1
|
Lehnen J, Venkatesh P, Yao Z, Aziz A, Nguyen PVP, Harvey J, Alick-Lindstrom S, Doyle A, Podkorytova I, Perven G, Hays R, Zepeda R, Das RR, Ding K. Real-Time Seizure Detection Using Behind-the-Ear Wearable System. J Clin Neurophysiol 2025; 42:118-125. [PMID: 38376923 DOI: 10.1097/wnp.0000000000001076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
INTRODUCTION This study examines the usability and comfort of a behind-the-ear seizure detection device called brain seizure detection (BrainSD) that captures ictal electroencephalogram (EEG) data using four scalp electrodes. METHODS This is a feasibility study. Thirty-two patients admitted to a level 4 Epilepsy Monitoring Unit were enrolled. The subjects wore BrainSD and the standard 21-channel video-EEG simultaneously. Epileptologists analyzed the EEG signals collected by BrainSD and validated it using video-EEG data to confirm its accuracy. A poststudy survey was completed by each participant to evaluate the comfort and usability of the device. In addition, a focus group of UT Southwestern epileptologists was held to discuss the features they would like to see in a home EEG-based seizure detection device such as BrainSD. RESULTS In total, BrainSD captured 11 of the 14 seizures that occurred while the device was being worn. All 11 seizures captured on BrainSD had focal onset, with three becoming bilateral tonic-clonic and one seizure being of subclinical status. The device was worn for an average of 41 hours. The poststudy survey showed that most users found the device comfortable, easy-to-use, and stated they would be interested in using BrainSD. Epileptologists in the focus group expressed a similar interest in BrainSD. CONCLUSIONS Brain seizure detection is able to detect EEG signals using four behind-the-ear electrodes. Its comfort, ease-of-use, and ability to detect numerous types of seizures make BrainSD an acceptable at-home EEG detection device from both the patient and provider perspective.
Collapse
Affiliation(s)
- Jamie Lehnen
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Pooja Venkatesh
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zhuoran Yao
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Abdul Aziz
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX; and
| | - Phuc V P Nguyen
- Department of Computer Science and Engineering, University of Texas at Arlington, Arlington, TX; and
- College of Information and Computer Science, University of Massachusets Amherst, Amherst, MA
| | - Jay Harvey
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sasha Alick-Lindstrom
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Alex Doyle
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Irina Podkorytova
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ghazala Perven
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ryan Hays
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Rodrigo Zepeda
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Rohit R Das
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kan Ding
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
2
|
Viana PF, Duun-Henriksen J, Biondi A, Winston JS, Freestone DR, Schulze-Bonhage A, Brinkmann BH, Richardson MP. Real-world epilepsy monitoring with ultra long-term subcutaneous EEG: a 15-month prospective study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.16.24317163. [PMID: 39606353 PMCID: PMC11601716 DOI: 10.1101/2024.11.16.24317163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Objective Novel subcutaneous electroencephalography (sqEEG) systems enable prolonged, near-continuous cerebral monitoring in real-world conditions. Nevertheless, the feasibility, acceptability and overall clinical utility of these systems remains unclear. We report on the longest observational study using ultra long-term sqEEG to date. Methods We conducted a 15-month prospective, observational study including ten adult people with treatment-resistant epilepsy. After device implantation, patients were asked to record sqEEG, to use an electronic seizure diary and to complete acceptability and usability questionnaires. sqEEG seizures were annotated visually, aided by automated detection. Seizure clustering was assessed via Fano Factor analysis and seizure periodicity at multiple timescales was investigated through circular statistics. Results Over a median duration of 438 days, ten patients recorded a median 18.8 hours/day, totalling 71,984 hours of real-world sqEEG data. Adherence and acceptability remained high throughout the study. While 754 sqEEG seizures were recorded across patients, over half (52%) of these were not reported in the patient diary. Of the 140 (27%) diary reports not associated with an identifiable sqEEG seizure, the majority (68%) were reported as seizures with preserved awareness. The sqEEG to diary F1 agreement score was highly variable, ranging from 0.06 to 0.97. Patient-specific patterns of seizure clustering and seizure periodicity were observed at multiple (circadian and multidien) timescales. Interpretation We demonstrate feasibility and high acceptability of ultra long-term (months-years) sqEEG monitoring. These systems help provide real-world, more objective seizure counting compared to patient diaries. It is possible to monitor individual temporal fluctuations of seizure occurrence, including seizure cycles.
Collapse
Affiliation(s)
- Pedro F. Viana
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9RT, United Kingdom
- Epilepsy Centre, King’s College Hospital NHS Foundation Trust, London SE5 9RS, United Kingdom
| | | | - Andrea Biondi
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9RT, United Kingdom
| | - Joel S. Winston
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9RT, United Kingdom
- Epilepsy Centre, King’s College Hospital NHS Foundation Trust, London SE5 9RS, United Kingdom
| | | | - Andreas Schulze-Bonhage
- Epilepsy Center, Department for Neurosurgery, University Medical Center Freiburg, 79106 Freiburg, Germany
| | - Benjamin H. Brinkmann
- Bioelectronics Neurology and Engineering Laboratory, Department of Neurology, Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55901, USA
| | - Mark P. Richardson
- Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 9RT, United Kingdom
- Epilepsy Centre, King’s College Hospital NHS Foundation Trust, London SE5 9RS, United Kingdom
| |
Collapse
|
3
|
Fine AL. Detection is Key: Automated Tonic Seizure Detection With a Wearable Device. Epilepsy Curr 2024:15357597241293298. [PMID: 39545014 PMCID: PMC11558647 DOI: 10.1177/15357597241293298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Automated detection of tonic seizures using wearable movement sensor and artificial neural network Larsen SA, Johansen DH, Beniczky S. Epilepsia . 2024 Jul 30. doi: 10.1111/epi.18077 . Epub ahead of print. PMID: 39076045. Although several validated wearable devices are available for the detection of generalized tonic-clonic seizures, automated detection of tonic seizures is still a challenge. In this phase 1 study, we report the development and validation of an artificial neural network (ANN) model for automated detection of tonic seizures with visible clinical manifestation using a wearable wristband movement sensor (accelerometer and gyroscope). The dataset prospectively recorded for this study included 70 tonic seizures from 15 patients (7 males, age 3-46 years, median = 19 years). We trained an ANN model to detect tonic seizures. The independent test dataset comprised nocturnal recordings, including 10 tonic seizures from 3 patients and additional (distractor) data from 3 subjects without seizures. The ANN model detected nocturnal tonic seizures with visible clinical manifestation with a sensitivity of 100% (95% confidence interval = 69%-100%) and with an average false alarm rate of 0.16/night. The mean detection latency was 14.1 s (median = 10 s), with a maximum of 47 s. These data suggest that nocturnal tonic seizures can be reliably detected with movement sensors using ANN. Large-scale, multicenter prospective (phase 3) trials are needed to provide compelling evidence for the clinical utility of this device and detection algorithm.
Collapse
Affiliation(s)
- Anthony L Fine
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
Biondi A, Zabler N, Kalousios S, Simblett S, Laiou P, Viana PF, Dümpelmann M, Schulze-Bonhage A, Richardson MP. The value of self-reported variables in epilepsy monitoring and management. A systematic scoping review. Seizure 2024; 122:119-143. [PMID: 39406060 DOI: 10.1016/j.seizure.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
PURPOSE Self-reported records of seizure occurrences, seizure triggers and prodromal symptoms via paper or electronic tools are essential components of epilepsy management. Despite recent studies indicating that this information could hold important clinical value, the adoption of self-reported information in clinical practice is inconsistent and of uncertain value. METHODS We performed a systematic scoping review of the literature following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A combination of different digital libraries was used (Embase, MEDLINE, Global Health, PsycINFO). The review examined acceptability, adherence, and ability to self-report or predict seizures, along with innovative applications of self-reported data. We comprehensively outline study characteristics, key results, and identified strengths and limitations. RESULTS Sixty-eight full-text and two abstracts were included, where a total of 10 electronic tools were identified. Studies revealed high patient interest and acceptable adherence, particularly when tools were well-designed, and data shared with healthcare providers. While patients faced challenges in self-reporting or predicting seizures, a subgroup exhibited higher accuracy and compliance. Studies underscored the value of self-report information in identifying seizure clusters, understanding associations between self-reported seizure frequency and triggers, developing personalized seizure risk, forecasting and prediction models, and the potential benefits when integrated with wearable or implantable devices. Limitations included population selection, repeated dataset use, and the absence of gold standards for seizure counting. CONCLUSION Personalizing tools to collect self-report information, integrating them with wearable technologies, utilizing collected data for clinical outcomes, and merging them with electronic health records could provide a reliable resource for epilepsy monitoring and management.
Collapse
Affiliation(s)
- Andrea Biondi
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK.
| | - Nicolas Zabler
- Epilepsy Centre, University Medical Centre - University of Freiburg, Freiburg, Germany
| | - Sotirios Kalousios
- Epilepsy Centre, University Medical Centre - University of Freiburg, Freiburg, Germany
| | - Sara Simblett
- Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Petroula Laiou
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| | - Pedro F Viana
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK; Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Matthias Dümpelmann
- Epilepsy Centre, University Medical Centre - University of Freiburg, Freiburg, Germany
| | | | - Mark P Richardson
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK
| |
Collapse
|
5
|
Rubboli G, Bø MH, Alfstad K, Armand Larsen S, Jacobsen MDH, Vlachou M, Weisdorf S, Rasmussen R, Egge A, Henning O, Lossius M, Beniczky S. Clinical utility of ultra long-term subcutaneous electroencephalographic monitoring in drug-resistant epilepsies: a "real world" pilot study. Epilepsia 2024; 65:3265-3278. [PMID: 39340394 DOI: 10.1111/epi.18121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
OBJECTIVE This study was undertaken to assess the clinical utility, safety, and tolerability in epilepsy patients of ultra long-term monitoring with a novel subcutaneous electroencephalographic (EEG) device (sqEEG). METHODS Five patients with drug-resistant focal epilepsy were implanted (one patient bilaterally) with sqEEG. In phase 1, we assessed sqEEG sensitivity for seizure recording by recording seizures simultaneously with scalp EEG in the epilepsy monitoring unit (EMU). sqEEG was scored either visually (v-sqEEG) or by using a semiautomatic algorithm (EpiSight; E-sqEEG). In phase 2, the patients were monitored as outpatients for 3-6 months. sqEEG data were analyzed monthly, evaluating concordance of data obtained by v-sqEEG, E-sqEEG, and patients' diaries. v-sqEEG data were used to guide treatment adjustments. sqEEG-related side effects were assessed throughout the study. RESULTS In phase 1, v-sqEEG detected all seizures recorded in the EMU in all patients, whereas E-sqEEG was as effective in three patients. In the other two patients, E-sqEEG detected only a proportion or none of the seizures, respectively. Sensitivity of E-sqEEG depended on the ictal EEG features. In phase 2, a 100% concordance between E-sqEEG and v-sqEEG in seizure detection was observed for the same three patients as in phase 1. In the other two patients (one implanted bilaterally), effectiveness of E-sqEEG in detecting seizure as compared to v-sqEEG ranged from 0% to 83%. v-sqEEG showed that all patients reported in their diaries fewer seizures than they actually suffered. In four of five patients, v-sqEEG showed that the treatment adjustments had been ineffective or associated with a seizure increment. The only side effect was an infection at the implantation site in one patient. SIGNIFICANCE The sqEEG system could collect reliable information on seizure activity, thus providing clinically relevant information. Sensitivity of EpiSight in detecting seizures varied across patients, depending on the ictal EEG features. sqEEG ultra long-term monitoring was feasible and well tolerated.
Collapse
Affiliation(s)
- Guido Rubboli
- Danish Epilepsy Center, member of the European Reference Network EpiCARE, Dianalund, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | - Margrete Halvorsen Bø
- National Center for Epilepsy, Oslo University Hospital, member of the European Reference Network EpiCARE, Oslo, Norway
| | - Kristin Alfstad
- National Center for Epilepsy, Oslo University Hospital, member of the European Reference Network EpiCARE, Oslo, Norway
| | - Sidsel Armand Larsen
- Danish Epilepsy Center, member of the European Reference Network EpiCARE, Dianalund, Denmark
| | - Mads Due Holm Jacobsen
- Danish Epilepsy Center, member of the European Reference Network EpiCARE, Dianalund, Denmark
| | - Maria Vlachou
- Department of Neurophysiology, Aarhus University, Aarhus, Denmark
| | - Sigge Weisdorf
- Danish Epilepsy Center, member of the European Reference Network EpiCARE, Dianalund, Denmark
| | - Rune Rasmussen
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark
| | - Arild Egge
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Oliver Henning
- National Center for Epilepsy, Oslo University Hospital, member of the European Reference Network EpiCARE, Oslo, Norway
| | - Morten Lossius
- National Center for Epilepsy, Oslo University Hospital, member of the European Reference Network EpiCARE, Oslo, Norway
| | - Sandor Beniczky
- Danish Epilepsy Center, member of the European Reference Network EpiCARE, Dianalund, Denmark
- Department of Clinical Neurophysiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Ding TY, Gagliano L, Jahani A, Toffa DH, Nguyen DK, Bou Assi E. Epileptic seizure forecasting with wearable-based nocturnal sleep features. Epilepsia Open 2024; 9:1793-1805. [PMID: 38980984 PMCID: PMC11450616 DOI: 10.1002/epi4.13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 07/11/2024] Open
Abstract
OBJECTIVE Non-invasive biomarkers have recently shown promise for seizure forecasting in people with epilepsy. In this work, we developed a seizure-day forecasting algorithm based on nocturnal sleep features acquired using a smart shirt. METHODS Seventy-eight individuals with epilepsy admitted to the Centre hospitalier de l'Université de Montréal epilepsy monitoring unit wore the Hexoskin biometric smart shirt during their stay. The shirt continuously measures electrocardiography, respiratory, and accelerometry activity. Ten sleep features, including sleep efficiency, sleep latency, sleep duration, time spent in non-rapid eye movement sleep (NREM) and rapid eye movement sleep (REM), wakefulness after sleep onset, average heart and breathing rates, high-frequency heart rate variability, and the number of position changes, were automatically computed using the Hexoskin sleep algorithm. Each night's features were then normalized using a reference night for each patient. A support vector machine classifier was trained for pseudo-prospective seizure-day forecasting, with forecasting horizons of 16- and 24-h to include both diurnal and nocturnal seizures (24-h) or diurnal seizures only (16-h). The algorithm's performance was assessed using a nested leave-one-patient-out cross-validation approach. RESULTS Improvement over chance (IoC) performances were achieved for 48.7% and 40% of patients with the 16- and 24-h forecasting horizons, respectively. For patients with IoC performances, the proposed algorithm reached mean IoC, sensitivity and time in warning of 34.3%, 86.0%, and 51.7%, respectively for the 16-h horizon, and 34.2%, 64.4% and 30.2%, respectively, for the 24-h horizon. SIGNIFICANCE Smart shirt-based nocturnal sleep analysis holds promise as a non-invasive approach for seizure-day forecasting in a subset of people with epilepsy. Further investigations, particularly in a residential setting with long-term recordings, could pave the way for the development of innovative and practical seizure forecasting devices. PLAIN LANGUAGE SUMMARY Seizure forecasting with wearable devices may improve the quality of life of people living with epilepsy who experience unpredictable, recurrent seizures. In this study, we have developed a seizure forecasting algorithm using sleep characteristics obtained from a smart shirt worn at night by a large number of hospitalized patients with epilepsy (78). A daily seizure forecast was generated following each night using machine learning methods. Our results show that around half of people with epilepsy may benefit from such an approach.
Collapse
Affiliation(s)
- Tian Yue Ding
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada
| | - Laura Gagliano
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada
| | - Amirhossein Jahani
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada
| | - Denahin H. Toffa
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada
| | - Dang K. Nguyen
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada
- Department of NeuroscienceUniversité de MontréalMontréalQuébecCanada
| | - Elie Bou Assi
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada
- Department of NeuroscienceUniversité de MontréalMontréalQuébecCanada
| |
Collapse
|
7
|
Rocamora R, Baumgartner C, Novitskaya Y, Hirsch M, Koren J, Vilella L, Schulze-Bonhage A. The spectrum of indications for ultralong-term EEG monitoring. Seizure 2024; 121:262-270. [PMID: 39326109 DOI: 10.1016/j.seizure.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
PURPOSE We assessed clinical cases to investigate the spectrum of indications for ultra-longterm EEG monitoring using a subcutaneous implantable device in adult patients with focal epilepsy. METHODS Electronic charts were reviewed from patients undergoing ultra-longterm recordings at the European Epilepsy centers Barcelona, Freiburg and Vienna. Specific patient settings approached in the three centers were analyzed, and the main clinical question was extracted. Results from recordings were analyzed based on the specific results and information obtained. RESULTS 24 patients in whom ultra-longterm recordings were available were analyzed. A total of 11 main indications for subcutaneous long-term EEG recordings were identified, including the identification of active epilepsy in patients with low seizure frequency, under- and overreporting of patients, differentiation of non-epileptic from epileptic events, assessment of seizure severity, circadian and multidian rhythms of seizure occurrence, validation of treatment efficacy, improvement of patient-based reporting and medicolegal evidence for seizure freedom. This is reported with patient-specific case vignettes. CONCLUSION Ultra-longterm monitoring using subcutaneous implantable EEG devices can provide relevant diagnostic and treatment information in a large spectrum of clinical situations. This is discussed considering the intrinsic limitations of the method related to spatial coverage, sensitivity and validity as a biomarker of ongoing seizures.
Collapse
Affiliation(s)
- R Rocamora
- Hospital del Mar, Epilepsy Monitoring Unit, Department of Neurology, Barcelona, Spain; EpiCare, European Reference Network, Europe
| | - C Baumgartner
- Neurologische Abteilung, Klinik Hietzing, Wien, Austria; Karl Landsteiner Institut für Klinische Epilepsieforschung und Kognitive Neurologie, Wien, Austria; Medizinische Fakultät, Sigmund Freud Privatuniversität, Wien, Austria
| | - Y Novitskaya
- Epilepsy Center, University Medical Center - University of Freiburg, Germany
| | - M Hirsch
- Epilepsy Center, University Medical Center - University of Freiburg, Germany
| | - J Koren
- Neurologische Abteilung, Klinik Hietzing, Wien, Austria; Karl Landsteiner Institut für Klinische Epilepsieforschung und Kognitive Neurologie, Wien, Austria; Medizinische Fakultät, Sigmund Freud Privatuniversität, Wien, Austria
| | - L Vilella
- Hospital del Mar, Epilepsy Monitoring Unit, Department of Neurology, Barcelona, Spain; EpiCare, European Reference Network, Europe
| | - A Schulze-Bonhage
- Epilepsy Center, University Medical Center - University of Freiburg, Germany; EpiCare, European Reference Network, Europe.
| |
Collapse
|
8
|
Nasseri M, Grzeskowiak C, Brinkmann BH, Dümpelmann M. Editorial: Seizure forecasting tools, biomarkers and devices. Front Neurosci 2024; 18:1470640. [PMID: 39263238 PMCID: PMC11387221 DOI: 10.3389/fnins.2024.1470640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 09/13/2024] Open
Affiliation(s)
- Mona Nasseri
- School of Engineering, University of North Florida, Jacksonville, FL, United States
- Neurology Department, Mayo Clinic, Rochester, MN, United States
| | - Caitlin Grzeskowiak
- Research and Innovation Department, Epilepsy Foundation, Landover, MD, United States
| | | | - Matthias Dümpelmann
- Epilepsy Center, Department of Neurosurgery, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Kerr WT, McFarlane KN, Figueiredo Pucci G. The present and future of seizure detection, prediction, and forecasting with machine learning, including the future impact on clinical trials. Front Neurol 2024; 15:1425490. [PMID: 39055320 PMCID: PMC11269262 DOI: 10.3389/fneur.2024.1425490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/03/2024] [Indexed: 07/27/2024] Open
Abstract
Seizures have a profound impact on quality of life and mortality, in part because they can be challenging both to detect and forecast. Seizure detection relies upon accurately differentiating transient neurological symptoms caused by abnormal epileptiform activity from similar symptoms with different causes. Seizure forecasting aims to identify when a person has a high or low likelihood of seizure, which is related to seizure prediction. Machine learning and artificial intelligence are data-driven techniques integrated with neurodiagnostic monitoring technologies that attempt to accomplish both of those tasks. In this narrative review, we describe both the existing software and hardware approaches for seizure detection and forecasting, as well as the concepts for how to evaluate the performance of new technologies for future application in clinical practice. These technologies include long-term monitoring both with and without electroencephalography (EEG) that report very high sensitivity as well as reduced false positive detections. In addition, we describe the implications of seizure detection and forecasting upon the evaluation of novel treatments for seizures within clinical trials. Based on these existing data, long-term seizure detection and forecasting with machine learning and artificial intelligence could fundamentally change the clinical care of people with seizures, but there are multiple validation steps necessary to rigorously demonstrate their benefits and costs, relative to the current standard.
Collapse
Affiliation(s)
- Wesley T. Kerr
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | | | | |
Collapse
|
10
|
Zabler N, Swinnen L, Biondi A, Novitskaya Y, Schütz E, Epitashvili N, Dümpelmann M, Richardson MP, Van Paesschen W, Schulze-Bonhage A, Hirsch M. High precision in epileptic seizure self-reporting with an app diary. Sci Rep 2024; 14:15823. [PMID: 38982283 PMCID: PMC11233562 DOI: 10.1038/s41598-024-66932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024] Open
Abstract
People with epilepsy frequently under- or inaccurately report their seizures, which poses a challenge for evaluating their treatment. The introduction of epilepsy health apps provides a novel approach that could improve seizure documentation. This study assessed the documentation performance of an app-based seizure diary and a conventional paper seizure diary. At two tertiary epilepsy centers patients were asked to use one of two offered methods to report their seizures (paper or app diary) during their stay in the epilepsy monitoring unit. The performances of both methods were assessed based on the gold standard of video-EEG annotations. In total 89 adults (54 paper and 35 app users) with focal epilepsy were included in the analysis, of which 58 (33 paper and 25 app users) experienced at least one seizure and made at least one seizure diary entry. We observed a high precision of 85.7% for the app group, whereas the paper group's precision was lower due to overreporting (66.9%). Sensitivity was similar for both methods. Our findings imply that performance of seizure self-reporting is patient-dependent but is more precise for patients who are willing to use digital apps. This may be relevant for treatment decisions and future clinical trial design.
Collapse
Affiliation(s)
- Nicolas Zabler
- Department of Neurosurgery, Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Department of Microsystems Engineering (IMTEK), Faculty of Engineering, University of Freiburg, Freiburg, Germany.
| | - Lauren Swinnen
- Laboratory for Epilepsy Research, KU Leuven, Leuven, Belgium.
| | - Andrea Biondi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Yulia Novitskaya
- Department of Neurosurgery, Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elisa Schütz
- Department of Neurosurgery, Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nino Epitashvili
- Department of Neurosurgery, Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Dümpelmann
- Department of Neurosurgery, Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Microsystems Engineering (IMTEK), Faculty of Engineering, University of Freiburg, Freiburg, Germany
| | - Mark P Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Wim Van Paesschen
- Laboratory for Epilepsy Research, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Andreas Schulze-Bonhage
- Department of Neurosurgery, Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Hirsch
- Department of Neurosurgery, Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Ali A, Clarke DF. Digital measures in epilepsy in low-resourced environments. Expert Rev Pharmacoecon Outcomes Res 2024; 24:705-712. [PMID: 37818647 DOI: 10.1080/14737167.2023.2270163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023]
Abstract
INTRODUCTION Digital measures and digital health-care delivery have been rarely implemented in lower-and-middle-income countries (LMICs), contributing to worsening global disparities and inequities. Sustainable ways to implement and use digital approaches will help to improve time to access, management, and quality of life in persons with epilepsy, goals that remain unreachable in under-resourced communities. As under-resourced environments differ in human and economic resources, no one approach will be appropriate to all LMICs. AREAS COVERED Digital health and tools to monitor and measure digital endpoints and metrics of quality of life will need to be developed or adapted to the specific needs of under-resourced areas. Portable technologies may partially address the urban-rural divide. Careful delineation of stakeholders and their engagement and alignment in all efforts is critically important if these initiatives are to be successfully sustained. Privacy issues, neglected in many regions globally, must be purposefully addressed. EXPERT OPINION Epilepsy care in under-resourced environments has been limited by the lack of relevant technologies for diagnosis and treatment. Digital biomarkers, and investigative technological advances, may finally make it feasible to sustainably improve care delivery and ultimately quality of life including personalized epilepsy care.
Collapse
Affiliation(s)
- Amza Ali
- Department of Medicine, Faculty of Medical Sciences, Mona, Kingston, Jamaica
| | - Dave F Clarke
- Dell Medical School, University of Texas at Austin, Austin, TX, USA
- Department of Pediatric Epilepsy, Dell Children's Medical Center of Central Texas, Austin, TX, USA
| |
Collapse
|
12
|
Miron G, Halimeh M, Jeppesen J, Loddenkemper T, Meisel C. Autonomic biosignals, seizure detection, and forecasting. Epilepsia 2024. [PMID: 38837428 DOI: 10.1111/epi.18034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Wearable devices have attracted significant attention in epilepsy research in recent years for their potential to enhance patient care through improved seizure monitoring and forecasting. This narrative review presents a detailed overview of the current clinical state of the art while addressing how devices that assess autonomic nervous system (ANS) function reflect seizures and central nervous system (CNS) state changes. This includes a description of the interactions between the CNS and the ANS, including physiological and epilepsy-related changes affecting their dynamics. We first discuss technical aspects of measuring autonomic biosignals and considerations for using ANS sensors in clinical practice. We then review recent seizure detection and seizure forecasting studies, highlighting their performance and capability for seizure detection and forecasting using devices measuring ANS biomarkers. Finally, we address the field's challenges and provide an outlook for future developments.
Collapse
Affiliation(s)
- Gadi Miron
- Computational Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Mustafa Halimeh
- Computational Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Jesper Jeppesen
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tobias Loddenkemper
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Christian Meisel
- Computational Neurology, Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Center for Stroke Research Berlin, Berlin, Germany
| |
Collapse
|
13
|
Lucas A, Revell A, Davis KA. Artificial intelligence in epilepsy - applications and pathways to the clinic. Nat Rev Neurol 2024; 20:319-336. [PMID: 38720105 DOI: 10.1038/s41582-024-00965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 06/06/2024]
Abstract
Artificial intelligence (AI) is rapidly transforming health care, and its applications in epilepsy have increased exponentially over the past decade. Integration of AI into epilepsy management promises to revolutionize the diagnosis and treatment of this complex disorder. However, translation of AI into neurology clinical practice has not yet been successful, emphasizing the need to consider progress to date and assess challenges and limitations of AI. In this Review, we provide an overview of AI applications that have been developed in epilepsy using a variety of data modalities: neuroimaging, electroencephalography, electronic health records, medical devices and multimodal data integration. For each, we consider potential applications, including seizure detection and prediction, seizure lateralization, localization of the seizure-onset zone and assessment for surgical or neurostimulation interventions, and review the performance of AI tools developed to date. We also discuss methodological considerations and challenges that must be addressed to successfully integrate AI into clinical practice. Our goal is to provide an overview of the current state of the field and provide guidance for leveraging AI in future to improve management of epilepsy.
Collapse
Affiliation(s)
- Alfredo Lucas
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Revell
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
14
|
Chang CY, Zhang B, Moss R, Picard R, Westover MB, Goldenholz D. Necessary for seizure forecasting outcome metrics: seizure frequency and benchmark model. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24307446. [PMID: 38798669 PMCID: PMC11118655 DOI: 10.1101/2024.05.15.24307446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Work is ongoing to advance seizure forecasting, but the performance metrics used to evaluate model effectiveness can sometimes lead to misleading outcomes. For example, some metrics improve when tested on patients with a particular range of seizure frequencies (SF). This study illustrates the connection between SF and metrics. Additionally, we compared benchmarks for testing performance: a moving average (MA) or the commonly used permutation benchmark. Three data sets were used for the evaluations: (1) Self-reported seizure diaries of 3,994 Seizure Tracker patients; (2) Automatically detected (and sometimes manually reported or edited) generalized tonic-clonic seizures from 2,350 Empatica Embrace 2 and Mate App seizure diary users, and (3) Simulated datasets with varying SFs. Metrics of calibration and discrimination were computed for each dataset, comparing MA and permutation performance across SF values. Most metrics were found to depend on SF. The MA model outperformed or matched the permutation model in all cases. The findings highlight SF's role in seizure forecasting accuracy and the MA model's suitability as a benchmark. This underscores the need for considering patient SF in forecasting studies and suggests the MA model may provide a better standard for evaluating future seizure forecasting models.
Collapse
Affiliation(s)
- Chi-Yuan Chang
- Harvard Medical School, Boston MA
- Beth Israel Deaconess Medical Center, Boston, MA
| | - Boyu Zhang
- Massachusetts Institute of Technology, Cambridge, MA
- Empatica USA, Cambridge, MA
- Brigham and Women’s Hospital, Boston, MA
| | | | - Rosalind Picard
- Massachusetts Institute of Technology, Cambridge, MA
- Empatica USA, Cambridge, MA
| | - M. Brandon Westover
- Harvard Medical School, Boston MA
- Beth Israel Deaconess Medical Center, Boston, MA
| | - Daniel Goldenholz
- Harvard Medical School, Boston MA
- Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
15
|
Kilgore-Gomez A, Norato G, Theodore WH, Inati SK, Rahman SA. Sleep physiology in patients with epilepsy: Influence of seizures on rapid eye movement (REM) latency and REM duration. Epilepsia 2024; 65:995-1005. [PMID: 38411987 PMCID: PMC11369762 DOI: 10.1111/epi.17904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVE A well-established bidirectional relationship exists between sleep and epilepsy. Patients with epilepsy tend to have less efficient sleep and shorter rapid eye movement (REM) sleep. Seizures are far more likely to arise from sleep transitions and non-REM sleep compared to REM sleep. Delay in REM onset or reduction in REM duration may have reciprocal interactions with seizure occurrence. Greater insight into the relationship between REM sleep and seizure occurrence is essential to our understanding of circadian patterns and predictability of seizure activity. We assessed a cohort of adults undergoing evaluation of drug-resistant epilepsy to examine whether REM sleep prior to or following seizures is delayed in latency or reduced in quantity. METHODS We used a spectrogram-guided approach to review the video-electroencephalograms of patients' epilepsy monitoring unit admissions for sleep scoring to determine sleep variables. RESULTS In our cohort of patients, we found group- and individual-level delay of REM latency and reduced REM duration when patients experienced a seizure before the primary sleep period (PSP) of interest or during the PSP of interest. A significant increase in REM latency and decrease in REM quantity were observed on nights where a seizure occurred within 4 h of sleep onset. No change in REM variables was found when investigating seizures that occurred the day after the PSP of interest. Our study is the first to provide insight about a perisleep period, which we defined as 4-h periods before and after the PSP. SIGNIFICANCE Our results demonstrate a significant relationship between seizures occurring prior to the PSP, during the PSP, and in the 4-h perisleep period and a delay in REM latency. These findings have implications for developing a biomarker of seizure detection as well as longer term seizure risk monitoring.
Collapse
Affiliation(s)
| | - Gina Norato
- Biostatistics Group, National Institute of Neurological Disorder and Stroke, Bethesda, Maryland
| | - William H. Theodore
- OCD National Institute of Neurological Disorder and Stroke, Bethesda, Maryland
| | - Sara K. Inati
- EEG Section, National Institute of Neurological Disorder and Stroke, Bethesda, Maryland
| | - Shareena A. Rahman
- EEG Section, National Institute of Neurological Disorder and Stroke, Bethesda, Maryland
| |
Collapse
|
16
|
Komal K, Cleary F, Wells JSG, Bennett L. A systematic review of the literature reporting on remote monitoring epileptic seizure detection devices. Epilepsy Res 2024; 201:107334. [PMID: 38442551 DOI: 10.1016/j.eplepsyres.2024.107334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Early detection and alert notification of an impending seizure for people with epilepsy have the potential to reduce Sudden Unexpected Death in Epilepsy (SUDEP). Current remote monitoring seizure detection devices for people with epilepsy are designed to support real-time monitoring of their vital health parameters linked to seizure alert notification. An understanding of the rapidly growing literature on remote seizure detection devices is essential to address the needs of people with epilepsy and their carers. AIM This review aims to examine the technical characteristics, device performance, user preference, and effectiveness of remote monitoring seizure detection devices. METHODOLOGY A systematic review referenced to PRISMA guidelines was used. RESULTS A total of 1095 papers were identified from the initial search with 30 papers included in the review. Sixteen non-invasive remote monitoring seizure detection devices are currently available. Such seizure detection devices were found to have inbuilt intelligent sensor functionality to monitor electroencephalography, muscle movement, and accelerometer-based motion movement for detecting seizures remotely. Current challenges of these devices for people with epilepsy include skin irritation due to the type of patch electrode used and false alarm notifications, particularly during physical activity. The tight-fitted accelerometer-type devices are reported as uncomfortable from a wearability perspective for long-term monitoring. Also, continuous recording of physiological signals and triggering alert notifications significantly reduce the battery life of the devices. The literature highlights that 3.2 out of 5 people with epilepsy are not using seizure detection devices because of the cost and appearance of the device. CONCLUSION Seizure detection devices can potentially reduce morbidity and mortality for people with epilepsy. Therefore, further collaboration of clinicians, technical experts, and researchers is needed for the future development of these devices. Finally, it is important to always take into consideration the expectations and requirements of people with epilepsy and their carers to facilitate the next generation of remote monitoring seizure detection devices.
Collapse
Affiliation(s)
- K Komal
- School of Health Sciences, South East Technological University, Cork Road, Waterford, Ireland; Walton Institute, South East Technological University, Cork Road, Waterford, Ireland.
| | - F Cleary
- Walton Institute, South East Technological University, Cork Road, Waterford, Ireland
| | - J S G Wells
- School of Health Sciences, South East Technological University, Cork Road, Waterford, Ireland
| | - L Bennett
- School of Health Sciences, South East Technological University, Cork Road, Waterford, Ireland
| |
Collapse
|
17
|
Al-Sahab B, Leviton A, Loddenkemper T, Paneth N, Zhang B. Biases in Electronic Health Records Data for Generating Real-World Evidence: An Overview. JOURNAL OF HEALTHCARE INFORMATICS RESEARCH 2024; 8:121-139. [PMID: 38273982 PMCID: PMC10805748 DOI: 10.1007/s41666-023-00153-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/05/2023] [Accepted: 11/07/2023] [Indexed: 01/27/2024]
Abstract
Electronic Health Records (EHR) are increasingly being perceived as a unique source of data for clinical research as they provide unprecedentedly large volumes of real-time data from real-world settings. In this review of the secondary uses of EHR, we identify the anticipated breadth of opportunities, pointing out the data deficiencies and potential biases that are likely to limit the search for true causal relationships. This paper provides a comprehensive overview of the types of biases that arise along the pathways that generate real-world evidence and the sources of these biases. We distinguish between two levels in the production of EHR data where biases are likely to arise: (i) at the healthcare system level, where the principal source of bias resides in access to, and provision of, medical care, and in the acquisition and documentation of medical and administrative data; and (ii) at the research level, where biases arise from the processes of extracting, analyzing, and interpreting these data. Due to the plethora of biases, mainly in the form of selection and information bias, we conclude with advising extreme caution about making causal inferences based on secondary uses of EHRs.
Collapse
Affiliation(s)
- Ban Al-Sahab
- Department of Family Medicine, College of Human Medicine, Michigan State University, B100 Clinical Center, 788 Service Road, East Lansing, MI USA
| | - Alan Leviton
- Department of Neurology, Harvard Medical School, Boston, MA USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA USA
| | - Tobias Loddenkemper
- Department of Neurology, Harvard Medical School, Boston, MA USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA USA
| | - Nigel Paneth
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI USA
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, East Lansing, MI USA
| | - Bo Zhang
- Department of Neurology, Boston Children’s Hospital, Boston, MA USA
- Biostatistics and Research Design, Institutional Centers of Clinical and Translational Research, Boston Children’s Hospital, Boston, MA USA
- Harvard Medical School, Boston, MA USA
| |
Collapse
|
18
|
Ahuja A, Agrawal S, Acharya S, Batra N, Daiya V. Advancements in Wearable Digital Health Technology: A Review of Epilepsy Management. Cureus 2024; 16:e57037. [PMID: 38681418 PMCID: PMC11047798 DOI: 10.7759/cureus.57037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
This review explores recent advancements in wearable digital health technology specifically designed to manage epilepsy. Epilepsy presents unique challenges in monitoring and management due to the unpredictable nature of seizures. Wearable devices offer continuous monitoring and real-time data collection, providing insights into seizure patterns and trends. Wearable technology is important in epilepsy management because it enables early detection, prediction, and personalized intervention, empowering patients and healthcare providers. Key findings highlight the potential of wearable devices to improve seizure detection accuracy, enhance patient empowerment through real-time monitoring, and facilitate data-driven decision-making in clinical practice. However, further research is needed to validate the accuracy and reliability of these devices across diverse patient populations and clinical settings. Collaborative efforts between researchers, clinicians, technology developers, and patients are essential to drive innovation and advancements in wearable digital health technology for epilepsy management, ultimately improving outcomes and quality of life for individuals with this neurological condition.
Collapse
Affiliation(s)
- Abhinav Ahuja
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Sachin Agrawal
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Sourya Acharya
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Nitesh Batra
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Varun Daiya
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
19
|
Fu A, Lado FA. Seizure Detection, Prediction, and Forecasting. J Clin Neurophysiol 2024; 41:207-213. [PMID: 38436388 DOI: 10.1097/wnp.0000000000001045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
SUMMARY Among the many fears associated with seizures, patients with epilepsy are greatly frustrated and distressed over seizure's apparent unpredictable occurrence. However, increasing evidence have emerged over the years to support that seizure occurrence is not a random phenomenon as previously presumed; it has a cyclic rhythm that oscillates over multiple timescales. The pattern in rises and falls of seizure rate that varies over 24 hours, weeks, months, and years has become a target for the development of innovative devices that intend to detect, predict, and forecast seizures. This article will review the different tools and devices available or that have been previously studied for seizure detection, prediction, and forecasting, as well as the associated challenges and limitations with the utilization of these devices. Although there is strong evidence for rhythmicity in seizure occurrence, very little is known about the mechanism behind this oscillation. This article concludes with early insights into the regulations that may potentially drive this cyclical variability and future directions.
Collapse
Affiliation(s)
- Aradia Fu
- Department of Neurology, Zucker School of Medicine at Hofstra-Northwell, Great Neck, New York, U.S.A
| | | |
Collapse
|
20
|
Affiliation(s)
- Elizabeth Donner
- From the Division of Neurology, Hospital for Sick Children, and the Department of Paediatrics, University of Toronto - both in Toronto (E.D.); and the Epilepsy Center, Department of Neurology, New York University Grossman School of Medicine, New York (O.D., D.F.)
| | - Orrin Devinsky
- From the Division of Neurology, Hospital for Sick Children, and the Department of Paediatrics, University of Toronto - both in Toronto (E.D.); and the Epilepsy Center, Department of Neurology, New York University Grossman School of Medicine, New York (O.D., D.F.)
| | - Daniel Friedman
- From the Division of Neurology, Hospital for Sick Children, and the Department of Paediatrics, University of Toronto - both in Toronto (E.D.); and the Epilepsy Center, Department of Neurology, New York University Grossman School of Medicine, New York (O.D., D.F.)
| |
Collapse
|
21
|
Seth EA, Watterson J, Xie J, Arulsamy A, Md Yusof HH, Ngadimon IW, Khoo CS, Kadirvelu A, Shaikh MF. Feasibility of cardiac-based seizure detection and prediction: A systematic review of non-invasive wearable sensor-based studies. Epilepsia Open 2024; 9:41-59. [PMID: 37881157 PMCID: PMC10839362 DOI: 10.1002/epi4.12854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023] Open
Abstract
A reliable seizure detection or prediction device can potentially reduce the morbidity and mortality associated with epileptic seizures. Previous findings indicating alterations in cardiac activity during seizures suggest the usefulness of cardiac parameters for seizure detection or prediction. This study aims to examine available studies on seizure detection and prediction based on cardiac parameters using non-invasive wearable devices. The Embase, PubMed, and Scopus databases were used to systematically search according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. Human studies that evaluated seizure detection or prediction based on cardiac parameters collected using wearable devices were included. The QUADAS-2 tool and proposed standards for validation for seizure detection devices were used for quality assessment. Twenty-four articles were identified and included in the analysis. Twenty studies evaluated seizure detection algorithms, and four studies focused on seizure prediction. Most studies used either a wrist-worn or chest-worn device for data acquisition. Among the seizure detection studies, cardiac parameters utilized for the algorithms mainly included heart rate (HR) (n = 11) or a combination of HR and heart rate variability (HRV) (n = 6). HR-based seizure detection studies collectively reported a sensitivity range of 56%-100% and a false alarm rate (FAR) of 0.02-8/h, with most studies performing retrospective validation of the algorithms. Three of the seizure prediction studies retrospectively validated multimodal algorithms, combining cardiac features with other physiological signals. Only one study prospectively validated their seizure prediction algorithm using HRV extracted from ECG data collected from a custom wearable device. These studies have demonstrated the feasibility of using cardiac parameters for seizure detection and prediction with wearable devices, with varying algorithmic performance. Many studies are in the proof-of-principle stage, and evidence for real-time detection or prediction is currently limited. Future studies should prioritize further refinement of the algorithm performance with prospective validation using large-scale longitudinal data. PLAIN LANGUAGE SUMMARY: This systematic review highlights the potential use of wearable devices, like wristbands, for detecting and predicting seizures via the measurement of heart activity. By reviewing 24 articles, it was found that most studies focused on using heart rate and changes in heart rate for seizure detection. There was a lack of studies looking at seizure prediction. The results were promising but most studies were not conducted in real-time. Therefore, more real-time studies are needed to verify the usage of heart activity-related wearable devices to detect seizures and even predict them, which will be beneficial to people with epilepsy.
Collapse
Affiliation(s)
- Eryse Amira Seth
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwayMalaysia
- Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Jessica Watterson
- Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwayMalaysia
- Department of Human‐Centred ComputingMonash UniversityMelbourneVictoriaAustralia
| | - Jue Xie
- Department of Human‐Centred ComputingMonash UniversityMelbourneVictoriaAustralia
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwayMalaysia
- Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Hadri Hadi Md Yusof
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwayMalaysia
- Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Irma Wati Ngadimon
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwayMalaysia
- Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Ching Soong Khoo
- Neurology Unit, Department of MedicineUniversiti Kebangsaan Malaysia Medical CentreKuala LumpurMalaysia
| | - Amudha Kadirvelu
- Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwayMalaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwayMalaysia
- Jeffrey Cheah School of Medicine and Health SciencesMonash University MalaysiaBandar SunwayMalaysia
- School of Dentistry and Medical SciencesCharles Sturt UniversityOrangeNew South WalesAustralia
| |
Collapse
|
22
|
Biondi A, Simblett SK, Viana PF, Laiou P, Fiori AMG, Nurse E, Schreuder M, Pal DK, Richardson MP. Feasibility and acceptability of an ultra-long-term at-home EEG monitoring system (EEG@HOME) for people with epilepsy. Epilepsy Behav 2024; 151:109609. [PMID: 38160578 DOI: 10.1016/j.yebeh.2023.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Recent technological advancements offer new ways to monitor and manage epilepsy. The adoption of these devices in routine clinical practice will strongly depend on patient acceptability and usability, with their perspectives being crucial. Previous studies provided feedback from patients, but few explored the experience of them using independently multiple devices independently at home. PURPOSE The study, assessed through a mixed methods design, the direct experiences of people with epilepsy independently using a non-invasive monitoring system (EEG@HOME) for an extended duration of 6 months, at home. We aimed to investigate factors affecting engagement, gather qualitative insights, and provide recommendations for future home epilepsy monitoring systems. MATERIALS AND METHODS Adults with epilepsy independently were trained to use a wearable dry EEG system, a wrist-worn device, and a smartphone app for seizure tracking and behaviour monitoring for 6 months at home. Monthly acceptability questionnaires (PSSUQ, SUS) and semi-structured interviews were conducted to explore participant experience. Adherence with the procedure, acceptability scores and systematic thematic analysis of the interviews, focusing on the experience with the procedure, motivation and benefits and opinion about the procedure were assessed. RESULTS Twelve people with epilepsy took part into the study for an average of 193.8 days (range 61 to 312) with a likelihood of using the system at six months of 83 %. The e-diary and the smartwatch were highly acceptable and preferred to a wearable EEG system (PSSUQ score of 1.9, 1.9, 2.4). Participants showed an acceptable level of adherence with all solutions (Average usage of 63 %, 66 %, 92 %) reporting more difficulties using the EEG twice a day and remembering to complete the daily behavioural questionnaires. Clear information and training, continuous remote support, perceived direct and indirect benefits and the possibility to have a flexible, tailored to daily routine monitoring were defined as key factors to ensure compliance with long-term monitoring systems. CONCLUSIONS EEG@HOME study demonstrated people with epilepsy' interest and ability in active health monitoring using new technologies. Remote training and support enable independent home use of new non-invasive technologies, but to ensure long term acceptability and usability systems will require to be integrated into patients' routines, include healthcare providers, and offer continuous support and personalized feedback.
Collapse
Affiliation(s)
- Andrea Biondi
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, United Kingdom.
| | - Sara K Simblett
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, United Kingdom; Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Pedro F Viana
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, United Kingdom; Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Petroula Laiou
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Anna M G Fiori
- King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Ewan Nurse
- Seer Medical Inc, Melbourne, VIC, Australia; Department of Medicine, St. Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Deb K Pal
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, United Kingdom
| | - Mark P Richardson
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology & Neuroscience (IoPPN), King's College London, London, United Kingdom; NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, United Kingdom
| |
Collapse
|
23
|
Andrzejak RG, Zaveri HP, Schulze‐Bonhage A, Leguia MG, Stacey WC, Richardson MP, Kuhlmann L, Lehnertz K. Seizure forecasting: Where do we stand? Epilepsia 2023; 64 Suppl 3:S62-S71. [PMID: 36780237 PMCID: PMC10423299 DOI: 10.1111/epi.17546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/14/2023]
Abstract
A lot of mileage has been made recently on the long and winding road toward seizure forecasting. Here we briefly review some selected milestones passed along the way, which were discussed at the International Conference for Technology and Analysis of Seizures-ICTALS 2022-convened at the University of Bern, Switzerland. Major impetus was gained recently from wearable and implantable devices that record not only electroencephalography, but also data on motor behavior, acoustic signals, and various signals of the autonomic nervous system. This multimodal monitoring can be performed for ultralong timescales covering months or years. Accordingly, features and metrics extracted from these data now assess seizure dynamics with a greater degree of completeness. Most prominently, this has allowed the confirmation of the long-suspected cyclical nature of interictal epileptiform activity, seizure risk, and seizures. The timescales cover daily, multi-day, and yearly cycles. Progress has also been fueled by approaches originating from the interdisciplinary field of network science. Considering epilepsy as a large-scale network disorder yielded novel perspectives on the pre-ictal dynamics of the evolving epileptic brain. In addition to discrete predictions that a seizure will take place in a specified prediction horizon, the community broadened the scope to probabilistic forecasts of a seizure risk evolving continuously in time. This shift of gears triggered the incorporation of additional metrics to quantify the performance of forecasting algorithms, which should be compared to the chance performance of constrained stochastic null models. An imminent task of utmost importance is to find optimal ways to communicate the output of seizure-forecasting algorithms to patients, caretakers, and clinicians, so that they can have socioeconomic impact and improve patients' well-being.
Collapse
Grants
- NIH NS109062 NIH HHS
- MR/N026063/1 Medical Research Council
- R01 NS109062 NINDS NIH HHS
- R01 NS094399 NINDS NIH HHS
- NIH NS094399 NIH HHS
- Medical Research Council Centre for Neurodevelopmental Disorders
- National Health and Medical Research Council
- National Institutes of Health
- University of Bern, the Inselspital, University Hospital Bern, the Alliance for Epilepsy Research, the Swiss National Science Foundation, UCB, FHC, the Wyss Center for bio‐ and neuro‐engineering, the American Epilepsy Society (AES), the CURE epilepsy Foundation, Ripple neuro, Sintetica, DIXI medical, UNEEG medical and NeuroPace.
Collapse
Affiliation(s)
- Ralph G. Andrzejak
- Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
| | | | - Andreas Schulze‐Bonhage
- Epilepsy Center, NeurocenterUniversity Medical Center, University of FreiburgFreiburgGermany
| | - Marc G. Leguia
- Department of Information and Communication TechnologiesUniversitat Pompeu FabraBarcelonaSpain
| | - William C. Stacey
- Department of Neurology, Department of Biomedical EngineeringBioInterfaces Institute, University of MichiganAnn ArborMichiganUSA
- Division of NeurologyVA Ann Arbor Medical CenterAnn ArborMichiganUSA
| | - Mark P. Richardson
- School of NeuroscienceInstitute of Psychiatry Psychology and Neuroscience, King's College LondonLondonUK
| | - Levin Kuhlmann
- Department of Data Science and AI, Faculty of Information TechnologyMonash UniversityClaytonVictoriaAustralia
| | - Klaus Lehnertz
- Department of EpileptologyUniversity of Bonn Medical CentreBonnGermany
- Helmholtz Institute for Radiation and Nuclear PhysicsUniversity of BonnBonnGermany
- Interdisciplinary Center for Complex SystemsUniversity of BonnBonnGermany
| |
Collapse
|
24
|
Schulze-Bonhage A, Bruno E, Brandt A, Shek A, Viana P, Heers M, Martinez-Lizana E, Altenmüller DM, Richardson MP, San Antonio-Arce V. Diagnostic yield and limitations of in-hospital documentation in patients with epilepsy. Epilepsia 2023; 64 Suppl 4:S4-S11. [PMID: 35583131 DOI: 10.1111/epi.17307] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To determine the diagnostic yield of in-hospital video-electroencephalography (EEG) monitoring to document seizures in patients with epilepsy. METHODS Retrospective analysis of electronic seizure documentation at the University Hospital Freiburg (UKF) and at King's College London (KCL). Statistical assessment of the role of the duration of monitoring, and subanalyses on presurgical patient groups and patients undergoing reduction of antiseizure medication. RESULTS Of more than 4800 patients with epilepsy undergoing in-hospital recordings at the two institutions since 2005, seizures with documented for 43% (KCL) and 73% (UKF).. Duration of monitoring was highly significantly associated with seizure recordings (p < .0001), and presurgical patients as well as patients with drug reduction had a significantly higher diagnostic yield (p < .0001). Recordings with a duration of >5 days lead to additional new seizure documentation in only less than 10% of patients. SIGNIFICANCE There is a need for the development of new ambulatory monitoring strategies to document seizures for diagnostic and monitoring purposes for a relevant subgroup of patients with epilepsy in whom in-hospital monitoring fails to document seizures.
Collapse
Affiliation(s)
- Andreas Schulze-Bonhage
- Epilepsy Center, University Medical Center, University of Freiburg, Freiburg, Germany
- European Reference Network EpiCARE
| | - Elisa Bruno
- Division of Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Armin Brandt
- Epilepsy Center, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Anthony Shek
- Division of Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Pedro Viana
- Division of Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Marcel Heers
- Epilepsy Center, University Medical Center, University of Freiburg, Freiburg, Germany
- European Reference Network EpiCARE
| | - Eva Martinez-Lizana
- Epilepsy Center, University Medical Center, University of Freiburg, Freiburg, Germany
- European Reference Network EpiCARE
| | | | - Mark Philip Richardson
- Division of Neuroscience, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Victoria San Antonio-Arce
- Epilepsy Center, University Medical Center, University of Freiburg, Freiburg, Germany
- European Reference Network EpiCARE
| |
Collapse
|
25
|
Pal Attia T, Viana PF, Nasseri M, Duun-Henriksen J, Biondi A, Winston JS, P Martins I, Nurse ES, Dümpelmann M, Worrell GA, Schulze-Bonhage A, Freestone DR, Kjaer TW, Brinkmann BH, Richardson MP. Seizure forecasting using minimally invasive, ultra-long-term subcutaneous EEG: Generalizable cross-patient models. Epilepsia 2023; 64 Suppl 4:S114-S123. [PMID: 35441703 PMCID: PMC9582039 DOI: 10.1111/epi.17265] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022]
Abstract
This study describes a generalized cross-patient seizure-forecasting approach using recurrent neural networks with ultra-long-term subcutaneous EEG (sqEEG) recordings. Data from six patients diagnosed with refractory epilepsy and monitored with an sqEEG device were used to develop a generalized algorithm for seizure forecasting using long short-term memory (LSTM) deep-learning classifiers. Electrographic seizures were identified by a board-certified epileptologist. One-minute data segments were labeled as preictal or interictal based on their relationship to confirmed seizures. Data were separated into training and testing data sets, and to compensate for the unbalanced data ratio in training, noise-added copies of preictal data segments were generated to expand the training data set. The mean and standard deviation (SD) of the training data were used to normalize all data, preserving the pseudo-prospective nature of the analysis. Different architecture classifiers were trained and tested using a leave-one-patient-out cross-validation method, and the area under the receiver-operating characteristic (ROC) curve (AUC) was used to evaluate the performance classifiers. The importance of each input signal was evaluated using a leave-one-signal-out method with repeated training and testing for each classifier. Cross-patient classifiers achieved performance significantly better than chance in four of the six patients and an overall mean AUC of 0.602 ± 0.126 (mean ± SD). A time in warning of 37.386% ± 5.006% (mean ± std) and sensitivity of 0.691 ± 0.068 (mean ± std) were observed for patients with better than chance results. Analysis of input channels showed a significant contribution (p < .05) by the Fourier transform of signals channels to overall classifier performance. The relative contribution of input signals varied among patients and architectures, suggesting that the inclusion of all signals contributes to robustness in a cross-patient classifier. These early results show that it is possible to forecast seizures training with data from different patients using two-channel ultra-long-term sqEEG.
Collapse
Affiliation(s)
- Tal Pal Attia
- Bioelectronics Neurophysiology and Engineering Lab, Mayo Clinic, Rochester, Minnesota, USA
| | - Pedro F Viana
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for Epilepsy, King's College Hospital NHS Foundation Trust, London, UK
- Centro de Estudos Egas Moniz, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Mona Nasseri
- Bioelectronics Neurophysiology and Engineering Lab, Mayo Clinic, Rochester, Minnesota, USA
- School of Engineering, University of North Florida, Jacksonville, Florida, USA
| | | | - Andrea Biondi
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for Epilepsy, King's College Hospital NHS Foundation Trust, London, UK
| | - Joel S Winston
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for Epilepsy, King's College Hospital NHS Foundation Trust, London, UK
| | - Isabel P Martins
- Centro de Estudos Egas Moniz, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Ewan S Nurse
- Seer Medical Pty Ltd., Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Matthias Dümpelmann
- Epilepsy Center, Medical Center, Faculty of Medicine, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Gregory A Worrell
- Bioelectronics Neurophysiology and Engineering Lab, Mayo Clinic, Rochester, Minnesota, USA
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center, Faculty of Medicine, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Dean R Freestone
- Seer Medical Pty Ltd., Melbourne, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Troels W Kjaer
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin H Brinkmann
- Bioelectronics Neurophysiology and Engineering Lab, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark P Richardson
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for Epilepsy, King's College Hospital NHS Foundation Trust, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
26
|
Mathews D, Abernethy A, Butte AJ, Enriquez J, Kocher B, Lisanby SH, Persons TM, Fabi R, Offodile AC, Sherkow JS, Sullenger RD, Freiling E, Balatbat C. Neurotechnology and Noninvasive Neuromodulation: Case Study for Understanding and Anticipating Emerging Science and Technology. NAM Perspect 2023; 2023:202311c. [PMID: 38812840 PMCID: PMC11136498 DOI: 10.31478/202311c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
|
27
|
Vieluf S, Cantley S, Jackson M, Zhang B, Bosl WJ, Loddenkemper T. Development of a Multivariable Seizure Likelihood Assessment Based on Clinical Information and Short Autonomic Activity Recordings for Children With Epilepsy. Pediatr Neurol 2023; 148:118-127. [PMID: 37703656 DOI: 10.1016/j.pediatrneurol.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/10/2023] [Accepted: 07/24/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Predicting seizure likelihood for the following day would enable clinicians to extend or potentially schedule video-electroencephalography (EEG) monitoring when seizure risk is high. Combining standardized clinical data with short-term recordings of wearables to predict seizure likelihood could have high practical relevance as wearable data is easy and fast to collect. As a first step toward seizure forecasting, we classified patients based on whether they had seizures or not during the following recording. METHODS Pediatric patients admitted to the epilepsy monitoring unit wore a wearable that recorded the heart rate (HR), heart rate variability (HRV), electrodermal activity (EDA), and peripheral body temperature. We utilized short recordings from 9:00 to 9:15 pm and compared mean values between patients with and without impending seizures. In addition, we collected clinical data: age, sex, age at first seizure, generalized slowing, focal slowing, and spikes on EEG, magnetic resonance imaging findings, and antiseizure medication reduction. We used conventional machine learning techniques with cross-validation to classify patients with and without impending seizures. RESULTS We included 139 patients: 78 had no seizures and 61 had at least one seizure after 9 pm during the concurrent video-EEG and E4 recordings. HR (P < 0.01) and EDA (P < 0.01) were lower and HRV (P = 0.02) was higher for patients with than for patients without impending seizures. The average accuracy of group classification was 66%, and the mean area under the receiver operating characteristics was 0.72. CONCLUSIONS Short-term wearable recordings in combination with clinical data have great potential as an easy-to-use seizure likelihood assessment tool.
Collapse
Affiliation(s)
- Solveig Vieluf
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Institute of Sports Medicine, Paderborn University, Paderborn, Germany.
| | - Sarah Cantley
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michele Jackson
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Bo Zhang
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - William J Bosl
- Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Health Informatics Program, University of San Francisco, San Francisco, California
| | - Tobias Loddenkemper
- Division of Epilepsy and Clinical Neurophysiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
28
|
Abreu M, Carmo AS, Peralta AR, Sá F, Plácido da Silva H, Bentes C, Fred AL. PreEpiSeizures: description and outcomes of physiological data acquisition using wearable devices during video-EEG monitoring in people with epilepsy. Front Physiol 2023; 14:1248899. [PMID: 37881691 PMCID: PMC10597694 DOI: 10.3389/fphys.2023.1248899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/04/2023] [Indexed: 10/27/2023] Open
Abstract
The PreEpiSeizures project was created to better understand epilepsy and seizures through wearable technologies. The motivation was to capture physiological information related to epileptic seizures, besides Electroencephalography (EEG) during video-EEG monitorings. If other physiological signals have reliable information of epileptic seizures, unobtrusive wearable technology could be used to monitor epilepsy in daily life. The development of wearable solutions for epilepsy is limited by the nonexistence of datasets which could validate these solutions. Three different form factors were developed and deployed, and the signal quality was assessed for all acquired biosignals. The wearable data acquisition was performed during the video-EEG of patients with epilepsy. The results achieved so far include 59 patients from 2 hospitals totaling 2,721 h of wearable data and 348 seizures. Besides the wearable data, the Electrocardiogram of the hospital is also useable, totalling 5,838 h of hospital data. The quality ECG signals collected with the proposed wearable is equated with the hospital system, and all other biosignals also achieved state-of-the-art quality. During the data acquisition, 18 challenges were identified, and are presented alongside their possible solutions. Though this is an ongoing work, there were many lessons learned which could help to predict possible problems in wearable data collections and also contribute to the epilepsy community with new physiological information. This work contributes with original wearable data and results relevant to epilepsy research, and discusses relevant challenges that impact wearable health monitoring.
Collapse
Affiliation(s)
- Mariana Abreu
- Instituto de Telecomunicações, Lisboa, Portugal
- Departamento de Bioengenharia, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Sofia Carmo
- Instituto de Telecomunicações, Lisboa, Portugal
- Departamento de Bioengenharia, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Ana Rita Peralta
- Lab EEG-Sono, Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisboa, Portugal
| | - Francisca Sá
- Departamento Neurologia, Centro Hospitalar Lisboa Ocidental, Hospital Egas Moniz, Lisboa, Portugal
| | - Hugo Plácido da Silva
- Instituto de Telecomunicações, Lisboa, Portugal
- Departamento de Bioengenharia, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- Lisbon Unit for Learning and Intelligent Systems (LUMLIS), A Unit of the European Laboratory for Learning and Intelligent Systems (ELLIS), Lisboa, Portugal
| | - Carla Bentes
- Lab EEG-Sono, Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisboa, Portugal
| | - Ana Luísa Fred
- Instituto de Telecomunicações, Lisboa, Portugal
- Departamento de Bioengenharia, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
29
|
Cui J, Balzekas I, Nurse E, Viana P, Gregg N, Karoly P, Stirling RE, Worrell G, Richardson MP, Freestone DR, Brinkmann BH. Perceived seizure risk in epilepsy: Chronic electronic surveys with and without concurrent electroencephalography. Epilepsia 2023; 64:2421-2433. [PMID: 37303239 PMCID: PMC10526687 DOI: 10.1111/epi.17678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
OBJECTIVE Previous studies suggested that patients with epilepsy might be able to forecast their own seizures. This study aimed to assess the relationships between premonitory symptoms, perceived seizure risk, and future and recent self-reported and electroencephalographically (EEG)-confirmed seizures in ambulatory patients with epilepsy in their natural home environments. METHODS Long-term e-surveys were collected from patients with and without concurrent EEG recordings. Information obtained from the e-surveys included medication adherence, sleep quality, mood, stress, perceived seizure risk, and seizure occurrences preceding the survey. EEG seizures were identified. Univariate and multivariate generalized linear mixed-effect regression models were used to estimate odds ratios (ORs) for the assessment of the relationships. Results were compared with the seizure forecasting classifiers and device forecasting literature using a mathematical formula converting OR to equivalent area under the curve (AUC). RESULTS Fifty-four subjects returned 10 269 e-survey entries, with four subjects acquiring concurrent EEG recordings. Univariate analysis revealed that increased stress (OR = 2.01, 95% confidence interval [CI] = 1.12-3.61, AUC = .61, p = .02) was associated with increased relative odds of future self-reported seizures. Multivariate analysis showed that previous self-reported seizures (OR = 5.37, 95% CI = 3.53-8.16, AUC = .76, p < .001) were most strongly associated with future self-reported seizures, and high perceived seizure risk (OR = 3.34, 95% CI = 1.87-5.95, AUC = .69, p < .001) remained significant when prior self-reported seizures were added to the model. No correlation with medication adherence was found. No significant association was found between e-survey responses and subsequent EEG seizures. SIGNIFICANCE Our results suggest that patients may tend to self-forecast seizures that occur in sequential groupings and that low mood and increased stress may be the result of previous seizures rather than independent premonitory symptoms. Patients in the small cohort with concurrent EEG showed no ability to self-predict EEG seizures. The conversion from OR to AUC values facilitates direct comparison of performance between survey and device studies involving survey premonition and forecasting.
Collapse
Affiliation(s)
- Jie Cui
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Irena Balzekas
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ewan Nurse
- Seer Medical, Melbourne, Australia
- Department of Medicine, St. Vincent’s Hospital Melbourne, University of Melbourne, Melbourne, Australia
| | - Pedro Viana
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
- Faculty of Medicine, University of Lisbon, Portugal
| | - Nicholas Gregg
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Philippa Karoly
- Department of Medicine, St. Vincent’s Hospital Melbourne, University of Melbourne, Melbourne, Australia
| | - Rachel E Stirling
- Seer Medical, Melbourne, Australia
- Department of Medicine, St. Vincent’s Hospital Melbourne, University of Melbourne, Melbourne, Australia
| | - Gregory Worrell
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark P Richardson
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | | | - Benjamin H Brinkmann
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
30
|
Al-Hussaini I, Mitchell CS. SeizFt: Interpretable Machine Learning for Seizure Detection Using Wearables. Bioengineering (Basel) 2023; 10:918. [PMID: 37627803 PMCID: PMC10451805 DOI: 10.3390/bioengineering10080918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
This work presents SeizFt-a novel seizure detection framework that utilizes machine learning to automatically detect seizures using wearable SensorDot EEG data. Inspired by interpretable sleep staging, our novel approach employs a unique combination of data augmentation, meaningful feature extraction, and an ensemble of decision trees to improve resilience to variations in EEG and to increase the capacity to generalize to unseen data. Fourier Transform (FT) Surrogates were utilized to increase sample size and improve the class balance between labeled non-seizure and seizure epochs. To enhance model stability and accuracy, SeizFt utilizes an ensemble of decision trees through the CatBoost classifier to classify each second of EEG recording as seizure or non-seizure. The SeizIt1 dataset was used for training, and the SeizIt2 dataset for validation and testing. Model performance for seizure detection was evaluated using two primary metrics: sensitivity using the any-overlap method (OVLP) and False Alarm (FA) rate using epoch-based scoring (EPOCH). Notably, SeizFt placed first among an array of state-of-the-art seizure detection algorithms as part of the Seizure Detection Grand Challenge at the 2023 International Conference on Acoustics, Speech, and Signal Processing (ICASSP). SeizFt outperformed state-of-the-art black-box models in accurate seizure detection and minimized false alarms, obtaining a total score of 40.15, combining OVLP and EPOCH across two tasks and representing an improvement of ~30% from the next best approach. The interpretability of SeizFt is a key advantage, as it fosters trust and accountability among healthcare professionals. The most predictive seizure detection features extracted from SeizFt were: delta wave, interquartile range, standard deviation, total absolute power, theta wave, the ratio of delta to theta, binned entropy, Hjorth complexity, delta + theta, and Higuchi fractal dimension. In conclusion, the successful application of SeizFt to wearable SensorDot data suggests its potential for real-time, continuous monitoring to improve personalized medicine for epilepsy.
Collapse
Affiliation(s)
- Irfan Al-Hussaini
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Cassie S. Mitchell
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Machine Learning Center at Georgia Tech, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
31
|
Pale U, Teijeiro T, Atienza D. Importance of methodological choices in data manipulation for validating epileptic seizure detection models. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-7. [PMID: 38083016 DOI: 10.1109/embc40787.2023.10340493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Epilepsy is a chronic neurological disorder that affects a significant portion of the human population and imposes serious risks in the daily life. Despite advances in machine learning and IoT, small, non-stigmatizing wearable devices for continuous monitoring and detection in outpatient environments are not yet widely available. Part of the reason is the complexity of epilepsy itself, including highly imbalanced data, multimodal nature, and very subject-specific signatures. However, another problem is the heterogeneity of methodological approaches in research, leading to slower progress, difficulty in comparing results, and low reproducibility. Therefore, this article identifies a wide range of methodological decisions that must be made and reported when training and evaluating the performance of epilepsy detection systems. We characterize the influence of individual choices using a typical ensemble random-forest model and the publicly available CHB-MIT database, providing a broader picture of each decision and giving good-practice recommendations, based on our experience, where possible.
Collapse
|
32
|
Xiong W, Stirling RE, Payne DE, Nurse ES, Kameneva T, Cook MJ, Viana PF, Richardson MP, Brinkmann BH, Freestone DR, Karoly PJ. Forecasting seizure likelihood from cycles of self-reported events and heart rate: a prospective pilot study. EBioMedicine 2023; 93:104656. [PMID: 37331164 PMCID: PMC10300292 DOI: 10.1016/j.ebiom.2023.104656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND Seizure risk forecasting could reduce injuries and even deaths in people with epilepsy. There is great interest in using non-invasive wearable devices to generate forecasts of seizure risk. Forecasts based on cycles of epileptic activity, seizure times or heart rate have provided promising forecasting results. This study validates a forecasting method using multimodal cycles recorded from wearable devices. METHOD Seizure and heart rate cycles were extracted from 13 participants. The mean period of heart rate data from a smartwatch was 562 days, with a mean of 125 self-reported seizures from a smartphone app. The relationship between seizure onset time and phases of seizure and heart rate cycles was investigated. An additive regression model was used to project heart rate cycles. The results of forecasts using seizure cycles, heart rate cycles, and a combination of both were compared. Forecasting performance was evaluated in 6 of 13 participants in a prospective setting, using long-term data collected after algorithms were developed. FINDINGS The results showed that the best forecasts achieved a mean area under the receiver-operating characteristic curve (AUC) of 0.73 for 9/13 participants showing performance above chance during retrospective validation. Subject-specific forecasts evaluated with prospective data showed a mean AUC of 0.77 with 4/6 participants showing performance above chance. INTERPRETATION The results of this study demonstrate that cycles detected from multimodal data can be combined within a single, scalable seizure risk forecasting algorithm to provide robust performance. The presented forecasting method enabled seizure risk to be estimated for an arbitrary future period and could be generalised across a range of data types. In contrast to earlier work, the current study evaluated forecasts prospectively, in subjects blinded to their seizure risk outputs, representing a critical step towards clinical applications. FUNDING This study was funded by an Australian Government National Health & Medical Research Council and BioMedTech Horizons grant. The study also received support from the Epilepsy Foundation of America's 'My Seizure Gauge' grant.
Collapse
Affiliation(s)
- Wenjuan Xiong
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia
| | - Rachel E Stirling
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia; Seer Medical, Melbourne, Australia
| | | | - Ewan S Nurse
- Seer Medical, Melbourne, Australia; Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, Australia
| | - Tatiana Kameneva
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia; Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - Mark J Cook
- Seer Medical, Melbourne, Australia; Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, Australia; Graeme Clark Institute, The University of Melbourne, Melbourne, Australia
| | - Pedro F Viana
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Centre for Epilepsy, King's College Hospital NHS Foundation Trust, London, UK; Centro de Estudos Egas Moniz, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Mark P Richardson
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Centre for Epilepsy, King's College Hospital NHS Foundation Trust, London, UK; NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Benjamin H Brinkmann
- Bioelectronics Neurophysiology and Engineering Lab, Mayo Clinic, Rochester, MN, USA
| | | | - Philippa J Karoly
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia; Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, Australia; Graeme Clark Institute, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
33
|
Sugden RJ, Pham-Kim-Nghiem-Phu VLL, Campbell I, Leon A, Diamandis P. Remote collection of electrophysiological data with brain wearables: opportunities and challenges. Bioelectron Med 2023; 9:12. [PMID: 37340487 DOI: 10.1186/s42234-023-00114-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/30/2023] [Indexed: 06/22/2023] Open
Abstract
Collection of electroencephalographic (EEG) data provides an opportunity to non-invasively study human brain plasticity, learning and the evolution of various neuropsychiatric disorders. Traditionally, due to sophisticated hardware, EEG studies have been largely limited to research centers which restrict both testing contexts and repeated longitudinal measures. The emergence of low-cost "wearable" EEG devices now provides the prospect of frequent and remote monitoring of the human brain for a variety of physiological and pathological brain states. In this manuscript, we survey evidence that EEG wearables provide high-quality data and review various software used for remote data collection. We then discuss the growing body of evidence supporting the feasibility of remote and longitudinal EEG data collection using wearables including a discussion of potential biomedical applications of these protocols. Lastly, we discuss some additional challenges needed for EEG wearable research to gain further widespread adoption.
Collapse
Affiliation(s)
- Richard James Sugden
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Princess Margaret Cancer Center, University Health Network, 610 University Avenue, Toronto, ON, M5G 2C1, Canada
| | | | - Ingrid Campbell
- Princess Margaret Cancer Center, University Health Network, 610 University Avenue, Toronto, ON, M5G 2C1, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Alberto Leon
- Princess Margaret Cancer Center, University Health Network, 610 University Avenue, Toronto, ON, M5G 2C1, Canada
| | - Phedias Diamandis
- Department of Medical Biophysics, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Laboratory Medicine Program, University Health Network, 200 Elizabeth Street, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
34
|
Cui J, Balzekas I, Nurse E, Viana P, Gregg N, Karoly P, Worrell G, Richardson MP, Freestone DR, Brinkmann BH. Perceived seizure risk in epilepsy â€" Chronic electronic surveys with and without concurrent EEG. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.23.23287561. [PMID: 37034596 PMCID: PMC10081426 DOI: 10.1101/2023.03.23.23287561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Objective Previous studies suggested that patients with epilepsy might be able to fore-cast their own seizures. We sought to assess the relationships of premonitory symptoms and perceived seizure risk with future and recent self-reported and EEG-confirmed seizures in the subjects living with epilepsy in their natural home environments. Methods We collected long-term e-surveys from ambulatory patients with and without concurrent EEG recordings. Information obtained from the e-surveys included medication compliance, sleep quality, mood, stress, perceived seizure risk and seizure occurrences preceding the survey. EEG seizures were identified. Univariate and multivariate generalized linear mixed-effect regression models were used to estimate odds ratios (ORs) for the assessment of the relationships. Results were compared with device seizure forecasting literature using a mathematical formula converting OR to equivalent area under the curve (AUC). Results Sixty-nine subjects returned 12,590 e-survey entries, with four subjects acquiring concurrent EEG recordings. Univariate analysis revealed increased stress (OR = 2.52, 95% CI = [1.52, 4.14], p < 0.001) and decreased mood (0.32, [0.13, 0.82], 0.02) were associated with increased relative odds of future self-reported seizures. On multivariate analysis, previous self-reported seizures (4.24, [2.69, 6.68], < 0.001) were most strongly associated with future self-reported seizures, and high perceived seizure risk (3.30, [1.97, 5.52], < 0.001) remained significant when prior self-reported seizures were added to the model. No significant association was found between e-survey responses and subsequent EEG seizures. Significance It appears that patients may tend to self-forecast seizures that occur in sequential groupings. Our results suggest that low mood and increased stress may be the result of previous seizures rather than independent premonitory symptoms. Patients in the small cohort with concurrent EEG showed no ability to self-predict EEG seizures. The conversion from OR to AUC values facilitates direct comparison of performance between survey and device studies involving survey premonition and forecasting. Key points Long-term e-surveys data and concurrent EEG signals were collected across three study sites to assess the ability of the patients to self-forecast their seizures.Patients may tend to self-forecast self-reported seizures that occur in sequential groupings.Factors, such as mood and stress, may not be independent premonitory symptoms but may be the consequence of recent seizures.No ability to self-forecast EEG confirmed seizures was observed in a small cohort with concurrent EEG validation.A mathematic relation between OR and AUC provides a means to compare forecasting performance between survey and device studies.
Collapse
Affiliation(s)
- Jie Cui
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
- Mayo College of Medicine and Science, Mayo Clinic, Rochester, Minnesota, USA
| | - Irena Balzekas
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ewan Nurse
- Seer Medical, Melbourne, Australia
- Department of Medicine, St. Vincent’s Hospital Melbourne, University of Melbourne, Melbourne, Australia
| | - Pedro Viana
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
- Faculty of Medicine, University of Lisbon, Portugal
| | - Nicholas Gregg
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Philippa Karoly
- Department of Medicine, St. Vincent’s Hospital Melbourne, University of Melbourne, Melbourne, Australia
| | - Gregory Worrell
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark P Richardson
- School of Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
| | | | - Benjamin H. Brinkmann
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
35
|
Assessing epilepsy-related autonomic manifestations: Beyond cardiac and respiratory investigations. Neurophysiol Clin 2023; 53:102850. [PMID: 36913775 DOI: 10.1016/j.neucli.2023.102850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 03/13/2023] Open
Abstract
The Autonomic Nervous System (ANS) regulates many critical physiological functions. Its control relies on cortical input, especially limbic areas, which are often involved in epilepsy. Peri-ictal autonomic dysfunction is now well documented, but inter-ictal dysregulation is less studied. In this review, we discuss the available data on epilepsy-related autonomic dysfunction and the objective tests available. Epilepsy is associated with sympathetic-parasympathetic imbalance and a shift towards sympathetic dominance. Objective tests report alterations in heart rate, baroreflex function, cerebral autoregulation, sweat glands activity, thermoregulation, gastrointestinal and urinary function. However, some tests have found contradictory results and many tests suffer from a lack of sensitivity and reproducibility. Further study on interictal ANS function is required to further understand autonomic dysregulation and the potential association with clinically-relevant complications, including risk of Sudden Unexpected Death In Epilepsy (SUDEP).
Collapse
|
36
|
Lokmic-Tomkins Z, Bhandari D, Bain C, Borda A, Kariotis TC, Reser D. Lessons Learned from Natural Disasters around Digital Health Technologies and Delivering Quality Healthcare. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4542. [PMID: 36901559 PMCID: PMC10001761 DOI: 10.3390/ijerph20054542] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
As climate change drives increased intensity, duration and severity of weather-related events that can lead to natural disasters and mass casualties, innovative approaches are needed to develop climate-resilient healthcare systems that can deliver safe, quality healthcare under non-optimal conditions, especially in remote or underserved areas. Digital health technologies are touted as a potential contributor to healthcare climate change adaptation and mitigation, through improved access to healthcare, reduced inefficiencies, reduced costs, and increased portability of patient information. Under normal operating conditions, these systems are employed to deliver personalised healthcare and better patient and consumer involvement in their health and well-being. During the COVID-19 pandemic, digital health technologies were rapidly implemented on a mass scale in many settings to deliver healthcare in compliance with public health interventions, including lockdowns. However, the resilience and effectiveness of digital health technologies in the face of the increasing frequency and severity of natural disasters remain to be determined. In this review, using the mixed-methods review methodology, we seek to map what is known about digital health resilience in the context of natural disasters using case studies to demonstrate what works and what does not and to propose future directions to build climate-resilient digital health interventions.
Collapse
Affiliation(s)
- Zerina Lokmic-Tomkins
- School of Nursing and Midwifery, Monash University, 35 Rainforest Walk, Clayton, Melbourne, VIC 3800, Australia
| | - Dinesh Bhandari
- School of Nursing and Midwifery, Monash University, 35 Rainforest Walk, Clayton, Melbourne, VIC 3800, Australia
| | - Chris Bain
- Digital Health Theme, Department of Human-Centered Computing, Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia
| | - Ann Borda
- Melbourne Medical School, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Information Studies, University College London, London WC1E 6BT, UK
| | - Timothy Charles Kariotis
- School of Computing and Information System, The University of Melbourne, Melbourne, VIC 3010, Australia
- Melbourne School of Government, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - David Reser
- Graduate Entry Medicine Program, Monash Rural Health-Churchill, Churchill, VIC 3842, Australia
| |
Collapse
|
37
|
Stredny C, Rotenberg A, Leviton A, Loddenkemper T. Systemic inflammation as a biomarker of seizure propensity and a target for treatment to reduce seizure propensity. Epilepsia Open 2023; 8:221-234. [PMID: 36524286 PMCID: PMC9978091 DOI: 10.1002/epi4.12684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
People with diabetes can wear a device that measures blood glucose and delivers just the amount of insulin needed to return the glucose level to within bounds. Currently, people with epilepsy do not have access to an equivalent wearable device that measures a systemic indicator of an impending seizure and delivers a rapidly acting medication or other intervention (e.g., an electrical stimulus) to terminate or prevent a seizure. Given that seizure susceptibility is reliably increased in systemic inflammatory states, we propose a novel closed-loop device where release of a fast-acting therapy is governed by sensors that quantify the magnitude of systemic inflammation. Here, we review the evidence that patients with epilepsy have raised levels of systemic indicators of inflammation than controls, and that some anti-inflammatory drugs have reduced seizure occurrence in animals and humans. We then consider the options of what might be incorporated into a responsive anti-seizure system.
Collapse
Affiliation(s)
- Coral Stredny
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Alexander Rotenberg
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Alan Leviton
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Tobias Loddenkemper
- Division of Epilepsy and Clinical Neurophysiology, Department of NeurologyBoston Children's HospitalBostonMassachusettsUSA
- Department of NeurologyHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
38
|
Manchanda N, Aggarwal A, Setya S, Talegaonkar S. Digital Intervention For The Management Of Alzheimer's Disease. Curr Alzheimer Res 2023; 19:CAR-EPUB-129308. [PMID: 36744687 DOI: 10.2174/1567205020666230206124155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive, multifactorial, chronic, neurodegenerative disease with high prevalence and limited therapeutic options, making it a global health crisis. Being the most common cause of dementia, AD erodes the cognitive, functional, and social abilities of the individual and causes escalating medical and psychosocial needs. As yet, this disorder has no cure and current treatment options are palliative in nature. There is an urgent need for novel therapy to address this pressing challenge. Digital therapeutics (Dtx) is one such novel therapy that is gaining popularity globally. Dtx provides evidence based therapeutic interventions driven by internet and software, employing tools such as mobile devices, computers, videogames, apps, sensors, virtual reality aiding in the prevention, management, and treatment of ailments like neurological abnormalities and chronic diseases. Dtx acts as a supportive tool for the optimization of patient care, individualized treatment and improved health outcomes. Dtx uses visual, sound and other non-invasive approaches for instance-consistent therapy, reminiscence therapy, computerised cognitive training, semantic and phonological assistance devices, wearables and computer-assisted rehabilitation environment to find applications in Alzheimer's disease for improving memory, cognition, functional abilities and managing motor symptom. A few of the Dtx-based tools employed in AD include "Memory Matters", "AlzSense", "Alzheimer Assistant", "smart robotic dog", "Immersive virtual reality (iVR)" and the most current gamma stimulation. The purpose of this review is to summarize the current trends in digital health in AD and explore the benefits, challenges, and impediments of using Dtx as an adjunctive therapy for the management of AD.
Collapse
Affiliation(s)
- Namish Manchanda
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, Govt. of NCT of Delhi, New Delhi-110017, India
| | - Akanksha Aggarwal
- Delhi Institute of Pharmaceutical Sciences And Research, Delhi Pharmaceutical Sciences & Research University, Govt. of NCT of Delhi, New Delhi-110017, India
| | - Sonal Setya
- Department of Pharmacy Practice, SGT College of Pharmacy, SGT University, Gurugram, Haryana-122505, India
| | - Sushama Talegaonkar
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences & Research University, Govt. of NCT of Delhi, New Delhi-110017, India
| |
Collapse
|
39
|
Antiseizure medications (antiepileptic drugs) in adults: starting, monitoring and stopping. J Neurol 2023; 270:573-581. [PMID: 36153467 DOI: 10.1007/s00415-022-11378-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 01/07/2023]
Abstract
Up to 10% of people living to 80 years of age have one or more seizures; and many will not require anti-seizure medication (ASMs). In 85% of patients, the diagnosis comes from the history of the index event. One-third of patients with an apparent "first seizure" have previous events, changing their diagnosis to epilepsy. Targeted investigations are important for classification and risk prediction. Patients with a low risk of seizure recurrence are not usually offered ASM treatment. High-risk patients have multiple seizures, neurological deficits, intellectual disability and/or relevant abnormal investigations; and are offered ASMs. Individual factors modulate this decision-making. Future integrated technologies offer the game-changing potential for seizure monitoring and prediction, but are not yet robust, convenient or affordable. Therapeutic drug monitoring in patients taking ASMs may confirm ASM toxicity, or when non-adherence, malabsorption, or rapid metabolism are suspected causes of breakthrough seizures. They are less useful when these factors are intermittent or irregular. Current evidence does not favour routine monitoring of serum levels, as it neither reliably predicts control, relapse, or adverse effects. The decision to discontinue ASM should follow a full discussion with the patient of risks and benefits. Along with population risk factors for seizure recurrence, the patient's lifestyle and preferences must be considered. ASM are usually discontinued in a slow step-wise fashion, one at a time, after at least two years of remission. Seizure recurrence risk plateaus only after 2 years following ASM discontinuation, and patients need access to specialist follow-up over that period.
Collapse
|
40
|
Combining the neural mass model and Hodgkin–Huxley formalism: Neuronal dynamics modelling. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Musaeus CS, Waldemar G, Andersen BB, Høgh P, Kidmose P, Hemmsen MC, Rank ML, Kjær TW, Frederiksen KS. Long-Term EEG Monitoring in Patients with Alzheimer's Disease Using Ear-EEG: A Feasibility Study. J Alzheimers Dis 2022; 90:1713-1723. [PMID: 36336927 DOI: 10.3233/jad-220491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Previous studies have reported that epileptiform activity may be detectible in nearly half of patients with Alzheimer's disease (AD) on long-term electroencephalographic (EEG) recordings. However, such recordings can be uncomfortable, expensive, and difficult. Ear-EEG has shown promising results for long-term EEG monitoring, but it has not been used in patients with AD. OBJECTIVE To investigate if ear-EEG is a feasible method for long-term EEG monitoring in patients with AD. METHODS In this longitudinal, single-group feasibility study, ten patients with mild to moderate AD were recruited. A total of three ear-EEG recordings of up to 48 hours three months apart for six months were planned. RESULTS All patients managed to wear the ear-EEG for at least 24 hours and at least one full night. A total of 19 ear-EEG recordings were performed (self-reported recording, mean: 37.15 hours (SD: 8.96 hours)). After automatic pre-processing, a mean of 27.37 hours (SD: 7.19 hours) of data with acceptable quality in at least one electrode in each ear was found. Seven out of ten participants experienced mild adverse events. Six of the patients did not complete the study with three patients not wanting to wear the ear-EEG anymore due to adverse events. CONCLUSION It is feasible and safe to use ear-EEG for long-term EEG monitoring in patients with AD. Minor adjustments to the equipment may improve the comfort for the participants.
Collapse
Affiliation(s)
- Christian Sandøe Musaeus
- Department of Neurology, Danish Dementia Research Centre (DDRC), Rigshospitalet, University of Copenhagen, Denmark
| | - Gunhild Waldemar
- Department of Neurology, Danish Dementia Research Centre (DDRC), Rigshospitalet, University of Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Birgitte Bo Andersen
- Department of Neurology, Danish Dementia Research Centre (DDRC), Rigshospitalet, University of Copenhagen, Denmark
| | - Peter Høgh
- Department of Neurology, Regional Dementia Research Centre, Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Preben Kidmose
- Department of Electrical and Computer Engineering, Aarhus University, Aarhus N, Denmark
| | | | | | - Troels Wesenberg Kjær
- Department of Neurology, Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Kristian Steen Frederiksen
- Department of Neurology, Danish Dementia Research Centre (DDRC), Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
42
|
Sempionatto JR, Lasalde-Ramírez JA, Mahato K, Wang J, Gao W. Wearable chemical sensors for biomarker discovery in the omics era. Nat Rev Chem 2022; 6:899-915. [PMID: 37117704 DOI: 10.1038/s41570-022-00439-w] [Citation(s) in RCA: 148] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
Abstract
Biomarkers are crucial biological indicators in medical diagnostics and therapy. However, the process of biomarker discovery and validation is hindered by a lack of standardized protocols for analytical studies, storage and sample collection. Wearable chemical sensors provide a real-time, non-invasive alternative to typical laboratory blood analysis, and are an effective tool for exploring novel biomarkers in alternative body fluids, such as sweat, saliva, tears and interstitial fluid. These devices may enable remote at-home personalized health monitoring and substantially reduce the healthcare costs. This Review introduces criteria, strategies and technologies involved in biomarker discovery using wearable chemical sensors. Electrochemical and optical detection techniques are discussed, along with the materials and system-level considerations for wearable chemical sensors. Lastly, this Review describes how the large sets of temporal data collected by wearable sensors, coupled with modern data analysis approaches, would open the door for discovering new biomarkers towards precision medicine.
Collapse
|
43
|
Xiong W, Kameneva T, Lambert E, Cook MJ, Richardson MP, Nurse ES. Forecasting psychogenic non-epileptic seizure likelihood from ambulatory EEG and ECG. J Neural Eng 2022; 19. [PMID: 36270501 DOI: 10.1088/1741-2552/ac9c97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022]
Abstract
Objective.Critical slowing features (variance and autocorrelation) of long-term continuous electroencephalography (EEG) and electrocardiography (ECG) data have previously been used to forecast epileptic seizure onset. This study tested the feasibility of forecasting non-epileptic seizures using the same methods. In doing so, we examined if long-term cycles of brain and cardiac activity are present in clinical physiological recordings of psychogenic non-epileptic seizures (PNES).Approach.Retrospectively accessed ambulatory EEG and ECG data from 15 patients with non-epileptic seizures and no background of epilepsy were used for developing the forecasting system. The median period of recordings was 161 h, with a median of 7 non-epileptic seizures per patient. The phases of different cycles (5 min, 1 h, 6 h, 12 h, 24 h) of EEG and RR interval (RRI) critical slowing features were investigated. Forecasters were generated using combinations of the variance and autocorrelation of both EEG and the RRI of the ECG at each of the aforementioned cycle lengths. Optimal forecasters were selected as those with the highest area under the receiver-operator curve (AUC).Main results.It was found that PNES events occurred in the rising phases of EEG feature cycles of 12 and 24 h in duration at a rate significantly above chance. We demonstrated that the proposed forecasters achieved performance significantly better than chance in 8/15 of patients, and the mean AUC of the best forecaster across patients was 0.79.Significance.To our knowledge, this is the first study to retrospectively forecast non-epileptic seizures using both EEG and ECG data. The significance of EEG in the forecasting models suggests that cyclic EEG features of non-epileptic seizures exist. This study opens the potential of seizure forecasting beyond epilepsy, into other disorders of episodic loss of consciousness or dissociation.
Collapse
Affiliation(s)
- Wenjuan Xiong
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia
| | - Tatiana Kameneva
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Australia.,Iverson Health Innovation Institute, Swinburne University of Technology, Melbourne, Australia.,Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - Elisabeth Lambert
- Iverson Health Innovation Institute, Swinburne University of Technology, Melbourne, Australia.,School of Health Sciences, Swinburne University of Technology, Melbourne, Australia
| | - Mark J Cook
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, Australia.,Graeme Clark Institute, The University of Melbourne, Melbourne, Australia
| | - Mark P Richardson
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Centre for Epilepsy, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Ewan S Nurse
- Department of Medicine, St Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, Australia.,Seer Medical, Melbourne, Australia
| |
Collapse
|
44
|
Löscher W, Worrell GA. Novel subscalp and intracranial devices to wirelessly record and analyze continuous EEG in unsedated, behaving dogs in their natural environments: A new paradigm in canine epilepsy research. Front Vet Sci 2022; 9:1014269. [PMID: 36337210 PMCID: PMC9631025 DOI: 10.3389/fvets.2022.1014269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Epilepsy is characterized by unprovoked, recurrent seizures and is a common neurologic disorder in dogs and humans. Roughly 1/3 of canines and humans with epilepsy prove to be drug-resistant and continue to have sporadic seizures despite taking daily anti-seizure medications. The optimization of pharmacologic therapy is often limited by inaccurate seizure diaries and medication side effects. Electroencephalography (EEG) has long been a cornerstone of diagnosis and classification in human epilepsy, but because of several technical challenges has played a smaller clinical role in canine epilepsy. The interictal (between seizures) and ictal (seizure) EEG recorded from the epileptic mammalian brain shows characteristic electrophysiologic biomarkers that are very useful for clinical management. A fundamental engineering gap for both humans and canines with epilepsy has been the challenge of obtaining continuous long-term EEG in the patients' natural environment. We are now on the cusp of a revolution where continuous long-term EEG from behaving canines and humans will be available to guide clinicians in the diagnosis and optimal treatment of their patients. Here we review some of the devices that have recently emerged for obtaining long-term EEG in ambulatory subjects living in their natural environments.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hanover, Germany
- Center for Systems Neuroscience, Hanover, Germany
- *Correspondence: Wolfgang Löscher
| | - Gregory A. Worrell
- Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
45
|
Electrodermal activity response during seizures: A systematic review and meta-analysis. Epilepsy Behav 2022; 134:108864. [PMID: 35952508 DOI: 10.1016/j.yebeh.2022.108864] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/22/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Wearable devices for continuous seizure monitoring have drawn increasing attention in the field of epilepsy research. One of the parameters recorded by these devices is electrodermal activity (EDA). The aim of this study was to systematically review the literature to estimate the incidence of electrodermal response during seizures. METHODS We searched all articles recording concurrent EDA and EEG activity during the pre-ictal, ictal, and postictal periods in children and adults with epilepsy. Studies reporting the total number of seizures and number of seizures with an EDA response were included for a random-effects meta-analysis. RESULTS Nineteen studies, including 550 participants and 1115 seizures were reviewed. All studies demonstrated an EDA increase during the ictal and postictal periods, while only three reported pre-ictal EDA responses. The meta-analysis showed a pooled EDA response incidence of 82/100 seizures (95% CI 70-91). Tonic-clonic seizures (both generalized tonic-clonic seizures (GTCS) and focal to bilateral tonic-clonic seizures (FBTCS)) elicited a more pronounced (higher and longer-lasting) EDA response when compared with focal seizures (excluding FBTCS). DISCUSSION Epileptic seizures produce an electrodermal response detectable by wearable devices during the pre-ictal, ictal, and postictal periods. Further research is needed to better understand EDA changes and to analyze factors which may influence the EDA response.
Collapse
|
46
|
Esmaeili B, Vieluf S, Dworetzky BA, Reinsberger C. The Potential of Wearable Devices and Mobile Health Applications in the Evaluation and Treatment of Epilepsy. Neurol Clin 2022; 40:729-739. [DOI: 10.1016/j.ncl.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
47
|
Yang Y, Truong ND, Eshraghian JK, Nikpour A, Kavehei O. Weak self-supervised learning for seizure forecasting: a feasibility study. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220374. [PMID: 35950196 PMCID: PMC9346358 DOI: 10.1098/rsos.220374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/12/2022] [Indexed: 05/27/2023]
Abstract
This paper proposes an artificial intelligence system that continuously improves over time at event prediction using initially unlabelled data by using self-supervised learning. Time-series data are inherently autocorrelated. By using a detection model to generate weak labels on the fly, which are concurrently used as targets to train a prediction model on a time-shifted input data stream, this autocorrelation can effectively be harnessed to reduce the burden of manual labelling. This is critical in medical patient monitoring, as it enables the development of personalized forecasting models without demanding the annotation of long sequences of physiological signal recordings. We perform a feasibility study on seizure prediction, which is identified as an ideal test case, as pre-ictal brainwaves are patient-specific, and tailoring models to individual patients is known to improve forecasting performance significantly. Our self-supervised approach is used to train individualized forecasting models for 10 patients, showing an average relative improvement in sensitivity by 14.30% and a reduction in false alarms by 19.61% in early seizure forecasting. This proof-of-concept on the feasibility of using a continuous stream of time-series neurophysiological data paves the way towards a low-power neuromorphic neuromodulation system.
Collapse
Affiliation(s)
- Yikai Yang
- School of Biomedical Engineering, and the Australian Research Council Training Centre for Innovative BioEngineering, Faculty of EngineeringThe University of Sydney Nano Institute, Sydney, New South Wales 2006, Australia
| | - Nhan Duy Truong
- School of Biomedical Engineering, and the Australian Research Council Training Centre for Innovative BioEngineering, Faculty of EngineeringThe University of Sydney Nano Institute, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, Sydney, New South Wales 2006, Australia
| | - Jason K. Eshraghian
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Armin Nikpour
- Faculty of Medicine and Health, Central Clinical School, The University of Sydney, Sydney, New South Wales 2006, Australia
- Comprehensive Epilepsy Service and Department of Neurology, Royal Prince Alfred Hospital, Camperdown, New South Wales 2050, Australia
| | - Omid Kavehei
- School of Biomedical Engineering, and the Australian Research Council Training Centre for Innovative BioEngineering, Faculty of EngineeringThe University of Sydney Nano Institute, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, Sydney, New South Wales 2006, Australia
| |
Collapse
|
48
|
Wheless JW, Friedman D, Krauss GL, Rao VR, Sperling MR, Carrazana E, Rabinowicz AL. Future Opportunities for Research in Rescue Treatments. Epilepsia 2022; 63 Suppl 1:S55-S68. [PMID: 35822912 PMCID: PMC9541657 DOI: 10.1111/epi.17363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Clinical studies of rescue medications for seizure clusters are limited and are designed to satisfy regulatory requirements, which may not fully consider the needs of the diverse patient population that experiences seizure clusters or utilize rescue medication. The purpose of this narrative review is to examine the factors that contribute to, or may influence the quality of, seizure cluster research with a goal of improving clinical practice. We address five areas of unmet needs and provide advice for how they could enhance future trials of seizure cluster treatments. The topics addressed in this article are: (1) unaddressed end points to pursue in future studies, (2) roles for devices to enhance rescue medication clinical development programs, (3) tools to study seizure cluster prediction and prevention, (4) the value of other designs for seizure cluster studies, and (5) unique challenges of future trial paradigms for seizure clusters. By focusing on novel end points and technologies with value to patients, caregivers, and clinicians, data obtained from future studies can benefit the diverse patient population that experiences seizure clusters, providing more effective, appropriate care as well as alleviating demands on health care resources.
Collapse
Affiliation(s)
- James W Wheless
- Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Daniel Friedman
- New York University Grossman School of Medicine, New York, New York, USA
| | - Gregory L Krauss
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vikram R Rao
- University of California, San Francisco, California, USA
| | | | - Enrique Carrazana
- Neurelis, San Diego, California, USA.,John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | | |
Collapse
|
49
|
Carretero A, Araujo A. Analysis of Simple Algorithms for Motion Detection in Wearable Devices. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2410-2415. [PMID: 36086250 DOI: 10.1109/embc48229.2022.9871070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Brain Computer Interfaces are used to obtain relevant information from the electroencephalogram (EEG) with a concrete objective. The evoked potentials related to movement are much demanded nowadays, in particular the ones associated to imagery movement. The objective of this work is to develop simple algorithms to imagery motion detection that can be included in a non-invasive wearable that everybody can use in a comfortable way for new services and applications. A wearable implies low resources, which is the most important requirement that the algorithms have. A public database with 105 subjects doing an upper-limb imagery movement is used. We have developed two algorithms (FBA and BLA) based on three characteristics of the signal (correlation, wavelet energy per segment and wavelet energy per electrode). They are tested for different number of electrodes and frequency bands. The best performance is found for 6 electrodes. The beta band is not the only band who achieves good performances. In fact, in this study the range between 25 Hz - 30 Hz has obtained the best performance using 6 electrodes. The conclusions show that these simple algorithms not fit well with the wearable requirements. However, it shows the need of adaptive algorithms to bypass the differences between subjects. Also, it affirms that more electrodes not lead to a better information, as well as, less electrodes not lead to a worse information. The same goes for frequency, where not only the beta band have the information required that fits our needs.
Collapse
|
50
|
Goodspeed K, Bailey RM, Prasad S, Sadhu C, Cardenas JA, Holmay M, Bilder DA, Minassian BA. Gene Therapy: Novel Approaches to Targeting Monogenic Epilepsies. Front Neurol 2022; 13:805007. [PMID: 35847198 PMCID: PMC9284605 DOI: 10.3389/fneur.2022.805007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/20/2022] [Indexed: 11/18/2022] Open
Abstract
Genetic epilepsies are a spectrum of disorders characterized by spontaneous and recurrent seizures that can arise from an array of inherited or de novo genetic variants and disrupt normal brain development or neuronal connectivity and function. Genetically determined epilepsies, many of which are due to monogenic pathogenic variants, can result in early mortality and may present in isolation or be accompanied by neurodevelopmental disability. Despite the availability of more than 20 antiseizure medications, many patients with epilepsy fail to achieve seizure control with current therapies. Patients with refractory epilepsy—particularly of childhood onset—experience increased risk for severe disability and premature death. Further, available medications inadequately address the comorbid developmental disability. The advent of next-generation gene sequencing has uncovered genetic etiologies and revolutionized diagnostic practices for many epilepsies. Advances in the field of gene therapy also present the opportunity to address the underlying mechanism of monogenic epilepsies, many of which have only recently been described due to advances in precision medicine and biology. To bring precision medicine and genetic therapies closer to clinical applications, experimental animal models are needed that replicate human disease and reflect the complexities of these disorders. Additionally, identifying and characterizing clinical phenotypes, natural disease course, and meaningful outcome measures from epileptic and neurodevelopmental perspectives are necessary to evaluate therapies in clinical studies. Here, we discuss the range of genetically determined epilepsies, the existing challenges to effective clinical management, and the potential role gene therapy may play in transforming treatment options available for these conditions.
Collapse
Affiliation(s)
- Kimberly Goodspeed
- Division of Child Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States
| | - Rachel M. Bailey
- Division of Child Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States
- Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern, Dallas, TX, United States
| | - Suyash Prasad
- Department of Research and Development, Taysha Gene Therapies, Dallas, TX, United States
| | - Chanchal Sadhu
- Department of Research and Development, Taysha Gene Therapies, Dallas, TX, United States
| | - Jessica A. Cardenas
- Department of Research and Development, Taysha Gene Therapies, Dallas, TX, United States
| | - Mary Holmay
- Department of Research and Development, Taysha Gene Therapies, Dallas, TX, United States
| | - Deborah A. Bilder
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT, United States
| | - Berge A. Minassian
- Division of Child Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, United States
- *Correspondence: Berge A. Minassian
| |
Collapse
|