1
|
Zhang Z, Wang X, Zhang K, Wu Y, Liang F, Wang A, Han R. Safety and Efficacy of Neuroprotective Agents as Adjunctive Therapies for Reperfusion in the Treatment of Acute Ischemic Stroke: A Systematic Review and Meta-analysis of Randomized Controlled Trials. J Neurosurg Anesthesiol 2025:00008506-990000000-00149. [PMID: 39912307 DOI: 10.1097/ana.0000000000001029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/10/2025] [Indexed: 02/07/2025]
Abstract
There is still no clear evidence of the efficacy of the application of neuroprotective agents (NPAs) for acute ischemic stroke (AIS) patients receiving reperfusion therapies. This meta-analysis aimed to determine the effects of NPAs versus placebo on functional and safety outcomes as an adjunctive treatment to intravenous thrombolysis (IVT) or endovascular therapy (EVT) in AIS patients. The primary outcome was neurological functional independence, as evaluated by the proportion of patients whose modified Rankin Scale scores were 0 to 2 at 90 days after treatment. Thirteen randomized controlled trials with a total of 3736 patients were included. The application of NPAs was associated with greater odds of functional independence (odds ratio [OR]: 1.28; 95% CI: 1.12 to 1.46; P < 0.001; I2 = 0.0%) within 90 days. However, subgroup analysis of reperfusion therapy type (IVT, EVT, or both) revealed that only the EVT subgroup showed a significant association between NPAs or placebo and functional independence at 90 days (EVT group, OR: 1.43; 95% CI: 1.05 to 1.94; P = 0.022; I2 = 0.0%; IVT group, OR: 1.51; 95% CI: 0.93 to 2.46; P = 0.099; I2 = 39.8%; IVT plus EVT group, OR: 1.17; 95% CI: 0.94 to 1.45; P = 0.157; I2 = 16.0%). This meta-analysis revealed that NPAs could increase the possibility of AIS patients undergoing reperfusion therapies achieving functional independence within 90 days of onset; however, with the limited number of studies on each drug, further evidence is still needed to demonstrate the efficacy of each individual agent as an adjunctive therapy for different means of reperfusion.
Collapse
Affiliation(s)
- Zihui Zhang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University
| | - Xinyan Wang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University
| | - Kangda Zhang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University
| | - Youxuan Wu
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University
| | - Fa Liang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University
| | - Anxin Wang
- Department of Statistics, China National Clinical Research Centre for Neurological Diseases, Beijing, China
| | - Ruquan Han
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University
| |
Collapse
|
2
|
Hu Z, Zhang K, Wu Y, Wang X, Zhang Z, Hou X, Jian M, Wang Y, Liu H, Wang A, Han R, Liang F. Oxygenation targets for endovascular therapy in acute ischemic stroke patients (Oxy-TARGET): protocol for a single-centre, open-label randomised controlled trial. BMJ Open 2025; 15:e086234. [PMID: 39755573 PMCID: PMC11751949 DOI: 10.1136/bmjopen-2024-086234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 12/12/2024] [Indexed: 01/06/2025] Open
Abstract
INTRODUCTION Preclinical studies have shown that oxygen therapy can improve ischaemic brain tissue oxygen tension, reduce reperfusion injury after revascularisation, promote neuroregeneration and inhibit inflammatory responses potentially exerting a beneficial effect after endovascular treatment (EVT) in patients with acute ischaemic stroke (AIS). However, the optimal fraction of inspired oxygen (FiO2) during EVT under general anaesthesia is currently unknown. Therefore, we are conducting a randomised controlled trial (RCT) to evaluate the impact of high-concentration oxygen vs low-concentration normobaric oxygen on early neurological function after EVT. METHODS AND ANALYSIS The Oxy-TARGET trial is an ongoing prospective, open-label, parallel-design RCT being conducted at Beijing Tiantan Hospital, Capital Medical University. It aims to enrol 200 anterior circulation AIS patients undergoing EVT under general anaesthesia between February 2024 and December 2026. Eligible participants are randomly assigned at a 1:1 ratio to receive FiO2=80% or FiO2=30% through endotracheal intubation, with the gas flow rate set at 4 L/min. The inspiratory oxygen concentration at the tracheal intubation site (delivered FiO2) was recorded concurrently. The primary outcome is the incidence of early neurological improvement (a National Institutes of Health Stroke Scale (NIHSS) score<10 points at 24±2 hours after EVT). Additional safety and efficacy parameters included the 24-hour ΔNIHSS (baseline NIHSS - NIHSS at 24-hour) score, final infarct volume at 72 hours postrandomisation, 90-day Modified Rankin Scale (mRS) score, early neurological deterioration, postoperative pulmonary complications, blood gas parameters, symptomatic intracranial haemorrhage and 90-day mortality. ETHICS AND DISSEMINATION Following a rigorous review process, Oxy-TARGET has received official approval from the Ethics Committee of Beijing Tiantan Hospital, Capital Medical University (KY2023-257-02). The standardised research protocol adopted in this trial is designed to enhance anaesthesiologists' understanding of respiratory management for AIS patients during EVT. The findings of this study are intended to be disseminated through publications in international peer-reviewed journals, presentations at national and international academic conferences and broad distribution via online platforms. TRIAL REGISTRATION NUMBER NCT06224426.
Collapse
Affiliation(s)
- Zhengfang Hu
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Kangda Zhang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Youxuan Wu
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Xinyan Wang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Zihui Zhang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Xuan Hou
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Minyu Jian
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Yunzhen Wang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Haiyang Liu
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Anxin Wang
- Department of Statistics, China National Clinical Research Center for Neurological Diseases, Beijing, PR China
| | - Ruquan Han
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Fa Liang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| |
Collapse
|
3
|
Dang C, Wang Q, Zhuang Y, Li Q, Lu Y, Xiong Y, Feng L. Synergistic effects of neuroprotective drugs with intravenous recombinant tissue plasminogen activator in acute ischemic stroke: A Bayesian network meta-analysis. PLoS One 2024; 19:e0311231. [PMID: 39621713 PMCID: PMC11611160 DOI: 10.1371/journal.pone.0311231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 12/11/2024] Open
Abstract
Neuroprotective drugs as adjunctive therapy for adults with acute ischemic stroke (AIS) remains contentious. This study summarizes the latest evidence regarding the benefits of neuroprotective agents combined with intravenous recombinant tissue plasminogen activator (rt-PA) intravenous thrombolysis. This study conducted a structured search of PubMed, the Cochrane Library, EMBASE, Wanfang Data, and CNKI databases from their inception to March 2024. Grey literature was also searched. The outcomes included efficacy (National Institutes of Health Stroke Scale (NIHSS) score and Barthel Index (BI) score) and safety (rate of adverse reactions). A total of 70 randomized controlled trials were selected for this network meta-analysis (NMA), encompassing 4,140 patients with AIS treated using different neuroprotective agents plus RT-PA, while 4,012 patients with AIS were in control groups. The top three treatments for NIHSS scores at the 2-week follow-up were Edaravone Dexborneo with 0.9 mg/kg rt-PA, Edaravone with 0.9 mg/kg rt-PA, and HUK with 0.9 mg/kg rt-PA. HUK with 0.9 mg/kg rt-PA, Dl-3n-butylphthalide with 0.9 mg/kg rt-PA, and Edaravone Dexborneo with 0.9 mg/kg rt-PA were ranked the top three for BI scores at the 2-week follow-up. The top three treatments with the lowest adverse effect rates were 0.6 mg/kg rt-PA, HUK with 0.9 mg/kg rt-PA, and Edaravone Dexborneo with 0.9 mg/kg rt-PA due to their excellent safety profiles. Compared to rt-PA alone, the combination treatments of Edaravone+rt-PA, Edaravone Dexborneol+rt-PA, HUK+rt-PA, Dl-3n-butylphthalide+rt-PA, and Ganglioside GM1+rt-PA have shown superior efficacy. This NMA suggest that combination therapies of neuroprotective agents and rt-PA can offer better outcomes for patients with AIS. The results support the potential integration of these combination therapies into standard AIS treatment, aiming for improved patient outcomes and personalized therapeutic approaches.
Collapse
Affiliation(s)
- Chun Dang
- Department of Periodical Press/Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qinxuan Wang
- West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Yijia Zhuang
- West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Qian Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yaoheng Lu
- Department of General Surgery, Chengdu Integrated Traditional Chinese Medicine and Western Medicine Hospital, Chengdu, China
| | - Ying Xiong
- Department of Periodical Press/Chinese Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Feng
- Department of General Surgery and Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Gravino G. The pioneering past and cutting-edge future of interventional neuroradiology. Interv Neuroradiol 2024; 30:768-777. [PMID: 36214159 PMCID: PMC11569488 DOI: 10.1177/15910199221130234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 02/18/2024] Open
Abstract
This review provides a thorough understanding of the developments in the field of interventional neuroradiology (INR). A concise overview of the pioneering past and current state of this field is presented first, followed by a greater emphasis on its future. Five main aspects predicted to undergo significant developments are identified and discussed. These include changes in 'education and training', 'clinical practice and logistics', 'devices and equipment', 'techniques and procedures', and 'relevant diagnostic imaging'. INR is at the crossroads of neuroradiology, neurosurgery, neurology, and the neurosciences. To progress we must value the uniqueness and vitality of this multidisciplinary aspect. While minimal access techniques offer very good anatomical accessibility to treat multiple pathologies of the central nervous system, it is also important to recognise its limitations. Medical, surgical, and radiosurgery modalities retain an important role in the management of some complex neuropathology. This review is certainly not exhaustive of all ongoing and predicted developments, but it is an important update for INR specialists and other interested professionals.
Collapse
Affiliation(s)
- Gilbert Gravino
- Neuroradiology Department, The Walton Centre for Neurology and Neurosurgery, Liverpool, L9 7LJ, UK
| |
Collapse
|
5
|
Wu F, Zhang Z, Ma S, He Y, He Y, Ma L, Lei N, Deng W, Wang F. Microenvironment-responsive nanosystems for ischemic stroke therapy. Theranostics 2024; 14:5571-5595. [PMID: 39310102 PMCID: PMC11413776 DOI: 10.7150/thno.99822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Ischemic stroke, a common neurological disorder caused by impaired blood supply to the brain, presents a therapeutic challenge. Conventional treatments like thrombolysis and neuroprotection drugs lack ideal drug delivery systems, limiting their effectiveness. Selectively delivering therapies to the ischemic cerebral tissue holds great potential for preventing and/or treating ischemia-related pathological symptoms. The unique pathological microenvironment of the brain after ischemic stroke, characterized by hypoxia, acidity, and inflammation, offers new possibilities for targeted drug delivery. Pathological microenvironment-responsive nanosystems, extensively investigated in tumors with hypoxia-responsive systems as an example, could also respond to the ischemic cerebral microenvironment and achieve brain-targeted drug delivery and release. These emerging nanosystems are gaining traction for ischemic stroke treatment. In this review, we expound on the cerebral pathological microenvironment and clinical treatment strategies of ischemic stroke, highlight various stimulus-responsive materials employed in constructing ischemic stroke microenvironment-responsive nano delivery systems, and discuss the application of these microenvironment-responsive nanosystems in microenvironment regulation for ischemic stroke treatment.
Collapse
Affiliation(s)
- Fang Wu
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhijian Zhang
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shengnan Ma
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Chronic Disease Prevention and Therapy & Intelligent Health Management, Zhengzhou, 450052, Henan, China
| | - Yanyan He
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuxi He
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lixia Ma
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ningjing Lei
- Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjing Deng
- Department of Neuro-Intensive Care Unit, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fazhan Wang
- Medical Research Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| |
Collapse
|
6
|
Sarfati P, De La Taille T, Portioli C, Spanò R, Lalatonne Y, Decuzzi P, Chauvierre C. REVIEW: "ISCHEMIC STROKE: From Fibrinolysis to Functional Recovery" Nanomedicine: emerging approaches to treat ischemic stroke. Neuroscience 2024; 550:102-113. [PMID: 38056622 DOI: 10.1016/j.neuroscience.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Stroke is responsible for 11% of all deaths worldwide, the majority of which are caused by ischemic strokes, thus making the need to urgently find safe and effective therapies. Today, these can be cured either by mechanical thrombectomy when the thrombus is accessible, or by intravenous injection of fibrinolytics. However, the latter present several limitations, such as potential severe side effects, few eligible patients and low rate of partial and full recovery. To design safer and more effective treatments, nanomedicine appeared in this medical field a few decades ago. This review will explain why nanoparticle-based therapies and imaging techniques are relevant for ischemic stroke management. Then, it will present the different nanoparticle types that have been recently developed to treat this pathology. It will also study the various targeting strategies used to bring nanoparticles to the stroke site, thereby limiting side effects and improving the therapeutic efficacy. Finally, this review will present the few clinical studies testing nanomedicine on stroke and discuss potential causes for their scarcity.
Collapse
Affiliation(s)
- Pierre Sarfati
- Université Paris Cité, Université Sorbonne Paris Nord, UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France
| | - Thibault De La Taille
- Université Paris Cité, Université Sorbonne Paris Nord, UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France
| | - Corinne Portioli
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Raffaele Spanò
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Yoann Lalatonne
- Université Paris Cité, Université Sorbonne Paris Nord, UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France; Département de Biophysique et de Médecine Nucléaire, Assistance Publique-Hôpitaux de Paris, Hôpital Avicenne, F-93009 Bobigny, France
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Cédric Chauvierre
- Université Paris Cité, Université Sorbonne Paris Nord, UMR-S U1148 INSERM, Laboratory for Vascular Translational Science (LVTS), F-75018 Paris, France.
| |
Collapse
|
7
|
Venketasubramanian N, Yeo TT, Chen CLH. Translational Medicine in Acute Ischemic Stroke and Traumatic Brain Injury-NeuroAiD Trials, from Traditional Beliefs to Evidence-Based Therapy. Biomolecules 2024; 14:680. [PMID: 38927083 PMCID: PMC11202287 DOI: 10.3390/biom14060680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
Acute ischemic stroke (AIS) and traumatic brain injury (TBI) are two severe neurological events, both being major causes of death and prolonged impairment. Their incidence continues to rise due to the global increase in the number of people at risk, representing a significant burden on those remaining impaired, their families, and society. These molecular and cellular mechanisms of both stroke and TBI present similarities that can be targeted by treatments with a multimodal mode of action, such as traditional Chinese medicine. Therefore, we performed a detailed review of the preclinical and clinical development of MLC901 (NeuroAiDTMII), a natural multi-herbal formulation targeting several biological pathways at the origin of the clinical deficits. The endogenous neurobiological processes of self-repair initiated by the brain in response to the onset of brain injury are often insufficient to achieve complete recovery of impaired functions. This review of MLC901 and its parent formulation MLC601 confirms that it amplifies the natural self-repair process of brain tissue after AIS or TBI. Following AIS and TBI where "time is brain", many patients enter the post-acute phase with their functions still impaired, a period when "the brain needs time to repair itself". The treatment goal must be to accelerate recovery as much as possible. MLC901/601 demonstrated a significant reduction by 18 months of recovery time compared to a placebo, indicating strong potential for facilitating the improvement of health outcomes and the more efficient use of healthcare resources.
Collapse
Affiliation(s)
| | - Tseng Tsai Yeo
- Division of Neurosurgery, Department of Surgery, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074, Singapore;
| | - Christopher Li Hsian Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD3, 16 Medical Drive, #04-01, Singapore 117600, Singapore;
| |
Collapse
|
8
|
Noll JM, Sherafat AA, Ford GD, Ford BD. The case for neuregulin-1 as a clinical treatment for stroke. Front Cell Neurosci 2024; 18:1325630. [PMID: 38638304 PMCID: PMC11024452 DOI: 10.3389/fncel.2024.1325630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024] Open
Abstract
Ischemic stroke is the leading cause of serious long-term disability and the 5th leading cause of death in the United States. Revascularization of the occluded cerebral artery, either by thrombolysis or endovascular thrombectomy, is the only effective, clinically-approved stroke therapy. Several potentially neuroprotective agents, including glutamate antagonists, anti-inflammatory compounds and free radical scavenging agents were shown to be effective neuroprotectants in preclinical animal models of brain ischemia. However, these compounds did not demonstrate efficacy in clinical trials with human patients following stroke. Proposed reasons for the translational failure include an insufficient understanding on the cellular and molecular pathophysiology of ischemic stroke, lack of alignment between preclinical and clinical studies and inappropriate design of clinical trials based on the preclinical findings. Therefore, novel neuroprotective treatments must be developed based on a clearer understanding of the complex spatiotemporal mechanisms of ischemic stroke and with proper clinical trial design based on the preclinical findings from specific animal models of stroke. We and others have demonstrated the clinical potential for neuregulin-1 (NRG-1) in preclinical stroke studies. NRG-1 significantly reduced ischemia-induced neuronal death, neuroinflammation and oxidative stress in rodent stroke models with a therapeutic window of >13 h. Clinically, NRG-1 was shown to be safe in human patients and improved cardiac function in multisite phase II studies for heart failure. This review summarizes previous stroke clinical candidates and provides evidence that NRG-1 represents a novel, safe, neuroprotective strategy that has potential therapeutic value in treating individuals after acute ischemic stroke.
Collapse
Affiliation(s)
- Jessica M. Noll
- Division of Biomedical Sciences, University of California-Riverside School of Medicine, Riverside, CA, United States
- Nanostring Technologies, Seattle, WA, United States
| | - Arya A. Sherafat
- Division of Biomedical Sciences, University of California-Riverside School of Medicine, Riverside, CA, United States
| | - Gregory D. Ford
- Southern University-New Orleans, New Orleans, LA, United States
| | - Byron D. Ford
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
9
|
Lee TH, Uchiyama S, Kusuma Y, Chiu HC, Navarro JC, Tan KS, Pandian J, Guo L, Wong Y, Venketasubramanian N. A systematic-search-and-review of registered pharmacological therapies investigated to improve neuro-recovery after a stroke. Front Neurol 2024; 15:1346177. [PMID: 38356890 PMCID: PMC10866005 DOI: 10.3389/fneur.2024.1346177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024] Open
Abstract
Background Stroke burden is largely due to long-term impairments requiring prolonged care with loss of productivity. We aimed to identify and assess studies of different registered pharmacological therapies as treatments to improve post-stroke impairments and/or disabilities. Methods We performed a systematic-search-and-review of treatments that have been investigated as recovery-enhancing or recovery-promoting therapies in adult patients with stroke. The treatment must have received registration or market authorization in any country regardless of primary indication. Outcomes included in the review were neurological impairments and functional/disability assessments. "The best available studies" based on study design, study size, and/or date of publication were selected and graded for level of evidence (LOE) by consensus. Results Our systematic search yielded 7,801 citations, and we reviewed 665 full-text papers. Fifty-eight publications were selected as "the best studies" across 25 pharmacological classes: 31 on ischemic stroke, 21 on ischemic or hemorrhagic stroke, 4 on intracerebral hemorrhage, and 2 on subarachnoid hemorrhage (SAH). Twenty-six were systematic reviews/meta-analyses, 29 were randomized clinical trials (RCTs), and three were cohort studies. Only nimodipine for SAH had LOE A of benefit (systematic review and network meta-analysis). Many studies, some of which showed treatment effects, were assessed as LOE C-LD, mainly due to small sample sizes or poor quality. Seven interventions had LOE B-R (systematic review/meta-analysis or RCT) of treatment effects. Conclusion Only one commercially available treatment has LOE A for routine use in stroke. Further studies of putative neuroprotective drugs as adjunctive treatment to revascularization procedures and more confirmatory trials on recovery-promoting therapies will enhance the certainty of their benefit. The decision on their use must be guided by the clinical profile, neurological impairments, and target outcomes based on the available evidence. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=376973, PROSPERO, CRD42022376973.
Collapse
Affiliation(s)
- Tsong-Hai Lee
- Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shinichiro Uchiyama
- Clinical Research Center for Medicine, International University of Health and Welfare, Center for Brain and Cerebral Vessels, Sanno Medical Center, Tokyo, Japan
| | | | - Hou Chang Chiu
- Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
| | | | - Kay Sin Tan
- University of Malaya Medical Center, Kuala Lumpur, Malaysia
| | | | - Liang Guo
- Singapore Clinical Research Institute, Consortium for Clinical Research and Innovation, Singapore, Singapore
| | - Yoko Wong
- Singapore Clinical Research Institute, Consortium for Clinical Research and Innovation, Singapore, Singapore
| | | | | |
Collapse
|
10
|
Konduri P, Cavalcante F, van Voorst H, Rinkel L, Kappelhof M, van Kranendonk K, Treurniet K, Emmer B, Coutinho J, Wolff L, Hofmeijer J, Uyttenboogaart M, van Zwam W, Roos Y, Majoie C, Marquering H. Role of intravenous alteplase on late lesion growth and clinical outcome after stroke treatment. J Cereb Blood Flow Metab 2023; 43:116-125. [PMID: 37017421 PMCID: PMC10638991 DOI: 10.1177/0271678x231167755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/24/2023] [Accepted: 03/03/2023] [Indexed: 04/06/2023]
Abstract
Several acute ischemic stroke mechanisms that cause lesion growth continue after treatment which is detrimental to long-term clinical outcome. The potential role of intravenous alteplase treatment (IVT), a standard in stroke care, in cessing the physiological processes causing post-treatment lesion development is understudied. We analyzed patients from the MR CLEAN-NO IV trial with good quality 24-hour and 1-week follow-up Non-Contrast CT scans. We delineated hypo- and hyper-dense regions on the scans as lesion. We performed univariable logistic and linear regression to estimate the influence of IVT on the presence (growth > 0 ml) and extent of late lesion growth. The association between late lesion growth and mRS was assessed using ordinal logistic regression. Interaction analysis was performed to evaluate the influence of IVT on this association. Of the 63/116 were randomized to included patients, IVT. Median growth was 8.4(-0.88-26) ml. IVT was not significantly associated with the presence (OR: 1.24 (0.57-2.74, p = 0.59) or extent (β = 5.1(-8.8-19), p = 0.47) of growth. Late lesion growth was associated with worse clinical outcome (aOR: 0.85(0.76-0.95), p < 0.01; per 10 ml). IVT did not influence this association (p = 0.18). We did not find evidence that IVT influences late lesion growth or the relationship between growth and worse clinical outcome. Therapies to reduce lesion development are necessary.
Collapse
Affiliation(s)
- Praneeta Konduri
- Department of Biomedical Engineering and Physics, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Fabiano Cavalcante
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Henk van Voorst
- Department of Biomedical Engineering and Physics, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Leon Rinkel
- Department of Neurology, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Manon Kappelhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Katinka van Kranendonk
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Kilian Treurniet
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
- Department of Radiology, Haaglanden MC, The Hague, The Netherlands
| | - Bart Emmer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Jonathan Coutinho
- Department of Neurology, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Lennard Wolff
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Jeanette Hofmeijer
- Department of Neurology, Rijnstate Hospital, Arnhem, the Netherlands
- Department of Clinical Neurophysiology, University of Twente, Enschede, the Netherlands
| | - Maarten Uyttenboogaart
- Department of Neurology, University Medical Center Groningen, Groningen, the Netherlands
| | - Wim van Zwam
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands
| | - Yvo Roos
- Department of Neurology, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Charles Majoie
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - Henk Marquering
- Department of Biomedical Engineering and Physics, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
| | - on behalf of the MR CLEAN-NO IV Trial Investigators (Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands)
- Department of Biomedical Engineering and Physics, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
- Department of Neurology, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
- Department of Radiology, Haaglanden MC, The Hague, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center, Rotterdam, Netherlands
- Department of Neurology, Rijnstate Hospital, Arnhem, the Netherlands
- Department of Clinical Neurophysiology, University of Twente, Enschede, the Netherlands
- Department of Neurology, University Medical Center Groningen, Groningen, the Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands
| |
Collapse
|
11
|
Bathla G, Ajmera P, Mehta PM, Benson JC, Derdeyn CP, Lanzino G, Agarwal A, Brinjikji W. Advances in Acute Ischemic Stroke Treatment: Current Status and Future Directions. AJNR Am J Neuroradiol 2023; 44:750-758. [PMID: 37202115 PMCID: PMC10337623 DOI: 10.3174/ajnr.a7872] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 05/20/2023]
Abstract
The management of acute ischemic stroke has undergone a paradigm shift in the past decade. This has been spearheaded by the emergence of endovascular thrombectomy, along with advances in medical therapy, imaging, and other facets of stroke care. Herein, we present an updated review of the various stroke trials that have impacted and continue to transform stroke management. It is critical for the radiologist to stay abreast of the ongoing developments to provide meaningful input and remain a useful part of the stroke team.
Collapse
Affiliation(s)
- G Bathla
- From the Department of Radiology (G.B., P.M.M., J.C.B., G.L., W.B.), Mayo Clinic, Rochester, Minnesota
| | - P Ajmera
- Department of Radiology (P.A.), University College of Medical Sciences, Delhi, India
| | - P M Mehta
- From the Department of Radiology (G.B., P.M.M., J.C.B., G.L., W.B.), Mayo Clinic, Rochester, Minnesota
| | - J C Benson
- From the Department of Radiology (G.B., P.M.M., J.C.B., G.L., W.B.), Mayo Clinic, Rochester, Minnesota
| | - C P Derdeyn
- Department of Radiology (C.P.D.), University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - G Lanzino
- From the Department of Radiology (G.B., P.M.M., J.C.B., G.L., W.B.), Mayo Clinic, Rochester, Minnesota
| | - A Agarwal
- Department of Radiology (A.A.), Mayo Clinic, Jacksonville, Florida
| | - W Brinjikji
- From the Department of Radiology (G.B., P.M.M., J.C.B., G.L., W.B.), Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
12
|
Kovalenko AL, Chefranova ZY, Kharitonova TV, Lycheva NA, Kondakova VA, Pfarger IA, Ketlinskaya OS. [Results of a clinical and experimental study of the safety and efficacy of Cytoflavin in combination with reperfusion therapy for ischemic stroke]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:75-81. [PMID: 37655414 DOI: 10.17116/jnevro202312308175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
OBJECTIVE To study the efficacy and safety of Cytoflavin in combination with thrombolytic therapy. MATERIAL AND METHODS At the first preclinical stage, the effect of Cytoflavin, solution for intravenous administration, on the fibrinolytic activity of alteplase (Actilyse) was studied in vitro. At the second, clinical stage, the safety and efficacy of Cytoflavin treatment, initiated within in the first 24 hours from the stroke onset and continued for 10 days, was evaluated in patients with acute stroke who received reperfusion therapy. At the clinical stage of the study, 200 patients were examined: 100 subjects of the main group who received reperfusion therapy in combination with Cytoflavin; 100 control subjects who received reperfusion therapy in combination with other drugs from the neuroprotective group as part of routine clinical practice. RESULTS The preclinical study has demonstrated that alteplase in the studied concentrations debulks the mass of a thrombus by 2131%. There were no statistically significant differences in the reduction of thrombus weight with addition of Cytoflavin at various concentrations combined with alteplase to the incubation medium. The addition of Cytoflavin to the incubation medium with alteplase had no effect on the concentration of D-dimer in the rat's plasma. In the clinical study, there were no statistically significant differences in the frequencies of intracranial hemorrhages of various types between the study groups. In the multivariable analysis, significant predictors of intracranial hemorrhage were baseline NIHSS score, systolic blood pressure, history of diabetes and anticoagulant use, baseline CT ASPECTS score, but not the treatment group. CONCLUSION The use of Cytoflavin in combination with thrombolytic therapy is safe. Up-to-date treatment of stroke which includes timely reperfusion and neurometabolic support of recovery leads to the rapid manifest regression of the neurological deficit and to the improvement in functioning and activity of patients with cerebral infarction.
Collapse
Affiliation(s)
| | - Zh Yu Chefranova
- Belgorod Regional Clinical Hospital of Saint Josaph, Belgorod, Russia
| | | | | | | | | | | |
Collapse
|
13
|
The BE COOL Treatments (Batroxobin, oxygEn, Conditioning, and cOOLing): Emerging Adjunct Therapies for Ischemic Cerebrovascular Disease. J Clin Med 2022; 11:jcm11206193. [PMID: 36294518 PMCID: PMC9605177 DOI: 10.3390/jcm11206193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
Ischemic cerebrovascular disease (ICD), the most common neurological disease worldwide, can be classified based on the onset time (acute/chronic) and the type of cerebral blood vessel involved (artery or venous sinus). Classifications include acute ischemic stroke (AIS)/transient ischemic attack (TIA), chronic cerebral circulation insufficiency (CCCI), acute cerebral venous sinus thrombosis (CVST), and chronic cerebrospinal venous insufficiency (CCSVI). The pathogenesis of cerebral arterial ischemia may be correlated with cerebral venous ischemia through decreased cerebral perfusion. The core treatment goals for both arterial and venous ICDs include perfusion recovery, reduction of cerebral ischemic injury, and preservation of the neuronal integrity of the involved region as soon as possible; however, therapy based on the current guidelines for either acute ischemic events or chronic cerebral ischemia is not ideal because the recurrence rate of AIS or CVST is still very high. Therefore, this review discusses the neuroprotective effects of four novel potential ICD treatments with high translation rates, known as the BE COOL treatments (Batroxobin, oxygEn, Conditioning, and cOOLing), and subsequently analyzes how BE COOL treatments are used in clinical settings. The combination of batroxobin, oxygen, conditioning, and cooling may be a promising intervention for preserving ischemic tissues.
Collapse
|
14
|
Yan Y, Zhang X, An X, Fan W, Liang J, Luo B, Ren H, Huang Y. The application and perspective of hyperbaric oxygen therapy in acute ischemic stroke: From the bench to a starter? Front Neurol 2022; 13:928802. [PMID: 35989933 PMCID: PMC9389005 DOI: 10.3389/fneur.2022.928802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/18/2022] [Indexed: 11/18/2022] Open
Abstract
Stroke has become a significant cause of death and disability globally. Along with the transition of the world's aging population, the incidence of acute ischemic stroke is increasing year by year. Even with effective treatment modalities, patients are not guaranteed to have a good prognosis. The treatment model combining intravenous thrombolysis/endovascular therapy and neuroprotection is gradually being recognized. After the clinical translation of pharmacological neuroprotective agents failed, non-pharmacological physical neuroprotective agents have rekindled hope. We performed a literature review using the National Center for Biotechnology Information (NCBI) PubMed database for studies that focused on the application of hyperbaric oxygen therapy in acute ischemic stroke. In this review, we present the history and mechanisms of hyperbaric oxygen therapy, focusing on the current status, outcomes, current challenges, perspective, safety, and complications of the application of hyperbaric oxygen in animal experiments and human clinical trials. Hyperbaric oxygen therapy, a non-pharmacological treatment, can improve the oxygenation level at the ischemic lesions in increased dissolved oxygen and oxygen diffusion radius to achieve salvage of neurological function, giving a new meaning to acute ischemic stroke.
Collapse
Affiliation(s)
- Yujia Yan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Xiqiang Zhang
- Department of Neurosurgery, Third People's Hospital of Xining City, Xining, China
| | - Xingwei An
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Tianjin Center for Brain Science, Tianjin, China
| | - Wanpeng Fan
- Department of Neurosurgery, Third People's Hospital of Xining City, Xining, China
| | - Jingbo Liang
- Department of Neurosurgery, Third People's Hospital of Xining City, Xining, China
| | - Bin Luo
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
| | - Hecheng Ren
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
- *Correspondence: Hecheng Ren
| | - Ying Huang
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin, China
- Ying Huang
| |
Collapse
|
15
|
Staszewski J, Stȩpień A, Piusińska-Macoch R, Dȩbiec A, Gniadek-Olejniczak K, Frankowska E, Maliborski A, Chadaide Z, Balo D, Król B, Namias R, Harston G, Mróz J, Piasecki P. Efficacy of Cerebrolysin Treatment as an Add-On Therapy to Mechanical Thrombectomy in Patients With Acute Ischemic Stroke Due to Large Vessel Occlusion: Study Protocol for a Prospective, Open Label, Single-Center Study With 12 Months of Follow-Up. Front Neurol 2022; 13:910697. [PMID: 35860483 PMCID: PMC9289167 DOI: 10.3389/fneur.2022.910697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 12/18/2022] Open
Abstract
This study is designed to determine the efficacy of Cerebrolysin treatment as an add-on therapy to mechanical thrombectomy (MT) in reducing global disability in subjects with acute ischemic stroke (AIS). We have planned a single center, prospective, open-label, single-arm study with a 12-month follow-up of 50 patients with moderate to severe AIS, with a small established infarct core and with good collateral circulation who achieve significant reperfusion following MT and who receive additional Cerebrolysin within 8 h of stroke onset compared to 50 historical controls treated with MT alone, matched for age, clinical severity, occlusion location, baseline perfusion lesion volume, onset to reperfusion time, and use of iv thrombolytic therapy. The primary outcome measure will be the overall proportion of subjects receiving Cerebrolysin compared to the control group experiencing a favorable functional outcome (by modified Rankin Scale 0-2) at 90 days, following stroke onset. The secondary objectives are to determine the efficacy of Cerebrolysin as compared to the control group in reducing the risk of symptomatic secondary hemorrhagic transformation, improving neurological outcomes (NIHSS 0-2 at day 7, day 30, and 90), reducing mortality rates (over the 90-day and 12 months study period), and improving: activities of daily living (by Barthel Index), health-related quality of life (EQ-5D-5L) assessed at day 30, 90, and at 12 months. The other measures of efficacy in the Cerebrolysin group will include: assessment of final stroke volume and penumbral salvage (measured by CT/CTP at 30 days) and its change compared to baseline volume, changes over time in language function (by the 15-item Boston Naming Test), hemispatial neglect (by line bisection test), global cognitive function (by The Montreal Cognitive Assessment), and depression (by Hamilton Depression Rating Scale) between day 30 and day 90 assessments). The patients will receive 30 ml of Cerebrolysin within 8 h of AIS stroke onset and continue treatment once daily until day 21 (first cycle) and they will receive a second cycle of treatment (30 ml/d for 21 days given in the Outpatient Department or Neurorehabilitation Clinic) from day 69 to 90.
Collapse
Affiliation(s)
- Jacek Staszewski
- Clinic of Neurology, Military Institute of Medicine, Warsaw, Poland
| | - Adam Stȩpień
- Clinic of Neurology, Military Institute of Medicine, Warsaw, Poland
| | | | | | | | - Emilia Frankowska
- Department of Radiology, Military Institute of Medicine, Warsaw, Poland
| | - Artur Maliborski
- Department of Radiology, Military Institute of Medicine, Warsaw, Poland
| | - Zoltan Chadaide
- Brainomix Ltd., and Oxford University Hospitals NHSFT, Oxford, United Kingdom
| | - David Balo
- Brainomix Ltd., and Oxford University Hospitals NHSFT, Oxford, United Kingdom
| | - Beata Król
- Brainomix Ltd., and Oxford University Hospitals NHSFT, Oxford, United Kingdom
| | - Rafael Namias
- Brainomix Ltd., and Oxford University Hospitals NHSFT, Oxford, United Kingdom
| | - George Harston
- Brainomix Ltd., and Oxford University Hospitals NHSFT, Oxford, United Kingdom
| | - Józef Mróz
- Neurorehabilitation Clinic, Military Institute of Medicine, Warsaw, Poland
| | - Piotr Piasecki
- Department of Radiology, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|
16
|
Purroy F, Beretta S, England TJ, Hess DC, Pico F, Shuaib A. Editorial: Remote Ischemic Conditioning (Pre, Per, and Post) as an Emerging Strategy of Neuroprotection in Ischemic Stroke. Front Neurol 2022; 13:932891. [PMID: 35812090 PMCID: PMC9260686 DOI: 10.3389/fneur.2022.932891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Francisco Purroy
- Clinical Neurosciences Group IRBLleida, Stroke Unit, Hospital Universitari Arnau de Vilanova de Lleida, Universitat de Lleida, Lleida, Spain
- *Correspondence: Francisco Purroy
| | - Simone Beretta
- Department of Neurology, San Gerardo Hospital Monza, Monza, Italy
| | | | - David Charles Hess
- Medical College of Georgia, Augusta University Augusta, Augusta, GA, United States
| | - Fernando Pico
- Centre Hospitalier de Versailles Le Chesnay, Le Chesnay, France
| | - Ashfaq Shuaib
- Department of Neurology, Medical College of Georgia, University of Alberta Edmonton, Edmonton, AB, Canada
| |
Collapse
|
17
|
Ghozy S, Reda A, Varney J, Elhawary AS, Shah J, Murry K, Sobeeh MG, Nayak SS, Azzam AY, Brinjikji W, Kadirvel R, Kallmes DF. Neuroprotection in Acute Ischemic Stroke: A Battle Against the Biology of Nature. Front Neurol 2022; 13:870141. [PMID: 35711268 PMCID: PMC9195142 DOI: 10.3389/fneur.2022.870141] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022] Open
Abstract
Stroke is the second most common cause of global death following coronary artery disease. Time is crucial in managing stroke to reduce the rapidly progressing insult of the ischemic penumbra and the serious neurologic deficits that might follow it. Strokes are mainly either hemorrhagic or ischemic, with ischemic being the most common of all types of strokes. Thrombolytic therapy with recombinant tissue plasminogen activator and endovascular thrombectomy are the main types of management of acute ischemic stroke (AIS). In addition, there is a vital need for neuroprotection in the setting of AIS. Neuroprotective agents are important to investigate as they may reduce mortality, lessen disability, and improve quality of life after AIS. In our review, we will discuss the main types of management and the different modalities of neuroprotection, their mechanisms of action, and evidence of their effectiveness after ischemic stroke.
Collapse
Affiliation(s)
- Sherief Ghozy
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, United States.,Nuffield Department of Primary Care Health Sciences and Department for Continuing Education (EBHC Program), Oxford University, Oxford, United Kingdom
| | - Abdullah Reda
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Joseph Varney
- School of Medicine, American University of the Caribbean, Philipsburg, Sint Maarten
| | | | - Jaffer Shah
- Medical Research Center, Kateb University, Kabul, Afghanistan
| | | | - Mohamed Gomaa Sobeeh
- Faculty of Physical Therapy, Sinai University, Cairo, Egypt.,Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Sandeep S Nayak
- Department of Internal Medicine, NYC Health + Hospitals/Metropolitan, New York, NY, United States
| | - Ahmed Y Azzam
- Faculty of Medicine, October 6 University, Giza, Egypt
| | - Waleed Brinjikji
- Department of Neurosurgery, Mayo Clinic Rochester, Rochester, MN, United States
| | | | - David F Kallmes
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|