1
|
Santoro V, Hou MD, Premoli I, Belardinelli P, Biondi A, Carobin A, Puledda F, Michalopoulou PG, Richardson MP, Rocchi L, Shergill SS. Investigating cortical excitability and inhibition in patients with schizophrenia: A TMS-EEG study. Brain Res Bull 2024; 212:110972. [PMID: 38710310 DOI: 10.1016/j.brainresbull.2024.110972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) combined with electromyography (EMG) has widely been used as a non-invasive brain stimulation tool to assess excitation/inhibition (E/I) balance. E/I imbalance is a putative mechanism underlying symptoms in patients with schizophrenia. Combined TMS-electroencephalography (TMS-EEG) provides a detailed examination of cortical excitability to assess the pathophysiology of schizophrenia. This study aimed to investigate differences in TMS-evoked potentials (TEPs), TMS-related spectral perturbations (TRSP) and intertrial coherence (ITC) between patients with schizophrenia and healthy controls. MATERIALS AND METHODS TMS was applied over the motor cortex during EEG recording. Differences in TEPs, TRSP and ITC between the patient and healthy subjects were analysed for all electrodes at each time point, by applying multiple independent sample t-tests with a cluster-based permutation analysis to correct for multiple comparisons. RESULTS Patients demonstrated significantly reduced amplitudes of early and late TEP components compared to healthy controls. Patients also showed a significant reduction of early delta (50-160 ms) and theta TRSP (30-250ms),followed by a reduction in alpha and beta suppression (220-560 ms; 190-420 ms). Patients showed a reduction of both early (50-110 ms) gamma increase and later (180-230 ms) gamma suppression. Finally, the ITC was significantly lower in patients in the alpha band, from 30 to 260 ms. CONCLUSION Our findings support the putative role of impaired GABA-receptor mediated inhibition in schizophrenia impacting excitatory neurotransmission. Further studies can usefully elucidate mechanisms underlying specific symptoms clusters using TMS-EEG biometrics.
Collapse
Affiliation(s)
- V Santoro
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom; Headache Group, Wolfson SPaRC, Institute of Psychiatry Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom.
| | - M D Hou
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - I Premoli
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - P Belardinelli
- Cimec, Center for Mind/Brain Sciences, University of Trento, Trento, Italy
| | - A Biondi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - A Carobin
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - F Puledda
- Headache Group, Wolfson SPaRC, Institute of Psychiatry Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - P G Michalopoulou
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - M P Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - L Rocchi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - S S Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, United Kingdom; Kent and Medway Medical School, Canterbury CT2 7FS, United Kingdom; Kent and Medway NHS and Social Care Partnership Trust, Maidstone, ME7 4JL, United Kingdom
| |
Collapse
|
2
|
Mancuso M, Cruciani A, Sveva V, Casula E, Brown KE, Di Lazzaro V, Rothwell JC, Rocchi L. Changes in Cortical Activation by Transcranial Magnetic Stimulation Due to Coil Rotation Are Not Attributable to Cranial Muscle Activation. Brain Sci 2024; 14:332. [PMID: 38671984 PMCID: PMC11048461 DOI: 10.3390/brainsci14040332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Transcranial magnetic stimulation coupled with electroencephalography (TMS-EEG) allows for the study of brain dynamics in health and disease. Cranial muscle activation can decrease the interpretability of TMS-EEG signals by masking genuine EEG responses and increasing the reliance on preprocessing methods but can be at least partly prevented by coil rotation coupled with the online monitoring of signals; however, the extent to which changing coil rotation may affect TMS-EEG signals is not fully understood. Our objective was to compare TMS-EEG data obtained with an optimal coil rotation to induce motor evoked potentials (M1standard) while rotating the coil to minimize cranial muscle activation (M1emg). TMS-evoked potentials (TEPs), TMS-related spectral perturbation (TRSP), and intertrial phase clustering (ITPC) were calculated in both conditions using two different preprocessing pipelines based on independent component analysis (ICA) or signal-space projection with source-informed reconstruction (SSP-SIR). Comparisons were performed with cluster-based correction. The concordance correlation coefficient was computed to measure the similarity between M1standard and M1emg TMS-EEG signals. TEPs, TRSP, and ITPC were significantly larger in M1standard than in M1emg conditions; a lower CCC than expected was also found. These results were similar across the preprocessing pipelines. While rotating the coil may be advantageous to reduce cranial muscle activation, it may result in changes in TMS-EEG signals; therefore, this solution should be tailored to the specific experimental context.
Collapse
Affiliation(s)
- Marco Mancuso
- Department of Human Neuroscience, University of Rome “Sapienza”, Viale dell’Università 30, 00185 Rome, Italy;
| | - Alessandro Cruciani
- Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.C.); (V.D.L.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Valerio Sveva
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Elias Casula
- Department of System Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy;
| | - Katlyn E. Brown
- Department of Kinesiology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G5, Canada;
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.C.); (V.D.L.)
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - John C. Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria di Monserrato, Blocco I S.S. 554 bivio per Sestu, Monserrato, 09042 Cagliari, Italy
| |
Collapse
|
3
|
Jing Y, Numssen O, Weise K, Kalloch B, Buchberger L, Haueisen J, Hartwigsen G, Knösche TR. Modeling the effects of transcranial magnetic stimulation on spatial attention. Phys Med Biol 2023; 68:214001. [PMID: 37783213 DOI: 10.1088/1361-6560/acff34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/02/2023] [Indexed: 10/04/2023]
Abstract
Objectives. Transcranial magnetic stimulation (TMS) has been widely used to modulate brain activity in healthy and diseased brains, but the underlying mechanisms are not fully understood. Previous research leveraged biophysical modeling of the induced electric field (E-field) to map causal structure-function relationships in the primary motor cortex. This study aims at transferring this localization approach to spatial attention, which helps to understand the TMS effects on cognitive functions, and may ultimately optimize stimulation schemes.Approach. Thirty right-handed healthy participants underwent a functional magnetic imaging (fMRI) experiment, and seventeen of them participated in a TMS experiment. The individual fMRI activation peak within the right inferior parietal lobule (rIPL) during a Posner-like attention task defined the center target for TMS. Thereafter, participants underwent 500 Posner task trials. During each trial, a 5-pulse burst of 10 Hz repetitive TMS (rTMS) was given over the rIPL to modulate attentional processing. The TMS-induced E-fields for every cortical target were correlated with the behavioral modulation to identify relevant cortical regions for attentional orientation and reorientation.Main results. We did not observe a robust correlation between E-field strength and behavioral outcomes, highlighting the challenges of transferring the localization method to cognitive functions with high neural response variability and complex network interactions. Nevertheless, TMS selectively inhibited attentional reorienting in five out of seventeen subjects, resulting in task-specific behavioral impairments. The BOLD-measured neuronal activity and TMS-evoked neuronal effects showed different patterns, which emphasizes the principal distinction between the neural activity being correlated with (or maybe even caused by) particular paradigms, and the activity of neural populations exerting a causal influence on the behavioral outcome.Significance. This study is the first to explore the mechanisms of TMS-induced attentional modulation through electrical field modeling. Our findings highlight the complexity of cognitive functions and provide a basis for optimizing attentional stimulation protocols.
Collapse
Affiliation(s)
- Ying Jing
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103, Leipzig, Germany
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103, Leipzig, Germany
| | - Ole Numssen
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103, Leipzig, Germany
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103, Leipzig, Germany
| | - Konstantin Weise
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103, Leipzig, Germany
- Advanced Electromagnetics Group, Technische Universität Ilmenau, Helmholtzplatz 2, D-98693, Ilmenau, Germany
| | - Benjamin Kalloch
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103, Leipzig, Germany
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Gustav-Kirchhoff-Straße 2, D-98693, Ilmenau, Germany
| | - Lena Buchberger
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103, Leipzig, Germany
| | - Jens Haueisen
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Gustav-Kirchhoff-Straße 2, D-98693, Ilmenau, Germany
| | - Gesa Hartwigsen
- Lise Meitner Research Group Cognition and Plasticity, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103, Leipzig, Germany
- Wilhelm Wundt Institute for Psychology, Leipzig University, Neumarkt 9-19, D-04109, Leipzig, Germany
| | - Thomas R Knösche
- Methods and Development Group Brain Networks, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103, Leipzig, Germany
- Institute of Biomedical Engineering and Informatics, Technische Universität Ilmenau, Gustav-Kirchhoff-Straße 2, D-98693, Ilmenau, Germany
| |
Collapse
|
4
|
Cruciani A, Mancuso M, Sveva V, Maccarrone D, Todisco A, Motolese F, Santoro F, Pilato F, Spampinato DA, Rocchi L, Di Lazzaro V, Capone F. Using TMS-EEG to assess the effects of neuromodulation techniques: a narrative review. Front Hum Neurosci 2023; 17:1247104. [PMID: 37645690 PMCID: PMC10461063 DOI: 10.3389/fnhum.2023.1247104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
Over the past decades, among all the non-invasive brain stimulation (NIBS) techniques, those aiming for neuromodulatory protocols have gained special attention. The traditional neurophysiological outcome to estimate the neuromodulatory effect is the motor evoked potential (MEP), the impact of NIBS techniques is commonly estimated as the change in MEP amplitude. This approach has several limitations: first, the use of MEP limits the evaluation of stimulation to the motor cortex excluding all the other brain areas. Second, MEP is an indirect measure of brain activity and is influenced by several factors. To overcome these limitations several studies have used new outcomes to measure brain changes after neuromodulation techniques with the concurrent use of transcranial magnetic stimulation (TMS) and electroencephalogram (EEG). In the present review, we examine studies that use TMS-EEG before and after a single session of neuromodulatory TMS. Then, we focused our literature research on the description of the different metrics derived from TMS-EEG to measure the effect of neuromodulation.
Collapse
Affiliation(s)
- Alessandro Cruciani
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Marco Mancuso
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Valerio Sveva
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, Rome, Italy
| | - Davide Maccarrone
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Todisco
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesco Motolese
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesca Santoro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Fabio Pilato
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | | | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
5
|
Andrade-Talavera Y, Fisahn A, Rodríguez-Moreno A. Timing to be precise? An overview of spike timing-dependent plasticity, brain rhythmicity, and glial cells interplay within neuronal circuits. Mol Psychiatry 2023; 28:2177-2188. [PMID: 36991134 PMCID: PMC10611582 DOI: 10.1038/s41380-023-02027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/31/2023]
Abstract
In the mammalian brain information processing and storage rely on the complex coding and decoding events performed by neuronal networks. These actions are based on the computational ability of neurons and their functional engagement in neuronal assemblies where precise timing of action potential firing is crucial. Neuronal circuits manage a myriad of spatially and temporally overlapping inputs to compute specific outputs that are proposed to underly memory traces formation, sensory perception, and cognitive behaviors. Spike-timing-dependent plasticity (STDP) and electrical brain rhythms are suggested to underlie such functions while the physiological evidence of assembly structures and mechanisms driving both processes continues to be scarce. Here, we review foundational and current evidence on timing precision and cooperative neuronal electrical activity driving STDP and brain rhythms, their interactions, and the emerging role of glial cells in such processes. We also provide an overview of their cognitive correlates and discuss current limitations and controversies, future perspectives on experimental approaches, and their application in humans.
Collapse
Affiliation(s)
- Yuniesky Andrade-Talavera
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013, Seville, Spain.
| | - André Fisahn
- Department of Biosciences and Nutrition and Department of Women's and Children's Health, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013, Seville, Spain.
| |
Collapse
|
6
|
Andrade-Talavera Y, Pérez-Rodríguez M, Prius-Mengual J, Rodríguez-Moreno A. Neuronal and astrocyte determinants of critical periods of plasticity. Trends Neurosci 2023:S0166-2236(23)00105-4. [PMID: 37202300 DOI: 10.1016/j.tins.2023.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 05/20/2023]
Abstract
Windows of plasticity allow environmental experiences to produce intense activity-dependent changes during postnatal development. The reordering and refinement of neural connections occurs during these periods, significantly influencing the formation of brain circuits and physiological processes in adults. Recent advances have shed light on factors that determine the onset and duration of sensitive and critical periods of plasticity. Although GABAergic inhibition has classically been implicated in closing windows of plasticity, astrocytes and adenosinergic inhibition have also emerged more recently as key determinants of the duration of these periods of plasticity. Here, we review novel aspects of the involvement of GABAergic inhibition, the possible role of presynaptic NMDARs, and the emerging roles of astrocytes and adenosinergic inhibition in determining the duration of windows of plasticity in different brain regions.
Collapse
Affiliation(s)
- Yuniesky Andrade-Talavera
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| | - Mikel Pérez-Rodríguez
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| | - José Prius-Mengual
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, ES-41013 Seville, Spain.
| |
Collapse
|
7
|
Pathophysiology and Treatment of Functional Paralysis: Insight from Transcranial Magnetic Stimulation. Brain Sci 2023; 13:brainsci13020352. [PMID: 36831895 PMCID: PMC9954472 DOI: 10.3390/brainsci13020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Functional paralysis (FP) or limb weakness is a common presentation of functional movement disorders (FMD), accounting for 18.1% of the clinical manifestations of FMD. The pathophysiology of FP is not known, but imaging studies have identified changes in structural and functional connectivity in multiple brain networks. It has been proposed that noninvasive brain stimulation techniques may be used to understand the pathophysiology of FP and may represent a possible therapeutic option. In this paper, we reviewed transcranial magnetic stimulation studies on functional paralysis, focusing on their pathophysiological and therapeutical implications. Overall, there is general agreement on the integrity of corticospinal pathways in FP, while conflicting results have been found about the net excitability of the primary motor cortex and its excitatory/inhibitory circuitry in resting conditions. The possible involvement of spinal cord circuits remains an under-investigated area. Repetitive transcranial magnetic stimulation appears to have a potential role as a safe and viable option for the treatment of functional paralysis, but more studies are needed to investigate optimal stimulation parameters and clarify its role in the context of other therapeutical options.
Collapse
|
8
|
Guo W, He Y, Zhang W, Sun Y, Wang J, Liu S, Ming D. A novel non-invasive brain stimulation technique: "Temporally interfering electrical stimulation". Front Neurosci 2023; 17:1092539. [PMID: 36777641 PMCID: PMC9912300 DOI: 10.3389/fnins.2023.1092539] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/17/2023] [Indexed: 01/30/2023] Open
Abstract
For decades, neuromodulation technology has demonstrated tremendous potential in the treatment of neuropsychiatric disorders. However, challenges such as being less intrusive, more concentrated, using less energy, and better public acceptance, must be considered. Several novel and optimized methods are thus urgently desiderated to overcome these barriers. In specific, temporally interfering (TI) electrical stimulation was pioneered in 2017, which used a low-frequency envelope waveform, generated by the superposition of two high-frequency sinusoidal currents of slightly different frequency, to stimulate specific targets inside the brain. TI electrical stimulation holds the advantages of both spatial targeting and non-invasive character. The ability to activate deep pathogenic targets without surgery is intriguing, and it is expected to be employed to treat some neurological or psychiatric disorders. Recently, efforts have been undertaken to investigate the stimulation qualities and translation application of TI electrical stimulation via computational modeling and animal experiments. This review detailed the most recent scientific developments in the field of TI electrical stimulation, with the goal of serving as a reference for future research.
Collapse
Affiliation(s)
- Wanting Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yuchen He
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Wenquan Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Yiwei Sun
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Junling Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China,*Correspondence: Shuang Liu,
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China,Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China,Tianjin International Joint Research Center for Neural Engineering, Tianjin, China,Dong Ming,
| |
Collapse
|
9
|
Cantone M, Fisicaro F, Ferri R, Bella R, Pennisi G, Lanza G, Pennisi M. Sex differences in mild vascular cognitive impairment: A multimodal transcranial magnetic stimulation study. PLoS One 2023; 18:e0282751. [PMID: 36867595 PMCID: PMC9983846 DOI: 10.1371/journal.pone.0282751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Sex differences in vascular cognitive impairment (VCI) at risk for future dementia are still debatable. Transcranial magnetic stimulation (TMS) is used to evaluate cortical excitability and the underlying transmission pathways, although a direct comparison between males and females with mild VCI is lacking. METHODS Sixty patients (33 females) underwent clinical, psychopathological, functional, and TMS assessment. Measures of interest consisted of: resting motor threshold, latency of motor evoked potentials (MEPs), contralateral silent period, amplitude ratio, central motor conduction time (CMCT), including the F wave technique (CMCT-F), short-interval intracortical inhibition (SICI), intracortical facilitation, and short-latency afferent inhibition, at different interstimulus intervals (ISIs). RESULTS Males and females were comparable for age, education, vascular burden, and neuropsychiatric symptoms. Males scored worse at global cognitive tests, executive functioning, and independence scales. MEP latency was significantly longer in males, from both sides, as well CMCT and CMCT-F from the left hemisphere; a lower SICI at ISI of 3 ms from the right hemisphere was also found. After correction for demographic and anthropometric features, the effect of sex remained statistically significant for MEP latency, bilaterally, and for CMCT-F and SICI. The presence of diabetes, MEP latency bilaterally, and both CMCT and CMCT-F from the right hemisphere inversely correlated with executive functioning, whereas TMS did not correlate with vascular burden. CONCLUSIONS We confirm the worse cognitive profile and functional status of males with mild VCI compared to females and first highlight sex-specific changes in intracortical and cortico-spinal excitability to multimodal TMS in this population. This points to some TMS measures as potential markers of cognitive impairment, as well as targets for new drugs and neuromodulation therapies.
Collapse
Affiliation(s)
- Mariagiovanna Cantone
- Neurology Unit, University Hospital Policlinico “G. Rodolico-San Marco”, Catania, Italy
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Giovanni Pennisi
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Giuseppe Lanza
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
- * E-mail:
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
10
|
Elrassas HH, Morsy MH, Abdelrazek YM, El Rasheed AH, Saad NA, Azzam LA. The role of repetitive transcranial magnetic stimulation in reduction of opioid craving: a single-blinded randomized sham-controlled clinical trial. MIDDLE EAST CURRENT PSYCHIATRY 2022. [DOI: 10.1186/s43045-022-00265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
Background
Opioid use disorder (OUD) poses a great concern due to problems associated with their abuse as well as fatal and non-fatal overdose consequences. Craving has a complex relationship with opioid use and relapse. Developing new, effective treatments for substance use disorders (SUDs), including opioid use disorders is crucial. This study aimed to assess the effect of 18 sessions of high-frequency (HF) repetitive transcranial magnetic stimulation (rTMS) over the left dorsolateral prefrontal cortex (DLPFC) on opioid craving in 26 OUD male patients compared to sham rTMS in 26 OUD patients, during early abstinence, with craving assessment using brief substance craving scale (BSCS) for tramadol and morphine and heroin craving questionnaire (HCQ) for heroin craving.
Results
There was a statistically significant reduction in craving scores in the group of OUD patients receiving real rTMS compared to those receiving sham rTMS for both BSCS (p value = 0.044) and HCQ (p value=0.002). A statistically significant positive correlation was revealed between the number of hospital admissions and the mean scores of post-rTMS HCQ scores (r=0.05, p value= 0.040).
Conclusions
A high frequency of 10-Hz rTMS over the left DLPFC for 18 treatment sessions reduced craving OUD patients during early abstinence. These preliminary results suggest that 10-Hz rTMS of the left DLPFC may be used in the treatment of OUD, so our study recommends that the use of rTMS in the reduction of opioid craving in early abstinence.
Trial registration
Unique identification number PACTR202206487514449 in the Pan African Clinical Trial Registry retrospectively (www.pactr.org) registered on 10 June 2022.
Collapse
|
11
|
Ashhurst JF, Tu S, Timmins HC, Kiernan MC. Progress, development, and challenges in amyotrophic lateral sclerosis clinical trials. Expert Rev Neurother 2022; 22:905-913. [PMID: 36543326 DOI: 10.1080/14737175.2022.2161893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Amyotrophic Lateral Sclerosis (ALS) brings unique challenges to a clinical trial setting, due in part to relatively low disease prevalence coupled with a poor prognosis, in addition to the complexities linked to disease heterogeneity. As critical understanding of the disease develops, particularly in relation to clinical phenotype and the mechanisms of disease progression, so too new concepts evolve in relation to clinical trials, including the advent of precision therapy, targeted to subgroups of ALS patients. AREAS COVERED Individualized, or precision medicine in ALS recognizes the heterogeneous nature of the disease and utilizes information such as the clinical phenotype of the disease, clinical biomarkers, and genotyping to promote a tailored approach to treatment. Separate to these considerations, the present review will discuss clinical trial design and how this can be improved to better match patient and investigator needs in ALS clinical trials. EXPERT OPINION Precision therapy will promote a more focused treatment approach, with the goal of improving clinical outcomes for ALS patients. An increased community awareness of ALS, coupled with significant industry and philanthropic funding for ALS research, is accelerating this process.
Collapse
Affiliation(s)
| | - Sicong Tu
- Brain and Mind Centre, University of Sydney, Camperdown, Australia
| | - Hannah C Timmins
- Brain and Mind Centre, University of Sydney, Camperdown, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Camperdown, Australia.,Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
12
|
Sarkar A, Dipani A, Leodori G, Popa T, Kassavetis P, Hallett M, Thirugnanasambandam N. Inter-Individual Variability in Motor Output Is Driven by Recruitment Gain in the Corticospinal Tract Rather Than Motor Threshold. Brain Sci 2022; 12:1401. [PMID: 36291333 PMCID: PMC9599681 DOI: 10.3390/brainsci12101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
Variability in the response of individuals to various non-invasive brain stimulation protocols is a major problem that limits their potential for clinical applications. Baseline motor-evoked potential (MEP) amplitude is the key predictor of an individual's response to transcranial magnetic stimulation protocols. However, the factors that predict MEP amplitude and its variability remain unclear. In this study, we aimed to identify the input-output curve (IOC) parameters that best predict MEP amplitude and its variability. We analysed IOC data from 75 subjects and built a general linear model (GLM) using the IOC parameters as regressors and MEP amplitude at 120% resting motor threshold (RMT) as the response variable. We bootstrapped the data to estimate variability of IOC parameters and included them in a GLM to identify the significant predictors of MEP amplitude variability. Peak slope, motor threshold, and maximum MEP amplitude of the IOC were significant predictors of MEP amplitude at 120% RMT and its variability was primarily driven by the variability of peak slope and maximum MEP amplitude. Recruitment gain and maximum corticospinal excitability are the key predictors of MEP amplitude and its variability. Inter-individual variability in motor output may be reduced by achieving a uniform IOC slope.
Collapse
Affiliation(s)
- Arkaprovo Sarkar
- Human Motor Neurophysiology and Neuromodulation Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- National Brain Research Centre (NBRC), Manesar 122052, India
| | - Alish Dipani
- National Brain Research Centre (NBRC), Manesar 122052, India
| | - Giorgio Leodori
- Department of Human Neuroscience, Sapienza University of Rome, 00185 Roma, Italy
- Neuromed Mediterranean Neurological Institute, Scientific Institute for Research, Hospitalisation and Healthcare (I.R.C.C.S.), 86077 Pozzilli, Italy
| | - Traian Popa
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
- Department of Life Sciences, Swiss Federal Institute of Technology (EPFL), 1950 Sion, Switzerland
| | - Panagiotis Kassavetis
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
- Department of Neurology, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Nivethida Thirugnanasambandam
- Human Motor Neurophysiology and Neuromodulation Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
- National Brain Research Centre (NBRC), Manesar 122052, India
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Lanza G, Cosentino FII, Lanuzza B, Tripodi M, Aricò D, Figorilli M, Puligheddu M, Fisicaro F, Bella R, Ferri R, Pennisi M. Reduced Intracortical Facilitation to TMS in Both Isolated REM Sleep Behavior Disorder (RBD) and Early Parkinson's Disease with RBD. J Clin Med 2022; 11:jcm11092291. [PMID: 35566417 PMCID: PMC9104430 DOI: 10.3390/jcm11092291] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/06/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND a reduced intracortical facilitation (ICF), a transcranial magnetic stimulation (TMS) measure largely mediated by glutamatergic neurotransmission, was observed in subjects affected by isolated REM sleep behavior disorder (iRBD). However, direct comparison between iRBD and Parkinson's disease (PD) with RBD is currently lacking. METHODS resting motor threshold, contralateral cortical silent period, amplitude and latency of motor evoked potentials, short-interval intracortical inhibition, and intracortical facilitation (ICF) were recorded from 15 drug-naïve iRBD patients, 15 drug-naïve PD with RBD patients, and 15 healthy participants from the right First Dorsal Interosseous muscle. REM sleep atonia index (RAI), Mini Mental State Examination (MMSE), Geriatric Depression Scale (GDS), and Epworth Sleepiness Scale (ESS) were assessed. RESULTS Groups were similar for sex, age, education, and patients for RBD duration and RAI. Neurological examination, MMSE, ESS, and GDS were normal in iRBD patients and controls; ESS scored worse in PD patients, but with no difference between groups at post hoc analysis. Compared to controls, both patient groups exhibited a significantly decreased ICF, without difference between them. CONCLUSIONS iRBD and PD with RBD shared a reduced ICF, thus suggesting the involvement of glutamatergic transmission both in subjects at risk for degeneration and in those with an overt α-synucleinopathy.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy;
- Correspondence: ; Tel.: +39-095-3782448
| | - Filomena Irene Ilaria Cosentino
- Department of Neurology IC and Sleep Research Center, Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy; (F.I.I.C.); (B.L.); (M.T.); (D.A.)
| | - Bartolo Lanuzza
- Department of Neurology IC and Sleep Research Center, Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy; (F.I.I.C.); (B.L.); (M.T.); (D.A.)
| | - Mariangela Tripodi
- Department of Neurology IC and Sleep Research Center, Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy; (F.I.I.C.); (B.L.); (M.T.); (D.A.)
| | - Debora Aricò
- Department of Neurology IC and Sleep Research Center, Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy; (F.I.I.C.); (B.L.); (M.T.); (D.A.)
| | - Michela Figorilli
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy; (M.F.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Monica Puligheddu
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy; (M.F.); (M.P.)
- Sleep Disorders Center, Department of Medical Sciences and Public Health, University of Cagliari, Asse Didattico E., SS 554 Bivio Sestu, Monserrato, 09042 Cagliari, Italy
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (F.F.); (M.P.)
| | - Rita Bella
- Department of Medical and Surgical Science and Advanced Technologies, University of Catania, Via Santa Sofia 78, 95125 Catania, Italy;
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute—IRCCS, Via Conte Ruggero 73, 94018 Troina, Italy;
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; (F.F.); (M.P.)
| |
Collapse
|
14
|
Cerebellar noninvasive neuromodulation influences the reactivity of the contralateral primary motor cortex and surrounding areas: a TMS-EMG-EEG study. CEREBELLUM (LONDON, ENGLAND) 2022; 22:319-331. [PMID: 35355218 DOI: 10.1007/s12311-022-01398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
Understanding cerebellar-cortical physiological interactions is of fundamental importance to advance the efficacy of neurorehabilitation strategies for patients with cerebellar damage. Previous works have aimed to modulate this pathway by applying transcranial electrical or magnetic stimulation (TMS) over the cerebellum and probing the resulting changes in the primary motor cortex (M1) excitability with motor-evoked potentials (MEPs). While these protocols produce changes in cerebellar excitability, their ability to modulate MEPs has produced inconsistent results, mainly due to the MEP being a highly variable outcome measure that is susceptible to fluctuations in the excitability of M1 neurons and spinal interneurons. To overcome this limitation, we combined TMS with electroencephalography (EEG) to directly record TMS-evoked potentials (TEPs) and oscillations from the scalp. In three sessions, we applied intermittent theta-burst stimulation (iTBS), cathodal direct current stimulation (c-DC) or sham stimulation to modulate cerebellar activity. To assess the effects on M1 and nearby cortex, we recorded TMS-EEG and MEPs before, immediately after (T1) and 15 min (T2) following cerebellar neuromodulation. We found that cerebellar iTBS immediately increased TMS-induced alpha oscillations and produced lasting facilitatory effects on TEPs, whereas c-DC immediately decreased TMS-induced alpha oscillations and reduced TEPs. We also found increased MEP following iTBS but not after c-DC. All of the TMS-EEG measures showed high test-retest repeatability. Overall, this work importantly shows that cerebellar neuromodulation influences both cortical and corticospinal physiological measures; however, they are more pronounced and detailed when utilizing TMS-EEG outcome measures. These findings highlight the advantage of using TMS-EEG over MEPs when assessing the effects of neuromodulation.
Collapse
|
15
|
Benussi A, Pilotto A, Cantoni V, Ferrari E, Borroni B, Padovani A. Neurophysiological Correlates of Motor and Cognitive Dysfunction in Prodromal and Overt Dementia with Lewy Bodies. J Alzheimers Dis 2022; 86:579-588. [DOI: 10.3233/jad-215531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The neurophysiological correlates of cognitive and motor symptoms in prodromal and overt dementia with Lewy bodies (DLB) are still to be elucidated. Objective: To evaluate if cognitive and motor features of patients with prodromal and overt DLB are associated with the impairment of specific neurotransmitter circuits, evaluated in vivo with transcranial magnetic stimulation (TMS). Methods: Fifty-one patients with DLB (twenty-five prodromal; twenty-six with dementia) underwent neuropsychological and clinical evaluation, with twenty-five patients having at least one follow-up evaluation. All patients were assessed with TMS at baseline, with protocols assessing cholinergic circuits (short latency afferent inhibition, SAI), GABAergic circuits (short interval intracortical inhibition, SICI), and glutamatergic circuits (intracortical facilitation, ICF). Results: Compared to HC, SICI, ICF, and SAI resulted significantly impaired in both prodromal and overt DLB, with the latter showing a reduced SICI and SAI also compared to prodromal DLB. There was a significant correlation between motor deficits, evaluated with the UPDRS-III, and the impairment of GABAergic (SICI) (r = 0.729, p < 0.001) and glutamatergic (ICF) (r –0.608, p < 0.001) circuits; global cognition, evaluated with the Mini-Mental State Examination, correlated with the impairment of cholinergic (SAI) circuits (r=–0.738, p < 0.001). Worsening of cognitive functions at follow-up was associated with reduced cholinergic functions at baseline (R2 = 0.53%, p < 0.001). Conclusion: These results suggest that motor and cognitive dysfunctions in prodromal and overt DLB depend on specific and independent neurotransmitter circuits.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Valentina Cantoni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Elisabetta Ferrari
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili, Brescia, Italy
| |
Collapse
|
16
|
Effect of transcranial magnetic stimulation on treatment effect and immune function. Saudi J Biol Sci 2022; 29:379-384. [PMID: 35002433 PMCID: PMC8717157 DOI: 10.1016/j.sjbs.2021.08.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 11/20/2022] Open
Abstract
To explore the effect of transcranial stimulation on the therapeutic effect and immune function of patients with post-stroke depression (PSD). Methods Selection in September 2020-April 2021 on the diagnosis of 70 patients with PSD as the research object, 35 patients were randomly divided into control group and intervention group and control group given conventional treatment, the intervention group in the control group on the basis of the application of transcranial magnetic stimulation treatment, compare the curative effect of two groups of patients after the treatment cycle and the effects on the immune function. Results After treatment, the levels of DA, NE, 5-HT in 2 groups were significantly increased, and those in the observation group were significantly higher than those in the control group (P < 0.05). After 8 weeks of treatment, serum Gly content in 2 groups was significantly increased and Glu content was significantly decreased compared with before treatment. Compared with the control group, serum Gly content in observation group was significantly increased and Glu content was significantly decreased after treatment (P < 0.05). After 8 weeks of treatment, the contents of IL-1β, IL-6 and TNF-α in serum of 2 groups were significantly decreased, compared with the control group, the contents of IL-1β, IL-6 and TNF-α in serum of observation group were significantly decreased (P < 0.05); Before treatment, there was no significant difference in PHQ-9 score and MBI score between the two groups (P > 0.05). After 8 weeks of treatment, PHQ-9 score and MBI score in the two groups were better than before treatment, and the observation group was better than the control group (P < 0.05). Conclusion Transcranial magnetic stimulation therapy can not only effectively promote the synthesis and release of monoamine neurotransmitters in patients with post-stroke depression, regulate the inhibitory/excitatory amino acid neurotransmitters, reduce inflammatory response, improve the clinical treatment effect and enhance the immune function of PSD patients, which has clinical application value.
Collapse
|
17
|
Corti EJ, Marinovic W, Nguyen AT, Gasson N, Loftus AM. Motor cortex excitability in chronic low back pain. Exp Brain Res 2022; 240:3249-3257. [PMID: 36289076 PMCID: PMC9678990 DOI: 10.1007/s00221-022-06492-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/17/2022] [Indexed: 01/15/2023]
Abstract
Chronic pain is associated with dysfunctional cortical excitability. Research has identified altered intracortical motor cortex excitability in Chronic Lower Back Pain (CLBP). However, research identifying the specific intracortical changes underlying CLBP has been met with inconsistent findings. In the present case-control study, we examined intracortical excitability of the primary motor cortex using transcranial magnetic stimulation (TMS) in individuals with CLBP. Twenty participants with CLBP (Mage = 54.45 years, SDage = 15.89 years) and 18 age- and gender-matched, pain-free controls (M = 53.83, SD = 16.72) were included in this study. TMS was applied to the hand motor area of the right hemisphere and motor evoked potentials (MEPs) were recorded from the first dorsal interosseous muscle of the contralateral hand. Resting motor threshold (rMT) and MEP amplitude were measured using single-pulse stimulation. Short interval intracortical inhibition (SICI) and intracortical facilitation (ICF) were assessed using paired-pulse stimulation. Individuals with CLBP had significantly higher rMT (decreased corticospinal excitability) and lower ICF compared to controls. No significant differences were found in MEP amplitude and SICI. These findings add to the growing body of evidence that CLBP is associated with deficits in intracortical modulation involving glutamatergic mechanisms.
Collapse
Affiliation(s)
- E. J. Corti
- School of Population Health, Curtin University, GPO Box U1987, Perth, WA 6845 Australia ,Curtin Neuroscience Research Laboratory, Curtin University, Perth, WA Australia
| | - W. Marinovic
- School of Population Health, Curtin University, GPO Box U1987, Perth, WA 6845 Australia ,Curtin Neuroscience Research Laboratory, Curtin University, Perth, WA Australia
| | - A. T. Nguyen
- School of Population Health, Curtin University, GPO Box U1987, Perth, WA 6845 Australia ,Curtin Neuroscience Research Laboratory, Curtin University, Perth, WA Australia
| | - N. Gasson
- School of Population Health, Curtin University, GPO Box U1987, Perth, WA 6845 Australia ,Curtin Neuroscience Research Laboratory, Curtin University, Perth, WA Australia
| | - A. M. Loftus
- School of Population Health, Curtin University, GPO Box U1987, Perth, WA 6845 Australia ,Curtin Neuroscience Research Laboratory, Curtin University, Perth, WA Australia
| |
Collapse
|
18
|
Transcranial magnetic stimulation for sleep disorders in Alzheimer's disease: A double-blind, randomized, and sham-controlled pilot study. Neurosci Lett 2022; 766:136337. [PMID: 34762980 DOI: 10.1016/j.neulet.2021.136337] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Sleep disorders are commonly comorbid with Alzheimer's disease (AD), And these disorders interfere with each other in many aspects. To date, pharmacological treatments for sleep disorders are still limited, and studies investigating repetitive transcranial magnetic stimulation (rTMS) for sleep disorders in AD are still lacking. METHOD A single-center, randomized, double-blind, parallel-arm, and sham-controlled pilot study was conducted in AD patients with sleep disorders. Seventy subjects were randomly divided into the following two groups: the sham group (SG) and the intervention group (IG). We evaluated sleep changes using the Pittsburgh Sleep Quality Index (PSQI) before and after the intervention. We also assessed the patients' cognitive function by the Alzheimer's Disease Assessment Scale-Cognitive section (ADAS-Cog). The intervention period was four weeks, and the patients were followed up in the 8th week to test the persistence of the effect of the rTMS intervention. RESULT Significant differences in the PSQI scores were found between the SG and IG at the end of the 4-week intervention (P = 0.001) and the 8-week follow-up (P < 0.001). There was also significant improvement in ADAS-Cog scores (4 weeks: P = 0.048, 8 weeks: P = 0.038). Activities of daily living (ADL) did not significantly differ between the SG and IG. CONCLUSION rTMS can effectively ameliorate sleep disorders in AD patients.
Collapse
|
19
|
Antczak J, Rusin G, Słowik A. Transcranial Magnetic Stimulation as a Diagnostic and Therapeutic Tool in Various Types of Dementia. J Clin Med 2021; 10:jcm10132875. [PMID: 34203558 PMCID: PMC8267667 DOI: 10.3390/jcm10132875] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 02/03/2023] Open
Abstract
Dementia is recognized as a healthcare and social burden and remains challenging in terms of proper diagnosis and treatment. Transcranial magnetic stimulation (TMS) is a diagnostic and therapeutic tool in various neurological diseases that noninvasively investigates cortical excitability and connectivity and can induce brain plasticity. This article reviews findings on TMS in common dementia types as well as therapeutic results. Alzheimer’s disease (AD) is characterized by increased cortical excitability and reduced cortical inhibition, especially as mediated by cholinergic neurons and as documented by impairment of short latency inhibition (SAI). In vascular dementia, excitability is also increased. SAI may have various outcomes, which probably reflects its frequent overlap with AD. Dementia with Lewy bodies (DLB) is associated with SAI decrease. Motor cortical excitability is usually normal, reflecting the lack of corticospinal tract involvement. DLB and other dementia types are also characterized by impairment of short interval intracortical inhibition. In frontotemporal dementia, cortical excitability is increased, but SAI is normal. Repetitive transcranial magnetic stimulation has the potential to improve cognitive function. It has been extensively studied in AD, showing promising results after multisite stimulation. TMS with electroencephalography recording opens new possibilities for improving diagnostic accuracy; however, more studies are needed to support the existing data.
Collapse
|
20
|
Andrade-Talavera Y, Rodríguez-Moreno A. Synaptic Plasticity and Oscillations in Alzheimer's Disease: A Complex Picture of a Multifaceted Disease. Front Mol Neurosci 2021; 14:696476. [PMID: 34220451 PMCID: PMC8248350 DOI: 10.3389/fnmol.2021.696476] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
Brain plasticity is widely accepted as the core neurophysiological basis of memory and is generally defined by activity-dependent changes in synaptic efficacy, such as long-term potentiation (LTP) and long-term depression (LTD). By using diverse induction protocols like high-frequency stimulation (HFS) or spike-timing dependent plasticity (STDP), such crucial cognition-relevant plastic processes are shown to be impaired in Alzheimer’s disease (AD). In AD, the severity of the cognitive impairment also correlates with the level of disruption of neuronal network dynamics. Currently under debate, the named amyloid hypothesis points to amyloid-beta peptide 1–42 (Aβ42) as the trigger of the functional deviations underlying cognitive impairment in AD. However, there are missing functional mechanistic data that comprehensively dissect the early subtle changes that lead to synaptic dysfunction and subsequent neuronal network collapse in AD. The convergence of the study of both, mechanisms underlying brain plasticity, and neuronal network dynamics, may represent the most efficient approach to address the early triggering and aberrant mechanisms underlying the progressive clinical cognitive impairment in AD. Here we comment on the emerging integrative roles of brain plasticity and network oscillations in AD research and on the future perspectives of research in this field.
Collapse
Affiliation(s)
- Yuniesky Andrade-Talavera
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
21
|
Lake J, Storm CS, Makarious MB, Bandres-Ciga S. Genetic and Transcriptomic Biomarkers in Neurodegenerative Diseases: Current Situation and the Road Ahead. Cells 2021; 10:1030. [PMID: 33925602 PMCID: PMC8170880 DOI: 10.3390/cells10051030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 12/19/2022] Open
Abstract
Neurodegenerative diseases are etiologically and clinically heterogeneous conditions, often reflecting a spectrum of disease rather than well-defined disorders. The underlying molecular complexity of these diseases has made the discovery and validation of useful biomarkers challenging. The search of characteristic genetic and transcriptomic indicators for preclinical disease diagnosis, prognosis, or subtyping is an area of ongoing effort and interest. The next generation of biomarker studies holds promise by implementing meaningful longitudinal and multi-modal approaches in large scale biobank and healthcare system scale datasets. This work will only be possible in an open science framework. This review summarizes the current state of genetic and transcriptomic biomarkers in Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis, providing a comprehensive landscape of recent literature and future directions.
Collapse
Affiliation(s)
- Julie Lake
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.); (M.B.M.)
| | - Catherine S. Storm
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK;
- UCL Movement Disorders Centre, University College London, London WC1E 6BT, UK
| | - Mary B. Makarious
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.); (M.B.M.)
| | - Sara Bandres-Ciga
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.); (M.B.M.)
| |
Collapse
|
22
|
Guerra A, Rocchi L, Grego A, Berardi F, Luisi C, Ferreri F. Contribution of TMS and TMS-EEG to the Understanding of Mechanisms Underlying Physiological Brain Aging. Brain Sci 2021; 11:405. [PMID: 33810206 PMCID: PMC8004753 DOI: 10.3390/brainsci11030405] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
In the human brain, aging is characterized by progressive neuronal loss, leading to disruption of synapses and to a degree of failure in neurotransmission. However, there is increasing evidence to support the notion that the aged brain has a remarkable ability to reorganize itself, with the aim of preserving its physiological activity. It is important to develop objective markers able to characterize the biological processes underlying brain aging in the intact human, and to distinguish them from brain degeneration associated with many neurological diseases. Transcranial magnetic stimulation (TMS), coupled with electromyography or electroencephalography (EEG), is particularly suited to this aim, due to the functional nature of the information provided, and thanks to the ease with which it can be integrated with behavioral manipulation. In this review, we aimed to provide up to date information about the role of TMS and TMS-EEG in the investigation of brain aging. In particular, we focused on data about cortical excitability, connectivity and plasticity, obtained by using readouts such as motor evoked potentials and transcranial evoked potentials. Overall, findings in the literature support an important potential contribution of TMS to the understanding of the mechanisms underlying normal brain aging. Further studies are needed to expand the current body of information and to assess the applicability of TMS findings in the clinical setting.
Collapse
Affiliation(s)
| | - Lorenzo Rocchi
- Department of Clinical and Movements Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Alberto Grego
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Francesca Berardi
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Concetta Luisi
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Florinda Ferreri
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
23
|
Rawji V, Kaczmarczyk I, Rocchi L, Fong PY, Rothwell JC, Sharma N. Preconditioning Stimulus Intensity Alters Paired-Pulse TMS Evoked Potentials. Brain Sci 2021; 11:326. [PMID: 33806701 PMCID: PMC7998341 DOI: 10.3390/brainsci11030326] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Motor cortex (M1) paired-pulse TMS (ppTMS) probes excitatory and inhibitory intracortical dynamics by measurement of motor-evoked potentials (MEPs). However, MEPs reflect cortical and spinal excitabilities and therefore cannot isolate cortical function. Concurrent TMS-EEG has the ability to measure cortical function, while limiting peripheral confounds; TMS stimulates M1, whilst EEG acts as the readout: the TMS-evoked potential (TEP). Whilst varying preconditioning stimulus intensity influences intracortical inhibition measured by MEPs, the effects on TEPs is undefined. TMS was delivered to the left M1 using single-pulse and three, ppTMS paradigms, each using a different preconditioning stimulus: 70%, 80% or 90% of resting motor threshold. Corticospinal inhibition was present in all three ppTMS conditions. ppTMS TEP peaks were reduced predominantly under the ppTMS 70 protocol but less so for ppTMS 80 and not at all for ppTMS 90. There was a significant negative correlation between MEPs and N45 TEP peak for ppTMS 70 reaching statistical trends for ppTMS 80 and 90. Whilst ppTMS MEPs show inhibition across a range of preconditioning stimulus intensities, ppTMS TEPs do not. TEPs after M1 ppTMS vary as a function of preconditioning stimulus intensity: smaller preconditioning stimulus intensities result in better discriminability between conditioned and unconditioned TEPs. We recommend that preconditioning stimulus intensity should be minimized when using ppTMS to probe intracortical inhibition.
Collapse
Affiliation(s)
- Vishal Rawji
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (V.R.); (I.K.); (L.R.); (P.-Y.F.); (J.C.R.)
| | - Isabella Kaczmarczyk
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (V.R.); (I.K.); (L.R.); (P.-Y.F.); (J.C.R.)
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (V.R.); (I.K.); (L.R.); (P.-Y.F.); (J.C.R.)
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Po-Yu Fong
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (V.R.); (I.K.); (L.R.); (P.-Y.F.); (J.C.R.)
- Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan City 333, Taiwan
- Division of Movement Disorders, Department of Neurology, Chang Gung Memorial Hospital at Linkou, Taoyuan City 333, Taiwan
| | - John C. Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (V.R.); (I.K.); (L.R.); (P.-Y.F.); (J.C.R.)
| | - Nikhil Sharma
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (V.R.); (I.K.); (L.R.); (P.-Y.F.); (J.C.R.)
| |
Collapse
|