrhage, neuropil edema, and CD45 + microglia were lower in PSV than PCV animals at PEEP = 2 cmH2O (p = 0.036, p = 0.025, p = 0.018, p = 0.011, respectively) and PEEP = 5 cmH2O (p = 0.003, p = 0.003, p = 0.007, p = 0.003, respectively); IL-1β was lower while ZO-1 was higher in PSV-PEEP2 than PCV-PEEP2 (p = 0.009, p = 0.007, respectively), suggesting blood-brain barrier integrity. Claudin-5 was higher in PSV-PEEP2 than PSV-PEEP5 (p = 0.036). CONCLUSION In experimental AIS, PSV compared with PCV reduced lung and brain injury. Lung ZO-1 reduced in PCV with PEEP = 2 versus PEEP = 5 cmH2O, while brain claudin-5 increased in PSV with PEEP = 2 versus PEEP = 5 cmH2O.
Collapse
Affiliation(s)
- Adriana L da Silva
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Camila M Bessa
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Nazareth N Rocha
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
- Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Eduardo B Carvalho
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Raquel F Magalhaes
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Vera L Capelozzi
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Chiara Robba
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Anesthesia and Critical Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Cynthia S Samary
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
- Department of Cardiorespiratory and Musculoskeletal Physiotherapy, Faculty of Physiotherapy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, S/N, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
2
|
Heil LBB, Braga CL, Magalhães RF, Antunes MA, Cruz FF, Samary CS, Battaglini D, Robba C, Pelosi P, Silva PL, Rocco PRM. Dexmedetomidine compared to low-dose ketamine better protected not only the brain but also the lungs in acute ischemic stroke. Int Immunopharmacol 2023; 124:111004. [PMID: 37778171 DOI: 10.1016/j.intimp.2023.111004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Dexmedetomidine (DEX) and low-dose ketamine (KET) present neuroprotective effects in acute ischemic stroke (AIS); however, to date, no studies have evaluated which has better protective effects not only on the brain but also lungs in AIS. METHODS AIS-induced Wistar rats (390 ± 30 g) were randomized after 24-h, receiving dexmedetomidine (STROKE-DEX, n = 10) or low-dose S(+)-ketamine (STROKE-KET, n = 10). After 1-h protective ventilation, perilesional brain tissue and lungs were removed for histologic and molecular biology analysis. STROKE animals (n = 5), receiving sodium thiopental but not ventilated, had brain and lungs removed for molecular biology analysis. Effects of DEX and KET mean plasma concentrations on alveolar macrophages, neutrophils, and lung endothelial cells, extracted primarily 24-h after AIS, were evaluated. RESULTS In perilesional brain tissue, apoptosis did not differ between groups. In STROKE-DEX, compared to STROKE-KET, tumor necrosis factor (TNF)-α and vascular cell adhesion molecule-1 (VCAM-1) expressions were reduced, but no changes in nuclear factor erythroid 2-related factor-2 (Nrf2) and super oxide dismutase (SOD)-1 were observed. In lungs, TNF-α and VCAM-1 were reduced, whereas Nrf2 and SOD-1 were increased in STROKE-DEX. In alveolar macrophages, TNF-α and inducible nitric oxide synthase (M1 macrophage phenotype) were lower and arginase and transforming growth factor-β (M2 macrophage phenotype) higher in STROKE-DEX. In lung neutrophils, CXC chemokine receptors (CXCR2 and CXCR4) were higher in STROKE-DEX. In lung endothelial cells, E-selectin and VCAM-1 were lower in STROKE-DEX. CONCLUSIONS In the current AIS model, dexmedetomidine compared to low-dose ketamine reduced inflammation and endothelial cell damage in both brain and lung, suggesting greater protection.
Collapse
Affiliation(s)
- Luciana B B Heil
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cassia L Braga
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel F Magalhães
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana A Antunes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Network on Neuroinflammation, Rio de Janeiro State Research Foundation (FAPERJ), Rio de Janeiro, Brazil
| | - Cynthia S Samary
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Network on Neuroinflammation, Rio de Janeiro State Research Foundation (FAPERJ), Rio de Janeiro, Brazil; Department of Cardiorespiratory and Musculoskeletal Physiotherapy, Faculty of Physiotherapy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Chiara Robba
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Paolo Pelosi
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Network on Neuroinflammation, Rio de Janeiro State Research Foundation (FAPERJ), Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Rio de Janeiro Network on Neuroinflammation, Rio de Janeiro State Research Foundation (FAPERJ), Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Liu M, Sun M, Zhang T, Li P, Liu J, Liu Y, Song Y, Liu S, Yang H, Zhou Z, Chang D, Wang G, Mi W, Ma Y. Prognostic Nutritional Index (PNI) as a potential predictor and intervention target for perioperative ischemic stroke: a retrospective cohort study. BMC Anesthesiol 2023; 23:268. [PMID: 37563630 PMCID: PMC10413636 DOI: 10.1186/s12871-023-02216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The prognostic nutritional index (PNI) is a nutritional indicator and predictor of various diseases. However it is unclear whether PNI can be a predictor of perioperative ischemic stroke. This study aims to evaluate the association of the preoperative PNI and ischemic stroke in patients undergoing non-cardiac surgery. METHODS The retrospective cohort study included patients who underwent noncardiac surgery between January 2008 and August 2019. The patients were divided into PNI ≥ 38.8 and PNI < 38.8 groups according to the cut-off value of PNI. Univariate and multivariate logistic regression analyses were performed to explore the association between PNI and perioperative ischemic stroke. Subsequently, propensity score matching (PSM) analysis was performed to eliminate the confounding factors of covariates and further validate the results. Subgroup analyses were completed to assess the predictive utility of PNI for perioperative ischemic stroke in different groups. RESULTS Amongst 221,542 hospitalized patients enrolled, 485 (0.22%) experienced an ischemic stroke within 30 days of the surgery, 22.1% of patients were malnourished according to PNI < 38.8, and the occurrence of perioperative ischemic stroke was 0.34% (169/49055) in the PNI < 38.8 group. PNI < 38.8 was significantly associated with an increased incidence of perioperative ischemic stroke whether in univariate logistic regression analysis (OR = 1.884, 95% CI: 1.559-2.267, P < 0.001) or multivariate logistic regression analysis (OR = 1.306, 95% CI: 1.061-1.602, P = 0.011). After PSM analysis, the ORs of PNI < 38.8 group were 1.250 (95% CI: 1.000-1.556, P = 0.050) and 1.357 (95% CI: 1.077-1.704, P = 0.009) in univariate logistic regression analysis and multivariate logistic regression analysis respectively. The subgroup analysis indicated that reduced PNI was significantly associated to an increased risk of perioperative ischemic stroke in patients over 65 years old, ASA II, not taking aspirin before surgery, without a history of stroke, who had neurosurgery, non-emergency surgery, and were admitted to ICU after surgery. CONCLUSIONS Our study indicates that low preoperative PNI is significantly associated with a higher incidence of ischemic stroke in patients undergoing non-cardiac surgery. Preoperative PNI, as a preoperative nutritional status evaluation index, is an independent risk factor useful to predict perioperative ischemic stroke risk, which could be used as an intervenable preoperative clinical biochemical index to reduce the incidence of perioperative ischemic stroke.
Collapse
Affiliation(s)
- Min Liu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
- Nation Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100730, China
| | - Miao Sun
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
- Department of Anesthesiology, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, China
| | - Ting Zhang
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Peng Li
- Department of Anesthesiology, The Sixth Medical Center of PLA General Hospital, Beijing , 100048, China
| | - Jin Liu
- Hangzhou Le9 Healthcare Technology Co., Ltd, Hangzhou, 311200, China
| | - Yanhong Liu
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yuxiang Song
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Siyuan Liu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Huikai Yang
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhikang Zhou
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Dandan Chang
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Guyan Wang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Weidong Mi
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
- Nation Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100730, China.
| | - Yulong Ma
- Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China.
- Nation Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100730, China.
| |
Collapse
|
4
|
Shojai S, Haeri Rohani SA, Moosavi-Movahedi AA, Habibi-Rezaei M. Human serum albumin in neurodegeneration. Rev Neurosci 2022; 33:803-817. [PMID: 35363449 DOI: 10.1515/revneuro-2021-0165] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/02/2022] [Indexed: 11/15/2022]
Abstract
Serum albumin (SA) exists in relatively high concentrations, in close contact with most cells. However, in the adult brain, except for cerebrospinal fluid (CSF), SA concentration is relatively low. It is mainly produced in the liver to serve as the main protein of the blood plasma. In the plasma, it functions as a carrier, chaperon, antioxidant, source of amino acids, osmoregulator, etc. As a carrier, it facilitates the stable presence and transport of the hydrophobic and hydrophilic molecules, including free fatty acids, steroid hormones, medicines, and metal ions. As a chaperon, SA binds to and protects other proteins. As an antioxidant, thanks to a free sulfhydryl group (-SH), albumin is responsible for most antioxidant properties of plasma. These functions qualify SA as a major player in, and a mirror of, overall health status, aging, and neurodegeneration. The low concentration of SA is associated with cognitive deterioration in the elderly and negative prognosis in multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). SA has been shown to be structurally modified in neurological conditions such as Alzheimer's disease (AD). During blood-brain barrier damage albumin enters the brain tissue and could trigger epilepsy and neurodegeneration. SA is able to bind to the precursor agent of the AD, amyloid-beta (Aβ), preventing its toxic effects in the periphery, and is being tested for treating this disease. SA therapy may also be effective in brain rejuvenation. In the current review, we will bring forward the prominent properties and roles of SA in neurodegeneration.
Collapse
Affiliation(s)
- Sajjad Shojai
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | | | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran, Iran
- Nano-Biomedicine Center of Excellence, Nanoscience and Nanotechnology Research Center, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Sousa GC, Fernandes MV, Cruz FF, Antunes MA, da Silva CM, Takyia C, Battaglini D, Samary CS, Robba C, Pelosi P, Rocco PRM, Silva PL. Comparative effects of dexmedetomidine and propofol on brain and lung damage in experimental acute ischemic stroke. Sci Rep 2021; 11:23133. [PMID: 34848804 PMCID: PMC8633001 DOI: 10.1038/s41598-021-02608-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/17/2021] [Indexed: 11/09/2022] Open
Abstract
Acute ischemic stroke is associated with pulmonary complications, and often dexmedetomidine and propofol are used to decrease cerebral metabolic rate. However, it is unknown the immunomodulatory actions of dexmedetomidine and propofol on brain and lungs during acute ischemic stroke. The effects of dexmedetomidine and propofol were compared on perilesional brain tissue and lung damage after acute ischemic stroke in rats. Further, the mean amount of both sedatives was directly evaluated on alveolar macrophages and lung endothelial cells primarily extracted 24-h after acute ischemic stroke. In twenty-five Wistar rats, ischemic stroke was induced and after 24-h treated with sodium thiopental (STROKE), dexmedetomidine and propofol. Dexmedetomidine, compared to STROKE, reduced diffuse alveolar damage score [median(interquartile range); 12(7.8–15.3) vs. 19.5(18–24), p = 0.007)], bronchoconstriction index [2.28(2.08–2.36) vs. 2.64(2.53–2.77), p = 0.006], and TNF-α expression (p = 0.0003), while propofol increased VCAM-1 expression compared to STROKE (p = 0.0004). In perilesional brain tissue, dexmedetomidine, compared to STROKE, decreased TNF-α (p = 0.010), while propofol increased VCAM-1 compared to STROKE (p = 0.024). In alveolar macrophages and endothelial cells, dexmedetomidine decreased IL-6 and IL-1β compared to STROKE (p = 0.002, and p = 0.040, respectively), and reduced IL-1β compared to propofol (p = 0.014). Dexmedetomidine, but not propofol, induced brain and lung protection in experimental acute ischemic stroke.
Collapse
Affiliation(s)
- Giselle C Sousa
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,Department of Anesthesiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Vinicius Fernandes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Mariana A Antunes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Carla M da Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,Laboratory of Imunopathology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Christina Takyia
- Laboratory of Imunopathology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Denise Battaglini
- San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, University of Genoa, Genoa, Italy
| | - Cynthia S Samary
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Chiara Robba
- San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, University of Genoa, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Paolo Pelosi
- San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, University of Genoa, Genoa, Italy.,Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.,Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Centro de Ciências da Saúde, Avenida Carlos Chagas Filho, 373, Bloco G-014, Ilha Do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil. .,Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil.
| |
Collapse
|