1
|
Bedner P, Steinhäuser C. Role of Impaired Astrocyte Gap Junction Coupling in Epileptogenesis. Cells 2023; 12:1669. [PMID: 37371139 DOI: 10.3390/cells12121669] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
The gap-junction-coupled astroglial network plays a central role in the regulation of neuronal activity and synchronisation, but its involvement in the pathogenesis of neuronal diseases is not yet understood. Here, we present the current state of knowledge about the impact of impaired glial coupling in the development and progression of epilepsy and discuss whether astrocytes represent alternative therapeutic targets. We focus mainly on temporal lobe epilepsy (TLE), which is the most common form of epilepsy in adults and is characterised by high therapy resistance. Functional data from TLE patients and corresponding experimental models point to a complete loss of astrocytic coupling, but preservation of the gap junction forming proteins connexin43 and connexin30 in hippocampal sclerosis. Several studies further indicate that astrocyte uncoupling is a causal event in the initiation of TLE, as it occurs very early in epileptogenesis, clearly preceding dysfunctional changes in neurons. However, more research is needed to fully understand the role of gap junction channels in epilepsy and to develop safe and effective therapeutic strategies targeting astrocytes.
Collapse
Affiliation(s)
- Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
2
|
Henning L, Unichenko P, Bedner P, Steinhäuser C, Henneberger C. Overview Article Astrocytes as Initiators of Epilepsy. Neurochem Res 2023; 48:1091-1099. [PMID: 36244037 PMCID: PMC10030460 DOI: 10.1007/s11064-022-03773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/22/2022] [Accepted: 09/27/2022] [Indexed: 10/17/2022]
Abstract
Astrocytes play a dual role in the brain. On the one hand, they are active signaling partners of neurons and can for instance control synaptic transmission and its plasticity. On the other hand, they fulfill various homeostatic functions such as clearance of glutamate and K+ released from neurons. The latter is for instance important for limiting neuronal excitability. Therefore, an impairment or failure of glutamate and K+ clearance will lead to increased neuronal excitability, which could trigger or aggravate brain diseases such as epilepsy, in which neuronal hyperexcitability plays a role. Experimental data indicate that astrocytes could have such a causal role in epilepsy, but the role of astrocytes as initiators of epilepsy and the relevant mechanisms are under debate. In this overview, we will discuss the potential mechanisms with focus on K+ clearance, glutamate uptake and homoeostasis and related mechanisms, and the evidence for their causative role in epilepsy.
Collapse
Affiliation(s)
- Lukas Henning
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Petr Unichenko
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127, Bonn, Germany.
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127, Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany.
| |
Collapse
|
3
|
Khan D, Bedner P, Müller J, Lülsberg F, Henning L, Prinz M, Steinhäuser C, Muhammad S. TGF-β Activated Kinase 1 (TAK1) Is Activated in Microglia After Experimental Epilepsy and Contributes to Epileptogenesis. Mol Neurobiol 2023; 60:3413-3422. [PMID: 36862288 PMCID: PMC10122619 DOI: 10.1007/s12035-023-03290-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/19/2023] [Indexed: 03/03/2023]
Abstract
Increasing evidence suggests that inflammation promotes epileptogenesis. TAK1 is a central enzyme in the upstream pathway of NF-κB and is known to play a central role in promoting neuroinflammation in neurodegenerative diseases. Here, we investigated the cellular role of TAK1 in experimental epilepsy. C57Bl6 and transgenic mice with inducible and microglia-specific deletion of Tak1 (Cx3cr1CreER:Tak1fl/fl) were subjected to the unilateral intracortical kainate mouse model of temporal lobe epilepsy (TLE). Immunohistochemical staining was performed to quantify different cell populations. The epileptic activity was monitored by continuous telemetric electroencephalogram (EEG) recordings over a period of 4 weeks. The results show that TAK1 was activated predominantly in microglia at an early stage of kainate-induced epileptogenesis. Tak1 deletion in microglia resulted in reduced hippocampal reactive microgliosis and a significant decrease in chronic epileptic activity. Overall, our data suggest that TAK1-dependent microglial activation contributes to the pathogenesis of chronic epilepsy.
Collapse
Affiliation(s)
- Dilaware Khan
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.,Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Julia Müller
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Fabienne Lülsberg
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Lukas Henning
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Venusberg Campus 1, 53127, Bonn, Germany
| | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany. .,Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
4
|
Henning L, Antony H, Breuer A, Müller J, Seifert G, Audinat E, Singh P, Brosseron F, Heneka MT, Steinhäuser C, Bedner P. Reactive microglia are the major source of tumor necrosis factor alpha and contribute to astrocyte dysfunction and acute seizures in experimental temporal lobe epilepsy. Glia 2023; 71:168-186. [PMID: 36373840 DOI: 10.1002/glia.24265] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022]
Abstract
Extensive microglia reactivity has been well described in human and experimental temporal lobe epilepsy (TLE). To date, however, it is not clear whether and based on which molecular mechanisms microglia contribute to the development and progression of focal epilepsy. Astroglial gap junction coupled networks play an important role in regulating neuronal activity and loss of interastrocytic coupling causally contributes to TLE. Here, we show in the unilateral intracortical kainate (KA) mouse model of TLE that reactive microglia are primary producers of tumor necrosis factor (TNF)α and contribute to astrocyte dysfunction and severity of status epilepticus (SE). Immunohistochemical analyses revealed pronounced and persistent microglia reactivity, which already started 4 h after KA-induced SE. Partial depletion of microglia using a colony stimulating factor 1 receptor inhibitor prevented early astrocyte uncoupling and attenuated the severity of SE, but increased the mortality of epileptic mice following surgery. Using microglia-specific inducible TNFα knockout mice we identified microglia as the major source of TNFα during early epileptogenesis. Importantly, microglia-specific TNFα knockout prevented SE-induced gap junction uncoupling in astrocytes. Continuous telemetric EEG recordings revealed that during the first 4 weeks after SE induction, microglial TNFα did not significantly contribute to spontaneous generalized seizure activity. Moreover, the absence of microglial TNFα did not affect the development of hippocampal sclerosis but attenuated gliosis. Taken together, these data implicate reactive microglia in astrocyte dysfunction and network hyperexcitability after an epileptogenic insult.
Collapse
Affiliation(s)
- Lukas Henning
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Henrike Antony
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Annika Breuer
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Julia Müller
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Etienne Audinat
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | | | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Vezzani A, Ravizza T, Bedner P, Aronica E, Steinhäuser C, Boison D. Astrocytes in the initiation and progression of epilepsy. Nat Rev Neurol 2022; 18:707-722. [PMID: 36280704 PMCID: PMC10368155 DOI: 10.1038/s41582-022-00727-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 11/09/2022]
Abstract
Epilepsy affects ~65 million people worldwide. First-line treatment options include >20 antiseizure medications, but seizure control is not achieved in approximately one-third of patients. Antiseizure medications act primarily on neurons and can provide symptomatic control of seizures, but do not alter the onset and progression of epilepsy and can cause serious adverse effects. Therefore, medications with new cellular and molecular targets and mechanisms of action are needed. Accumulating evidence indicates that astrocytes are crucial to the pathophysiological mechanisms of epilepsy, raising the possibility that these cells could be novel therapeutic targets. In this Review, we discuss how dysregulation of key astrocyte functions - gliotransmission, cell metabolism and immune function - contribute to the development and progression of hyperexcitability in epilepsy. We consider strategies to mitigate astrocyte dysfunction in each of these areas, and provide an overview of how astrocyte activation states can be monitored in vivo not only to assess their contribution to disease but also to identify markers of disease processes and treatment effects. Improved understanding of the roles of astrocytes in epilepsy has the potential to lead to novel therapies to prevent the initiation and progression of epilepsy.
Collapse
Affiliation(s)
- Annamaria Vezzani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy.
| | - Teresa Ravizza
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
6
|
Shojai S, Haeri Rohani SA, Moosavi-Movahedi AA, Habibi-Rezaei M. Human serum albumin in neurodegeneration. Rev Neurosci 2022; 33:803-817. [PMID: 35363449 DOI: 10.1515/revneuro-2021-0165] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/02/2022] [Indexed: 11/15/2022]
Abstract
Serum albumin (SA) exists in relatively high concentrations, in close contact with most cells. However, in the adult brain, except for cerebrospinal fluid (CSF), SA concentration is relatively low. It is mainly produced in the liver to serve as the main protein of the blood plasma. In the plasma, it functions as a carrier, chaperon, antioxidant, source of amino acids, osmoregulator, etc. As a carrier, it facilitates the stable presence and transport of the hydrophobic and hydrophilic molecules, including free fatty acids, steroid hormones, medicines, and metal ions. As a chaperon, SA binds to and protects other proteins. As an antioxidant, thanks to a free sulfhydryl group (-SH), albumin is responsible for most antioxidant properties of plasma. These functions qualify SA as a major player in, and a mirror of, overall health status, aging, and neurodegeneration. The low concentration of SA is associated with cognitive deterioration in the elderly and negative prognosis in multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). SA has been shown to be structurally modified in neurological conditions such as Alzheimer's disease (AD). During blood-brain barrier damage albumin enters the brain tissue and could trigger epilepsy and neurodegeneration. SA is able to bind to the precursor agent of the AD, amyloid-beta (Aβ), preventing its toxic effects in the periphery, and is being tested for treating this disease. SA therapy may also be effective in brain rejuvenation. In the current review, we will bring forward the prominent properties and roles of SA in neurodegeneration.
Collapse
Affiliation(s)
- Sajjad Shojai
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | | | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran, Iran
- Nano-Biomedicine Center of Excellence, Nanoscience and Nanotechnology Research Center, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Neuroprotection Mediated by Human Blood Plasma in Mouse Hippocampal Slice Cultures and in Oxidatively Stressed Human Neurons. Int J Mol Sci 2021; 22:ijms22179567. [PMID: 34502475 PMCID: PMC8430756 DOI: 10.3390/ijms22179567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/08/2023] Open
Abstract
Neuroprotection from oxidative stress is critical during neuronal development and maintenance but also plays a major role in the pathogenesis and potential treatment of various neurological disorders and neurodegenerative diseases. Emerging evidence in the murine system suggests neuroprotective effects of blood plasma on the aged or diseased brain. However, little is known about plasma-mediated effects on human neurons. In the present study, we demonstrate the neuroprotective effect mediated by human plasma and the most abundant plasma–protein human serum albumin against oxidative stress in glutamatergic neurons differentiated from human neural crest-derived inferior turbinate stem cells. We observed a strong neuroprotective effect of human plasma and human serum albumin against oxidative stress-induced neuronal death on the single cell level, similar to the one mediated by tumor necrosis factor alpha. Moreover, we detected neuroprotection of plasma and human serum albumin against kainic acid-induced excitatory stress in ex vivo cultured mouse hippocampal tissue slices. The present study provides deeper insights into plasma-mediated neuroprotection ultimately resulting in the development of novel therapies for a variety of neurological and, in particular, neurodegenerative diseases.
Collapse
|
8
|
Heuser K, Enger R. Astrocytic Ca 2+ Signaling in Epilepsy. Front Cell Neurosci 2021; 15:695380. [PMID: 34335188 PMCID: PMC8320018 DOI: 10.3389/fncel.2021.695380] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 01/10/2023] Open
Abstract
Epilepsy is one of the most common neurological disorders – estimated to affect at least 65 million worldwide. Most of the epilepsy research has so far focused on how to dampen neuronal discharges and to explain how changes in intrinsic neuronal activity or network function cause seizures. As a result, pharmacological therapy has largely been limited to symptomatic treatment targeted at neurons. Given the expanding spectrum of functions ascribed to the non-neuronal constituents of the brain, in both physiological brain function and in brain disorders, it is natural to closely consider the roles of astrocytes in epilepsy. It is now widely accepted that astrocytes are key controllers of the composition of the extracellular fluids, and may directly interact with neurons by releasing gliotransmitters. A central tenet is that astrocytic intracellular Ca2+ signals promote release of such signaling substances, either through synaptic or non-synaptic mechanisms. Accruing evidence suggests that astrocytic Ca2+ signals play important roles in both seizures and epilepsy, and this review aims to highlight the current knowledge of the roles of this central astrocytic signaling mechanism in ictogenesis and epileptogenesis.
Collapse
Affiliation(s)
- Kjell Heuser
- Department of Neurology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Rune Enger
- Letten Centre and GliaLab, Division of Anatomy, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Bedner P, Wu Z, Steinhäuser C. Response: Astrocytes as alternative targets for more efficient antiepileptogenic drugs. Epilepsia 2021; 62:2299-2300. [PMID: 34169524 DOI: 10.1111/epi.16965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/16/2021] [Accepted: 06/02/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Zhou Wu
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|