1
|
Kennedy PGE, Fultz M, Phares J, Yu X. Immunoglobulin G and Complement as Major Players in the Neurodegeneration of Multiple Sclerosis. Biomolecules 2024; 14:1210. [PMID: 39456143 PMCID: PMC11506455 DOI: 10.3390/biom14101210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple Sclerosis (MS) is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system (CNS) and is termed as one of the most common causes of neurological disability in young adults. Axonal loss and neuronal cell damage are the primary causes of disease progression and disability. Yet, little is known about the mechanism of neurodegeneration in the disease, a limitation that impairs the development of more effective treatments for progressive MS. MS is characterized by the presence of oligoclonal bands and raised levels of immunoglobulins in the CNS. The role of complement in the demyelinating process has been detected in both experimental animal models of MS and within the CNS of affected MS patients. Furthermore, both IgG antibodies and complement activation can be detected in the demyelinating plaques and cortical gray matter lesions. We propose here that both immunoglobulins and complement play an active role in the neurodegenerative process of MS. We hypothesize that the increased CNS IgG antibodies form IgG aggregates and bind complement C1q with high affinity, activating the classical complement pathway. This results in neuronal cell damage, which leads to neurodegeneration and demyelination in MS.
Collapse
Affiliation(s)
- Peter G. E. Kennedy
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G61 1QH, UK;
| | - Matthew Fultz
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.F.); (J.P.)
| | - Jeremiah Phares
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.F.); (J.P.)
| | - Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (M.F.); (J.P.)
| |
Collapse
|
2
|
Pooni R, Zheng W, Ma M, Silverman M, Xie Y, Farhadian B, Thienemann M, Mellins E, Frankovich J. Cerebrospinal fluid characteristics of patients presenting for evaluation of pediatric acute-neuropsychiatric syndrome. Front Behav Neurosci 2024; 18:1342486. [PMID: 39224487 PMCID: PMC11367679 DOI: 10.3389/fnbeh.2024.1342486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/30/2024] [Indexed: 09/04/2024] Open
Abstract
Objectives This study characterizes cerebral spinal fluid (CSF) indices including total protein, the albumin quotient, IgG index and oligoclonal bands in patients followed at a single center for pediatric acute-neuropsychiatric syndrome (PANS) and other psychiatric/behavioral deteriorations. Methods In a retrospective chart review of 471 consecutive subjects evaluated for PANS at a single center, navigational keyword search of the electronic medical record was used to identify patients who underwent lumbar puncture (LP) as part of the evaluation of a severe or atypical psychiatric deterioration. Psychiatric symptom data was ascertained from parent questionnaires and clinical psychiatric evaluations. Inclusion criteria required that subjects presented with psychiatric deterioration at the time of first clinical visit and had a lumbar puncture completed as part of their evaluation. Subjects were categorized into three subgroups based on diagnosis: PANS (acute-onset of severe obsessive compulsive disorder (OCD) and/or eating restriction plus two other neuropsychiatric symptoms), autoimmune encephalitis (AE), and "other neuropsychiatric deterioration" (subacute onset of severe OCD, eating restriction, behavioral regression, psychosis, etc; not meeting criteria for PANS or AE). Results 71/471 (15.0 %) of patients underwent LP. At least one CSF abnormality was seen in 29% of patients with PANS, 45% of patients with "other neuropsychiatric deterioration", and 40% of patients who met criteria for autoimmune encephalitis. The most common findings included elevated CSF protein and/or albumin quotient. Elevated IgG index and IgG oligoclonal bands were rare in all three groups. Conclusion Elevation of CSF protein and albumin quotient were found in pediatric patients undergoing LP for evaluation of severe psychiatric deteriorations (PANS, AE, and other neuropsychiatric deteriorations). Further studies are warranted to investigate blood brain barrier integrity at the onset of the neuropsychiatric deterioration and explore inflammatory mechanisms.
Collapse
Affiliation(s)
- Rajdeep Pooni
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Wynne Zheng
- Stanford Immune Behavioral Health Clinic and Research Program, Palo Alto, CA, United States
| | - Meiqian Ma
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA, United States
- Stanford Immune Behavioral Health Clinic and Research Program, Palo Alto, CA, United States
| | - Melissa Silverman
- Stanford Immune Behavioral Health Clinic and Research Program, Palo Alto, CA, United States
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Yuhuan Xie
- Stanford Immune Behavioral Health Clinic and Research Program, Palo Alto, CA, United States
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Bahare Farhadian
- Stanford Immune Behavioral Health Clinic and Research Program, Palo Alto, CA, United States
| | - Margo Thienemann
- Stanford Immune Behavioral Health Clinic and Research Program, Palo Alto, CA, United States
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Elizabeth Mellins
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Jennifer Frankovich
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA, United States
- Stanford Immune Behavioral Health Clinic and Research Program, Palo Alto, CA, United States
| |
Collapse
|
3
|
Khan Z, Mehan S, Gupta GD, Narula AS. Immune System Dysregulation in the Progression of Multiple Sclerosis: Molecular Insights and Therapeutic Implications. Neuroscience 2024; 548:9-26. [PMID: 38692349 DOI: 10.1016/j.neuroscience.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 05/03/2024]
Abstract
Multiple sclerosis (MS), a prevalent neurological disorder, predominantly affects young adults and is characterized by chronic autoimmune activity. The study explores the immune system dysregulation in MS, highlighting the crucial roles of immune and non-neuronal cells in the disease's progression. This review examines the dual role of cytokines, with some like IL-6, TNF-α, and interferon-gamma (IFN-γ) promoting inflammation and CNS tissue injury, and others such as IL-4, IL-10, IL-37, and TGF-β fostering remyelination and protecting against MS. Elevated chemokine levels in the cerebrospinal fluid (CSF), including CCL2, CCL5, CXCL10, CXCL13, and fractalkine, are analyzed for their role in facilitating immune cell migration across the blood-brain barrier (BBB), worsening inflammation and neurodegeneration. The study also delves into the impact of auto-antibodies targeting myelin components like MOG and AQP4, which activate complement cascades leading to further myelin destruction. The article discusses how compromised BBB integrity allows immune cells and inflammatory mediators to infiltrate the CNS, intensifying MS symptoms. It also examines the involvement of astrocytes, microglia, and oligodendrocytes in the disease's progression. Additionally, the effectiveness of immunomodulatory drugs such as IFN-β and CD20-targeting monoclonal antibodies (e.g., rituximab) in modulating immune responses is reviewed, highlighting their potential to reduce relapse rates and delaying MS progression. These insights emphasize the importance of immune system dysfunction in MS development and progression, guiding the development of new therapeutic strategies. The study underscores recent advancements in understanding MS's molecular pathways, opening avenues for more targeted and effective treatments.
Collapse
Affiliation(s)
- Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India), Moga 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India), Moga 142001, Punjab, India.
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India), Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
4
|
Sawabe A, Okazaki S, Nakamura A, Goitsuka R, Kaifu T. The orphan G protein-coupled receptor 141 expressed in myeloid cells functions as an inflammation suppressor. J Leukoc Biol 2024; 115:935-945. [PMID: 38226682 DOI: 10.1093/jleuko/qiae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/14/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024] Open
Abstract
G protein-coupled receptors (GPCRs) regulate many cellular processes in response to various stimuli, including light, hormones, neurotransmitters, and odorants, some of which play critical roles in innate and adaptive immune responses. However, the physiological functions of many GPCRs and the involvement of them in autoimmune diseases of the central nervous system remain unclear. Here, we demonstrate that GPR141, an orphan GPCR belonging to the class A receptor family, suppresses immune responses. High GPR141 messenger RNA levels were expressed in myeloid-lineage cells, including neutrophils (CD11b + Gr1+), monocytes (CD11b + Gr1-Ly6C+ and CD11b + Gr1-Ly6C-), macrophages (F4/80+), and dendritic cells (CD11c+). Gpr141 -/- mice, which we independently generated, displayed almost no abnormalities in myeloid cell differentiation and compartmentalization in the spleen and bone marrow under steady-state conditions. However, Gpr141 deficiency exacerbated disease conditions of experimental autoimmune encephalomyelitis, an autoimmune disease model for multiple sclerosis, with increased inflammation in the spinal cord. Gpr141 -/- mice showed increased CD11b + Gr1+ neutrophils, CD11b + Gr1- monocytes, CD11c+ dendritic cells, and CD4+ T cell infiltration into the experimental autoimmune encephalomyelitis-induced spinal cord compared with littermate control mice. Lymphocytes enriched from Gpr141 -/- mice immunized with myelin oligodendrocyte glycoprotein 35-55 produced high amounts of interferon-γ, interleukin-17A, and interleukin-6 compared with those from wild-type mice. Moreover, CD11c+ dendritic cells (DCs) purified from Gpr141 -/- mice increased cytokine production of myelin oligodendrocyte glycoprotein 35-55-specific T cells. These findings suggest that GPR141 functions as a negative regulator of immune responses by controlling the functions of monocytes and dendritic cells and that targeting GPR141 may be a possible therapeutic intervention for modulating chronic inflammatory diseases.
Collapse
MESH Headings
- Animals
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/deficiency
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Myeloid Cells/metabolism
- Myeloid Cells/immunology
- Inflammation/immunology
- Inflammation/metabolism
- Mice, Knockout
- Mice
- Mice, Inbred C57BL
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Peptide Fragments
Collapse
Affiliation(s)
- Atsuya Sawabe
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Sendai 983-8536, Japan
| | - Shogo Okazaki
- Department of Microbiology and Immunology, Nihon University School of Dentistry, 1-8-13, Surugadai, Kanda, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Akira Nakamura
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Sendai 983-8536, Japan
| | - Ryo Goitsuka
- Division of Cell Fate Regulations, Developmental Immmunology, Regenerative Biology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| | - Tomonori Kaifu
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Sendai 983-8536, Japan
| |
Collapse
|
5
|
Colón Ortiz C, Eroglu C. Astrocyte signaling and interactions in Multiple Sclerosis. Curr Opin Cell Biol 2024; 86:102307. [PMID: 38145604 PMCID: PMC10922437 DOI: 10.1016/j.ceb.2023.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/27/2023]
Abstract
Multiple Sclerosis (MS) is a common cause of impairment in working-aged adults. MS is characterized by neuroinflammation and infiltration of peripheral immune cells to the brain, which cause myelin loss and death of oligodendrocytes and neurons. Many studies on MS have focused on the peripheral immune sources of demyelination and repair. However, recent studies revealed that a glial cell type, the astrocytes, undergo robust morphological and transcriptomic changes that contribute significantly to demyelination and myelin repair. Here, we discuss recent findings elucidating signaling modalities that astrocytes acquire or lose in MS and how these changes alter the interactions of astrocytes with other nervous system cell types.
Collapse
Affiliation(s)
- Crystal Colón Ortiz
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA; Howard Hughes Medical Institute, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
6
|
Mohammadzamani M, Kazemzadeh K, Chand S, Thapa S, Ebrahimi N, Yazdan Panah M, Shaygannejad V, Mirmosayyeb O. Insights into the interplay between Epstein-Barr virus (EBV) and multiple sclerosis (MS): A state-of-the-art review and implications for vaccine development. Health Sci Rep 2024; 7:e1898. [PMID: 38361801 PMCID: PMC10867693 DOI: 10.1002/hsr2.1898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/12/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Background and Aims Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS). MS results from an inflammatory process leading to the loss of neural tissue and increased disability over time. The role of Epstein Barr Virus (EBV), as one of the most common global viruses, in MS development has been the subject of several studies. However, many related questions are still unanswered. This study aimed to review the connection between MS and EBV and provide a quick outline of MS prevention using EBV vaccination. Methods For this narrative review, an extensive literature search using specific terms was conducted across online databases, including PubMed/Medline, Scopus, Web of Science, and Google Scholar, to identify pertinent studies. Results Several studies proved that almost 100% of people with MS showed a history of EBV infection, and there was an association between high titers of EBV antibodies and an increased risk of MS development. Various hypotheses are proposed for how EBV may contribute to MS directly and indirectly: (1) Molecular Mimicry, (2) Mistaken Self, (3) Bystander Damage, and (4) Autoreactive B cells infected with EBV. Conclusion Given the infectious nature of EBV and its ability to elude the immune system, EBV emerges as a strong candidate for being the underlying cause of MS. The development of an EBV vaccine holds promise for preventing MS; however, overcoming the challenge of creating a safe and efficacious vaccine presents a significant obstacle.
Collapse
Affiliation(s)
- Mahtab Mohammadzamani
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
| | - Kimia Kazemzadeh
- Students' Scientific Research CenterTehran University of Medical SciencesTehranIran
| | - Swati Chand
- Westchester Medical CenterNew York Medical CollegeValhallaNew YorkUSA
| | - Sangharsha Thapa
- Department of Neurology, Westchester Medical CenterNew York Medical CollegeValhallaUSA
| | - Narges Ebrahimi
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
| | | | - Vahid Shaygannejad
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
- Department of NeurologyIsfahan University of Medical SciencesIsfahanIran
| | - Omid Mirmosayyeb
- Isfahan Neurosciences Research CenterIsfahan University of Medical SciencesIsfahanIran
- Department of NeurologyIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
7
|
Al-kuraishy HM, Jabir MS, Al-Gareeb AI, Saad HM, Batiha GES, Klionsky DJ. The beneficial role of autophagy in multiple sclerosis: Yes or No? Autophagy 2024; 20:259-274. [PMID: 37712858 PMCID: PMC10813579 DOI: 10.1080/15548627.2023.2259281] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic progressive demyelinating disease of the central nervous system (CNS) due to an increase of abnormal peripherally auto-reactive T lymphocytes which elicit autoimmunity. The main pathophysiology of MS is myelin sheath damage by immune cells and a defect in the generation of myelin by oligodendrocytes. Macroautophagy/autophagy is a critical degradation process that eliminates dysfunctional or superfluous cellular components. Autophagy has the property of a double-edged sword in MS in that it may have both beneficial and detrimental effects on MS neuropathology. Therefore, this review illustrates the protective and harmful effects of autophagy with regard to this disease. Autophagy prevents the progression of MS by reducing oxidative stress and inflammatory disorders. In contrast, over-activated autophagy is associated with the progression of MS neuropathology and in this case the use of autophagy inhibitors may alleviate the pathogenesis of MS. Furthermore, autophagy provokes the activation of different immune and supporting cells that play an intricate role in the pathogenesis of MS. Autophagy functions in the modulation of MS neuropathology by regulating cell proliferation related to demyelination and remyelination. Autophagy enhances remyelination by increasing the activity of oligodendrocytes, and astrocytes. However, autophagy induces demyelination by activating microglia and T cells. In conclusion, specific autophagic activators of oligodendrocytes, and astrocytes, and specific autophagic inhibitors of dendritic cells (DCs), microglia and T cells induce protective effects against the pathogenesis of MS.Abbreviations: ALS: amyotrophic lateral sclerosis; APCs: antigen-presenting cells; BBB: blood-brain barrier; CSF: cerebrospinal fluid; CNS: central nervous system; DCs: dendritic cells; EAE: experimental autoimmune encephalomyelitis; ER: endoplasmic reticulum; LAP: LC3-associated phagocytosis; MS: multiple sclerosis; NCA: non-canonical autophagy; OCBs: oligoclonal bands; PBMCs: peripheral blood mononuclear cells; PD: Parkinson disease; ROS: reactive oxygen species; UPR: unfolded protein response.
Collapse
Affiliation(s)
- Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Iraq, Baghdad
| | - Majid S. Jabir
- Department of Applied Science, University of Technology, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Iraq, Baghdad
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El Beheira, Egypt
| | | |
Collapse
|
8
|
Aspden JW, Murphy MA, Kashlan RD, Xiong Y, Poznansky MC, Sîrbulescu RF. Intruders or protectors - the multifaceted role of B cells in CNS disorders. Front Cell Neurosci 2024; 17:1329823. [PMID: 38269112 PMCID: PMC10806081 DOI: 10.3389/fncel.2023.1329823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024] Open
Abstract
B lymphocytes are immune cells studied predominantly in the context of peripheral humoral immune responses against pathogens. Evidence has been accumulating in recent years on the diversity of immunomodulatory functions that B cells undertake, with particular relevance for pathologies of the central nervous system (CNS). This review summarizes current knowledge on B cell populations, localization, infiltration mechanisms, and function in the CNS and associated tissues. Acute and chronic neurodegenerative pathologies are examined in order to explore the complex, and sometimes conflicting, effects that B cells can have in each context, with implications for disease progression and treatment outcomes. Additional factors such as aging modulate the proportions and function of B cell subpopulations over time and are also discussed in the context of neuroinflammatory response and disease susceptibility. A better understanding of the multifactorial role of B cell populations in the CNS may ultimately lead to innovative therapeutic strategies for a variety of neurological conditions.
Collapse
Affiliation(s)
- James W. Aspden
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Matthew A. Murphy
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Rommi D. Kashlan
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Yueyue Xiong
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ruxandra F. Sîrbulescu
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Lin SQ, Wang K, Pan XH, Ruan GP. Mechanisms of Stem Cells and Their Secreted Exosomes in the Treatment of Autoimmune Diseases. Curr Stem Cell Res Ther 2024; 19:1415-1428. [PMID: 38311916 DOI: 10.2174/011574888x271344231129053003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 02/06/2024]
Abstract
Stem cells play a therapeutic role in many diseases by virtue of their strong self-renewal and differentiation abilities, especially in the treatment of autoimmune diseases. At present, the mechanism of the stem cell treatment of autoimmune diseases mainly relies on their immune regulation ability, regulating the number and function of auxiliary cells, anti-inflammatory factors and proinflammatory factors in patients to reduce inflammation. On the other hand, the stem cell- derived secretory body has weak immunogenicity and low molecular weight, can target the site of injury, and can extend the length of its active time in the patient after combining it with the composite material. Therefore, the role of secretory bodies in the stem cell treatment of autoimmune diseases is increasingly important.
Collapse
Affiliation(s)
- Shu-Qian Lin
- Clinical College of the 920th Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Kai Wang
- Clinical College of the 920th Hospital of Kunming Medical University, Kunming, 650032, Yunnan Province, China
| | - Xing-Hua Pan
- Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, Yunnan Province, China
- Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Kunming, China
| | - Guang-Ping Ruan
- Basic Medical Laboratory, 920th Hospital of Joint Logistics Support Force, PLA, Kunming, 650032, Yunnan Province, China
- Stem Cells and Immune Cells Biomedical Techniques Integrated Engineering Laboratory of State and Regions, Kunming, China
| |
Collapse
|
10
|
Zhou W, Graner M, Beseler C, Domashevich T, Selva S, Webster G, Ledreux A, Zizzo Z, Lundt M, Alvarez E, Yu X. Plasma IgG aggregates as biomarkers for multiple sclerosis. Clin Immunol 2023; 256:109801. [PMID: 37816415 DOI: 10.1016/j.clim.2023.109801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023]
Abstract
We recently reported that multiple sclerosis (MS) plasma contains IgG aggregates and induces complement-dependent neuronal cytotoxicity (Zhou et al., 2023). Using ELISA, we report herein that plasma IgG levels in the aggregates can be used as biomarkers for MS. We enriched the IgG aggregates from samples of two cohorts (190 MS and 160 controls) by collecting flow-through after plasma binding to Protein A followed by detection of IgG subclass. We show that there are significantly higher levels of IgG1, IgG3, and total IgG antibodies in MS IgG aggregates, with an AUC >90%; higher levels of IgG1 distinguish secondary progressive MS from relapsing-remitting MS (AUC = 91%). Significantly, we provided the biological rationale for MS plasma IgG biomarkers by demonstrating the strong correlation between IgG antibodies and IgG aggregate-induced neuronal cytotoxicity. These non-invasive, simple IgG-based blood ELISA assays can be adapted into clinical practice for diagnosing MS and SPMS and monitoring treatment responses.
Collapse
Affiliation(s)
- Wenbo Zhou
- Departments of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael Graner
- Departments of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Cheryl Beseler
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Timothy Domashevich
- Departments of Ophthalmology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Sean Selva
- Departments of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Gill Webster
- Innate Immunotherapeutics Limited, Auckland, New Zealand
| | - Aurelie Ledreux
- Departments of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Zoe Zizzo
- Departments of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Max Lundt
- Departments of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Enrique Alvarez
- Departments of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Xiaoli Yu
- Departments of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
11
|
Nazir FH, Wiberg A, Müller M, Mangsbo S, Burman J. Antibodies from serum and CSF of multiple sclerosis patients bind to oligodendroglial and neuronal cell-lines. Brain Commun 2023; 5:fcad164. [PMID: 37274830 PMCID: PMC10233900 DOI: 10.1093/braincomms/fcad164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/30/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
Multiple sclerosis is a highly complex and heterogeneous disease. At the onset it often presents as a clinically isolated syndrome. Thereafter relapses are followed by periods of remissions, but eventually, most patients develop secondary progressive multiple sclerosis. It is widely accepted that autoantibodies are important to the pathogenesis of multiple sclerosis, but hitherto it has been difficult to identify the target of such autoantibodies. As an alternative strategy, cell-based methods of detecting autoantibodies have been developed. The objective of this study was to explore differences in the binding of antibodies from sera and CSF of multiple sclerosis patients and controls to oligodendroglial and neuronal cell-lines, related to antibody type, immunoglobulin (IgG/IgM), matrix (serum/CSF) and disease course. The oligodendroglial and neuronal cell-lines were expanded in tissue culture flasks and transferred to 96-well plates at a concentration of 50 000 cells/well followed by fixation and blocking with bovine serum albumin. Sera and CSF samples, from healthy controls and multiple sclerosis patients, were incubated with the fixed cells. Epitope binding of immunoglobulins (IgG and IgM) in sera and CSF was detected using biotinylated anti-human IgM and IgG followed by avidin conjugated to horseradish peroxidase. Horseradish peroxidase activity was detected with 3,3',5,5'-tetramethylbenzidine substrate. Serum from 76 patients and 30 controls as well as CSF from 62 patients and 32 controls were investigated in the study. The binding was similar between clinically isolated syndrome patients and controls, whereas the largest differences were observed between secondary progressive multiple sclerosis patients and controls. Antibodies from multiple sclerosis patients (all disease course combined) bound more to all investigated cell-lines, irrespectively of matrix type, but binding of immunoglobulin G from CSF to human oligodendroglioma cell-line discriminated best between multiple sclerosis patients and controls with a sensitivity of 93% and a specificity of 96%. The cell-based enzyme linked immunosorbent assay (ELISA) was able to discriminate between multiple sclerosis patients and controls with a high degree of accuracy. The disease course was the major determinant for the antibody binding.
Collapse
Affiliation(s)
- Faisal Hayat Nazir
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala SE-751 85, Sweden
| | - Anna Wiberg
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala SE-751 85, Sweden
| | - Malin Müller
- Department of Medical Sciences, Neurology, Uppsala University, Uppsala SE-751 85, Sweden
| | - Sara Mangsbo
- Department of Pharmacy, Science for Life Laboratory, Uppsala University, Uppsala SE-751 23, Sweden
| | - Joachim Burman
- Correspondence to: Joachim Burman Department of Medical Sciences, Neurology, Uppsala University, Uppsala SE-751 85, Sweden. E-mail:
| |
Collapse
|
12
|
Zhou W, Graner M, Paucek P, Beseler C, Boisen M, Bubak A, Asturias F, George W, Graner A, Ormond D, Vollmer T, Alvarez E, Yu X. Multiple sclerosis plasma IgG aggregates induce complement-dependent neuronal apoptosis. Cell Death Dis 2023; 14:254. [PMID: 37031195 PMCID: PMC10082781 DOI: 10.1038/s41419-023-05783-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/10/2023]
Abstract
Grey matter pathology is central to the progression of multiple sclerosis (MS). We discovered that MS plasma immunoglobulin G (IgG) antibodies, mainly IgG1, form large aggregates (>100 nm) which are retained in the flow-through after binding to Protein A. Utilizing an annexin V live-cell apoptosis detection assay, we demonstrated six times higher levels of neuronal apoptosis induced by MS plasma IgG aggregates (n = 190, from two cohorts) compared to other neurological disorders (n = 116) and healthy donors (n = 44). MS IgG aggregate-mediated, complement-dependent neuronal apoptosis was evaluated in multiple model systems including primary human neurons, primary human astrocytes, neuroblastoma SH-SY5Y cells, and newborn mouse brain slices. Immunocytochemistry revealed the co-deposition of IgG, early and late complement activation products (C1q, C3b, and membrane attack complex C5b9), as well as active caspase 3 in treated neuronal cells. Furthermore, we found that MS plasma cytotoxic antibodies are not present in Protein G flow-through, nor in the paired plasma. The neuronal apoptosis can be inhibited by IgG depletion, disruption of IgG aggregates, pan-caspase inhibitor, and is completely abolished by digestion with IgG-cleaving enzyme IdeS. Transmission electron microscopy and nanoparticle tracking analysis revealed the sizes of MS IgG aggregates are greater than 100 nm. Our data support the pathological role of MS IgG antibodies and corroborate their connection to complement activation and axonal damage, suggesting that apoptosis may be a mechanism of neurodegeneration in MS.
Collapse
Affiliation(s)
- Wenbo Zhou
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Michael Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Petr Paucek
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Cheryl Beseler
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Matthew Boisen
- Zalgen Labs, LLC, 12635 E. Montview Blvd., Suite 131, Aurora, Colorado, 80045, USA
| | - Andrew Bubak
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Francisco Asturias
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Woro George
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Arin Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - David Ormond
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Timothy Vollmer
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Enrique Alvarez
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA
| | - Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045, USA.
| |
Collapse
|
13
|
Fikriyah L, Hidayati HB, Ardhi MS. Concomitant cavernous sinus thrombosis and central serous chorioretinopathy in a patient with total ophthalmoplegia and monocular blindness: a case report. Ann Med Surg (Lond) 2023; 85:946-950. [PMID: 37113961 PMCID: PMC10129092 DOI: 10.1097/ms9.0000000000000131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 12/22/2022] [Indexed: 04/29/2023] Open
Abstract
Cavernous sinus thrombosis (CST) is an unusual condition that can result in high mortality and morbidity rate if not treated immediately. Case presentation An Indonesian male, 47 years old, presented with total right ocular ophthalmoplegia followed by blindness, headache, ptosis, periorbital swelling, and hypoesthesia over the left V1 region. MRI of the brain showed suitable cavernous thickening until the right orbital apex, which in contrast showed enhancement suggestive of right Tolosa-Hunt syndrome. The patient was treated with a high dose of steroids, but the patient's complaints did not improve. The patient underwent digital subtraction angiography and found CST. The optical coherence tomography was found to be central serous chorioretinopathy. He was treated with an antibiotic, anticoagulant, and extraction of the right maxillary molar was performed to remove the source of the infection. After 3 weeks, visual acuity and optical coherence tomography examination were improved. Discussion A comprehensive examination, such as digital subtraction angiography, is essential to confirm CST diagnosis for the patient to obtain the right therapy. This report highlighted the value of the prompt diagnosis of CST through neuroimaging and the importance of proper therapy in patient management. Conclusions Early diagnosis, comprehensive examination, and proper treatment of CST will increase good prognosis.
Collapse
Affiliation(s)
| | - Hanik Badriyah Hidayati
- Corresponding author: Department of Neurology, Faculty of Medicine, Universitas Airlangga - Dr. Soetomo General Academic Hospital, Jalan Mayjend Prof. Dr. Moestopo No. 6-8, Airlangga, Gubeng, Surabaya, East Java, 60286, Indonesia. Tel.: +6231-5501670; fax: +6231-5022472. E-mail address: (H.B. Hidayati)
| | | |
Collapse
|
14
|
Bogers L, Engelenburg HJ, Janssen M, Unger PPA, Melief MJ, Wierenga-Wolf AF, Hsiao CC, Mason MRJ, Hamann J, van Langelaar J, Smolders J, van Luijn MM. Selective emergence of antibody-secreting cells in the multiple sclerosis brain. EBioMedicine 2023; 89:104465. [PMID: 36796230 PMCID: PMC9958261 DOI: 10.1016/j.ebiom.2023.104465] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Although distinct brain-homing B cells have been identified in multiple sclerosis (MS), it is unknown how these further evolve to contribute to local pathology. We explored B-cell maturation in the central nervous system (CNS) of MS patients and determined their association with immunoglobulin (Ig) production, T-cell presence, and lesion formation. METHODS Ex vivo flow cytometry was performed on post-mortem blood, cerebrospinal fluid (CSF), meninges and white matter from 28 MS and 10 control brain donors to characterize B cells and antibody-secreting cells (ASCs). MS brain tissue sections were analysed with immunostainings and microarrays. IgG index and CSF oligoclonal bands were measured with nephelometry, isoelectric focusing, and immunoblotting. Blood-derived B cells were cocultured under T follicular helper-like conditions to evaluate their ASC-differentiating capacity in vitro. FINDINGS ASC versus B-cell ratios were increased in post-mortem CNS compartments of MS but not control donors. Local presence of ASCs associated with a mature CD45low phenotype, focal MS lesional activity, lesional Ig gene expression, and CSF IgG levels as well as clonality. In vitro B-cell maturation into ASCs did not differ between MS and control donors. Notably, lesional CD4+ memory T cells positively correlated with ASC presence, reflected by local interplay with T cells. INTERPRETATION These findings provide evidence that local B cells at least in late-stage MS preferentially mature into ASCs, which are largely responsible for intrathecal and local Ig production. This is especially seen in active MS white matter lesions and likely depends on the interaction with CD4+ memory T cells. FUNDING Stichting MS Research (19-1057 MS; 20-490f MS), National MS Fonds (OZ2018-003).
Collapse
Affiliation(s)
- Laurens Bogers
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Hendrik J Engelenburg
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| | - Malou Janssen
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands; Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Peter-Paul A Unger
- Department of Viroscience, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Marie-José Melief
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Annet F Wierenga-Wolf
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Cheng-Chih Hsiao
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| | - Matthew R J Mason
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands; Department of Experimental Immunology, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Centers, 1007 MB, Amsterdam, The Netherlands
| | - Jamie van Langelaar
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Joost Smolders
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands; Neuroimmunology Research Group, Netherlands Institute for Neuroscience, 1105 BA, Amsterdam, The Netherlands; Department of Neurology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Marvin M van Luijn
- Department of Immunology, MS Center ErasMS, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
15
|
Puranik N, Yadav D, Song M. Insight into Early Diagnosis of Multiple Sclerosis by Targeting Prognostic Biomarkers. Curr Pharm Des 2023; 29:2534-2544. [PMID: 37921136 DOI: 10.2174/0113816128247471231018053737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/04/2023] [Accepted: 09/06/2023] [Indexed: 11/04/2023]
Abstract
Multiple sclerosis (MS) is a central nervous system (CNS) immune-mediated disease that mainly strikes young adults and leaves them disabled. MS is an autoimmune illness that causes the immune system to attack the brain and spinal cord. The myelin sheaths, which insulate the nerve fibers, are harmed by our own immune cells, and this interferes with brain signal transmission. Numbness, tingling, mood swings, memory problems, exhaustion, agony, vision problems, and/or paralysis are just a few of the symptoms. Despite technological advancements and significant research efforts in recent years, diagnosing MS can still be difficult. Each patient's MS is distinct due to a heterogeneous and complex pathophysiology with diverse types of disease courses. There is a pressing need to identify markers that will allow for more rapid and accurate diagnosis and prognosis assessments to choose the best course of treatment for each MS patient. The cerebrospinal fluid (CSF) is an excellent source of particular indicators associated with MS pathology. CSF contains molecules that represent pathological processes such as inflammation, cellular damage, and loss of blood-brain barrier integrity. Oligoclonal bands, neurofilaments, MS-specific miRNA, lncRNA, IgG-index, and anti-aquaporin 4 antibodies are all clinically utilised indicators for CSF in MS diagnosis. In recent years, a slew of new possible biomarkers have been presented. In this review, we look at what we know about CSF molecular markers and how they can aid in the diagnosis and differentiation of different MS forms and treatment options, and monitoring and predicting disease progression, therapy response, and consequences during such opportunistic infections.
Collapse
Affiliation(s)
- Nidhi Puranik
- Biological Sciences Department, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Korea
| | - Minseok Song
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
16
|
Mora VP, Loaiza RA, Soto JA, Bohmwald K, Kalergis AM. Involvement of trained immunity during autoimmune responses. J Autoimmun 2022:102956. [DOI: 10.1016/j.jaut.2022.102956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
|
17
|
Kennedy PGE, Graner MW, Fringuello A, Zhou W, Pointon T, Alquatli K, Bisel S, Langford D, Yu X. Higher Levels of IgG3 Antibodies in Serum, But Not in CSF, Distinguish Multiple Sclerosis From Other Neurological Disorders. J Neuroimmune Pharmacol 2022; 17:526-537. [PMID: 34989971 DOI: 10.1007/s11481-021-10048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/23/2021] [Indexed: 01/13/2023]
Abstract
Increased intrathecal IgG and oligoclonal bands (OCB) are seminal features of multiple sclerosis (MS). Although no such differences in MS blood total IgG antibodies have been reported, serum OCB are a common and persistent finding in MS and have a systemic source. Recent studies showed that IgG3+ B cells and higher levels of serum IgG3 are linked to the development of MS. Additionally, intrathecal IgG synthesis in MS is associated with IgG3 heavy chain gene single nucleotide polymorphisms, and there is a strong relationship between susceptibility to MS and an IgG3 restriction fragment length polymorphism. These studies support the role of IgG3 in disease pathogenesis. Using multiple immunoassays, we investigated levels of total IgG, IgG1, and IgG3 in sera and CSF of 102 MS patients (19 paired CSF and sera), 76 patients with other neurological disorders (9 paired CSF and sera), and 13 healthy controls. We show that higher levels of total IgG and IgG3 antibodies were detected in MS serum, but not in CSF, which distinguishes MS from other inflammatory and non-inflammatory neurological disorders, with Receiver Operating Characteristic (ROC) Curves 0.79 for both IgG3 & total IgG. Our data support the notion that IgG3 antibodies may be a potential candidate for MS blood biomarker development.
Collapse
Affiliation(s)
- Peter G E Kennedy
- Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow, UK
| | - Michael W Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony Fringuello
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Wenbo Zhou
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Tiffany Pointon
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kinda Alquatli
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sara Bisel
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dianne Langford
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
18
|
Kennedy PGE, Graner M, Pointon T, Li X, Tanimoto K, Dennison K, Im G, Fringuello A, Zhou W, Graner A, Sillau S, Vollmer T, Yu X. Aberrant Immunoglobulin G Glycosylation in Multiple Sclerosis. J Neuroimmune Pharmacol 2022; 17:218-227. [PMID: 33942224 PMCID: PMC9279016 DOI: 10.1007/s11481-021-09996-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/23/2021] [Indexed: 12/29/2022]
Abstract
A hallmark of the inflammatory response in multiple sclerosis (MS) is the presence of intrathecal Immunoglobulin G (IgG) antibodies and oligoclonal bands (OCBs). The biological activity of IgGs is modulated by changes in glycosylation. Using multiple immunoassays with common lectins for sialylation and galactosylation, we investigated levels of IgG glycosylation in 28 MS and 37 control sera as well as paired CSF and serum. We demonstrated the presence of significantly lower levels of IgG sialylation in MS CSF compared to paired serum. Further, we showed that in MS there was no correlation between sialylated IgG and total IgG antibodies, or between sialylated IgG in CSF and serum. ELISA with native IgG antibodies showed significantly higher levels of sialylated and galactosylated IgG in MS compared to other neurological disorders and normal healthy controls. We conclude that lower levels of sialylated intrathecal IgG and higher levels of serum IgG galactosylation in MS may play significant role in disease pathogenesis. The unique IgG glycosylation profiles suggest a complexed nature of the IgG antibodies which may influence its effector functions in MS.
Collapse
Affiliation(s)
- Peter GE Kennedy
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Michael Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tiffany Pointon
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiaomeng Li
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kayo Tanimoto
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kathryn Dennison
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gina Im
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Anthony Fringuello
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Wenbo Zhou
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Arin Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Stefan Sillau
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Timothy Vollmer
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Corresponding author:
| |
Collapse
|
19
|
Zhang N, Zuo Y, Jiang L, Peng Y, Huang X, Zuo L. Epstein-Barr Virus and Neurological Diseases. Front Mol Biosci 2022; 8:816098. [PMID: 35083281 PMCID: PMC8784775 DOI: 10.3389/fmolb.2021.816098] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV), also known as human herpesvirus 4, is a double-stranded DNA virus that is ubiquitous in 90–95% of the population as a gamma herpesvirus. It exists in two main states, latent infection and lytic replication, each encoding viral proteins with different functions. Human B-lymphocytes and epithelial cells are EBV-susceptible host cells. EBV latently infects B cells and nasopharyngeal epithelial cells throughout life in most immunologically active individuals. EBV-infected cells, free viruses, their gene products, and abnormally elevated EBV titers are observed in the cerebrospinal fluid. Studies have shown that EBV can infect neurons directly or indirectly via infected B-lymphocytes, induce neuroinflammation and demyelination, promote the proliferation, degeneration, and necrosis of glial cells, promote proliferative disorders of B- and T-lymphocytes, and contribute to the occurrence and development of nervous system diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, acute cerebellar ataxia, meningitis, acute disseminated encephalomyelitis, and brain tumors. However, the specific underlying molecular mechanisms are unclear. In this paper, we review the mechanisms underlying the role of EBV in the development of central nervous system diseases, which could bebeneficial in providing new research ideas and potential clinical therapeutic targets for neurological diseases.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
- Hunan Dongkou People’s Hospital, Shaoyang, China
| | - Yuxin Zuo
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
| | - Liping Jiang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
| | - Yu Peng
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
| | - Xu Huang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
| | - Lielian Zuo
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, China
- *Correspondence: Lielian Zuo,
| |
Collapse
|
20
|
Rispoli MG, Valentinuzzi S, De Luca G, Del Boccio P, Federici L, Di Ioia M, Digiovanni A, Grasso EA, Pozzilli V, Villani A, Chiarelli AM, Onofrj M, Wise RG, Pieragostino D, Tomassini V. Contribution of Metabolomics to Multiple Sclerosis Diagnosis, Prognosis and Treatment. Int J Mol Sci 2021; 22:11112. [PMID: 34681773 PMCID: PMC8541167 DOI: 10.3390/ijms222011112] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolomics-based technologies map in vivo biochemical changes that may be used as early indicators of pathological abnormalities prior to the development of clinical symptoms in neurological conditions. Metabolomics may also reveal biochemical pathways implicated in tissue dysfunction and damage and thus assist in the development of novel targeted therapeutics for neuroinflammation and neurodegeneration. Metabolomics holds promise as a non-invasive, high-throughput and cost-effective tool for early diagnosis, follow-up and monitoring of treatment response in multiple sclerosis (MS), in combination with clinical and imaging measures. In this review, we offer evidence in support of the potential of metabolomics as a biomarker and drug discovery tool in MS. We also use pathway analysis of metabolites that are described as potential biomarkers in the literature of MS biofluids to identify the most promising molecules and upstream regulators, and show novel, still unexplored metabolic pathways, whose investigation may open novel avenues of research.
Collapse
Affiliation(s)
- Marianna Gabriella Rispoli
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| | - Silvia Valentinuzzi
- Analytical Biochemistry and Proteomics Research Unit, Centre for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (P.D.B.); (L.F.)
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giovanna De Luca
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| | - Piero Del Boccio
- Analytical Biochemistry and Proteomics Research Unit, Centre for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (P.D.B.); (L.F.)
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Luca Federici
- Analytical Biochemistry and Proteomics Research Unit, Centre for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (P.D.B.); (L.F.)
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Di Ioia
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| | - Anna Digiovanni
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| | - Eleonora Agata Grasso
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Valeria Pozzilli
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| | - Alessandro Villani
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
| | - Antonio Maria Chiarelli
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
| | - Marco Onofrj
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| | - Richard G. Wise
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
| | - Damiana Pieragostino
- Analytical Biochemistry and Proteomics Research Unit, Centre for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (S.V.); (P.D.B.); (L.F.)
- Department of Paediatrics, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Valentina Tomassini
- Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (M.G.R.); (A.D.); (V.P.); (A.V.); (A.M.C.); (M.O.); (R.G.W.)
- Department of Neurology, “SS. Annunziata” University Hospital, 66100 Chieti, Italy; (G.D.L.); (M.D.I.)
| |
Collapse
|
21
|
Yu X, Zizzo Z, Kennedy PG. An appraisal of antigen identification and IgG effector functions driving host immune responses in multiple sclerosis. Mult Scler Relat Disord 2021; 56:103328. [PMID: 34666240 DOI: 10.1016/j.msard.2021.103328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/05/2021] [Accepted: 10/10/2021] [Indexed: 12/16/2022]
Abstract
Increased immunoglobulin G (IgG) antibodies and oligoclonal bands (OCB) are the most characteristic features of multiple sclerosis (MS), a neuroinflammatory demyelinating disease with neurodegeneration at chronic stages. OCB are shown to be associated with disease activity and brain atrophy. Despite intensive research over the last several decades, the antigen specificities of the IgG in MS have remained elusive. We present evidence which supports that intrathecal IgG is not driven by antigen-stimulation, therefore provide reasoning for failed MS antigen identification. Further, the presence of co-deposition of IgG and activated complement products in MS lesions suggest that the IgG effector functions may play a critical role in disease pathogenesis.
Collapse
Affiliation(s)
- Xiaoli Yu
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
| | - Zoe Zizzo
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Peter Ge Kennedy
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
22
|
McGettigan SE, Debes GF. Immunoregulation by antibody secreting cells in inflammation, infection, and cancer. Immunol Rev 2021; 303:103-118. [PMID: 34145601 PMCID: PMC8387433 DOI: 10.1111/imr.12991] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022]
Abstract
Antibody-secreting cells (ASCs) are considered work horses of the humoral immune response for their tireless effort to produce large amounts of antibodies that fulfill an array of functions in host defense, inflammation, and maintenance of homeostasis. While traditionally considered largely senescent cells, surprising recent findings demonstrate that subsets of ASCs downmodulate ongoing immune responses independent of antibody formation. Such regulatory ASCs produce IL-10 or IL-35 and are implicated in maintaining tissue and immune homeostasis. They also serve to suppress pathogenic leukocytes in infection, allergy, and inflammatory diseases that affect tissues, such as the central nervous system and the respiratory tract. Additionally, regulatory ASCs infiltrate various cancer types and restrict effective anti-tumor T cell responses. While incompletely understood, there is significant overlap in factors that control ASC differentiation, IL-10 expression by B cells and the generation of ASCs that secrete both antibodies and IL-10. In this review, we will cover the biology, phenotype, generation, maintenance and function of regulatory ASCs in various tissues under pathological and steady states. An improved understanding of the development of regulatory ASCs and their biological roles will be critical for generating novel ASC-targeted therapies for the treatment of inflammatory diseases, infection, and cancer.
Collapse
Affiliation(s)
- Shannon E. McGettigan
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107
| | - Gudrun F. Debes
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107
| |
Collapse
|
23
|
Abstract
Animal models with high translational validity are essential tools in understanding disease pathogenesis and in the development of therapeutic strategies. Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system characterized by progressive neurological deficits and socioeconomic burden. Experimental autoimmune encephalomyelitis (EAE) is the most extensively utilized animal model of MS, with well-characterized rodent and non-human primate variants. The EAE model is typically induced by either active immunization with myelin-derived proteins or peptides in adjuvant or by passive transfer of activated myelin-specific CD4+ T lymphocytes. To date, the EAE model has been an essential tool in the development of at least seven U.S. Food and Drug Administration (FDA)-approved immunomodulatory drugs for the treatment of MS, including glatiramer acetate, fingolimod, and natalizumab. However, the translational validity of the EAE model is frequently compromised due to poor study design, inconsistent clinical scoring endpoints, and inappropriate statistical calculations. No single animal model accurately reflects the complexity of human MS pathogenesis. Beyond EAE, multiple additional animal models are described, including Theiler's murine encephalomyelitis virus and cuprizone-induced demyelination, which facilitate the study of pathogen-induced CNS autoimmunity and remyelination, respectively. This overview summarizes several of the most frequently used animal models of MS and highlights key factors that significantly influence the experimental outcome and affect translational validity. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Paul Smith
- Incyte Research Institute, Wilmington, Delaware
| |
Collapse
|
24
|
Affiliation(s)
- Claudia Mauri
- Division of Infection and Immunity and Institute of Immunity and Transplantation, University College London, London, UK
| |
Collapse
|